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Abstract
In this paper, by approximating the non-local spatial dispersal equation by an associ-
ated reaction–diffusion system, an activator–inhibitor model with non-local dispersal
is transformed into a reaction–diffusion system coupled with one ordinary differen-
tial equation. We prove that, to some extent, the non-locality-induced instability of
the non-local system can be regarded as diffusion-driven instability of the reaction–
diffusion system for sufficiently small perturbation. We study the structure of the
spectrum of the corresponding linearized operator, and we use linear stability analysis
and steady-state bifurcations to show the existence of non-constant steady states which
generates non-homogeneous spatial patterns. As an example of our results, we study
the bifurcation and pattern formation of a modified Klausmeier–Gray–Scott model of
water–plant interaction.
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1 Introduction

Reaction–diffusion models have been proposed to describe the reaction, growth and
spatial movement of organic or inorganic substance in the space over time (Meinhardt
1992; Turing 1952). A particular important feature of the reaction–diffusion models
is that spatial–temporal patterns can be generated in certain parameter regimes, which
has been extensively used in many fields of physical and biological sciences. The
theoretical predication from the model and laboratory or field observation of spatial
patterns often match well (Kondo and Miura 2010; Rietkerk et al. 2004).

The foremost important mechanism of spatial pattern generation is Turing’s
diffusion-induced instability: slow activator diffusion and fast inhibitor diffusion can
destabilize a spatially homogeneous steady state, and spatially non-homogeneous
steady states may emerge as the result of symmetry-breaking bifurcation (Sheth et al.
2012; Sick et al. 2006; Turing 1952; Yi et al. 2009). Other movement mechanisms
of spatiotemporal pattern formation have been also proposed: (i) directed advective
movement such as chemotaxis (Bellomo et al. 2015; Horstmann 2003; Keller and
Segel 1971); (ii) density-dependent diffusion such as cross diffusion (Lou and Ni
1996; Mimura and Kawasaki 1980; Mimura et al. 1984; Ni 1998); and (iii) memory-
based delayed movement (Shi et al. 2019, 2021, 2020, 2021). Non-local effect on the
reaction or growth of the biological population has also been recognized as a possible
mechanism of rich spatiotemporal pattern formation (Chen and Shi 2012; Chen and
Yu 2018; Ei and Ishii 2021; Fu et al. 2020; Fuentes et al. 2003; Furter and Grinfeld
1989; Gourley et al. 2001; Shi et al. 2022; Tian et al. 2019; Zaytseva et al. 2020).

In this paper, we consider the instability caused by a non-local dispersal and asso-
ciated spatial pattern formation. The model is presented by the following modified
Klausmeier–Gray–Scott model with periodic boundary condition in [−l, l]:

⎧
⎪⎨

⎪⎩

ut = duuxx + A − u − v2u, x ∈ (−l, l), t > 0,

vt = dv(J ∗ v − v) + v2u − Bv, x ∈ (−l, l), t > 0,

u(−l, t) = u(l, t), ux (−l, t) = ux (l, t), t > 0.

(1.1)

Here, u(x, t) is water density, v(x, t) is plant density, t is time, and x is a one-
dimensional space variable; A can be interpreted as rainfall, which controls water
input; B measures plant losses; the movement of water is modeled by diffusion with
a diffusion coefficient du ; and the dispersal of plant is modeled by a the convolution

integral J ∗ v defined by (J ∗ v)(x) =
∫ l

−l
J (x − y)v(y)dy, which can be used to

describe the free movement of individuals in a long range area. The function J (x)
satisfies J (x) ∈ C1(R), J (x) > 0 in (−l, l), J (x) = 0 in R \ (−l, l), J (−x) = J (x),
and

∫ l
−l J (x)dx = 1. Biologically, the kernel function J (x − y)means the probability

per unit length of seeds originating at the point y being dispersed to point x (Eigentler
and Sherratt 2018; Pueyo et al. 2008). In this paper, we consider the kernel function
J (x) with the following form
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Fig. 1 The kernel (1.2) with dw = 1, l = 20 (Color figure online)

J (x) =
⎧
⎨

⎩

1

2
√
dw sinh(l/

√
dw)

cosh
( l − |x |√

dw

)
, −l < x < l,

0, otherwise,
(1.2)

where l, dw are positive constants, and dv is the dispersal rate of the plant. A typical
example of the kernel (1.2) is shown in Fig. 1.

Recall that for a general activator–inhibitor reaction–diffusion model

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = duuxx + f (u, v), x ∈ (−l, l), t > 0,

vt = dvvxx + g(u, v), x ∈ (−l, l), t > 0,

u(−l, t) = u(l, t), ux (−l, t) = ux (l, t), t > 0,

v(−l, t) = v(l, t), vx (−l, t) = vx (l, t), t > 0,

(1.3)

where f (u, v), g(u, v) are nonlinear functions modeling reactions between species u
and v, if the model (1.3) admits a constant positive steady state (u∗, v∗) and is stable
for the corresponding kinetic system, then the Jacobian matrix

J =
(

f ∗
u f ∗

v

g∗
u g∗

v

)

satisfies

(C1) f ∗
u + g∗

v < 0, f ∗
u g

∗
v − f ∗

v g
∗
u > 0.

Throughout this paper, we use f ∗
u , f ∗

v , g∗
u and g∗

v represent the first order partial
derivatives of f and g with respect to the first variable u and the second one v at
(u∗, v∗), respectively. Furthermore, we assume u is an inhibitor and v is an activator,
that is, the Jacobian matrix has the sign pattern
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(C2)

(− −
+ +

)

, or

(− +
− +

)

.

Then, under the assumptions (C1) and (C2), diffusion-induced Turing instability could
occur in system (1.3).

A general non-local dispersal activator–inhibitor model with J (x) defined as in
(1.1) is

⎧
⎪⎨

⎪⎩

ut = duuxx + f (u, v), x ∈ (−l, l), t > 0,

vt = dv(J ∗ v − v) + g(u, v), x ∈ (−l, l), t > 0,

u(−l, t) = u(l, t), ux (−l, t) = ux (l, t), t > 0.

(1.4)

Through this paper, we always assume the assumptions (C1) and (C2) are satisfied
and attempt to study the non-local interaction-induced instability of system (1.4) with
periodic boundary condition in [−l, l].

Pattern formation for non-local dispersal for a constant kernel was studied in Chen
et al. (2021), and the dynamics of spatial population models with non-local dispersal
was also studied in Bai and Li (2018); Hutson et al. (2003); Li et al. (2014); Kot
et al. (1996); Wang and Zhang (2021); Yang et al. (2019). The relationship between
the instability induced by non-local interaction and diffusion-driven instability and
the realization of non-local interactions by reaction–diffusion systems were also con-
sidered in Ninomiya et al. (2017). The water–plant interaction model with non-local
dispersal was considered in Alfaro et al. (2018); Eigentler and Sherratt (2018), and
the corresponding reaction–diffusion model was studied in Wang et al. (2021).

