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Abstract. The standing wave solutions of a coupled nonlinear Schrédinger
equations with quadratic nonlinearities from Raman amplification of laser
beam in a plasma are considered. For both the original three-wave system
and a reduced two-wave system, the existence/nonexistence, continuous
dependence and asymptotic behavior of positive ground state solutions
are established. In particular, multiple positive standing wave solutions
are found via a combination of variational and bifurcation methods for the
attractive interaction case, which has not been found for the conventional
nonlinear Schrédinger systems with cubic nonlinearities.
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1. Introduction and Main Results

1.1. Physical Models

Raman amplification in a plasma is an instability phenomenon taking place
when an incident laser field propagates into a plasma. A Schrédinger type
model has been established to describe such phenomenon [19,22,59]:

b? ;
10y + ivc Oy + oqa; +asA)Ac = ?n.Ac —x(V- E).ARe—ze7

b .
i0; + vrdy + 1% +1281)Ar = S nAr = X(V - B)Ace”,

b _
iat + 51A)E = §TLE + Xv( *R-ACEZG)7
9 —viD)n = aA(|EP + bl Ac|® + c|Ar[?),

(1.1)

(
(
(
(

where the vector fields Ag, Ac, E : R? — C? are the incident laser field, the
backscattered Raman field and the electronic plasma-wave, respectively, and
n is the variation of the density of the ions; the parameters ve and vg are
group velocities, ay,as,v1,72,x and d; are dispersion coefficients, a, b, ¢ are
the coefficients of the nonlinearities, 8 = k1y — w1 t, wy = 61 k%, w1 is the main
frequency of the Raman component, k; is the wave number and A | = 92+ 92.

The model (1.1) was derived to describe nonlinear interaction between
a laser beam and a plasma. From a physical point of view, when an incident
laser field enters a plasma, it is backscattered by a Raman type process. These
two waves interact to create an electronic plasma wave; then the three waves
combine to create a variation of the density of the ions which has an influence
on the three proceedings waves. The system (1.1) describing this phenomenon
is composed by three Schrodinger equations coupled to a wave equation and
reads in a suitable dimensionless form. For a complete description of this model
as well as a precise description of the physical coefficients, we refer to [19,20,
22].

Following simplifications in [22], a subsystem of (1.1) with nonlinear ef-
fects can be simplified and converted into a system of three-wave nonlinear
Schrodinger equations:

1001 = —Avy — pafvi[P 7?01 — xUavs,
10wy = —Avy — pig|va [P~ 20y — X071 vs, (1.2)
i0pv3 = —Avg — ps|vs|P~2v; — xv109,

where v; (i = 1,2,3) are complex valued functions of (t,z) € R x RN, p > 2,
N <3, u; >0 (i=1,2,3) and x > 0. Orbital stability of standing wave solu-
tions in form of (e***1),,,0,0), (0, e, 0) and (0,0, e™t1p,,) were considered



Vol. 24 (2023) Standing Waves of Coupled Schrédinger Equations 1925

in [21,22], see also [52] for the case of dimension N = 4, 5. In the present paper
we look for standing waves of (1.2) of the form

(v1(t, ), v2(t, ), v3(t, x)) = (u(m)ei’\lt, v(w)ei)‘zt, w(x)e”"“"t), (1.3)

where u,v and w are real-valued functions of z € RY. One can see that if
A3 = A1 + Ao, substituting (1.3) into (1.2), then we find that (u,v,w) is a
solution of the system

—Au+ Mu = py|ulP~?u + yvw, in RV,
—Av + Aov = pa|v[P~ 20 + yuw, in RV, (1.4)
—Aw + Agw = pz|w|P~2w + xuv, in RV,

Here p satisfies 2 < p < 2%, 2* =2N/(N—-2)if N > 3,and 2* = 0 if N =1, 2.
When 3 < p < 2" and 1 = po = ug = 1, the existence of a positive least energy
solution of (1.4) for x > 0 sufficiently large was proved in [56]. The existence
and nonexistence of solutions to (1.4) for the case of 2 < p < 3 have been
shown in [69]. In the present paper, we consider the existence, nonexistence
and multiplicity of solutions to system (1.4) with p = 3, i.e.,

—Au+ Mu = p|u|u + Bow, in RV,
—Av + A2v = pav|v 4+ Buw, in RV, (1.5)
—Aw + Azw = ps|w|w + fuwv, in RY.

Here the parameters \;, yu; > 0 for i = 1,2,3 and g € R.
A special case of (1.5) with u = w, \y = A3 and p; = pg reduces to a
two-wave equation

—Au+ Mu = py|ulu + fou, in RV,
—Av + Aov = pslv|v + guz, in RV, (16)
Indeed, under the assumptions we know that @ = @ = v2u = v2w. Then
the first and third equations of (1.5) becomes —Au + A\t = fi1|t|a + Soa,
and the second equation (1.5) become —Av + Agv = ps|v|v + gfﬂ, where
fin = 5. Hence, we can get the system (1.6) by re-notation the parameters.
The existence and multiplicity of positive solutions of (1.6) when Ay = A2 >0
and po = 1 have been investigated in [23], and the orbital stability of standing
waves for the corresponding evolution equation was also considered. When
u; =0 for 1 < i < 3, the systems (1.5) and (1.6) are in the same form as the
Schrodinger system of Second Harmonic Generation (SHG) [73-75], and the
existence of ground state and multi-pulse solutions for 2 < N < 5 has been
investigated in [75] (see also [68]). In the papers [24,25,35], the authors show
the existence of bound state and ground state of Schrédinger-KdV system
with cubic nonlinearity in dimension one, where the terms pq|ulu and ps|v|v
are replaced by u® and $v? in system (1.6).

Our main results of the present paper are for three cases of (1.5) and
(1.6):
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1. Under the assumption of A\; # Ay and A; > 0, the existence/nonexistence,
uniqueness/multiplicity, asymptotical behavior and bifurcation of posi-
tive solutions or nontrivial solutions of the two-wave system (1.6) (see
Sect. 1.2);

2. Liouville’s type results of the two-wave system (1.6) when A\ = Ay =0
(see Sect. 1.3);

3. The existence/nonexistence, multiplicity, asymptotical behavior and bi-
furcation of positive solutions or nontrivial solutions of the three-wave
system (1.5) (see Sect. 1.4).

The two-wave system (1.6) and three-wave system (1.5) considered here
are both systems of nonlinear Schréodinger type equations with quadratic inter-
action terms. More often nonlinear Schrédinger equations arising from physical
applications have cubic interactions. For example, the Kerr effect in nonlinear
optics, Gross—Pitaevskii equation of Bose-Einstein condensate [8,9,14,65,66].
Models of multiple wave interactions also often inherit such cubic nonlinear ef-
fect, see for example [1,2,4-6,11,16,17,31,34,40-42,48,50,51,53,60,62-64, 67
and the references therein. But in recent years there have been increasing in-
terests in nonlinear Schrodinger type equations with quadratic nonlinearities,
which arises from nonlinear optical effects such as Second Harmonic Gener-
ation (SHG) [13,36,45,55,74,75], and Lotka-Volterra competition models in
ecology [26,29,30].

One of our main findings in this paper is that the two-wave system (1.6)
and three-wave system (1.5) have multiple positive solutions for certain pa-
rameter values (by combining the variational and bifurcation methods). This
is quite different from other Schrodinger type two-wave or three-wave systems.
For the cubic two-wave system studied in [2,4,34,42,49], the positive solution
appears to be unique for all 8 > 0 when it exists (though not proved except the
special case considered in [71]), and the uniqueness is numerically verified in
[38] for some parameters. On the other hand, it is known when 3 < 0 the cubic
Schrodinger system has multiple positive solutions [4]. When g1 = po = 0 in
(1.7), it becomes the Second-Harmonic Generation type I model considered in
[75], and in that case, the uniqueness of the positive solution is known for A = 0
and A = 1 and conjectured for all A > 0 and 3 > 0 (see [18,75]). Hence, the
nonuniqueness for (1.6) obtained here provides an example of possible multiple
standing waves for Schrodinger type systems with attractive interaction.

The remaining part of the paper is organized as follows: in Sects. 1.2, 1.3
and 1.4, we state our main results on two-wave system (1.6) and three-wave sys-
tem (1.5), respectively. Some preliminaries for two-wave system are reviewed
in Sect.2. We prove the existence/nonexistence results for two-wave system
in Sect.3, and bifurcation and asymptotic behavior of solutions of two-wave
system are considered in Sect. 4. Some Liouville type results for two-wave sys-
tem are proved in Sect. 5. Finally, results for three-wave system are proved in
Sect. 6.

Throughout the paper, we use the following notation for the function
spaces: X = H'RY), X, = H}RY) = {u € HY(R") : u is radially sym
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metricl, Y = L2(RY) and Y, = L2(RY) = {u € L2RY) : u is radially
symmetric}. Also for any linear space Z, Z* is the k-fold Cartesian product
of Z. In this paper we will consider Z2 and Z3 for Z = X, X,,Y,Y,.

1.2. General Two-Wave System
Let

_ R B N R A i S [ B SC)
a(z) = (\ﬁ) o(x) = U(\/X)7ﬂ_)\1’m_)\1’uz_)q’)\Q_ :

Then (@(x),0(x)) satisfies (1.6) when the parameters A1, A, 1, p1, 3 are re-
placed by 1, Ao, i1, fi1, B, respectively. In the following we shall only consider

—Au+u = py|ulu + Bou, in RY,
1.7
—Av+Av:M2|v|v+§u2, in RY, (L7)
as the solutions of (1.6) can be easily converted from the ones of (1.7) via
above scaling. The energy functional associated with (1.7) is defined by

1 1
I (u,v) = 7/ (|Vul|? + u?) + 7/ (|Vo]? + M?) — ﬂ u?v
2 RN 2 RN
! (1.8)
=5 [ Gl alol®) for (w0) € X2
RN

where N < 6. We say that (u,v) is a weak solution of (1.7) if (u,v) € X?, and

I (u,0) (¢, 0) = /RN(VquS + ug) + /RN(VvVgJ + Avp) — 5/RN uvp

=5 [wte= [ Gluluo + alulog) = o
RN RN
for each (¢, p) € X2.

A solution (u,v) of (1.7) is nontrivial if u # 0 and v # 0. A solution (u,v)
with © > 0 and v > 0 is a positive solution. A solution is called a ground state
solution (or positive ground state solution) if its energy is minimal among all
the nontrivial solutions (or all the nontrivial positive solutions) of (1.7). The
system (1.7) also possesses semitrivial solutions of type (0, v).

In the variational setting we consider a weak solution (u,v) of (1.7) in
the space X2, and we will also consider the problem in the subspace of radially
symmetric functions X?2. We say that (u,v) € X2 is a radial solution, and it is
called a radial ground state solution (or positive radial ground state solution)
if its energy is minimal among all the nontrivial radial solutions (or all the
positive radial solutions) of (1.7).

A more general notation of stability of a solution of (1.7) can be defined
through the Morse index. Let (u,v) be a nonnegative solution of (1.7). Then
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for each (¢, ) € X2, one has that
L(¢, o) = J" (w,0)[(¢, 0), (8, 9)]

=/ (Vo2 + ¢* + [Ve|* + Ap?) —ﬁ/RN(U(bQ—i-ngod))

RN
- 2/ (H1ud® + pove?).
]RN

Let S~ be the negative subspace of X2 such that L|g- is negatively definite.
Then the Morse index of a nonnegative solution (u,v) is defined as M (u,v) =
dim S~. Similarly we define S, to be the subspace of X? such that Llg- is
negatively definite, and the radial Morse index to be M,.(u,v) = dim S, .

To state our first existence result for (1.7), we set

; 2 [(A”f AE) - (Z; +/\‘12V>}

T 3min {1,0~% | ’

Nes 5 (1.9)
[/@)\ T (24 (AN=1)00)® — (p2 + Ml)} )

2
3
/3212 [Mz <2+ <§\1) Uo> — (p1 + p2)

Bo = min{Bo, A1, B2}, (1.10)

where oy = |w0‘%2(RN)/‘w0|i3(RN)7 and wy is the unique positive solution of

and

—Au+u=1% ueX,=HRY). (1.11)

The following is a set of basic existence results for the nontrivial solutions of
(1.7).

Theorem 1.1. Suppose that py, po, A >0 and 3 € R.

(i) For 1 < N <5, (1.7) possesses a nontrivial radial ground state solution
z € X2 if one of the following conditions holds:
4

6—N
(A1) pa,pe >0, A > <ZZ> and B € R; or
1

4
TN .
acl and B > By.

1

In addition, if 8 > 0, then z is also a positive ground state solution of
(1.7).

(ii) If N =6 and A > 0, or N > 6, A\, 1, u2 > 0 and 8 > 0, then (1.7) has
no positive solution.

