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ABSTRACT: A Co(Il) complex, (PPHP)Col,, was synthesized and evaluated as a pre-catalyst for the hydrogenation of terminal
alkenes under mild conditions (1 atm H,, ambient temperature) using KBEt;H as an activator. This catalytic system was found to be
active for terminal alkene substrates, including 1,1’-disubstituted alkenes, and to exhibit modest air and moisture stability. A prelim-
inary investigation into substrate scope and functional group tolerance was performed. Upon the completion of catalytic reactions,
the sole metal complex observed was identified as the dimeric species [(PPP)CoH], suggesting that the catalytically active species

may be a cobalt hydride monomer.

The catalytic hydrogenation of unsaturated C-E (E =
C, O, N) bonds by homogeneous transition metal complexes has
been extensively studied, predominately using complexes that
feature precious transition metals.!> These complexes have
been iteratively improved in their catalytic activities and func-
tional group tolerances via detailed structure/activity correla-
tion studies into the influence of different metal centers and lig-
and environments on catalytic turnover. Within this expansive
field, the hydrogenation of terminal olefins has emerged as an
important reaction in and of itself and therefore has been exten-
sively studied. Motivated by both economic and environmental
considerations, there has been a drive to replicate and expand
on the reactivity of precious metal catalysts with Earth-abun-
dant first-row transition metal complexes as catalysts for olefin
hydrogenation.*!! However, there are a variety of challenges
associated with this goal, most notably that there have been
fewer detailed investigations of the reactivity and mechanisms
of first-row transition metal catalysts.!> Complexes that feature
cobalt(I) or cobalt(Il) centers supported by pincer ligands have
emerged as an important class of olefin hydrogenation catalysts
in their own right (Chart 1)."*'* In particular, work by Chi-
rik,*'>""7 Hanson,'® Lu,'>* Jones,?! Fout,?? Gade,?* Tonzetich,**
Anderson,” Huang,? and Peters?’-*® has demonstrated the util-
ity of pincer-ligated cobalt complexes to efficiently catalyze
olefin hydrogenation at room temperature with low catalyst
loading.

In prior work, our group reported facile H, activation
by the formally Co(I) complex, (PPP)Co(PMe;);* however, at-
tempts to use this complex as a catalyst for olefin hydrogenation
were unsuccessful. Instead, we developed a protocol for the in-
situ activation of a Co(Il) complex, (PP'P)CoCl,, with KBEt;H
to generate an active catalyst for the room temperature hydrob-
oration of terminal olefins.*® This catalytic system displayed
short reaction times and high selectivity for the anti-Markovni-
kov hydroboration products. With this catalytic activity demon-
strated, we sought to explore olefin hydrogenation reactions

using a similar Co(Il) pre-catalyst. Herein, we report the syn-
thesis of a pincer-ligated Co(II) complex featuring a central N-
heterocyclic phosphine and demonstrate its catalytic activity for
the hydrogenation of terminal olefins.

Chart 1. Representative examples of cobalt catalysts for alkene hy-
drogenation and their catalytic activity for the hydrogenation of sty-
rene at room temperature.
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Addition of the N-heterocyclic phosphine-containing
pincer ligand, PPPP,*! to Col, (1.2 equiv) in THF results in the
precipitation of a dark yellow solid, (PP2P)Col, (1) (Scheme 1).
Similar to (PP“'P)CoCl,, the 'H NMR spectrum of Co'' complex
1 contains 10 broad paramagnetically shifted resonances. The
solid-state structure of 1 confirms the proposed formulation,
wherein a Col, fragment is ligated by the pincer ligand with the



P-H bond of the central NHP-phosphorus atom intact (Figure
1). The coordination geometry of the cobalt center is distorted
square pyramidal (ts = 0.40). Although the poor solubility of 1
prevented an Evans’ method solution magnetic moment meas-
urement, we posit that the 1 adopts an S = 2 spin state in ac-
cordance with the analogous (PP“'P)CoCl, compound.?
Scheme 1. Synthesis of (PPHP)Col, (1).
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Figure 1. Displacement ellipsoid (50%) representation of 1. For
clarity, all hydrogen atoms except for the P-H moiety, disorder of
the amine backbone, and a dichloromethane molecule have been
omitted. Relevant interatomic distances (A): Col-P1: 2.0842(16),
Col1-P2:2.2177(17), Col-P3: 2.2283 (17), P1-H1: 1.31(4), P1-N1:
1.680(5), P1-N2: 1.705(5).