The paper is organized as follows. In Sect. 2, we give the spectral analysis of two
linear operators and establish the equivalence of two related stability notions. In Sect.
3, we give the linear stability analysis of the constant steady state of the corresponding
reaction–diffusion system, and we prove the existence of non-constant steady states
through bifurcation analysis. In Sect. 4, we analyze the existence, local stability of
constant steady states, bifurcation and pattern formation of the non-local modified
Klausmeier–Gray–Scott model. We end with some more discussions in Sect. 5.

Throughout this paper, we use the following notations.

N0 = N ∪ {0}.
C

+ = {a + bi : a, b ∈ R, a > 0}.
R(L) : The range of the linear operator L.

N (L) : The kernel of the linear operator L.

σ (L) : The spectrum of the linear operator L.

σp(L) : The point spectrum of the linear operator L.

σc(L) : The continuous spectrum of the linear operator L.

C0([−l, l]) : The Banach space of all continuous on the interval [−l, l].
C2

P ([−l, l]) : The Banach space of all twice continuously differential functions on the

interval [−l, l] satisfying periodic boundary conditions.
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2 Equivalence of Stability

The solution of the linear elliptic equation

{
dww′′(x) − w(x) + v(x) = 0, x ∈ (−l, l),

w(−l) = w(l), w′(−l) = w′(l),
(2.1)

is given by w(x) = (J ∗ v)(x) where J is defined in (1.2). Then, the system (1.4)
is equivalent to the following parabolic–elliptic-ordinary partial differential equation
system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = duuxx + f (u, v), x ∈ (−l, l), t > 0,

0 = dwwxx − w + v, x ∈ (−l, l), t > 0,

vt = dv(w − v) + g(u, v), x ∈ (−l, l), t > 0,

u(−l, t) = u(l, t), ux (−l, t) = ux (l, t), t > 0,

w(−l, t) = w(l, t), wx (−l, t) = wx (l, t), t > 0.

(2.2)

We embed the system (2.2) into a parabolic-ordinary differential system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = duuxx + f (u, v), x ∈ (−l, l), t > 0,

εwt = dwwxx − w + v, x ∈ (−l, l), t > 0,

vt = dv(w − v) + g(u, v), x ∈ (−l, l), t > 0,

u(−l, t) = u(l, t), ux (−l, t) = ux (l, t), t > 0,

w(−l, t) = w(l, t), wx (−l, t) = wx (l, t), t > 0,

(2.3)

with 0 ≤ ε � 1. A steady-state solution (u(x), v(x)) of (1.4) is equivalent to
(u(x), w(x), v(x)) for (2.2) or (2.3). In this section, we compare the stability of a
steady state with respect to (1.4) with non-local dispersal and the stability of the same
steady state with respect to (2.2) or (2.3) which has diffusive dispersal, and the relation
between the two stabilities reveals the relation between the non-local dispersal-induced
instability of (1.4) and the diffusion-driven instability of (2.3).

The eigenvalue problem

−ϕ′′ = μϕ, x ∈ (−l, l), ϕ(−l) = ϕ(l), ϕ′(−l) = ϕ′(l)

has eigenvalues μk = (kπ/l)2, (k = 0, 1, 2, · · · ) with corresponding eigenfunctions
for k ≥ 1 ϕk(x) = c1k cos(πkx/l) + c2k sin(πkx/l), where c1k, c2k are constants
which are not equal to zero simultaneously, and ϕ0(x) = 1.

For system (1.4), define a mapping G1 by

G1

(
u
v

)

=
(

duuxx + f (u, v)

dv(J ∗ v − v) + g(u, v)

)

, (2.4)
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where (u, v) ∈ C2
P ([−l, l]) × C0([−l, l]) ≡ X1. Then, G1 : X1 → Y1, where

Y1 ≡ C0([−l, l]) × C0([−l, l]), is Fréchet differentiable, and at a constant steady
state (u∗, v∗), the linearized operator of G1 is defined as

L1

(
φ

ψ

)

≡ ∂(u,v)G1(u
∗, v∗)

(
φ

ψ

)

=
(

duφ′′ + f ∗
u φ + f ∗

v ψ

dv(−ψ + J ∗ ψ) + g∗
uφ + g∗

vψ

)

.(2.5)

Lemma 2.1 Define λ̃±,k =
−a0 ±

√

a20 − 4a1

2
where

a0 = duμk + dv − f ∗
u − g∗

v − dv

dwμk + 1
,

a1 = ( f ∗
u − duμk)(g

∗
v − dv) − f ∗

v g
∗
u + dv( f ∗

u − duμk)

dwμk + 1
.

(2.6)

Then, σ(L1) = σp(L1) = {λ̃±,k : k ∈ N0}.
Proof For λ ∈ C, the associated eigenvalue problem of L1 is

∂(u,v)G1(u
∗, v∗)

(
φ

ψ

)

= λ

(
φ

ψ

)

,

which is equivalent to

{
λφ = duφ

′′ + f ∗
u φ + f ∗

v ψ,

λψ = dv(−ψ + J ∗ ψ) + g∗
uφ + g∗

vψ.
(2.7)

With the kth term of the Fourier series expansion of φ and ψ

φk := ckexp
(kπ i

l
x
)
, ck := 1

2l

∫ l

−l
φ(x)exp

(
− kπ i

l
x
)
dx,

ψk := ekexp
(kπ i

l
x
)
, ek := 1

2l

∫ l

−l
ψ(x)exp

(
− kπ i

l
x
)
dx,

we obtain

{
λφk = −duμkφk + f ∗

u φk + f ∗
v ψk,

λψk = dv(−ψk + J ∗ ψk) + g∗
uφk + g∗

vψk .