(iii) For N =1, (1.7) has a nontrivial radial ground state solution z € X? if
(A3) p1, A\, 8>0, and —oo < pz < 0.

(iv) For any B, > 0, there exists a Kz, > 0 such that for (u,v) € Sa,,

(A2) pi,2>0,0< A<

|u]oo + |V|0o < Kp,,
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where Sg, = {(u,v) : (u,v) is nontrivial radial positive solution of (1.7)

with 8 € [0, 5.)}.
Remark 1.2.

1. The range of ( in the existence results of (i) of Theorem 1.1 is not the
best one which we can obtain. We give the present form to avoid heavy
notations at this stage, and the more precise range for J can be found in
section 3.1 (see (3.10)).

2. If A = 1, then for the constants defined in (1.9), Bo=Po=p1=Pps=
2(p2 — p1)/3 > 0 as the condition (Ajz) is satisfied. For general A > 0,
one can also show that 3y > 0 under the condition (As).

3. If pg = 0 in (1.7), then the conclusions (i) and (iii) still hold for each
)\, H1 > 0.

Remark 1.3. Comparing to the case of 2 < p < 3 in [69], although the con-
clusions (i)—(ii) and (iv) in Theorem 1.1 are similar to the case 2 < p < 3,
we have the following differences. First of all, due to the sub-quadratic term
|ulP~2u(2 < p < 3) in (1.4), the energy functional is neither bounded from
below on Nehari manifolds nor satisfies the Mountain-Pass condition in X?2.
The author combined the Mountain-Pass theorem in convex set and Nehari
manifolds methods to overcome the difficulty and prove the existence posi-
tive solutions. This is the main contribution of the previous paper [69]. On
the other hand, as we have already pointed out that one of our main findings
in this paper is that the two-wave system (1.6) and three-wave system (1.5)
have multiple positive solutions for certain parameter values (by combining
the variational and local bifurcation methods). We also prove the Liouville’s
type results of the systems (1.6) and (1.5). This is quite different from other
cubic Schrodinger type two-wave or three-wave systems.

In the next result we show the existence of small amplitude positive
solutions which bifurcate from the known semi-trivial solutions of (1.7), and
in some cases, the uniqueness of positive solution can also be proved. We denote
S1 to be the best constant of the embedding H'(RY) — L3(R"):

/ (IVul? + [uf?)
RN .

inf 5
u€H (RN)\{0} 3
(L)
RN
More generally the equation
—Au+ = p?, we X, =HRY), (1.12)

has a unique positive solution (see Lemma 2.1)

S1 =

wi () = %wo(\f)\x). (1.13)

By the regularity results one knows that wy ,(z) € XJ:=W?*?(RY) for p €
(%, oo) N (1,00). Now we have the following main results.



1930 J. Wang, J. Shi Ann. Henri Poincaré

Theorem 1.4. Suppose that py, o, A > 0. Then the following results hold:
(i) Let B1 > 0 be the principal eigenvalue of

—Ap+ ¢ =Pwx,¢, o€ X, =WHPRY), (1.14)

and let ¢1,3, > 0 be the corresponding positive eigenfunction. Then there
exists 7o > 0 such that when 3 € (61 —70,51), (1.7) has a positive solution
(u1g,v18) in the form of

5 fo R
uig = - ¢1,68, +0(B = b1), vig = wapu, +0(8 — Br).

H1 3
RN ¢1751

Moreover, if either (A1) or (Az2) holds, then (uig,v1g) is not a ground
state solution, and M(uig,v18) = 2 for B € (61 — 70, 61). Additionally,
we have that M(0,wy ,,) =2 for B1 < B < 1+ 10 and M(0,wy p,) =1
for 0<pB<pfh.

(ii) There exists 71 > 0 such that when § € (—11,71), (1.7) has ezactly two
nontrivial solutions (ugg, vag) and (usg,vsg) in the form of

U2 = Wi, + 6(_A +1- 2#1w17/“l/1)71(w17,u‘1 w>\7lt2) + O(ﬂ),
p _
Vag = Wy 5 (ZA A= 2pi0wx )T (W) + 0(5), (1.15)

U3zp = Wi, u,y + 0(6)7 U3 = g(_A + A)_l(w%,pl) + O(ﬁ);

when € (0,71), both of (usg,vap) and (usg,vsg) are positive, and when

B € (—71,0), (u2p,vap) is positive but (usg,vsg) satisfies ugg > 0, vag <

0. Moreover, (uzg, v2g) is not a ground state solution with M (ugg, vag) =

2, and (usg,vsg) is a ground state solution with M (usz,vsg) = 1.
(iii) Suppose that A =1, 8 = pus > 0 and 1 < N <5, and let (ug,vg) be a

positive solution of (1.7). Then ug = iﬂvo, and vy satisfies

2
23 - 1N
—Av—l—vz(uz—i—/m)v,veH(R ). (1.16)

The existence of the principal eigenvalue 31 of (1.14) for fixed A, us > 0
will be proved in Lemma 4.1. Part (i) shows the local bifurcation of positive
solutions from the branch of the semi-trivial solutions {(4,0,wx ,) : § > 0},
and part (ii) shows the continuation of the decoupled solution (w1 ,,,wx u,) to
small 3 > 0. These two results can be illustrated by Fig. 1. Moreover combining
the existence of positive ground state in Theorem 1.1 and the bifurcation of
a non-ground state positive solution in Theorem 1.4, we obtain the following
result of existence of multiple positive solutions of (1.7).
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A

(l’zﬁ-"zp) Mde‘x(ﬂmvzﬁ) =2

(ulsvl)

Ground state solution

(., 0) |02 v5) s 71
1>
(15-v15) Mdex(uw'vlﬂ) =2

(Oavl) 1 T 2
:
1
1

(0,0) . >

B B

FIGURE 1. Bifurcation diagram for the two-wave system (1.7)

Corollary 1.5. Suppose that py, po > 0.

1.

4
N
If X > <M> and [ is the principal eigenvalue of (1.14) for fized
M1
A,z > 0, then (1.7) has at least two positive solutions when 5 € (81 —

7o, B1) for some 19 > 0.

=~
CIf0o< AL (MQ) and the principal eigenvalue By of (1.14) for fixed

1
A pa > 0 satisfies By > Bo (defined in (1.9) and (1.10)), then (1.7) has
at least two positive solutions when 8 € (B1 — 1o, 1) for some 79 > 0.
For any A > 0, then (1.7) has exactly two positive solutions when 3 €
(0,71) for some 11 > 0.

Remark 1.6.

1.

2.

Corollary 1.5 identifies two intervals of 5 in which the two-wave equation
(1.7) has multiple positive solutions.

Note that when § € (0,71), (1.7) has exactly two positive solutions since
when 3 = 0, there are exactly four nonnegative solutions of (1.7): (0,0),
(0, w1,5)s (Wx,uy,0) and (w1, , Wa,u, ). The first two remains as nonneg-
ative solutions of (1.7) for 8 € (0,71), and the latter two perturb to
positive solutions (usgg,veg) and (usg,vsg) for § € (0,71). There are no
other positive solutions from Theorem 1.1 part (iv).

The solution (usg,vsg) is a ground state as it achieves the minimal en-
ergy among all non-trivial solutions of (1.7), but the semi-trivial solution
(0, w1y, ) may have smaller energy.

The next result is concerned with the asymptotical behavior of the posi-

tive ground state solutions of (1.7).
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Theorem 1.7. Assume that 1 < N <5.

(i) Let (ug,,vs,) be any positive ground state solution of (1.7) with B =
Bn > 0. Then, passing to a subsequence, as B, — B« > 0, one has that
(ug, ,vs,) — (uo,vo) strongly in X2 asn — oo. Then the following results

hold.
142 e 93
(1) If . =0 and X > <> , then lim CP» = =L and (ug,vo) =
H1 n—oo 6111
(g two, 0), where CP denotes the least energy level of (1.7) with
B = PBn-

(2) If B > 0 and X > 0, then (ug,vo) is a positive ground state solution
of (1.7) with = B.
(ii) Assume that (A1) and B > 0 hold. Let (uy,,vx, ) be any positive ground
state solution of (1.7) with A = X, where \,, — 00 as n — oo. Then,
passing to a subsequence, as A\, — 00, we have that

(u)me)\n) - (/Ll_lea O) in Xv?v AUy — 0inY, = LE(RN)a

and

. T é 2 _ ﬁ 2 oS} N
lim Antn, = lim uy o= ——swyp, Yo € C7(R™Y).
n—oo JpN n—oo [pN 2 " RN 2#1

(1.17)

(iil) Assume that puz =0, (A1) and 8> 0 hold. Let (uy,,vx, ) be any positive

ground state solution of (1.7) with A = X\,, > 0 and ps = 0. Then, passing

to a subsequence, as Ap, — A > 0, we have that (uy,,vx,) — (ug,v) in

HYRYN) x DL2(RN), and (ug,vo) is a positive ground state solution of
(1.7) with pua =0 and XA = A,

Remark 1.8. Tt py = po = 0, the system (1.7) reduces to the well-known
Second-Harmonic Generation type I model (X(2)—1\/Iodel)7 which was studied in
[75] recently. Let (ux, vy) be a solution of (1.7) with pu; = e = 0. It was known
via formal argument [3,13] and later proved in [75] that if A is large enough,
vy &~ u3/(2)) and uy is a solution of (1.11) with u; = 3. Here we prove this
conclusion in an integral sense (see (1.17)) for more general situation.

1.3. The Limiting System

In this part we focus on the case when A\; = A\s = 0 in (1.6). The existence
and multiplicity of nontrivial solutions of (1.6) for A\; = Ay > 0 were shown in
[23]. Here we shall establish some Liouville’s type results of system (1.6) for
the case Ay = Ao = 0, which is

—Au = py|ulu + Pou, in RV,
1.18
—Av = polvlv + §u2, in RY. (118)

We have the following Liouville’s type results for (1.18).

1
Theorem 1.9. Assume that 1, e >0, and > — (2;@#2) *. Then the follow-
ing results hold.
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(i) If 1 < N < 4, and (u,v) is a nonnegative classical solution of (1.18),
then (u,v) = (0,0).
(il) If 1 < N <4, and (u,v) is a nonnegative classical solution of

—Au = pyu® + Bou, in RY,

—Av = pov? + §u2, in RY, (1.19)

u=v=0, onaRf,

then (u,v) = (0,0), where RY = {z € RN : zy > 0}.
(iii) Let Q C RN be a smooth bounded domain in RN with 1 < N < 4, and let
(u,v) be any nonnegative solution of

—Au = pu’ + Bou, in €,

—Av = pgv? + guz, in Q, (1.20)
u=uv=0, on 0f),

then we have |[ul| Loy, [|V]| =) < C, where C = C(B, p1, pr2, ).

Results in Theorem 1.9 are closely related to the ones in Theorems 2.1
and 2.2 of [32] (also see [33,58]), in which Louville’s type results for cubic
Schrodinger system were proved. We notice that the results in [32] hold for
1 < N < 3, while our results hold for 1 < N < 4 as the nonlinearity here is
quadratic. It is an open question for the case N = 5. In order to prove these
results, we shall apply the general theorems given in [33,58].

1.4. Three-Wave Systems

In this subsection, we describe our results for the three-wave system (1.5).
Note that the system (1.5) possesses semi-trivial solutions of type (u,0,0),
(0,v,0) and (0,0, w). So, similar to the two-wave system, we give the following
definitions of solutions of (1.5). A solution (u,v,w) of (1.5) is nontrivial if
u#0,v#0and w # 0. A solution (u,v,w) with v > 0, v > 0 and w > 0
is called a positive solution. A solution is called a ground state solution (or
positive ground state solution) if its energy is minimal among all the nontrivial
solutions (or all the nontrivial positive solutions) of (1.5). Here the energy
functional corresponded to (1.5) is given by

~ 1
I (u,v,w) = 5/ (|IVul? + M\u? + [Vol]? + Xv? + [Vul? + Azw?)
RN

. (1.21)

-3 / (pualuf® + palol® + pizluof?®) — B / oo,
RN RN

where (u,v,w) € X3. Similar to the two-wave system (1.7), we can also con-
sider the problem in the subspace of radially symmetric functions X3, and
define the radial ground state solution (or the positive radial ground state
solution).

In the present paper we consider the case when A1, Ao and A3 are pair-
wisely distinct. The case A\; = Ay = A3 will be considered in a forthcoming
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works. Without loss of generality we assume that Ay = 1, Ao # Az, A2 # 1 and
Az # 1in (1.5). Set

) m[(HA;ZNJFA;J)g—(H
b= —

3min{1,)\2 A } 7

A +“3)\35)}

3
o 1 : (1.22)
P2 = 3 <3+( e : —2)00) ps — (b + p2 +p3) |,
3
~ 1 14+ A 2
=3 [(3+< . 2)00) po = (pn+ iz + pis) |
where og = |w0|%2(RN)/‘w0‘i3(RN)’ and wp is the unique positive solution of

(1.11). We make the following assumptions.
To state our results, we define the following conditions.