With 1 in hand, we sought to explore its utility as a
pre-catalyst for the hydrogenation of styrene using KBEt;:H as
an activator. In the absence of substrates, 1 reacts with KBEt;H
to produce the previously reported dimeric species
[(PPP)CoH],,** which was previously shown to be inactive for
hydroboration catalysis and is likewise inactive towards styrene
hydrogenation (Table S1 and Figure S17).*° Thus, it was neces-
sary to prevent the formation of [(PPP)CoH], by preventing the
reaction between 1 and KBEt;H prior to the addition of Hy. This
was accomplished by combining 1 (2 mol%) and styrene in
CsDg in a Schlenk tube under a nitrogen atmosphere, freezing
the reaction vessel with liquid Ny, replacing the headspace with
1 atm of H», and introducing KBEt;H (4 mol%) to generate the
catalytically active species in-situ. The reaction mixture was al-
lowed to warm to room temperature and stirred for 90 minutes;
during which time, the color of the solution proceeded from
green to a deep red coloration, indicating the formation of the
catalytically inactive dimer [(PPP)CoH],.> The reaction mix-
ture was then analyzed by GC-MS and '"H NMR spectroscopy
revealing ethylbenzene as the sole organic product. In the 'H
NMR spectrum, there are resonances at 3.69 and 3.29 ppm and
a broad resonance at -8.32 ppm that correspond to the meth-
ylene backbone protons of the NHP pincer ligand and the cobalt
hydride of [(PPP)CoH], (Figure S19).2 The *'P{'H} NMR

spectrum of the reaction mixture unambiguously confirms that
[(PPP)CoH]; is the sole metal-containing product (Figure S20).

Next, we sought to further probe and optimize the cat-
alytic alkene hydrogenation conditions using styrene (2a) as a
model substrate (Table S1). Although our initial screening in-
volved careful exclusion of air and moisture, it was quickly dis-
covered that catalysis was not significantly impacted by the de-
liberate addition of small quantities of air or water, with hydro-
genation proceeding to completion in the presence of either.
The (PPHP)Col,/KBEt;H system, therefore, exhibits apprecia-
ble stability towards adventitious exposure to atmospheric con-
tamination. Indeed, when the hydrogenation reactions were per-
formed under less rigorous conditions using round bottom
flasks and rubber septa, 1 atm of H, could easily be introduced
via balloon with no significant impacts to reaction outcome.
Even at very low catalyst loading (ca. 0.1-0.5 mol%), it was
possible to achieve yields >90% for the reduction of 2a to
ethylbenzene with prolonged reaction times. However, as our
goal was to develop a catalytic system that demonstrated both
ease-of-use and widespread application, we decided on a cata-
lyst loading of 2 mol% for our further studies. It was found that
this loading offered higher yields across our examined substrate
scope without requiring the use of specialized glassware to es-
tablish rigorously air and moisture free conditions.

The molecular/homogeneous nature of the in situ-gen-
erated hydrogenation catalyst was next probed using a series of
control reactions (Table S1). In the absence of either 1 or
KBEt:H, no catalytic activity was observed (Table S1). Cataly-
sis was not found to be hindered by the addition of metallic mer-
cury, supporting a homogeneous reaction. More convincingly,
we found that catalysis was halted entirely by the addition of
PMe;s (Figure S16), which is consistent with previous observa-
tions that alkene hydroboration is halted by the formation of the
catalytically inactive species (PPPP)Co(H)(PMe;)* upon addi-
tion of PMejs to an in-progress hydroboration reaction using the
(PP'P)CoCly/KBEt;H system.*