By the method of Ninomiya et al. (2017), changing the variable, we can have

{
λφk = −duμkφk + f ∗

u φk + f ∗
v ψk,

λψk = dv(−ψk + ( Ĵ )kψk) + g∗
uφk + g∗

vψk,
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with

( Ĵ )k =
∫ l

−l
J (y)exp

(
− kπ i

l
y
)
dy = 1

dwμk + 1
. (2.8)

Then, the eigenvalues λ̃±,k satisfy the following equation

λ2 + a0λ + a1 = 0, (2.9)

where a0, a1 are defined as in (2.6). This completes the proof. �

For the system (2.3), define a mapping G2 by

G2

⎛

⎝
u
w

v

⎞

⎠ =
⎛

⎝
duuxx + f (u, v)

dw

ε
wxx − 1

ε
w + 1

ε
v

dv(w − v) + g(u, v)

⎞

⎠ , (2.10)

where (u, w, v) ∈ C2
P ([−l, l]) ×C2

P ([−l, l]) ×C0([−l, l]) ≡ X2. Then, G2 : X2 →
Y2, where Y2 ≡ C0([−l, l])×C0([−l, l])×C0([−l, l]), is Fréchet differentiable, and
at a constant steady state (u∗, v∗, v∗), the linearized operator is defined by

L2,ε

⎛

⎝
φ

ψ

ϑ

⎞

⎠ ≡ ∂(u,w,v)G2(u
∗, v∗, v∗)

⎛

⎝
φ

ψ

ϑ

⎞

⎠ =
⎛

⎝
duφ′′ + f ∗

u φ + f ∗
v ϑ

dwψ ′′
ε

− ψ
ε

+ ϑ
ε

g∗
uφ + dvψ + (g∗

v − dv)ϑ

⎞

⎠ .

The spectral set of L2,ε is described in the following proposition.

Proposition 2.2 Suppose that the parameters du, dv, dw, ε are all positive and
(u∗, v∗, v∗) is a constant steady state of system (2.3). Then, the spectral set

σ(L2,ε) = {λ1,k(ε), λ2,k(ε), λ3,k(ε) : k ∈ N0} ∪ {g∗
v − dv},

where λ1,k(ε), λ2,k(ε), λ3,k(ε) are the roots of

�k(ε, λ) := λ3 +
(
duμk − f ∗

u + dv − g∗
v + dwμk + 1

ε

)
λ2

+
(
(duμk − f ∗

u )(
dwμk + 1

ε
+ dv − g∗

v ) − f ∗
v g

∗
u

+ (dwμk + 1)(dv − g∗
v ) − dv

ε

)
λ

+
(
(duμk − f ∗

u )
(dwμk + 1)(dv − g∗

v ) − dv

ε

− f ∗
v g

∗
u (dwμk + 1)

ε

)
= 0.

(2.11)

Moreover {λ1,k(ε), λ2,k(ε), λ3,k(ε) : k ∈ N0} ⊆ σp(L2,ε); and g∗
v − dv ∈ σc(L2,ε) if

one of the following conditions is satisfied
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1. dwg∗
u f

∗
v +dudv �= 0 and

dv( f ∗
u + dv − g∗

v ) − g∗
u f

∗
v (1 + (g∗

v − dv)ε)

dwg∗
u f

∗
v + dudv

/∈ {μk}∞k=0;

2. dwg∗
u f

∗
v + dudv = 0 and dv( f ∗

u + dv − g∗
v ) − g∗

u f
∗
v (1 + (g∗

v − dv)ε) �= 0;

and if neither condition 1 nor 2 is satisfied, g∗
v − dv ∈ σp(L2,ε).

Proof For λ ∈ C and (σ, τ, γ ) ∈ Y2, we consider the following non-homogeneous
problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

duφ
′′ + f ∗

u φ + f ∗
v ϑ = λφ + σ, (2.12a)

dw

ε
ψ ′′ − 1

ε
ψ + 1

ε
ϑ = λψ + τ, (2.12b)

g∗
uφ + dvψ + (g∗

v − dv)ϑ = λϑ + γ, (2.12c)

φ(−l) = φ(l), φ′(−l) = φ′(l), (2.12d)

ψ(−l) = ψ(l), ψ ′(−l) = ψ ′(l). (2.12e)

If λ �= g∗
v − dv , from (2.12c) we have

ϑ = γ − g∗
uφ − dvψ

(g∗
v − dv) − λ

. (2.13)

Then, problem (2.12) becomes

⎧
⎪⎪⎨

⎪⎪⎩

duφ
′′ +

(
f ∗
u − λ − f ∗

v g
∗
u

(g∗
v − dv) − λ

)
φ − f ∗

v dv

(g∗
v − dv) − λ

ψ = σ − f ∗
v γ

(g∗
v − dv) − λ

,

dw

ε
ψ ′′ −

(1

ε
+ λ + dv

ε[(g∗
v − dv) − λ]

)
ψ − g∗

u

ε[(g∗
v − dv) − λ]φ = τ − γ

ε[(g∗
v − dv) − λ] .

(2.14)

The non-homogeneous problem (2.14) has a unique solution if and only if

e1 ±
√

e21 − 4e0e2

2e0
/∈ {μk}∞k=0, (2.15)

where

e0 = dwdu(λ + dv − g∗
v ),

e1 = − (dw + duε)λ
2 + (dw f ∗

u + dg∗
v + dug

∗
vε − dwdv − du − dudvε)λ

+ dwdv f
∗
u + dug

∗
v − dw f ∗

u g
∗
v + dw f ∗

v g
∗
u ,

e2 = ελ3 + (dvε − f ∗
u ε − g∗

vε + 1)λ2 + ( f ∗
u g

∗
vε − dv f

∗
u ε − f ∗

v g
∗
uε − f ∗

u − g∗
v )λ

+ f ∗
u g

∗
v − f ∗

v g
∗
u .

(2.16)

Furthermore, if (2.15) holds, then the unique solution (φ,ψ) of (2.14) satisfies

||φ||∞ + ||ψ ||∞ ≤ C0(||σ ||∞ + ||τ ||∞ + ||γ ||∞),
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for some constant C0 > 0. Thus, ϑ can be obtained by (2.13) and satisfies

||ϑ ||∞ ≤ C1(||σ ||∞ + ||τ ||∞ + ||γ ||∞),

for some constant C1 > 0. Thus, (L2,ε − λI )−1 exists and is bounded if λ �= g∗
v − dv

and (2.15) is satisfied. So such λ /∈ σ(L2,ε).

On the other hand, if there exists some k ∈ N0 such that
e1±

√

e21−4e0e2
2e0

= μk , i.e., λ
satisfies (2.11) which is the characteristic equation of L2,ε, then Eq. (2.11) has three
roots denoted by λ1,k(ε), λ2,k(ε), λ3,k(ε).

Now we prove λ = g∗
v − dv is in the spectrum of L2,ε. If λ = g∗

v − dv , problem
(2.12) becomes

⎧
⎪⎪⎨

⎪⎪⎩

duφ
′′ + f ∗

u φ + f ∗
v ϑ = (g∗

v − dv)φ + σ, (2.17a)
dw

ε
ψ ′′ − 1

ε
ψ + 1

ε
ϑ = (g∗

v − dv)ψ + τ, (2.17b)

g∗
uφ + dvψ = γ. (2.17c)

First we prove that, under suitable conditions, λ = g∗
v − dv is in the continuous

spectrum of L2,ε, which means that L2,ε − (g∗
v − dv)I is injective and the range

R(L2,ε − (g∗
v − dv)I ) is dense in Y2. Indeed we prove that

R(L2,ε − (g∗
v − dv)I ) = C0([−l, l]) × C0([−l, l]) × C2

P ([−l, l]).