M2 = M3 e 5
(Bl) ul,ug,u3>0,>\22 E , Az > a and 3 > (1 > 0.

g N .
(B2) pui, pi2, pig >0, Ag > <Zj> ,0< A3 < ('Zi) and 3 > .

p2\ *N p3\ o 5
(B3) .u17.u“27.u3>070<>\2 < E 7>‘3Z I andﬁ>/83'

T~ T
(B4) wis o,z > 0,0 < A < <Z?> , 0 < A3 < (Zj) and 6 >
s [ )
(Bs) p1, 2, 13, A2, Az > 0, and 3 > max {51732,33}-

Then we have the following existence and nonexistence results for the three-
wave system.

Theorem 1.10. Suppose that 1, po, 3, Ao, A3 > 0, Ay = 1, Ao # A3, Aoy # 1,
A3 # 1 and B € R.

(i) If1 < N <5 and one of (B1)-(Bs) holds, then (1.5) possesses a nontrivial
radial solution z € X3. Moreover, if 3 > 0, then z is a positive ground
state solution of (1.5).

(i) For any B, >0, there exists a K5 >0 such that for (u,v,w) € S5,

[uloo + |V]o0 + [w]oo < f(é*a
where 5'5* = {(u,v,w) : (u,v,w) is nontrivial radial positive solution of

(1.7) with B € [0, B.]}.
(iii) If N =6, or N > 6 and 3 > 0, then (1.5) has no positive solution.

Note that, similar to the two-wave system case, the ranges of # in The-
orem 1.10 can be improved. We can also give other conditions to guarantee
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the conclusions of Theorem 1.10 hold (see Sect. 6). Next we have the following
bifurcation results for the system (1.5).

Theorem 1.11. Suppose that p1, pa, i3, Ao, Az > 0 and Ay = 1. Then the fol-
lowing results hold.

(i) There exists T2 > 0 such that when 3 € (B2 — 72, 02), (1.5) has a positive
solution (u1,v18, w1g) i the form of

u15(7) = Wiy, () + o(B — Ba),

20 ~ Heose | 63w
vig(z) = RY $2,8,(x) + o(B — [2),
/RN (pg cos® 0y + g sin® Hg)qbg”ﬁz (1.23)

%@—mm@/‘@@mm
RN

wig(z) = b2, () +0(B — B2),
/ (p2 cos® O3 + iz sin® 02) @3 5,
RN

where B > 0 is the principal eigenvalue of

Ao+ A3 \/()\2 — )’ + 4ﬁ2w%7u1
2 - 2

— A+ =0, ¢eX, (124

$2.5, > 0 is the corresponding eigenfunction, and 03 : RN — (0,7/2)
is a continuous function depending on Az, Az, B2, w1, . Similarly (1.5)
has a positive solution (usg, vag, wag) for B € (B3 — 73, 83) in a similar
form as (1.23) near (0,wx, pu,,0), where B3 is the principal eigenvalue
of an eigenvalue problem similar to (1.24) and 73 > 0; and (1.5) has a
positive solution (usg, vsg, wsg) for B € (Ba — T, Ba) in a similar form
as (1.23) near (0,0, wx,,u,), where By is the principal eigenvalue of an
eigenvalue problem similar to (1.24) and 74 > 0. Moreover, each of the
bifurcating positive solution (u;g,vig,w;g) (i = 1,2,3) has Morse index
M (u;ig,vig, wig) = 2, and if one of (B;) (1 <i < 5) holds for \i, u; and
B, then (uig,vig, wig) (i =1,2,3) is not a ground state solution.
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There exists 75 > 0 such that when 8 € (—75,75), (1.5) has exact four
nontrivial solutions (uw;g,vig, w;3) (i =4,5,6,7) of the form

wag = w1 + (A + 1= 2w )" Wr, Wiy s B+ 0(8),

V4 = Waguy + (= A+ Ao — 20w, 15) " W1, Wiy, pus B+ 0(3),

Wi = Wag s + (—A 4 A3 — 203w, p15) W, Wy 40y B+ 0(5),

Usg = Wi, +0(B), Vsg = Wiy, +0(B),

wsg = (—A + X3) " rwy Wi, 08 + 0(B), (1.25)
ues = w1, +0(8), vos = (A + Xo) " wi w8+ 0(B),

Wep = Wxy s + 0(3),

urg = (—A + 1) wa, uwig s B+ 0(B),

V78 = Wig,us +0(B), W75 = Wig,us + 0(B);

when B € (0,75), all four solutions above are all positive, and when
B € (—75,0), the four solutions have sign patterns (ug,vag,wag) =
(+,+,+), (usg, vsg, wsp) = (+,+, =), (ueg,vep, wep) = (+,—,+) and
(urg,v78, wrg) = (—, +, +); these solutions have Morse index M (ug, vag,
wag) = 3, and M (u;g,vig, wig) = 2 for i =15,6,7. Moreover, if

=~ o~
Ao < (’”) . and A3 > (“3> ,
M1 M1

4 4

=N =N

or Ag > (W) , Az 2> <M3> , and Ay < A,
251 251

then (usg, vsg, Wsg) s a ground state solution; if

4 4
6—N 6—N
Ny > (H) Cand N < (H) ,
M1 H1

4 4

6-N 6-N

or Ay > (Mz) Az > (M:&) ,and Az > As,
M1 M1

then (usg, veg, Weg) is a ground state solution; and

4 4
6—N 6—N
Ay < (’“‘2> Cand Mg < (“3) ,
M1 M1

then (u7g,v7g,wr) is a ground state solution.

Remark 1.12.

1.

2.

The principal eigenvalue of (1.24) can be defined through a variational
way, see Sect. 6 for details.

The bifurcation result in Theorem 1.11 holds when some or even all of
A1, A2 and Az are equal. For example, if A\y = A3 # 1, then vig = wig
and 0y = 7/4.

An illustration of the bifurcation of positive solutions of (1.5) is shown
in Fig. 2, in which we assume that 5y < 03 < (4.
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FIGURE 2. Bifurcation diagram for the three-wave system
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4. Part (ii) of Theorem 1.11 show that (1.5) has exactly four positive so-
lutions when 5 € (0,75) for fixed p;, A; > 0. Note that (uag, vag, wag)
has the highest Morse index and also the highest energy. Here one of
(uig, vig,w;g) with ¢ = 5,6, 7 is the ground state solution as it achieves
the minimal energy among the non-trivial solutions of (1.5), but indeed
one of semi-trivial solutions has lower energy than all of (u;g,vig, wig)
with i = 5,6, 7. Also the Morse index of each semi-trivial solution is 1.

5. In Theorem 1.4 (iii), we prove the uniqueness of positive solution for the
two-wave system (1.7) in a special case. The uniqueness of positive solu-
tion to the three-wave system (1.5) is not true in general as it may possess
multiple synchronous positive solutions, see our forthcoming paper [39,

Theorem 1.1].

2. Preliminaries

In the present paper we use the following notations:

.memmmm&X:W®M®mMWWW:/(NW+ﬁ%
RN

e || - |la is an equivalent norm of X = H'(RYN) defined by |lul3, =

(|Vul? + M|ul?), for a positive function or constant M.

RN

o For z = (u,v) € X2, [[2|} = [[u]}, + VI,
o X, = W2P(RY), where p € (%, oo) N (1,00), and X, denotes the sub-
space of X, consisting of radially symmetric functions.
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1/p
e ||, is the norm of LP(R") defined by |ul|, = </ u|p) for 0 < p < o0.
RN

° 2**—_1fN>3 and 2* = o0 if N =1,2.
e cor C;(i =1,--+) denotes different positive constants.
Define
. [JullX : {1 2 1 / 3}
Sy,y= inf —2— and T\, = inf <=|ull5—= wul|”
Al u€X\{0} (fRN M‘UP)% A weMo 2” H)\ 3 Jan | |

(2.1)
where Mo ={u € X :u#0,||ull3 = p fzn [ul*}. A direct computation shows
that the following results hold.

Lemma 2.1. Assume that A\, u > 0, then T, is attained by the unique positive
solution wy ,(z) (defined in (1.13)) of (1.12). Moreover, we have

)\1** )\1**
and S)\,# = Sl 1: =
M

1
Th,u = 6S§ S1, (2.2)

S

where S11 =51 = (fRN wg’)§ and wy is the unique positive solution of (1.11).

In order to find nontrivial critical points for ¢, we consider the following
Nehari manifold for (1.7).

s {z — (w,v) € X2\ {(0,0)} : /RN(WUP +u?)+ /RN(|W|2 +a0?)

303
=/ (ul\UI3+u2IUIS)+7/ ugv}.
RN RN

(2.3)

Apparently all nontrivial solutions of (1.7) are contained in .4". The definition
of 4 implies that for (u,v) € A,

1 1 3
Aty = P+ 1) =g [ (sl + alef + ). )

Moreover, for each (u,v) € A4, it follows from Holder and Young’s inequalities
that

34
Jull? + 1013 =% [ wos [ Galul + palel)
RN RN

< e (lull® + Moll3 + lal®llvllx) < e (llull® + [l3)
for some ¢ > 0. Thus, one deduces from (2.4) and (2.5) that ¢ is bounded
uniformly away from zero on .A4".
Set the ground state energy and the radial ground state energy to be

C= Zlenf/ F(z), C.= inf _7(z). (2.6)

zEN NX2

(2.5)

The following lemma shows the role of C,. and C.
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Lemma 2.2. Suppose that A\, 1, e > 0, 5 € R, and C or C, is attained by
some zg € N, then zg is a solution of (1.7).

Proof. Assume that 2o = (ug,vo) € A" is such that ¢ (ug,vg) = C. According
to Theorem 4.1.1 of [15], there exists a Lagrangian multiplier ¢ € R such that

I (uo,v0) = Lg' (o, vo), (2.7)

where g(uo,v0) = _#"'(uo, vo)(uo, vo). We infer from zg = (ug,vo) € .4 that
g’ (uo, vo)(uo, vo)
= 2/ (|Vuo|* + ud + |Vol? + M)
]RN

96
-5 ugvo — 3/ (b |uol® + pzlvol?)
RN RN

- —/ (Vo2 + u2 + |Voo|2 + Mo2) < 0.
RN

(2.8)

Multiplying the equation (2.7) by (ug,vp), it follows from (2.8) that ¢ = 0.
Thus, we have #'(ug,v9) = 0. That is, 2o is a critical point of # and a
solution of (1.7). If C,. is attained, one can similarly prove the conclusion. [J

Now we prove a basic existence result. That is, both C' and C). are attained
by some (possibly semitrivial) z € A",

Lemma 2.3. Suppose that A\, 1,2 > 0 and B € R, and 1 < N < 5. Then C
(or C,.) defined in (2.6) is attained by some z(# (0,0)) € A (or /" N X2).

Proof. From (2.4) and (2.5), we know that there exists ¢ > 0 such that C, >
C >4 > 0. Since (wy,,,,0) € A, A N X2 # (. We first prove C' can be
attained by a nontrivial z. Let {(un,v,)} C A4 be a minimizing sequence. By
using the Ekeland’s variational principle type arguments (see [70, Lemma 3.10]
or [72]), there exists a sequence (still denoted by {(un,v,)}) on A such that

I (un,vn) = C,  _F'(up,v,) — 0, as n — oo, (2.9)

which also implies the boundedness of {(u,v,)}. Without loss of generality
we assume that (un,v,) — (ug,vo) in X2, (un,v,) — (ug,vo) in [LF (RN)]?
for p € (2,2%).