With our optimal catalytic conditions in hand, we
sought to explore a wider substrate scope (Chart 2) to determine
the capabilities and limitations of our catalytic system. Vari-
ously 4-substituted styrene derivatives (2b-2f) were screened.
4-methylstyrene (2b, >99%), 4-methoxystyrene (2¢, 95%), 4-
trifluoromethylstyrene (2d, >99%), and 4-chlorostyrene (2e,
90%) were all readily reduced under standard conditions in 90
minutes; only 4-bromostyrene (2f, 66%) failed to provide the
reduced product in high yields, requiring the reaction to be kept
cold to achieve modest conversion, which is most likely a result
of the more easily activated C-Br bond of 2f. The terminal al-
kene of 3,3-dimethylbutene (2g), 3-phenylpropene (2h), and 1-
octene (2i), are reduced in high yield to the corresponding al-
kanes 3,3-dimethylbutane (82%), propylbenzene (97%), and
octane (89%), respectively. In the case of substrates that were
capable of chain-walking, such as 2h and 2i, a small quantity of
the internal olefin products of chain-walking were detected. At-
tempts to hydrogenate internal olefins such as trans-2-octene
(2j) afforded no reduction products, even at elevated hydrogen
pressures (ca. 3 atm). Interestingly, some substrates, such as al-
lylphenylether (2k) and 5-hexen-2-one (21) failed to afford the
reduction products in satisfactory yield when using C¢Ds. Using
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THF-ds as the reaction solvent, however, enabled the conver-
sion of 2Kk to propylphenylether (92%) and 21 to 2-hexenone
(75%) with longer reaction times. Hoping to demonstrate the
reduction of a more sterically encumbered 1,1’-alkene, we
chose to investigate the hydrogenation of a-methylstyrene
(2m). Initially, reduction of 2m resulted in a maximum yield of
37% under our standard protocol in 90 minutes. Allowing the
reaction to proceed for a total of 3 hours provided a modest in-
crease in yield (50%). However, increasing the catalyst loading
(4 mol% 1, 8 mol% KBEt;H) and stirring for 3 hours was found
to provide the greatest conversion of 2m (76%). The conversion
of 2m to isopropylbenzene was found to be insensitive to sol-
vent (THF/C¢Dg) or gentle heating (40 °C) over 3 hours. The
related 1,1’-substituted alkene substrate, limonene (2n), bearing
both internal and terminal olefins was noted to react slowly at
the terminal olefin, requiring 4 mol% 1 and 12 hours of stirring
to afford 1-methyl-4-propan-2-ylcyclohexene (90%).

Chart 2. Substrate scope and general conditions for the hydro-
genation (rt, 1 atm H») of variously substituted olefins using 1
(2 mol %) in the presence of KBEt;H (4 mol%) as an activator.
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Comparing the catalytic activity of the 1/KBEt:H sys-
tem to previously reported cobalt catalysts for olefin hydro-
genation reveals that the low catalyst loading, mild conditions
(1 atm H,, rt), and short reaction times are comparable to the
best-known systems (Chart 1). However, the sluggish activity
of 1/KBEt:;H towards 1,2-disubstituted alkenes at room temper-
ature is a notable limitation.!>”-1822 [t may be possible, how-
ever, to devise a more active catalyst for more challenging

substrates through modification of the ligand framework and a
structure/activity relationship study is therefore underway. Our
previous work on the activation of molecular hydrogen across
the Co-P bonds in a related (PPP)Co complex suggests that
metal-ligand cooperativity may play a role in the activation of
H,, raising questions about the catalytically active species and
mechanism for catalytic turnover reported herein.”” Based on
the identification of the inactive dimer, [(PPP)CoH],, at the end
of catalytic reactions, we hypothesize that the catalytically ac-
tive species is a monomeric Co hydride species. However, fur-
ther experimental and computational mechanistic studies will
be required to further investigate the hydrogenation mechanism
and determine the identity of the active catalyst and whether
metal-ligand cooperation is involved.

In summary, the Co™ pincer complex (PP*P)Col, (1)
effectively catalyzes the hydrogenation of terminal olefins
when activated with KBEt;H. Styrene derivatives and a variety
of other terminal olefins are hydrogenated with good to excel-
lent yields at a low catalyst loading (2 mol %) and under mild
conditions (1 atm Hp, rt, 90 min). Under the optimized condi-
tions, the only metal-containing product that was spectroscopi-
cally observed at the end of catalysis was the dimeric species
[(PPP)CoH],, strongly implicating a monomeric cobalt hy-
dride-containing species as the active catalyst. Future studies
will seek to gain insight into the mechanism of this catalytic
hydrogenation reaction and to leverage this hydrogenation re-
activity towards a broader range of substrates.
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