From (2.17a) and (2.17b), we have σ, τ ∈ C0([−l, l]). From (2.17c) and φ,ψ ∈
C2

P ([−l, l]), it is necessary γ ∈ C2
P ([−l, l]). Then, R(L2,ε − (g∗

v − dv)I ) ⊆
C0([−l, l]) × C0([−l, l]) × C2

P ([−l, l]). Conversely, if (σ, τ, γ ) ∈ C0([−l, l]) ×
C0([−l, l]) × C2

P ([−l, l]), we can eliminate ϑ from (2.17a) and (2.17b) and obtain

duφ
′′ − dw f ∗

v ψ ′′ + f ∗
u φ + f ∗

v ψ = (g∗
v − dv)φ − f ∗

v (g∗
v − dv)εψ + σ − τε.

(2.18)

From (2.12d) and (2.17c),

φ(−l) = φ(l), φ′(−l) = φ′(l), φ = γ − dvψ

g∗
u

(2.19)

for g∗
u �= 0 . Substituting (2.19) into (2.18), we get the following non-homogeneous

problem about ψ

(
dw f ∗

v + dudv

g∗
u

)
ψ ′′ +

(dv( f ∗
u + dv − g∗

v )

g∗
u

− f ∗
v (1 + (g∗

v − dv)ε)
)
ψ

= duγ ′′ + ( f ∗
u + dv − g∗

v )γ

g∗
u

+ τε − σ.

(2.20)
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If dwg∗
u f

∗
v + dudv �= 0, problem (2.20) has a unique solution ψ if and only if

dv( f ∗
u + dv − g∗

v ) − g∗
u f

∗
v (1 + (g∗

v − dv)ε)

dwg∗
u f

∗
v + dudv

/∈ {μk}∞k=0. (2.21)

If dwg∗
u f

∗
v + dudv = 0 and dv( f ∗

u + dv − g∗
v ) − g∗

u f
∗
v (1+ (g∗

v − dv)ε) �= 0, problem
(2.20) has a unique solution ψ given by

ψ = duγ ′′ + ( f ∗
u + dv − g∗

v )γ + g∗
u(τε − σ)

dv( f ∗
u + dv − g∗

v ) − g∗
u f

∗
v (1 + (g∗

v − dv)ε)
. (2.22)

If ψ is solved uniquely, then φ and ϑ can be determined by (2.19) and (2.17b),
respectively. Then, C0([−l, l])×C0([−l, l])×C2

P([−l, l]) ⊆ R(L2,ε − (g∗
v − dv)I ).

Thus, R(L2,ε − (g∗
v − dv)I ) = C0([−l, l]) × C0([−l, l]) × C2

P ([−l, l]). Therefore,
R(L2,ε−(g∗

v −dv)I ) is dense inC0([−l, l])×C0([−l, l])×C0([−l, l]) asC2
P ([−l, l])

is dense in C0([−l, l]). Furthermore, R(L2,ε − (g∗
v − dv)I ) is injective. Therefore,

λ = g∗
v − dv is the continuous spectrum if the condition 1 or 2 is satisfied.

Now, we consider dwg∗
u f

∗
v + dudv �= 0 and

dv( f ∗
u + dv − g∗

v ) − g∗
u f

∗
v (1 + (g∗

v − dv)ε)

dwg∗
u f

∗
v + dudv

∈ {μk}∞k=0. (2.23)

Letting σ = τ = γ = 0 in (2.17). Then, from (2.20), we have

(
dw f ∗

v + dudv

g∗
u

)
ψ ′′ +

(dv( f ∗
u + dv − g∗

v )

g∗
u

− f ∗
v (1 + (g∗

v − dv)ε)
)
ψ = 0. (2.24)

If the condition (2.23) is satisfied, then ϕk(x) solves (2.24). Then,N (L2,ε − (g∗
v −

dv)I ) = span{(−dvϕk/g∗
u , ϕk, (dwμk + 1 + (g∗

v − dv)ε)ϕk}. This implies that λ =
g∗
v − dv ∈ σp(L2,ε). If dwg∗

u f
∗
v + dudv = 0 and dv( f ∗

u + dv − g∗
v ) − g∗

u f
∗
v (1+ (g∗

v −
dv)ε) = 0, thenN (L2,ε − (g∗

v −dv)I ) ⊃ {(−dvϕ/g∗
u , ϕ, (dwμk +1+ (g∗

v −dv)ε)ϕ :
ϕ ∈ C2

P ([−l, l])}. This completes the proof. �


Set �̃k(ε, σ ) = ε

dwμk + 1
�k(ε, σ ). Then, the characteristic Eq. (2.11) of L2,ε can

be rewritten as the following equation:

�̃k(ε, λ) = b0ελ
3 + (1 + b0ã0ε)λ

2 + (a0 + b0ã1ε)λ + a1 = 0, (2.25)

with a0, a1 defined in (2.6) and

b0 = 1

dwμk + 1
, ã0 = duμk − f ∗

u + dv − g∗
v ,

ã1 = ( f ∗
u − duμk)(g

∗
v − dv) − f ∗

v g
∗
u .

(2.26)
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The three roots of (2.25), which are the same as the roots of (2.11), are λ j,k(ε) ( j =
1, 2, 3). When ε → 0, uniformly for bounded λ, we have

�̃k(ε, λ) →λ2 + a0λ + a1, (2.27)

which is (2.9). Then, for sufficiently small ε > 0, (2.25) can be considered as a
perturbed equation of (2.9). So without loss of generality, we assume that there are
two eigenvalues, saying λ1,k(ε) and λ2,k(ε), satisfying lim

ε→0+ λ1,k(ε) = λ̃+,k and

lim
ε→0+ λ2,k(ε) = λ̃−,k .

Differentiating (2.25) with respect to ε, we have

∂ε�̃k(ε, λ) = b0(λ
3 + ã0λ

2 + ã1λ). (2.28)

Assume

(H1) a20 − 4a1 =
[

duμk − dv − f ∗
u + g∗

v + dv

dwμk + 1

]2

+ 4 f ∗
v g

∗
u �= 0;

and

(H2) λ̃±,k �= 0 and λ̃±,k �= f ∗
u − duμk .