We claim that {(uy,,v,)} is nonvanishing. That is, there exist y, € R
and R > 0 such that

n—oo

lim inf/ (u2 +v2) >0 >0, (2.10)
Br(yn)

where Br(y,) = {y € RY : |y — y,| < R}. If (2.10) is not satisfied, then we
have {(uy,v,)} is vanishing, i.e., for any R > 0,

lim sup / (u? 4+ v2) = 0. (2.11)
Br(y)

n—oo yERN
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According to Lions’ concentration compactness lemma (see for example [72,
Lemma 1.21]) we have that u, — 0 and v, — 0 in LP(RY) for Vp € (2,2%).
So, we infer from ¢’ (uy,vy)(Un,v,) = 0 that

3
Junl - onl = [ Gahen® + il + ) = 0, o0, (212)
]RN
Hence, one sees that
1
O<5§C’:6(||un||2+||vn\|§\)+0(1)HO, n — oo. (2.13)

This is a contradiction. Thus, (2.10) holds.
Set 4, = up(zr + y,) and v, = v,(z + y,). Due to the invariance by
translations, we can assume that (i, 9,) — (T, ¥o) in X2, (i, 0n) — (T, Vo)

in [LP (RM)]? for p € (2,2%) as n — oo. Moreover, it follows from (2.10) that
1iminf/ (@2 +92) >0 > 0. (2.14)
n— oo BR(O)

So we have 4y # 0 or 99 # 0. Hence, we infer from (2.9) that ¢’ (g, %) =
0 and Zy = (g, 09) € A". Furthermore, one deduces from the weak lower
semicontinuity of the norms that
L 1, - R I -
C < Z (o, 00) = 6(||U0||2 +170]%) < hnnglgfg(llunll2 +115a3)
= liminf # (tn,?,) = liminf 7 (u,,v,) = C.

n—0o0

(2.15)

Therefore, Zy = (g, To) # (0,0) is a ground state solution of (1.7). The proof
for C,. is similar. O

3. Existence Results for the Two-Wave System

In Sect. 2, we have found a ground state solution z = (u,v) # (0,0) of (1.7). In
this section we show that under some additional conditions, (1.7) has a non-
trivial ground state solution, i.e., u Z 0 and v Z 0. We consider the following
two cases separately (i) Existence for 1 < N <5 and positive p2; (ii) Existence
for N =1 and possibly negative .

3.1. Existence Results for 1 < IV < 5 and Positive po

From Lemmas 2.2 and 2.3, we have found a ground state solution z = (u,v) #
(0,0) of (1.7). So, we only need to exclude the case that z = (u,v) = (0,v). To
accomplish this, we show that for the ground state z and under (4;) or (Asz),
we have .

A% g3 3.1

C= 7)< F0wru,)=

A
where wy ., = 7w0(ﬁx) is given in Lemma 2.1. We first prove that when

A1) is satisfied, C' is attained by a nontrivial solution.
» Yy
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Lemma 3.1. If (41) and 2 < N < 5 are satisfied, then the infimum C > 0
(Cr > 0) is attained by a nontrivial (radial) solution of (1.7). Moreover, if

B >0, then C = C, > 0 is attained by a nontrivial positive radial solution of
(1.7).

Proof. We only prove that C' > 0 is attained by a nontrivial solution of (1.7).
The conclusion that C' > 0 has been proved in (2.5), and from Lemma 2.3, C
is attained by some (ug,vg) € A”. To prove that ug # 0 and vg # 0, it suffices
to check that (3.1) holds. That is, we only need to show that

A%
C= Flunuw) < FOur,u) =22 [ uf,, =28t (62
6 Jr~ 6415
4
) ) pa\ N
Since (w1,,,,0) € A N E,, it follows from A > () that
231
N
H1 3 1 3 )\3_7 3
C= S lu0tn) <Cr € Flwnn0) =B [ iy, = 5t < Jmst
(3.3)

Thus, (3.1) holds and C' > 0 is attained by a nontrivial radial solution of (1.7).

Now we assume that 8 > 0. Let (ug,vg) be the nontrivial ground state
solution of (1.7) obtained above such that ug # 0 and vy # 0. It is easy to
check that there exists a unique ¢y > 0 such that (¢tg|uo|, to|ve|) € 4. That is,

/ (IVuol? + [uol?) + / (IVo0l? + Alvol?) = fo / (s usof? + pafool?)
RN RN RN

—l—to? /]RN udlvg]. (3.4)
We deduce from (3.4) and (ug,vg) € A that
by — [;%N(Iwol2 +ug) + Jon (IVool® + Ag)
% Jrw uglvol + Jpw (paluol® + p2lvol?)
Jen (IVuol? + ud) + Jon ([Vool® + Avg)
T Y Jen wgvo + fan (ol + piafuol?)

(3.5)
So one sees from (2.4) and (3.5) that
t2
€ < toluolstolenl) = 2 | (ol + 1+ [T + e
R
1
< 6 /N(|Vu0\2 +ud + |Vo|? + i) = _Z (ug,vp) = C.
R
(3.6)

Thus, (u1,v1) = (to|uol, to|ve|) € 4 is a nontrivial nonnegative radial ground
state solution of (1.7). Moreover, since u; # 0, v1 # 0 and (u1, v1) is a solution
of (1.7), then the strong maximum principle yields that u; > 0 and v; > 0.
Hence, when > 0, C' is attained by a positive ground state (u1,v1) of (1.7).
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Similarly, one can prove that C,. is also attained by a positive ground state of
(1.7)

Now we prove that when g8 > 0, C' can also be attained by a positive
radial ground state of (1.7). Let {(un,vn)} C 4 be a minimizing sequence
such that _#(uy,v,) — C as n — oo. Since § > 0, as in the last paragraph
we can assume that u, > 0 and v, > 0. Let ), and v}, be the radial functions
obtained by Schwarz symmetrization from w,, and v,,. Then from [46, Theorem
3.7] we infer that

13 < Nlunllfs TonlR < llonl3s il = lunl3,

o=l [ ez [ e
RN RN
(3.7)

Let t,, > 0 be such that (t,u’,t,v%) € A NX2 Asin (3.5), one can check that
t, < 1. So we infer from (3.7) that _Z (t,ul, t,v)) < 7 (uh,v)) < 7 (Un, Un).
Now we can proceed as in the radial case to show that (uy,,v,) — (ug,v) in
X2 as n — oo, and (ug,vp) is a positive radial ground state solution of (1.7)
such that _# (uo,vo) = C. Since ug and v, are radial symmetry, it follows that
C' = (), in this case. O

Next we prove the existence result under the condition (Asg).

Lemma 3.2. If (As) is satisfied, then C' = C,. > 0 is attained by a nontrivial
positive radial solution of (1.7).

Proof. We use a test function zg(z) = (wo,w;) = (wo(x), wo(VAx)) to esti-
mate the ground state energy level. It is straightforward to verify that there
exists a unique ty > 0 such that tyzg € .4, and

to = llwoll? + flwi 3 B 14\ N2
B 3 - N 3 ‘
/ (ulwg’ + powi + —ﬁwlw(%) B+ AT 2 g+ ie,/ wh (z)wo(VAz)

RN 2 281 RN

(3.8)
From Lemma 2.3 we know that there exists z € 4" such that ¢ (z) = C. Since
tozo € A, it follows that

3 Q3 3ﬁ

C= J(z) < F(tozo) = % (m A E 4 258 Jon wg(x)wo(\f)\x))

So to guarantee that (3.1) holds to exclude the semi-trivial solution as the
global minimizer, it suffices to have

tgSt oY 33 ) A% g3
A — A —_— .
G +ATT o+ 257 Jon w2 (z)wo(VAz) ) < 62 (3.9)
A simple computation shows that if
3
28 [(A’VGG+A¥) - (;+A”)}
8> 0o = , (3.10)

3 [ wbl@)un(VAq)
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4
~ 6—N
then (3.9) holds. Moreover, one can check that Gy > 0 if A < </~L2> . To
B M1
obtain the value fy in (1.9), we infer from wq(r) is strictly decreasing in r > 0

that
min{l,)\*%}Sf < / w2 (z)wo(VAz) < max{l,)\*%}Sf. (3.11)
RN

Hence,

(3.12)

Hence, when 3 > [y, (3.9) still holds. We can use test functions z;(x) =
(wo(z), wo(x)) or z(x) = (wo(vVAx), wo(VAx)) to replace zp in the above
arguments to obtain 3; and /3, respectively. Hence when 3 > min{3y, 51, 2} =
BO, the energy minimizer is non-trivial. By using the same argument as in
Lemma 3.1, one can show that the minimizer (u,v) is positive and radially
symmetric. Since zg, 21 and 29 are all radial, the proof above is also valid for

C,. In particular we have C' = C,.. 0

Remark 3.3. In (1.9), fy can be replaced by By = min{ 3o, 81, 32} and Gy > fo.
But [y is more explicit.

Finally, we prove the nonexistence of positive solutions of (1.7) when
N > 6. If (u,v) is a positive solution of (1.7), we can use a standard method
to deduce the following Pohozaev identity (see [57, Theorem 1]). That is, for
each a € R,

{];f —(a+ 1)} /]RN(|VU|2 +|Vo|?) + <];f - a> /RN (u? + \?)
4 <a - ng) /RN(“””'S + pslol®) + g (3a— N) /RN w2 = 0.

In particular, we let a = N/2 — 1. Then (3.14) reduces to

6—N 6—N
/}RN(u2 +\?) = T/RN(MMB + polvl?) + TB/RN u?v.  (3.14)

Thus, u=v=0if N=6and A >0, or N > 6, A\, 41, o > 0 and 3 > 0.

Proof of Theorem 1.1 (i)—(ii) and (iv). The existence of a radial ground state
solution follows from Lemmas 3.1 (A1) and 3.2 (A4s), and the nonexistence of
positive solutions follows from (3.14). This proves (i) and (ii) of Theorem 1.1.
Finally, in order to prove the conclusion (iv), one can follow the line of the
proof of [42, Proposition 2.2], and we omit the details here. O

(3.13)
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3.2. Existence for NV = 1 and Possibly Negative i

In this subsection, we prove the existence of a positive ground state solution
when N =1 and pe < 0. We first have the following estimate for the minimiz-
ing sequences.

Lemma 3.4. If (As) holds, and {(un,vn)} C A is a minimizing sequence
such that # (un,v,) — C as n — oo, then there exists o > 0 such that
maxer |un(t)] > o > 0.

Proof. By the Schwarz symmetrization principle (see Lemma 3.1), we may
assume that (u,,v,) is nonnegative and radial, and also from Lemma 3.1, we
know that {(un,v,)} is bounded in X2. Without loss of generality we assume

that (n,v,) — (ug,v0) in X2, and (un,vn) — (ug,vp) in [L{S(R)]?. Also it
follows from _#"(un, vy)(tn, v,) = 0 that
2 2 3 3y, 30 2
[unllt +llonllX = (ualunl” + p2foal®) + = | wgon. (3.15)
RN R

Since po < 0, we infer from the boundedness of {(u,,vn)}, # (un,vs) — C
and (3.15) that

5
6C + 0(1) = [[un? + unl2 = / (nlun*+ pafon) + 5 [ e,
RN

30
< [ mlual® + % [ JunPloa]
R R (3.16)
30
< R B
<l O] [+ 3 [ o)

< ()]
< cmax [un (t)]
This gives the conclusion for n large enough. O

Proof of Theorem 1.1 (iii). Let {(uy,v,)} C A4 be a minimizing sequence as
in lemma 3.4, then from Lemma 3.4, for each n we can choose t,, such that

|tn (tn)] > o > 0. (3.17)
We define
(U (2), Un (1)) = (un(t +tn), vn(t +tn)). (3.18)

Since # (tn, 0n) = /( nsUn) and ||(Gn, 0n)||E = ||(Un,vn)| g, it follows that
{(tn, )} € A and {(@n,0,)} is bounded. Without loss of generality we
assume that (i, 0,) — (@,0) in X2, and (i, 9,) — (@, ) in [L$2,(R)]?. Then
(3.17) implies that

|u(0)| > o > 0. (3.19)

That is, @ # 0. By the Ekeland’s variational principle (Lemma 2.3), we can
assume that #'(uy,,0,) — 0. Hence the weak convergence of (i, ?,,) implies
that (@,0) is a weak solution of (1.7). Now we can follow the same argument
as in Lemma 3.1 to obtain desired result. 0
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4. Properties of Solutions of Two-Wave System

4.1. Bifurcation and Continuation of Positive Solutions

In this subsection we prove the existence of nontrivial solutions of (1.7) by
using bifurcation theory. As in [43], we consider our problem in X} and LZ.
First, in order to show the existence of a principal eigenvalue of (1.14), we
need consider the following eigenvalue problem (for a fixed 5 > 0)

_A¢+¢_Bw>\,u2¢:€(ﬁ)¢a ¢ € X;7 (41)

where 0, A, o > 0, and wy ,, is the unique positive solution of (1.13). We
define the Rayleigh quotient associated with (4.1):

/ (V6P + & — Bun ud?)
x1(8) = inf RY . (4.2)

 ¢exp\{0} 2
I

Now we show the following result on the eigenvalue problems (4.1) and (1.14).

Lemma 4.1. Suppose that X\, ps > 0, then for each § > 0, (4.1) has a unique
principal eigenvalue x1(8) (which is defined by (4.2)) with a positive eigen-
function ¢1 3. Moreover,

Jim xa(8)=1, Jim x:(6) = —oo, X1(8) <0 for > 0. (4.3)
In particular there exists 31 > 0 such that x1(81) = 0, hence 31 is the principal
eigenvalue of (1.14).

Proof. First from [10, Section 3, Theorem 3.4], the principal eigenvalue x1(f3)
of (4.1) exists and it is defined by (4.2). It is easy to see that (x1(5), ¢1,5) is
differentiable with respect to . Differentiating (4.1) in 3, we obtain that

- A¢/ + QS/ - ﬂw)\,[tggb/ - w)\,yg¢ = X/l (ﬂ)(,b + Xl(ﬂ)‘blv ¢ € X;a (44)

0
where ¢’ = % Multiplying (4.1) by ¢’, multiplying (4.4) by ¢, subtracting

and integrating, we obtain that

G0 [ == [ s (1.5

which implies that x}(8) < 0. Since wy ,,(z) is bounded for € RY, then
from (4.2), we have

[ (99P + 6 = Bur,?) = (= Bllonulle) [ 62
RN RN
for ¢ € X. Therefore, x1(3) > 1— fB||wa y,||cc, which implies that ﬁli}rg+ x1(8)

> 1. On the other hand, for each R > 0, let (Ag, ¢r) be the principal eigen-pair
of the following eigenvalue problem

{—AasR(y) = Arodr(y),  in Bg(0),

¢r(0) =0, on 0Br(0), (4.6)
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satisfying / qbf% = 1. Then we know that A\gp = A\; R~2. We extend ¢r to
Br(0

be zero outside of Br(0), and use it as a test function for (4.2), then we obtain
that

x1(8) <1+R2 -5 W iz O (4.7)
Br(0)
for all 8 > 0 and R > 0. Hence, x1(8) < 1 for all 8 > 0 and in particular
ﬁlim+ Xx1(8) = 1. On the other hand, fix an R > 0, then w) ,,(z) > 6 > 0
—0

for |z| < R. Hence from (4.7), we have x1(3) < 1+ R™2 — 3§ for g > 0,
which implies that ma X1(8) = —oo. The existence of a unique (; such that

0(B1) = 0 follows immediately from (4.3). O

Now we are ready to give the proof of the conclusion (i) of Theorem 1.4.
Proof of Theorem 1.4 (i). Set S, = {(B,u,v) = (8,0,wx ,) : B > 0}, where
W, () = Aty "wo(VAz) is the unique positive solution of (1.13), and f3; is
given in Lemma 4.1. We shall consider the bifurcation of nontrivial solutions of
(1.7) from the semitrivial branch S, near (81,0, wx ,,). To accomplish this we
apply the bifurcation results of Crandall and Rabinowitz [27]. First, we define
F:Rx (X5)2 — (L) by

(4.8)

= (B o

Av — v+ pgv? + §u2
Clearly, for (¢a %/1), (¢15 77/}1)7 (¢27 ¢2) € (X;)Qa one sees that

Ad —
Fuatnton = (M5B 1),

Flu)(uw) (B us 0)[(d1,¥1) (P2, 102)] = (2”1(2521/?227;@(;51%;;@%%) . (4.9)

Fy(Bou) = ( gﬁg), and  Fyu.u (8, u 0)[(60)] = (WUZ v<z>>.

We define

Lo(6,) = Fruny (51,0, w0 0) () = ( A¢ = ¢+ frwn s ) - (‘1(¢)>.

A = M+ 2p0wx w, ¥ L (1)
(4.10)

From Lemma 4.1, the null space N(£1) = span{¢1 s, }. From [47, Lemma 2.1]
(also see [44,54]), the solution space of La(1)) =0 in X is Ny = span{dwy .,/
dxj:1 < j < N}. Hence null space N(Lz) = N1N X, = {0}. So the null space
N(Loy) = span{(¢1,,0)}, and ¢1,, is the principal eigenfunction of (4.1).
The range space of L is defined by

Rieo) = {(r9) e ¥ [ fors =0}, (1.11)
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Thus, dimN (Ly)=codimR(Ly)=1. Since / wk,md’iﬁl > 0, it follows from
RN
(4.11) that

Fu,w)(Br,0,wx 1) (61,5, 0) = ((ﬁlﬂléw’m) ¢ R(Lo). (4.12)

Thus, we can apply the result of [27] to conclude that the set of positive
solutions to (1.7) near (£1,0,w ,,) is a smooth curve

' ={(8(s),u1(s),v15(s)) : s € (0,7) }, (4.13)

such thaB(s)=0140'(0)s+o(s)u15(s) = s¢1,5, +o(s) and vi5(s) = wx ., +0(s),
where 7y > 0 is a small constant. Moreover, 3'(0) can be calculated as (see for
example [37,61])

<F(u,v)(u,v) (ﬂlv 0, w)\all«Q)[(gbl-,ﬁl ) O)a (¢1»51 ) 0)]7 €>

/
pg0) =— 2<Fﬁ(u)v)(61,O7w>\,;t2)[(d)1,ﬂ1aO)]7£>
H1 ¢?ﬁl
Y T (4.14)
/]RN WX, po oh B1
where £ is a linear functional on (L2)* defined as ((f,g),¢ / fom:

Hence, we infer from (4.13)—(4.14) that for £ — 79 < ﬁ < ﬁl,

B/ Paton

uip = ﬂ 7 ﬂl ¢1,l31 + 0(6 61 (,251751 + O(ﬂ — 51),
B'(0) o,
RN !
V1g = Wx,p, + 0(B — B1). (4.15)

Furthermore, by using the same argument as in [43, Theorem 5.1], one can
deduce that (u1g,v1g) is positive solution. In the next we can also show that
(u18,v18) is not a ground state solution. In fact, under the condition (A4;) or
(Az), we have shown (see (3.1)) that the ground state energy satisfies (3.1).
On the other hand, when 75 > 0 is sufficiently small, we infer from (4.15) that

for 8 € (B1 — To,ﬁl)
N 1 1 3

— i,\B*%SB _(B=51)° (Jer 61,6, W)
3 ' 6143 (fRN ¢§,51)2

613
= —A3—*S3+o 4.16
6.2 (5)- (4.16)

+ o(s)

We infer from (3.1) that there exists €y > 0 small such that C' < 6—)\3 S3
e0 = Z(0,wx,,) — €. Hence, for 79 > 0 small and 5 € (61 — 70, 51),
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F(wig,vig) > Z(0,wxu,) — € > C. So when the condition (A;) or (As)
is satisfied, (u1g,v18) is not a ground state solution.

Finally we use the “principle of exchange of stability” [28, Corollary 1.13
and Theorem 1.16] to calculate the Morse index for the nonnegative solutions
(u1s,v13) and (0, wy ,, ). For that purpose we consider the eigenvalue problem

Ap — ©2
£ (0) = o) (5) = (an? 50 Tomne® ) =201 (5

(4.17)

where y(8) : (81 — 70, 51 + 70) — R is the simple eigenvalue of L3 satisfying
~v(B1) = 0. Notice that the eigenvalues of the problem (4.17) are given by
op(Lg) = op(L1) Uop(L2), where o,(L) denotes the eigenvalues of a linear
operator L, and £1 and Lo are defined as in (4.10) with 5y replaced by (.
Apparently v(3) is determined by £y, hence () = —x1(3) defined in Lemma
4.1. Thus ~'(3) > 0 from (4.5).

Now consider the eigenvalue problem at the bifurcating solution (u1g,v13):

Fluw) (B, u1(s),v15(s)) <1¢;)

_ <A¢ = ¢+ 2pu1p(s)¢ + B(s)urp(s)y + 5’015(8)¢) — £(s) (¢)
AY = M+ 2p2015(5)Y + Bur(s)o V)’

Then from [28, Theorem 1.16], we have

L sy (B

5—0, £(s)#0 &(s)
From (4.14) we have 3'(0) < 0, hence we infer from (4.19) that £(s) > 0 for
s€(0,m).

According to [7, Theorem 4.4], Lo has exactly one positive eigenvalue
for 8 > 0 (note that Ly is independent of ). Therefore L3 has exactly one
positive eigenvalue when 0 < 3 < 31, and has exactly two positive eigenvalues
when 81 < 8 < 1 + 79 for small 75 > 0. From £(s) > 0 and the continuity
of eigenvalues, we know that the eigenvalue problem (4.18) has two positive
eigenvalues when s € (0, 7). From the definition of Morse index, we know that
M (u1,v18) = 2 for 8 € (81 — 70, 61), and M(0,wy ,,) = 1 for 0 < 8 < 31 and
M(O,wA7#2):2f0r 51<ﬂ<ﬁ1 + 710. O

Next we are ready to prove the conclusion (ii) of Theorem 1.4.

Proof of Theorem 1.4 (ii). Notice that

20(2) = (Wi, (2), Wauz (7)) = (3 wo (@), Mty wo(VAT)) (4.20)

is the unique positive solution of (1.7) with § = 0. Recall the mapping defined
in (4.8), and we have

=1 (4.19)

Ad —
F(u,v) (07w1,#17w>\,ﬂ2)[(¢7w)] = <A¢¢_ )\d’l)pt—lej;)’l;;\M;jsw> . (421)
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It is well-known that L3 = A — 1 4 2pwy ,, and L4 = A — X + 2powy 4, are
both invertible in X ([7, Theorem 4.4]), hence z, is non-degenerate in X},

i.e., [F(u’v)(O, zo)] ! exists. By the implicit function theorem, there exist Bo >
0,Ry > 0 and 22(8) : (—fo,B0) — Br,(20) such that for any 8 € (—0, 5o),
F(B3,22(B)) = F(B,u2(B),v2(8)) = 0.

Moreover, we can solve (¢, ) from

¢> ( Ad — ¢+ 2wy, @ ) <’w1 W), )
Fu . O,w W — sH1 — s K2 ,
(u, )( 1,p1 Ayltz) <,¢ Aw — A+ 2,[1271},\,“21/} %wim

(4.22)
to obtain that

_ 1 _
¢=(—A+1-2mwi,y,) 1(w17#1w>\,u2)7 b= 5(7A +A- 2/1'2w>\,u2) 1(wiﬂl)'
(4.23)

This gives the expression of (usg,v2g) in (1.15). A similar argument using
implicit function theorem at the semitrivial solution Zy = (w1,,,,0) at 5 =0
as above, one can obtain the existence of another positive solution (ugg, vsg)
for small 5> 0 as in (1.15).

Since (ugg,v23) and (usg,vsg) are both obtained from the implicit func-
tion theorem, then their stability are same as the ones of unperturbed solutions
(W1, WA py) and (wy,,,,0) respectively. Again from [7, Theorem 4.4], each
of L3 and L4 has exactly one positive eigenvalue, thus M (usg,v2p) = 2 for
B € (0,71), where 7y > 0 small. Similarly M (usg,vsg) = 1 for 8 € (0,71).
From Theorem 1.1 part (iv) and the implicit function theorem, (ugg,veg)
and (usg, vsz) are the only positive solutions of (1.7). From Lemma 3.1, the
ground state solution can always be chosen as positive when 8 > 0, hence
(usp, vzp) must be a ground state solution, and (usp,v23) is not a ground
state. If B € (—71,0), (usg, v3g) is a opposite sign ground state solution, i.e.,
uzg > 0 and vsg < 0, as if there is a nontrivial solution other than (usg, vag)
and (usg, vsg), its energy necessarily goes to infinity as 8 — 0. O

4.2. Uniqueness of Positive Solutions

In this subsection we prove the uniqueness of positive solution of (1.7) stated
in the conclusion (iii) of Theorem 1.4.

Proof of Theorem 1.4 (iii). If A = 1 and f = o, we first look for positive
synchronized solutions of (1.7) of the form (zwy, ywy), where (z,y) € RT xR*.
It is easy to calculate that if (x,y) € RT x RT satisfies

1= 1@+ poy, 2y =22y’ + poz?, (4.24)

then (zwg, ywp) is solution of (1.7). A simple computation shows that (4.24)
has a unique positive solution zy = (ug, v9) = (zowo, Yowo) if and only if

24 P2 )
Lo, Yo) = 5 . 4.25
(%0, o) (Mi + 13’ 2uf + 43 (425
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Next we shall prove that Zy is a unique positive solution of (1.7). Let

2
ko = % and 4o = ko_luo- Then (v, ip) satisfies

8o .
—Avg +vg = povd + kouo, in RY (4.26)

_AﬁO + ﬂO = kOMlUO —|— ﬂUQUQ, in RN.