With the assumption (H1), we have λ̃+,k �= λ̃−,k . From (2.28) and (H2), we have

∂ε�̃k(0, λ̃±,k) = b0λ̃±,k(λ̃
2±,k + ã0λ̃±,k + ã1)

=b0λ̃±,k[(ã0 − a0)λ̃±,k + ã1 − a1] = dvλ̃±,k(λ̃±,k − f ∗
u + duμk) �= 0.

(2.29)

Then, the implicit function theorem can be applied to ensure the existence of λ j,k(ε)

( j = 1, 2) for sufficiently small ε with λ1,k(0) = λ̃+,k �= 0 and λ2,k(0) =
λ̃−,k �= 0. In particular, for sufficiently small ε, Sign(λ1,k(ε) = Sign(λ̃+,k) and
Sign(λ2,k(ε) = Sign(λ̃−,k). Finally from (2.9) and (2.25), we have a1 = λ̃+,k λ̃−,k

and
a1
b0ε

= −λ1,k(ε)λ2,k(ε)λ3,k(ε). Thus, we have λ3,k(ε) < 0 and λ3,k(ε) ≈ − 1

b0ε
.

According to the discussion above, we have the following result.

Proposition 2.3 Assume (u∗, v∗) is the constant steady state of system (1.4),
(u∗, v∗, v∗) is the constant steady state of system (2.2) and (2.3) and the assump-
tions (H1) and (H2) are satisfied. If g∗

v − dv < 0, then for sufficiently small ε > 0,
the constant steady state (u∗, v∗) of (1.4 has the same linear stability as the one for
the constant steady state (u∗, v∗, v∗) of (2.2 and (2.3.

From Proposition 2.3, to some extent, the study of non-local interaction-induced
instability of (1.4) can be achieved through studying the diffusion-driven instability
of (2.3). The system (2.3) is a reaction–diffusion system coupled with one ordinary
differential equation, called as a RDO system for simplicity. This stability of constant
steady state of this type of system has been studied in Li et al. (2017); Marciniak-
Czochra et al. (2018, 2017). In Li et al. (2017); Marciniak-Czochra et al. (2017), some
rigorous results on the nonlinear instability have been given for a two-dimensional
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RDOsystem,which involves the analysis of a continuous spectrumof a linear operator.
In the following, we will study the spectrum of the corresponding linearized system of
the three-dimensional RDO system and the existence of eigenvalues with positive real
parts. We will also study the bifurcation of the steady states and explore the pattern
formation of the RDO system. The aim of our paper is to approximate the dynamics of
the water-biomass model with non-local diffusion term by a reaction–diffusion system
with a sufficiently small diffusion term.

3 Linear Stability and Bifurcation

In this section, we consider the linear stability of the constant steady state (u∗, v∗, v∗)
of (2.3). To be more precise, we consider the conditions under which L2,ε possesses
eigenvalues with positive real parts. Recall that the constant steady state (u∗, v∗, v∗)
of (2.3) is linearly stable if g∗

v − dv < 0 and all eigenvalues of L2,ε have negative
real parts, and otherwise it is unstable. Note that the characteristic Eq. (2.11) can be
rewritten as

ελ3 + d1(du)λ
2 + d2(du)λ + d3(du) = 0, (3.1)

where

d1(du) = μkεdu + dvε − f ∗
u ε − g∗

vε + dwμk + 1,

d2(du) = [dwμ2
k + (dvε + 1 − g∗

vε)μk]du + dw(dv − f ∗
u − g∗

v )μk

+ ε( f ∗
u g

∗
v − g∗

u f
∗
v − f ∗

u dv) − ( f ∗
u + g∗

v ),

d3(du) = [dw(dv − g∗
v )μ2

k − g∗
vμk]du + dw( f ∗

u g
∗
v − g∗

u f
∗
v − f ∗

u dv)μk

+ f ∗
u g

∗
v − g∗

u f
∗
v .

(3.2)

For fixed mode-k, from the well-known Routh–Hurwitz stability criterion, all roots of
(3.1) have negative real parts if

d1(du) > 0, d1(du)d2(du) − εd3(du) > 0, and d3(du) > 0. (3.3)

Under the assumption (C1), it is clear that for any k ∈ N0 and ε > 0, d1(du) > 0
as f ∗

u + g∗
v < 0. For ε > 0 sufficiently small, again assuming (C1), we have

d1(du)d2(du) − εd3(du)

→(dwμk + 1)[du(dwμ2
k + μk) + dw(dv − f ∗

u − g∗
v )μk − ( f ∗

u + g∗
v )] > 0.

Hence, we can choose ε > 0 sufficiently small so that d1(du)d2(du) − εd3(du) > 0.
For the sign of d3(du), we notice that d2(du) is a quadratic function of μk > 0.

Define

d3(μ) = dwdu(dv − g∗
v )μ2 + [dw( f ∗

u g
∗
v − g∗

u f
∗
v − f ∗

u dv) − g∗
vdu]μ
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+ f ∗
u g

∗
v − g∗

u f
∗
v , (3.4)

and

�1 = [dw( f ∗
u g

∗
v − g∗

u f ∗
v − f ∗

u dv) − g∗
vdu]2 − 4dwdu(dv − g∗

v )( f ∗
u g

∗
v − g∗

u f ∗
v ). (3.5)

When �1 < 0, d3(μ) > 0 for all μ > 0. We observe that there exists a critical value
d∗
u (dv) such that �1 < 0 when du < d∗

u (dv); �1 = 0 when du = d∗
u (dv); and �1 > 0

when du > d∗
u (dv), where

d∗
u (dv) = 2dwg∗

v ( f ∗
u g

∗
v − g∗

u f ∗
v − f ∗

u dv) + 4dw(dv − g∗
v )( f ∗

u g
∗
v − g∗

ug
∗
v ) + √

�2

2g∗2
v

,

(3.6)

with

�2 = [2dwg
∗
v ( f ∗

u g
∗
v − g∗

u f
∗
v − f ∗

u dv) + 4dw(dv − g∗
v )( f ∗

u g
∗
v − g∗

ug
∗
v )]2

− 4d2wg
∗2
v ( f ∗

u g
∗
v − g∗

u f
∗
v − f ∗

u dv)
2.