If N = 1, by using the same arguments as in proof of [71, Theorem 1.1], we
know that vy = g holds. For the case 2 < N < 5, we shall use the idea
of the proof of [71, Theorem 4.2] (also see Appendix II of [12]) to prove the
result. Let Q; = {z € RN : vg(z) > dg(z)}. Thus, ; is a piecewise C' smooth
domain. Multiplying the first equation in (4.26) by 4 and the second equation
in (4.26) by vg and then integrating by parts on 7 and subtracting together,
we obtain that for 8 = us,

.0 ot . 2u .
/m (UO%—UO%H-(HQ—@/Q ugug+7 a3 (0 — vo)
N 8’1)0 8&0 2/1% ~D /A (427)
:‘/89 (anin—’anin)—f'? o UO(’U,O—UO):O7

where n denotes the unit outward normal to 9€;. Since vo(z) — tp(z) > 0 in
Q and vo(z) — Go(z) = 0 in 94, it follows that

/ ﬁ%fv% 7/ (it 71})8”0 / va(UO*ﬂO)
o0, 03n Oa’l’L o o0 0 0 671 o, 0 a’l’L

— / UOM <0.
o0 8”

2 2

% @2 (ito — vo) < 0. (4.29)
So (4.27)—(4.29) imply that Q; = (Z). Similarly, we set Qo = {z € R : vp(z) <
fip()}, and one can check that Qs = ). So we have vg(z) = tig(x) in R which
shows the uniqueness of positive solution of (1.7). O

(4.28)

Moreover, one sees that

4.3. Asymptotical Behavior of Positive Solutions

In this subsection we study the asymptotical behavior of positive ground state
solutions of (1.7). For the convenience of notations, we use C*?,C?, #5 and
N (or C*,C, _Zy and A3) instead of C,C,, # and A (see (2.3)—(2.6)) to
emphasis the dependence on 3 (or A).

To prove Theorem 1.7, we first prove some properties of C” and C*.

Lemma 4.2. For \, 3, p1, ie > 0, the following results hold.
(1) C? is non-increasing in 3 > 0, and hrn CP = CP, where 3, > 0.

*) .

(2) C* is non-decreasing in A\ > 0, and R 11(1/r\11)Jr C* = C*, where \, > 0.
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Proof. Since the proof of (1) and (2) are similar, we only give the proof of
(1) here. We first prove that C is a non-increasing function on 3. Indeed, for
B1 > B2 > 0, we let (ug,v1) and (uz,v2) be the positive ground state solutions
corresponding to § = (1 and § = (3, respectively. Then there exists a unique
t; > 0 such that ¢ (ug,vs) € A 81 So, one sees that

t = luz* + llv= (13 luz* + [lva]I3

_ < — 1
Jon (1|23 + palva|3 + 220udve) = fon (paluzl® + polva|® + 222u3v,)

Hence we obtain that

(lluzll* + flvalI3)

[

t2
s (u,v1) < Zg, (trug, t1va) = EI(HMH2 + [Jv2]3) <
= f52(u27v2)'

Thus, C? is a non-increasing function on 3 > 0.

Let {8, } be a sequence satisfying 3, > 0 and 3, — (. > 0asn — oo, and
let (ug,,vg,) be a positive radial ground state solution of (1.7) with 8 = 3,.
We use (un,v,) = (ug,,vg,) for simplicity of notation. One infers from (3.2)
that

1 1
Soultn vn) = gl + lon ) = O < O < st (430)
1

Thus, {(tn,v,)} is bounded in X?2. Without loss of generality we assume that
(Un, vp) = (1o, v0) in X2, and (u,,v,) — (uo, vo) in [Lfoc(]RN)]2 forp € (2,2%).
Moreover, ug,vo > 0 in RY, and (ug,vg) is a solution of (1.7) with 3 = 3.
Similar to (2.5), one can prove that ||u,||3+|/v,||3 > § > 0. On the other hand,
by using the same arguments as in Lemma 2.3, we can prove that {(u,,v,)} is
nonvanishing, i.e., (2.10) holds. Since the system (1.7) is invariant under the
translation u, (-) — u, (- + ¥, ), we can assume that (uy,,v,) — (ug,vg) in X2,

(up,vo) # (0,0) and (ug,vg) € A3, . It follows from Fatou’s lemma that

1 30,
€% < (o) = 5 [ Gnluof* + pafoof* + 23 )
6 Jpn 2
1 35,
S - hmlnf/ (/,Lllunl?’ + M2|Un|3 + iuivn) (431)
n—oo RN 2

= lim 73 (up,v,) = lim CPn.

n—oo n—oo
Moreover, by the definition of C%», we know that

chn < tug, t
< max 7, (tuo, tvo)

e S (ol + llool2) = & [ (unluof? + palvol? + 2 a2ug)
t>0 2 6 RN 2

3
_2 (lluoll* + llwoll3)

3 2
(fRN (k1luol® + pafvol® + %U(Q)Uo))
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3
_ 2 (lluoll* + llvoll3) +o(1)
=3 5
(fRN (p1luol?® + palvol® + %u%vo))

= 7. (ug,v0) +o(1) = O +o(1). (4.32)

That is,
limsup P < CP. (4.33)
n—oo

Combining (4.31) and (4.33) we infer that lim C? = CP. O

Now we are ready to give the proof of Theorem 1.7.

Proof of Theorem 1.7. (i) We first consider the case of 5, = 0. We take
Bn > (. as in Lemma 4.2. Thus, we know that (u,,v,) — (ug,vo) in
X2, (uo,v0) € A3, \ {(0,0)} is a nonnegative solution of (1.7), where

ro
(Un,vn) = (ug,, vs,)

First we consider the case N > 2. We show that ug # 0. Assume,
on the contrary, that ug = 0 and vy # 0. Then from Lemma 2.1 we know
that vg = wy ,, is the unique positive solution of (1.12) with p = ps. So
we conclude that

A3=% 1
— 3 St = J0(0,wx u,) = Fo(uo, vo) = */ (M1|Uo|3 + #2|Uo|3)
6”2 6 RN
1 30
< = liminf/ <u1|un|3 + Mz\vn|3 + ﬁuivn) (4.34)
n—oo ]RN 2
1
= 1 = 1 Bn < — 3
nhlglo I3, (Uun,vy) nlLH;oC ~ 6ud Sy,
4
. . po\ N .
which contradicts A > ) . Hence ug # 0. Furthermore, if vy # 0,
M1

by similar arguments as in (4.34) we can obtain a contradiction. Thus,
we have that ug # 0 and vg = 0. On the other hand, since

lnll? = 1 / un? + B / WZu,, (4.35)
RN RN

it follows that

Hu0||% < liminf HunH% = lim inf (,ul/ \un|3 + ﬁn/ uivn> = ,ul/ |u0|3.
n— o0 n—00 RN RN RN
(4.36)

We infer from v is a solution of the first equation of (1.7) that |Jug||? =
pi1 Jen |uol® and lim unll? = [Juo||3. Similarly, we can prove lim |lv, |3
n—oo n— 00
= 0. Thus, from Brezis-Lieb Lemma (see [72]) we infer that (u,,v,) —
(ug,0) in E as n — o0.
Next we study the case of N =1 and §, = 0. As in the case N > 2,
one can prove that ug = wy ,, and vg = 0. We only need to check that
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(tn,vn) — (uo,0) in X2. By using the same arguments as in (4.34), one
deduces that

1
—557 = Zo(wi ) = Fo(uo,vo) /|u K
6413

1 n
< Liimjur (mun?’ + palonl® + %) (437)

n—oo

= lim _Z3, (un,v,) = lim P < 6753

n—00 n—oo /,Ll

Thus, it follows that (u,,v,) — (ug,0) in L3(R) x L3(R). So, by using
the same arguments as in (4.35) and (4.36), one deduces that (uy,v,) —
(up,0) in X2 as n — oo.

At last we prove the case of 5* > 0 which is part (2) of (i). We take
B, the same as in Lemma 4.2. Hence, we know that (u,,v,) — (uo,vo)
in X2, (ug,v0) € A5, \ {(0,0)} is a nonnegative solution of (1.6), where
(Un,vn) = (ug,,vg,). We claim that ug # 0 and v # 0. Since (ug, vg) is
a nonnegative solution of (1.6), it follows that (ug,vo) = (0,vg) or ug # 0
and vy # 0. Assume, on the contrary, that ug = 0 and vy # 0. It is easy
to see that vg = wy,,,, where wy ,, is the unique positive solution of
(1.12) with (\, ) = (A, p2). By using similar arguments as in (4.34), one
obtains the contradiction. Hence, we know that ug # 0 and vy # 0. One
infers from Lemma 4.2 that

1 .
C% < g5 (uo,v0) = = ([luoll? + [[vol3) < lim 7, (un, vn)
B 6 n—00

1 ~
& Jim (lunll? + [loa]3) = lim C% < O

So (un,v,) — (ug,vp) in X2 as n — oo, and (ug,vp) is a positive ground
state solution of (1.7) with 8 = Bo.

Let (un,vyn) = (ux,,vy,) be any radial positive ground state solution of
(1.7) with A = \,,, and \,, — 00, as n — oco. We first consider the case of
N > 2. As in (4.30) we know that

1 1
Hnn (tn, vn) = E(Hun\lf +lvall},) = C* < @5? (4.38)
1

Set U, = VApvp. It follows from A, — oo that ||u,||,||v.]| and |0,|2 are
bounded. Without loss of generality we assume that (tu,,v,) — (ug,vo) in
X2, (Un,vn) — (ug,vo) in LE(RN) x LE(RN) (Vp € (2,2%)), and @, — 7

in L2(RY). We first claim vy = 0. Indeed, we infer from (u,,,v,,) satisfies
the second equation of (1.7) that

/ vg = lim va = lim A,;' {/ (,uz\vn|3+ éuivn) f/ |an\2] =0

(4.39)
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Thus vy = 0. Moreover, since (uy, v,,) satisfies the first equation of (1.7),
we have that for each ¢ € C§°(RY),

n—oo

0= lim [/ (Vu, Vo + unp) — / (uluigp + ﬁvnungo)
RY RY (4.40)

= /RN(VuoW? + uop — pugp).

These, together with Lemma 2.1 we know that ug # 0 is a solution of
(1.12) with (A, 1) = (1, p1).

Next we shall prove that ||u, — uol|, [|[vnll, |On]2 — 0 as n — co. We
only prove |U,]a — 0 as n — oco. As in (4.37) we know that

1 . o] . o]
5 (ol +130f8) < timinf & (s + [513)) < liminf g (ol + on )
gL (wl)?
=M< 58 < - I < )2 441
< 5t S G S gl (a4

Thus, we obtain that 99 = 0, and |0, ]2 — 0, as n — co. Finally, we infer
from (u,,v,) — (ug,vo) in LE(RY) x LP(RY) (Vp € (2,6)) that for each

p € C3°(RY),
. o 2 B 2 5
lim AnUnp = lim (p2vne + —unp) — (Vo V) uocp
n—oo [pN n—oo RN 2 RN

(4.42)

Next we consider the case of NV = 1. Comparing to the proof of the
case of N > 2, the only difference is that the embedding H!(R) — LP(R)
is not compact. But since the embedding H}(R) < L>(R) is continuous,
and we can use this to establish (4.40). In fact, since |lv,| is bounded,
it follows that there exists a subsequence {v,} such that v, — vy in
H(R). Moreover, we infer from the continuous embedding that v2 is
also bounded in H}!(R). So, we can assume that v2 — v in H}(R). Thus
by local compactness of Sobolev imbedding we have v = vZ. This fact
also holds for the sequence {u,}. So one sees that for each ¢ € C§°(R),
(4.40) also holds. The remaining part of the proof is the same as that for
the case of N > 2.

(iii) We first consider the case A, = 0. Let (un,v,) = (ux,, vy, ) be any radial
positive ground state solution of (1.7), where A = \,,, o = 0 and A\,, — 0
as n — 0o. As in (4.30), we know that

5 (Huall+ [ 1902) < A ) = 3 (i + R,) < 257

RN I

1 (4.43)

So, (U, vy) is bounded in H}(RN)x DL2(RYN). Without loss of generality
we assume that u,, — ug in H}(RY), v, — vy in DL?(RY). Moreover, it
follows from (4.43) and Hélder inequality that for each v € C§°(RY),

/\n/RN 7%51, /RNAHU,LQM\/E(/RNAWZY(/RNWY. (4.44)
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Thus, we obtain that [,y Anvnt) — 0 for each ¢ € C5°(RY) as n — oc.
This implies that for each (¢,v) € C§°(RY) x C§°(RY),

lim {/ (Vun Ve + tnp + Voo, Vi + Aponth) — (p1uze + guizp + Bununy)
RN

n—oo

= /N(VUOVW + uop + Voo V) — (p1uge + gugw + Buougyp) = 0. (4.45)
R

That is, (ug,vo) is a solution of (1.7) with A = 0 and us = 0. By using the
same argument as the one in Lemma 2.3, we can prove that {(u,,v,)} is
nonvanishing, i.e., (2.10) holds. Since the system (1.7) is invariant under
the translation u, (+) — u,(-+yn), we can assume that (un,, v,) — (ug, vo)
in X2, (ug,v0) # (0,0) and (ug,vo) € Ao, where A3|x=o. Thus ug # 0
and vg # 0 is a solution of (1.7) with (X, u2) = (0,0).

Finally, by using the arguments of (4.35)—(4.36) we have that (u, v,)
— (ug,vp) in HY(RN) x DL2(RY). The proof of the conclusion for A, —
Ax > 0 is almost the same as the one for A\, = 0, we omit the details. [

5. Liouville Type Results for the Two-Wave System

In this part we mainly focus on the proof of Theorem 1.9. To accomplish this
we shall apply the general results of [33,58]. Precisely, we shall apply the results
[568, Theorems 4 and 6] to prove the conclusions in Theorem 1.9 (i). Base on
this, we can use [33, Theorems 1.2 and 1.3] to get the results in Theorem 1.9
(ii) and (iii).

We first present an elementary algebraic result which will be used in
verifying the conditions of [58, Theorems 4 and 6.

1
Lemma 5.1. Suppose that p1q, o > 0. Let By = (2;@;12) . Then when 3 > — [,

(1) for any u,v >0, h(u,v) = pru® + pov® + ?u% >0, and h(u,v) =0 if
and only if u=v = 0.

(2) there exist positive ag, oy and ay such that aq(pu? + Buv) + ag(uav? +
gu2) > ap(au + agv)? for any u,v > 0.

(3) There exists some constant o > 0 such that

2N (l;lug + %v?’ + guzv) — (N =2) (v® + pav® + 26uv) > o(u® +v°)

for1< N <4.

Proof. (1) It is clear that h(u,0) = pyu® > 0. We prove h(u,v) > 0 for v > 0.
Set t = u/v > 0 and define the function

3
k(t) = pit® + Eﬂﬂ + pi2, t>0.

It suffices to show that 1;r1>1(r)1 k(t) > 0. By using some elementary calcu-

3
lations, we know that mink(t) = k (—ﬁ) = 572 + p2. Thus when
t=20 1 2p
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B8 > —f4, we have rtn>igk(t) > 0. The second part of the conclusion (1) is

easy to verify.

(2) We set a; =1 and oy = et
24z

to (1), we set t = v/u and consider the function

1/3
) . It is clear true when u = 0. Similar

(41 + Bt) + az(pat® + 2)

t) = t>0. 1
i T >0 (51)
Then f(0) = uﬁr% >0as > —f and tlim fit) = 12 oo, Moreover,
— 00 (%)
for any ¢ > 0, using 3 > — 4, we have
(14 st 21(8) > g(t)=pn — Bet + s [ pat? + 2
2 (5.2)

St = a)? = Byt — 02) > 0.
Qs

2
Hence oy = rtn>1(r)1 f(t) > 0 and the conclusion of part (2) of this lemma

holds.
(3) A direct computation shows that

2N (/glﬁ + 5t f“%) — (N =2) (uu® + pov® + 28u®v)

6—-N 3
= —— [ pud + pov® + Zpuv
3 2
Since 3 > By = (2;@#2)%, one deduces that there o > 0 such that the
conclusion (3) holds. O

Now we are ready to give the proof of (i)—(iii) of Theorem 1.9.

Proof of Theorem 1.9. From Lemma 5.1, we verify that the conditions of [58,
Theorems 4 and 6] are satisfied. Thus, we infer from [58, Theorems 4 and 6]
that the results in part (i) hold. On the other hand, from this we deduce from
[33, Theorems 1.2 and 1.3] that the results of Theorem (ii) and (iii) hold. O

6. Existence Results for the Three-Wave System

In this section we prove the results for the three-wave system (1.5). In the
following we always assume that \; = 1, and Ao, A3, 1, pi2, 3 > 0. First
we point out that (1.5) has three semi-trivial solutions of the form (u,0,0),
(0,v,0) and (0,0, w), where u, v, w # 0. These are the only possible semitrivial
solutions. Here we are interested in the non-trivial positive solution (u, v, w),
where u, v, w > 0.
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We define the following Nehari manifold

N ={z = (w,v,w) € X*\{(0,0,00}: [lull® + oI, + lwll3,

(6.1)
=30 [ wow [ Gl + el + sl ).
RN RN
and we also define
C= inf __fF(uvw), C,= inf 7 (u,v,w).
(u,v,w)eN (uw,v,w)eN NX3
(6.2)

where ¢ is defined in (1.21). From the definition of .4, we know that for
(u,v,w) € N,

- 1
ANy (w,v,w) = E(IIUII2 +vl%, + wlz,)
1 3 3 3
=g [ Galul” + p2lvl” + pswl” + 3fuvw). — (6.3)
R

As in (2.4) and (2.5), one can check that j|/ is bounded from below away
from zero on A".

Similar to the two-wave system, we can prove the following basic results
corresponding to Lemmas 2.2 and 2.3.

Lemma 6.1. Let C and C, be defined as in (6.2).

1. If C or C, is attained by some z € A, then z is a solution of (1.5).
2. Assume that 1 < N <5, Ao, Az, p1, pa, i3 > 0 and 3 € R. Then C' > 0
(or C,. > 0) is attained by some z € N (or N N X3).

Next, to prove the existence of nontrivial solutions for (1.5), we exclude
the possibility of C or C, is achieved by one of the semi-trivial solutions:
(u,0,0), (0,v,0) and (0,0, w). First, if the condition (B;) holds, one has the
following result.

Lemrfla 6.2. Suppose that 1 < N < 5, and (By) holds. Then the infimum C,
and C > 0 are attained by a nontrivial solution of (1.5). Furthermore, we have
C=0C,.

Proof. We first prove that C' > 0 is attained by a nontrivial solution of (1.5).
From Lemma 6.1 we know that C' > 0 is attained by some z = (@, ¥g, Wo) €
A . So, to exclude the possibility of z = (9, 0,0), (0,09,0) or (0,0,w), we
only need to show that

é = j(ﬂovﬁovﬁm) < é’” < min{j(wl,ulvoyo)»j(ovwkbuzvo)a j(()»()’wkg,,us)}’
(6.4)
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4

N
where wy, ,, is defined in (1.13). We infer from Ay > <N2> and Az >

M1
=
<’”L3> that
H1

_ SS SS)\?’*% SS/\?’*%
j(wlyﬂlaoo)i%émln ! 22 ) 1 32
6111 613 6p3 (6.5)
- min{j(O,w,\27u2,O), j(o,o,wk&w)}.
So it suffices to show that
- - - S3
C = 7 (g, 00, W0) < Cp < —5. (6.6)
6p1

For zy = (wo, w1, ws) = (wo(x), wo(v/Aax), wo(v/A3zx)), there exists a unique
to > 0 such that {oZ € 4. Moreover, we know that

[woll} + [[wall3, + llwall3,

to =
/ (pwf + pow? + psws + 3Bwowiws)
RN
1-N 1-N (67)
S(1+x7 7 +277)
= _N _N 3 :
Si)’ <‘Ll,1 +p,2/\2 2 +/L3>\2 24+ S*%QIRN w0w1w2)
So it follows from #yZy € .4 that
C=_J(uv,w) <C,
(6.8)

57 s t oo -5 -5 3
< /(toZo) = =57 [ 1+ pery 2 + sy 2+ 735 Wow1wWs | .
6 537 [on
If
t3 =N -~ 3 S3
D83 1 4 2?4 psAg® + fgﬂ/ wowiwy | < —5, (6.9
6 ST Jry 6417

we know that (6.4) holds. Hence, a direct computation shows that if

ﬁm[@+&24m;)2—(uﬁ352+ﬁ%2ﬂ
. (6.10
3 Jon wowo (Va2 wo (/A7) (6.10)

then C is attained by a nontrivial solution of (1.5). We claim that Bl > f3.
Indeed, since wq(r) is strictly decreasing in r, it follows that

min {105 % 05 % b st < /RN wowo(v/ Aaw)wo(v/ Asa)

_N _N
gmax{l,)\2 2, A 2}5’%.

5>51:
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Substituting this into (6.10), we obtain that

e )

H1

3max{1,/\2_TN,A3_TN}

2—N
2

2-N 5 N N
1{(1+/\22 + A3 ) 7(1+%/\22 + BNy 2)]
¥ :

_N _
3min{1,)\2 >,

Hence, if 8 > (31, the inequality (6.4) holds, and C is attained by a non-
4

=N
trivial solution of (1.5). Moreover, it follows from Ay > <M> and A3 >

M1
=
<“3> that
M1

3 _N _N
(107 427 )2—<1+“2A22 +“3A32>
251 251
3
2

(1+)\2 e )

Thus 1 > 3 > 0.

Next we show the existence of a positive radial ground state solution of
(1.5) for 8 > Bl. Since 3 > Bl > 0, by using the same argument as in Lemma
3.1, one can prove that z = (7, 0o, o) is radial. Moreover, we can prove that

6—3N 6—3N
—(1+A2 Ty )>0.

C is attained by some positive zo. Indeed, it is easily to check that there exist
a unique to > 0 such that (to|tol, to|Do|, to|wo|) € A N E,.. It follows that

(g DIIT + 2D, + I@ol)lIX, = Ilaollf + lIolI3, + [lwolI3,

3 . _ 3 o (6.11)
=to | (altol” + p2|Dol” + pslwol”) + t038 ||| o |[o-
RN RN
We deduce from (6.11) and (i, @, Wo) € A that
b [0l + lI5ollX, + llwoll3,
0= ~ - . ————
S (11 [T0]® + p12T0[® + palol*) + 36 [gn |Tol|To| [0l
fron RS (6.12)
l[aollT + llvollx, + llwollx, _1
= Jan (paltol® + p2ltol® + pslwol®) + 38 [zn Golotbo
So one sees from (6.4) and (6.12) that
~ ~ B ~ t2
C < 7 (toltiol, to|Dol, toltwol) = *0(||U0H1 + [%0ll3, + [lwoll3,) (613)

(laolI + l1zol13, + ll@ol3,) = 7 (@0, %o, @o) < C.

03\’—‘

Thus, zp = (ZO,ZO,ZS’) = (to|tiol, to|ol, to|wo|) is a nonnegative radial ground
state solution of (1.5). From the condition (B;), one deduces that @y # 0,
U9 # 0 and Wy # 0. So applying the maximum principle to each equation
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of (1.5) yields that 2§ > 0 for i = 1,2,3. Similarly, we can prove that C, is

attained by a positive solution of (1.5) and clearly, we have C = C,. g
Remark 6.3.
(1) In the Lemma 6.2, 31 can be replaced by 3, and 1 > 3;. But 3, is more
explicit.

(2) Tt is also possible to give other conditions under which (6.4) holds. For in-
stance, we replace Zg by Z5 = (wp, wo, wp) or 21 = (wo(vV/A2z), wo (v A22),
wo(vVA2x)) or Za = (wo(VA3z), wo(vVA3z), wo(v/Asz)) in Lemma 6.2.

Then a direct computation shows that if

= 17 3
ﬂ>ﬂ3=§ (3—|—()\2—|—)\3—2)00)2u1—(u1—|—,u2—|—u3)] or
3
s 1], 6=n 14+ 2
5> h=3 N7 (34 -200) Gt p)| or
~ 1 [ 6—N 1+ A 2
ﬂ>55:§ As ! (3+( )\32—2)0()) pr — (g1 + p2 +ps) |
(6.14)
where o9 = ‘w0|i2(RN)/|w0|i3(RN)7 then the conclusion of Lemma 6.2 still

holds.

Next we study the existence of a ground state solution for the case that
(B2) or (Bs) holds.

Lemma 6.4. Assume that 1 < N <5, and either (Bs) or (Bs) holds, then the
conclusion of Lemma 6.2 remains true.

Proof. From Lemma 6.1 we know that C > 0 is attained by some z =
(g, Vo, wo) € A . If (Bz) holds, we know that

j(ov 0, w>\3,u3> < j(wl’m :0, O) < j(()? Wz, p2> 0)' (6‘15)
So, to guarantee (6.4) hold, we only need to show that
. ) s8N
C= /(ﬂo,@o,w()) < j(oaoaw)\?nlm) = 67;2 (616)
3

As in Lemma 6.2, we use 2; = (wo(\/)\gm),wo(\/)\ggc),wo(\/)gx)) as a test
function. Then there exists #; > 0 such that #13, € A4 and
- 3\ 14+ Xy — 2\
L R R T (6.17)
w1+ po + pg + 308

where oy = |w0‘2L2(RN)/‘wO|i3(]RN)' So it suffices to show that

~ _ - 53)\3_%
C = g (g, v, w0) < 7 (h171) < #. (6.18)
3
A direct computation shows that if 3 > 3, (defined in (1.22)), then (6.18)
holds. The remaining part of the proof is the same as that in Lemma 6.2. If
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(B3) holds, by similar arguments as above one can show that if g > [33 defined
in (1.22), then the conclusion of the Lemma 6.2 remains true. O

Finally, we consider the case that (By) or (Bj) holds.

Lemma 6.5. Assume that 1 < N <5, and either (By) or (Bs) holds. Then the
conclusion of Lemma 6.2 remains true.