In particular, when du < d∗
u (dv), we always have d3(μ) > 0 for all μ > 0 so in that

case, (3.3) is satisfied and (u∗, v∗, v∗) is stable with respect to (2.3).
When du > d∗

u (dv), it is possible that d3(du) < 0. For k = 0, we also have d3(du) =
f ∗
u g

∗
v − g∗

u f
∗
v > 0 from (C1). For all k ∈ N, d3(0) = dw( f ∗

u g
∗
v − g∗

u f
∗
v − f ∗

u dv)μk +
f ∗
u g

∗
v − g∗

u f
∗
v > 0 from (C1). Define I = {k ∈ N : dw(dv − g∗

v )μk − g∗
v < 0}. For

k ∈ I , there exists a unique du = dku > 0 defined by

dku = dw( f ∗
u g

∗
v − g∗

u f
∗
v − f ∗

u dv)μk + f ∗
u g

∗
v − g∗

u f
∗
v

dw(g∗
v − dv)μ

2
k + g∗

vμk
, (3.7)

such that d3(dku ) = 0, d3(du) > 0 for 0 < du < dku , and d3(du) < 0 for du > dku .
When d3(du) < 0 for k ∈ I , (3.1) has at least one eigenvalue with positive real part
corresponding to an eigenfunction with eigenmode c1k cos(kπx/l) + c2k sin(kπx/l).

When dv − g∗
v < 0, and g∗

v > 0 from (C2), I = N so dku exists for any k ∈ N.
Moreover dku → 0 when k → ∞. Hence, when dv − g∗

v < 0 and du > 0, there exist
infinitely many k ∈ N such that d3(du) < 0. When dv − g∗

v > 0, and since g∗
v > 0

from (C2), I is a finite set (could be even empty). In that case we set dM
u = min{dku :

k ∈ I } > 0. Summarizing the above discussion, we have

Theorem 3.1 Assume that the parameters du, dv, dw are all positive, and ε > 0 is
sufficiently small. Let (u∗, v∗, v∗) be a positive constant steady state of system (2.3),
and (C1)-(C2) be satisfied. Define dku as in (3.7).

1. For any du > 0, if 0 < dv < g∗
v , σp(L2,ε) ∩ C

+ has infinitely many elements
and (u∗, v∗, v∗) is unstable.

123



  140 Page 14 of 26 X. Wang et al.

2. For any dv > g∗
v , if du > dM

u , then σp(L2,ε) ∩ C
+ �= ∅ and σp(L2,ε) ∩ C

+
has finitely many elements, and (u∗, v∗, v∗) is unstable; and if du < dM

u ,
then σp(L2,ε) ∩ C

+ = ∅ and (u∗, v∗, v∗) is linearly stable. In particular, if
du < d∗

u (dv) (defined as in (3.6), (u∗, v∗, v∗) is linearly stable.

Next, we consider the bifurcation of non-constant steady states of (2.3). The corre-
sponding stationary problem for system (2.3) is equivalent to the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

duuxx + f (u, v) = 0, x ∈ (−l, l),

dwwxx − w + v = 0, x ∈ (−l, l),

dv(w − v) + g(u, v) = 0, x ∈ (−l, l),

u(−l) = u(l), ux (−l) = ux (l),

w(−l) = w(l), wx (−l) = wx (l).

(3.8)

We restrict the solutions of (3.8) to be the even functions. Define X3 = {(u, w, v) ∈
X2 : z(−x) = z(x), x ∈ (−l, l), z = (u, w, v)},Y3 = {(u, w, v) ∈ Y2 : z(−x) =
z(x), x ∈ (−l, l), z = (u, w, v)}, and a mapping G3 : X3 × R

+ → Y3 by

G3((u, w, v), du) =
⎛

⎝
duuxx + f (u, v)

dwwxx − w + v

dv(w − v) + g(u, v)

⎞

⎠ . (3.9)

Then, G3 : X3 × R
+ → Y3 is Fréchet differentiable, and at a constant steady state

(u∗, v∗, v∗),

L3

⎛

⎝
φ

ψ

ϑ

⎞

⎠ ≡ ∂(u,w,v)G3(u
∗, v∗, v∗)

⎛

⎝
φ

ψ

ϑ

⎞

⎠ =
⎛

⎝
duφ′′ + f ∗

u φ + f ∗
v ϑ

dwψ ′′ − ψ + ϑ

g∗
uφ + dvψ + (g∗

v − dv)ϑ

⎞

⎠ .

We prove the existence of non-constant solutions of (3.8) by using the classical
Crandall–Rabinowitz bifurcation theorem (Crandall and Rabinowitz 1971).

Lemma 3.2 Let X and Y be real Banach spaces and W be an open set in R × X;
suppose (λ0, 0) ∈ W, and F is a continuously differentiable mapping from W into Y .
Assume that

1. F(λ, 0) = 0 for all (λ, 0) ∈ W;
2. The partial derivative DλyF(λ, 0) exists and is continuous in λ near λ0;
3. R(DyF(λ0, 0)) is closed, dimN (DyF(λ0, 0)) = 1, and codimR(DyF(λ0, 0))

= 1;
4. DλyF(λ0, 0)y0 /∈ R(DyF(λ0, 0)), where y0 spansN (DyF(λ0, 0)). Let Z ⊂ Y

be any closed complement of the one-dimensional space spanned by y0. Then, there
exist an open interval I0 containing 0 and continuously differentiable function
λ : I0 → R and ψ : I0 → Z with λ(0) = λ0, ψ(0) = 0, such that

F(λ(s), sy0 + sψ(s)) = 0 f or s ∈ I0.
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In addition the entire solution set for F(λ, y) = 0 in any sufficiently small neighbor-
hood of (λ, 0) in W consists of the line {(λ, 0)} and the curve {(λ(s), sy0 + sψ(s)) :
s ∈ I0}.

We apply Lemma 3.2 to the map G3 defined in (3.9). We consider the bifurcation
from the constant steady state (u∗, v∗, v∗) when du = dku , which is defined as in
(3.7). The condition 1 and 2 are obviously satisfied. The linearized operator L3 has an
eigenvalue λ j,k = 0 when du = dku . Without loss of generality, we assume λ1,k = 0.
The following problem has a nontrivial solution:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dkuφ
′′ + f ∗

u φ + f ∗
v ϑ = 0, x ∈ (−l, l),

dwψ ′′ − ψ + ϑ = 0, x ∈ (−l, l),

g∗
uφ + dvψ + (g∗

v − dv)ϑ = 0, x ∈ (−l, l),

φ(−l) = φ(l), φ′(−l) = φ′(l),
ψ(−l) = ψ(l), ψ ′(−l) = ψ ′(l).

(3.10)

Note that ϕk(x) = cos(kπx/l) satisfying ϕk(−x) = ϕk(x) is the eigenfunction of
−d/dx2 corresponding the eigenvalue μk = (kπ/l)2 with periodic boundary condi-
tion in [−l, l]. Then, direct calculation shows that

y0 := (φ0, ψ0, ϑ0) =
(

− 1

(dwμk + 1) f ∗
u

,
1

dwμk + 1
, 1

)
cos

(kπ

l
x
)

(3.11)

is the corresponding eigenvector which belongs to λ1,k = 0. Note that φ0 < 0 and
ϑ0 > 0 which is consistent with u being the inhibitor and v being the activator. That
means dimN (L3) = 1 when du = dku .