Proof. If (By) holds, one can check that
j(oaw)\z,uwo) < j(w17ﬂl7070) and j(O,O7UJ)\3,M3) < j(w17lll’0’0)'
(6.19)

So it suffices to prove that

C = 7 (iig, B, o) < min{j(o,wAQ,m,O), j(o,o,wksm)}. (6.20)

By the proof of Lemma 6.2 we know that if § > max{3,, 33}, then (6.20)
holds. Hence, the conclusion of Lemma 6.2 remains true if (By4) holds. Finally,
if (B5) holds, as in the proof of Lemmas 6.2 and 6.4, we know that (6.4) holds.
Then the conclusion of Lemma 6.2 remains true. O

Remark 6.6. Similar to Remark 6.3, it is possible to find other conditions to
guarantee (6.4) holds in Lemmas 6.4 and 6.5. Here we omit details and leave
it to the interested readers.

Now we are ready to prove Theorem 1.10.

Proof of Theorem 1.10. The conclusion (i) follows from Lemmas 6.2, 6.4 and
6.5. The conclusion (ii) follows from the arguments of the proof of [42, Propo-
sition 2.2]. For (iii), assume by contradiction, if (u,v,w) is a positive solution
of (1.5), then the following Pohozaev identity holds (see [57, Theorem 1]): for
any a € R,

{g 7(a+1)]/ (|Vu|2+|vv|2+|vw|2)Jr (g 7a>/‘ (u® + Ao 4 Azw?)
RN RN

N ) ) )
(0= F) [, Galul® + polol* + polul®) + 30 = N) [ wvw=0.
3 ]RN RN

(6.21)
N .
Let a = 5~ 1in (6.21). Then one has

N -6
[ dae e du®) £ T2 [l £ palel® + paful)

N —
—1—765 wvw = 0.
4 RN

(6.22)

Thus, u =v=w=0if N =06 and Ay, A3 >0, or N > 6, Ao, A3, ti1, pt2, i3 > 0
and 8 > 0. O

Next we prove the bifurcation result Theorem 1.11 for the three-wave
system.
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Proof of Theorem 1.11 (i). In the following we only give the proof of the result
at the bifurcation point (3, u,v, w) = (f2, w1 ,,,0,0). We denote ug = wy ,,.
First, we consider an eigenvalue problem

Ao+ A3 \/()\2 — A3)% + 42

2
Ny —0(3)p, $eXi. (6.23)

_ A _
o+ 2 ¢ 2
Set
[oaver= [ w2 +asge
A2+ A3 . RN RN
x2(6) = = nf :
IS p\{ } 2 ¢2
RN
(6.24)
As in the proof of Lemma 4.1, one can verify that
Ao+ A3 — A2 — A
Jim, x2(8) = = A 2' =Nl Jim xa(f) = —o0,  (6:25)

and x5(8) < 0 for 8 > 0. Hence we know that there exists B2 > 0 such
that x2(f2) = 0 is the principal eigenvalue of the problem (6.23), and the
corresponding positive eigenvalue function is denoted by ¢ ,. Thus as in
Lemma 4.1, (1.24) has a principal eigenvalue 8y > 0, and the corresponding
positive eigenfunction is ¢o g, .

Set S = {(B,w1,4,,0,0) : 8 > 0}. We shall consider the bifurcation of
nontrivial solutions of (1.5) from the semi-trivial branch S near (52, w1 ,,,0,0).
To accomplish this we also apply the bifurcation result in [27]. We define

G:Rx (X7)° = (L3)° by
Au —u + pu? + Bow

G(B,u,v,w) = | Av— v + pov? + fuw | . (6.26)
Aw — A3w + pzw? + Buv

For (¢1, b2, #3), (Y1, ¢2,93) € (X;)?’, one sees that

G(u,?),u}) (ﬂv u, v, 'U}) [(d)lv b2, ¢3)]
Ap1 — d1 + 2p1udr + Buds + Bwds
= | Aga — A2 + 2100 + Pwor + Bugs |,
Apsz — A3¢3 + 2uzwesz + Budr + Bups
G(u,u,w)(u,v,w) (ﬁv u, v, U)) [(¢17 ¢2a ¢3)a (’(/}17 1/127 1/J3)]
2p1h1¢1 + Boarps + Bosipa
= | 2u202v2 + Bd1v3 + Bosir |,
2130303 + P12 + Boaihn
Gs(B,u,v,w)
VW Vo3 + w2
= uw ) and Gﬁ(u,mw) (ﬂ,u,v,w)[(¢1,¢2,¢3)] = U¢3 +’LU(]51

uv up2 + vP1
(6.27)



Vol. 24 (2023) Standing Waves of Coupled Schrédinger Equations 1963

We define
£5[(¢1a ¢27 (bd)] = G(u,v,w) (627 W1,p1 5 07 O)[(qj)la ¢27 (b&ﬂ
Ady — ¢1 + 2pwip, $1 (6.28)

= | Aga — Moo + Bown pu, ¢3
A3 — X33 + Powr pu, P2

Next we characterize N(L5) and R(Ls). Again from [47, Lemma 2.1],
the only solution of A¢gy — ¢1 + 21wy, ¢1 = 0 in X is 0, hence N(Ls) =
{0, @2, ¢3) = Ls[(d2, ¢3)] = (0,0)} where L is defined by

Colton,on) = (a2 T 202 T Gt ), (6.29)

where ug = wy,,,,. To solve Lg[(¢2, ¢3)] = (0,0), we set

a1 = A3 — Ay + \/()\3 —X2)? +465ud, az = A3 — Ao — \/()\3 — X\2)? 4+ 455u3,

2 2,2 2 2,2
a3 = aj +4685u;, and ag = a3 + 465ug.

(6.30)
By using an orthonormal transformation,
d2\ \%*3 \}% Uy ;7;*3\112"";727\1/3 6.31
¢ — | 2B2u0 2B2u¢ I - 2ﬂ2uO\II + 2ﬂ2u0\11 ) ( : )
3 Jas  Jax 3 Vas 2T “Jag ©8
Ls[(¢2, d3)] = (0,0) is transformed into two decoupled equations:
A A Ao — A\3)2 + 43202
AT, — 2-2F 3\112+\/(2 32) + 52“0\112:0’ 632
6.32
A A Ao — A3)2 + 43202
Ap, - 227 3\1@,*\/(2 )’ Aoy
2 2

Thus, we know that ¥s = ¢2 3, and U3 = 0 from the fact that x2(52) = 0
is the principal eigenvalue of the problem (6.23). Hence the only solution to

Le[(¢2, ¢3)] = (0,0) is

a1 2B2u0
)= [y 20 ) 6.33
o= (e ) 6
Define 05 : RY — (0,7/2) by

200u0\ _ . 4 232wy, ()
= tan
@ As = Do+ /(s = A)? + 4550, (x)
(6.34)

Then the subspace N(L5) = span {(0,cos2¢2 3,,sin02¢2 3,) }. Noticing that
the linear operator Lg is indeed self-adjoint, then we obtain that the range
space of L5 is defined by

f2(z) = tan™* (

R(E) = {(fl, f2, fg) S (L;g)S : /RN (fg cos Oy + f3 sin 02)¢2752 = 0} . (635)
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This shows that dimN (L5)=codimR(L5)=1. Finally it is also straightforward
to use (6.35) to check that

0

Gﬁ(u,v,w)(ﬁ%u()aovo) [(05¢27¢3)} = Up COS 92¢2,ﬁ2 ¢ R(EE))a (636)
Uuo SiIl 92(152’52

where (g2, ¢3) is defined in (6.33). Thus we can apply the result of [27] to
conclude that the set of positive solutions to (1.7) near (82, ug, 0,0) is a smooth
curve

I ={(B(s); u15(s), v15(s), wip(s)) = s € (0,72)}, (6.37)
such  that  f3(s) = Ba + B(0)s + ofs), wuig(s) = U
+ o(s) and v15(s) = cosbapz 8,5 + o(s) and wig(s) = sinbapa g,s + o(s).
Moreover, #'(0) can be calculated (see for example [37,61])

ﬂ'(O) _ <G(u,v7w)(u,v7w) (ﬂQa Uo, Oa 0)[(07 ¢27 ¢3)(07 ¢27 ¢3)]7 €>
2<G,8(u,v,w) (ﬁ27 up, 0, 0) [(07 ¢27 ¢3)]a £>

/ (pg cos® 0y + g sin® 92)q§‘;’)52 (6.38)
— _JRN <0,

2 / g sin 5 cos €2¢§ Bs
RN '

where £ is a linear functional on (L2)* defined as ([(f1, f2, f3]), €) = Jg (fa cos
02+ f3sin 62) P2 g,. Hence we infer from (6.37)—(6.38) that (1.5) has a nontrivial
solution (u1g,v13, w1g) in the form of (1.23) for B — 7 < B < B2. Moreover,
by using the arguments of [43, Theorem 5.1}, one deduces that (u1,v18, w1p)
is positive solution.

The Morse index of (u18,v18,w13) can be calculated similar to the two-
wave system case, which is omitted. Under the condition (B;) (1 <i < 5), we
have shown that the ground state energy satisfies (6.4). On the other hand,
when 7 > 0 is sufficiently small, we infer from L¢[(cos O2¢2 3,,sin 6202 3,)] = 0
and (1.23) that for 8 € (By — 72, 2),

~ S5 1
S (uig,vig, wig) = ﬁ +o(s) + 5 (Ilvisll3, + lwislX,)
1

1
- */ (#21):1)’,8 + #3W?5) - B/ U18V13W13
3 ]RN ]RN

B if 28— B2) (fan P2.8,w1 0, sin 62 c0502)3

- 6#% 3 (fRN (/.1,2 COS3 92 =+ M3 SiIl3 02) 3’52)2 + 0(8)
= 5 o)
T '

(6.39)

N 3 g3
One deduces from (6.4) that C, < _#(uo,0,0) = 6TL12 Hence, for 75 > 0
1

sufficiently small and § € (B2 — 72, 52), j(uw,vm,wm) > C,.. So when one

of the condition (B;) (1 < ¢ < 5) is satisfied, (u1,v18, w1g) is not a ground

state solution. O
Next we prove the conclusion (ii) of Theorem 1.11.
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Proof of Theorem 1.11 (ii). Set

1 A
up(z) = awo(m), vi(x —wo VAx), wi(z M—zwo(\/)\gx). (6.40)
Then we know that when § = 0, (1.5) has the following non-trivial non-
negative solutions

Z1 = (ulvvlvwl)v Z2 = (u17v170)7 Z3 = (u1707w1)7 24 = (071)1,'11)1),

6.41
Z5:<’U,]_,0,0), Z6:(07U170>7 272(0,07’11)1). ( )

We shall apply the implicit function theorem at z; with parameter 5 = 0
for i = 1,2,3,4. Since the proof is essentially the same for each of i =
2,3, 4, we only present the proof for z1. Since z; is nondegenerate in X, i.e.,

[G(u’v’w)(o, 21)] - |G (0,0 (0, U1, 01, wr)] ! exists. By the implicit function
theorem, there exist 5y > 0, Rg > 0 and z1(8) : (=00, Bo) — Br,(z1) such that
for any B € (—fo, Bo), G(B,%1(8)) = G(8,11(B), 51(8), W1 (8)) = 0.

For each (¢1, ¢2,¢3) € (X]f”)?’, one infers from (6.27) that

A1 — ¢1 + 2purur dr w11
Guw,w) (0,01, v1,w1)[(P1, P2, 93)] = | Ao — Ao + 2puav1d2 | = — [ waws | .
Aps — N3¢z + 2uswips3 U111

(6.42)
Hence one has that

¢1 = (—A+1—2pur) wive,  do = (A + Ao — 2u9v1) tugwy

- (6.43)
3 = (—A+ X3 —2uswy) ™ uvy,

which implies the form of (u4g,vag, wsg) in (1.25). Similarly by using the
implicit function theorem at z; for ¢ = 2,3,4, we can obtain the positive
solutions (u;g,v;g, w;z) with ¢ = 5,6,7 as in (1.25). Note that the implicit
function theorem can also be applied at z; for i = 5,6,7 but will only yield
semi-trivial solutions.

Hence there exists 75 > 0 such that when 8 € (0,75), (1.5) has ex-
actly four positive solutions, and the sign information of (u;g,vig, w;3) with
i =4,5,6,7 and 8 € (—75,0) can also be easily obtained by using the form
n (1.25). The Morse indices of all solutions can be obtained similarly as in
the proof of Theorem 1.4, by using the stability information of each solution
when ( = 0. Finally the energy of the four positive solutions can be com-
pared with the ones of three semi-trivial ones, and we can conclude that one
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of (uig,vig, w;g) with i = 5,6,7 is the ground state solution under proper
conditions on Ay and As. O
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