With λ1,k = 0, we consider the following non-homogeneous problem:

⎧
⎪⎨

⎪⎩

dkuφ
′′ + f ∗

u φ + f ∗
v ϑ = σ, (3.12a)

dwψ ′′ − ψ + ϑ = τ, (3.12b)

g∗
uφ + dvψ + (g∗

v − dv)ϑ = γ. (3.12c)

From (3.12c), if dv �= g∗
v we have

ϑ = γ − g∗
uφ − dvψ

g∗
v − dv

. (3.13)

Then, problem (3.12) reduces to

{
(g∗

v − dv)dkuφ′′ + ( f ∗
u g

∗
v − f ∗

v g
∗
u − f ∗

u dv)φ − f ∗
v dvψ = (g∗

v − dv)σ − f ∗
v γ,

(g∗
v − dv)dwψ ′′ − g∗

vψ − g∗
uφ = (g∗

v − dv)τ − γ.
(3.14)
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Note that dwμk(g∗
v − dv) + g∗

v �= 0. Then,

{
(g∗

v − dv)d
k
uφ

′′ + ( f ∗
u g

∗
v − f ∗

v g
∗
u − f ∗

u dv)φ − g∗
uψ = 0,

(g∗
v − dv)dwψ ′′ − g∗

vψ − f ∗
v dvφ = 0,

(3.15)

has anontrivial solution�∗ := (φ∗, ψ∗) = (−dwμk(g∗
v−dv)−g∗

v , f ∗
v dv) cos(kπx/l).

Define F∗ := ((g∗
v − dv)σ − f ∗

v γ, (g∗
v − dv)τ − γ ). Then, according to the Fredholm

alternative, problem (3.14) has a solution (φ,ψ) if and only if

〈�∗, F∗〉 = 0. (3.16)

Here, 〈·, ·〉 is the complex-valued L2 inner product on Hilbert space, which is defined
as

〈�1,�2〉 =
∫ l

−l
(φ̄1φ2 + ψ̄1ψ2)dx,

with � j = (φ j , ψ j ) ∈ XC ( j = 1, 2). If (3.14) has a solution (φ∗, ψ∗), then we
can solve ϑ∗ uniquely by using (3.13). Then, (3.12) has a solution (φ∗, ψ∗, ϑ∗) when
λ1,k = 0. Thus, (σ, τ, γ ) ∈ R(L3) if and only if (3.16) is satisfied.

On the other hand, from (3.16) we have

(g∗
v − dv)[dwμk(g

∗
v − dv) + g∗

v ]
∫ l

−l
cos

(kπ

l
x
)
σdx − f ∗

v dv(g
∗
v − dv)

×
∫ l

−l
cos

(kπ

l
x
)
τdx − f ∗

v (dwμk + 1)(g∗
v − dv)

∫ l

−l
cos

(kπ

l
x
)
γ dx = 0.

(3.17)

Then, if dv �= g∗
v , we have

[dwμk(g
∗
v − dv) + g∗

v ]
∫ l

−l
cos

(kπ

l
x
)
σdx − f ∗

v dv

∫ l

−l
cos

(kπ

l
x
)
τdx

− f ∗
v (dwμk + 1)

∫ l

−l
cos

(kπ

l
x
)
γ dx = 0.

(3.18)

Thus,

R(L3) =
{
(σ, τ, γ ) ∈ Y3 : [dwμk(g

∗
v − dv) + g∗

v ]
∫ l

−l
cos

(kπ

l
x
)
σdx

− f ∗
v dv

∫ l

−l
cos

(kπ

l
x
)
τdx − f ∗

v μk(dwμk + 1)
∫ l

−l
cos

(kπ

l
x
)
γ dx = 0

}
.

Therefore, codimR(L3) = 1 if dv �= g∗
v . Then, the condition 3 in Lemma 3.2 is

satisfied.
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Calculating ∂du∂(u,w,v)G3((u∗, v∗, v∗), dku ), we have

∂du∂(u,w,v)G3((u
∗, v∗, v∗), dku ) =

⎛

⎝

d2

dx2
0 0

0 0 0
0 0 0

⎞

⎠ .

Then, ∂du∂(u,w,v)G3((u∗, v∗, v∗), dku )y0 = (φ′′
0 , 0, 0), where φ0 is defined as in (3.11).

Choose F∗ = ((g∗
v − dv)φ

′′
0 , 0). Note that

φ′′
0 = μk

(dwμk + 1)g∗
u
cos

(kπ

l
x
)
,

and dwμk(g∗
v − dv) + g∗

v �= 0. Then, if dv �= g∗
v , we obtain

〈�∗, F∗〉 = −μk(g∗
v − dv)[dwμk(g∗

v − dv) + g∗
v ]

(dwμk + 1)g∗
u

∫ l

−l
cos2

(kπ

l
x
)
dx �= 0. (3.19)

Thus, the condition 4 in Lemma 3.2 is satisfied. Then, we can apply Lemma 3.2 to
have the following result about the existence of a one-parameter family of non-constant
solutions bifurcating from ((u∗, v∗, v∗), dku ).

Theorem 3.3 Assume that the parameters du, dv, dw are all positive and conditions
(C1) and (C2) are satisfied. Let dku be defined as (3.7). If dv �= g∗

v and dku �= dmu for
any m ∈ I and m �= k, then there is a smooth curve � of the steady-state solutions of
(3.8) bifurcating from ((u∗, v∗, v∗), dku ). In a neighborhood of the bifurcation point,
the bifurcating branch � can be parameterized as � = {((u∗(s), w∗(s), v∗(s)), dku +
du(s)) : s ∈ (−ε, ε)}, where

u∗(s) = u∗ − s

(dwμk + 1) f ∗
u
cos

(kπ

l
x
) + sφ(s),

w∗(s) = v∗ + s

dwμk + 1
cos

(kπ

l
x
) + sψ(s),

v∗(s) = v∗ + s cos
(kπ

l
x
) + sϑ(s),

and du(s) : (−ε, ε) → R, φ(s), ψ(s), ϑ(s) : (−ε, ε) → Z are C1 functions, such
that du(0) = 0, φ(0) = ψ(0) = ϑ(0) = 0. Here, Z is any closed complement of

one-dimensional space spanned by
(

− 1

(dwμk + 1) f ∗
u

,
1

dwμk + 1
, 1

)
cos

(kπ

l
x
)
.

4 Non-local Klausmeier–Gray–Scott Model

In this section, we apply the theoretical results in Sects. 2 and 3 to an example:
the Klausmeier–Gray–Scott model of water–plant interaction with non-local plant
dispersal.
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To explain how nonlinear mechanisms is important in determining the regular
stripes on hillsides and irregular mosaics on flat ground, Klausmeier proposed a simple
nondimensionalized model of plant and water dynamics which reads as the following
reaction–advection–diffusion form Klausmeier (1999):

{
ut = νux + A − u − v2u,

vt = vxx + v2u − Bv,
(4.1)

where ν is the slope gradient, which controls the rate at which water flows downhill. If
horizontal water flow is considered, the dynamics between water and plant is governed
by the following diffusive model, which is also proposed as a model of chemical
reaction (Gray and Scott 1985; Pearson 1993):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = duuxx + A − u − v2u, x ∈ (−l, l), t > 0,

vt = dvvxx + v2u − Bv, x ∈ (−l, l), t > 0,

u(−l, t) = u(l, t), ux (−l, t) = ux (l, t), t > 0,

v(−l, t) = v(l, t), vx (−l, t) = vx (l, t), t > 0.

(4.2)

In this section, as an example of our theoretical study, we will consider the inter-
action of water and biomass with non-local spatial dispersal on flat ground and in
a bounded domain. The model is presented by the following modified Klausmeier–
Gray–Scott model with periodic boundary condition in [−l, l]:

⎧
⎪⎨

⎪⎩

ut = duuxx + A − u − v2u, x ∈ (−l, l), t > 0,

vt = dv(J ∗ v − v) + v2u − Bv, x ∈ (−l, l), t > 0,

u(−l, t) = u(l, t), ux (−l, t) = ux (l, t), t > 0.

(4.3)

Here, (J ∗ v)(x) =
∫ l

−l
J (x − y)v(y)dy, where J (x) is given in (1.2). The corre-

sponding RDO model is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = duuxx + A − u − v2u, x ∈ (−l, l), t > 0,

εwt = dwwxx − w + v, x ∈ (−l, l), t > 0,

vt = dv(w − v) + v2u − Bv, x ∈ (−l, l), t > 0,

u(−l, t) = u(l, t), ux (−l, t) = ux (l, t), t > 0,

w(−l, t) = w(l, t), wx (−l, t) = wx (l, t). t > 0.

(4.4)

The corresponding kinetic system of (4.4) is

⎧
⎪⎨

⎪⎩

ut = A − u − v2u,

wt = −w + v,

vt = dv(w − v) + v2u − Bv,

(4.5)
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which always has a trivial equilibrium (u, w, v) = (A, 0, 0) for all parameters which
means a bare-soil state. If A > 2B, the corresponding kinetic system (4.5) admits two
positive constant steady states (u1, v1, v1) and (u2, v2, v2), where

u1 = A + √
A2 − 4B2

2
, v1 = A − √

A2 − 4B2

2B
, (4.6)

and

u2 = A − √
A2 − 4B2

2
, v2 = A + √

A2 − 4B2

2B
. (4.7)

The bare-soil state (u, w, v) = (A, 0, 0) is always stable for all parameters. At a
positive equilibrium (u∗, v∗, v∗),

f ∗
u = −1 − v2∗ < 0, f ∗

v = −2B < 0, g∗
u = v2∗ > 0, g∗

v = B > 0.

Then, Jacobi matrix J at a positive equilibrium (u∗, v∗, v∗) of the kinetic system is
given by

J =
⎛

⎝
−1 − v2∗ 0 −2B

0 −1 1
v2∗ dv B − dv

⎞

⎠ ,

and the corresponding characteristic equation is

λ3 − TrJλ2 + λ((B + dv + 1)v2∗ + dv + 1 − 2B) − DetJ = 0,

where

TrJ = −2 − dv − v2∗ + B, DetJ = g∗
u f

∗
v − f ∗

u g
∗
v = B(1 − v2∗). (4.8)

Note that A ≥ 2B. Then, v1 < 1 and v2 > 1, which means that DetJ1 =
DetJ (u1, v1, v1) > 0 and DetJ2 = DetJ (u2, v2, v2) < 0. Then, the positive equilib-
rium (u1, v1, v1) is always unstable whenever it exists and the stability of (u2, v2, v2)
is determined by the sign of TrJ2 = TrJ (u2, v2, v2) and�0 = ((B+dv +1)v22 +dv +
1)TrJ2 −DetJ2. By the Hurwitz–Hurwitz criterion, we can easily obtain the stability
of (u2, v2, v2). Then, we have the following results about the stability of the constant
steady states.

Proposition 4.1 Assume that the parameters A, B, du, dv, dw are all positive. Then,
the system has a constant trivial equilibrium (u, w, v) = (A, 0, 0), which is always
stable for all parameters. If A ≥ 2B, then the system (4.4) admits two positive constant
steady states (u1, v1, v1) and (u2, v2, v2), defined as in (4.6) and (4.7), respectively.
Furthermore, for the corresponding kinetic system, (u1, v1, v1) is unstable whenever
it exists and (u2, v2, v2) is stable if TrJ2 < 0 and �0 < 0 are both satisfied.
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As pointed out in Eigentler and Sherratt (2018), estimates of the parameters suggest
that B ≤ 2, which implies that the positive equilibrium (u2, v2, v2) is stable. Then, in
the following analysis, we always assume B ≤ 2.

Now we apply Theorems 3.1 and 3.3 to obtain the following results regarding the
stability of the positive equilibrium (u2, v2, v2) with respect to (4.4) and associated
bifurcations.

Theorem 4.2 Assume that the parameters du, dv, dw are all positive, ε > 0 is suffi-
ciently small, and A > 0, 0 < B ≤ 2. Let (u2, v2, v2) be the positive constant steady
state of system (4.4) defined as in (4.7).

1. If 0 < dv < B, for any du > 0, (u2, v2, v2) is unstable with respect to (4.4) with
infinitely many eigenvalues of positive real parts;

2. If dv > B, define I =
{

p ∈ N : p <

[
Bl2

dw(dv − B)π2

]}

,

dku = (dwμk + 1)B(v22 − 1) + dwdv(v
2
2 + 1)μk

dw(B − dv)μ
2
k + Bμk

, k ∈ I , (4.9)

and dM
u = min

k∈I d
k
u (dM

u = ∞ if I = ∅). Then, when 0 < du < dM
u , (u2, v2, v2)

is stable with respect to (4.4), and when du > dM
u , (u2, v2, v2) is unstable with

respect to (4.4) with finitely many eigenvalues of positive real parts;
3. If dv > B, and for k ∈ I , dku �= dmu for any m ∈ I and m �= k, then du = dku

is a bifurcation point for (4.4); there is a smooth curve � of the steady-state
solutions of (4.4) bifurcating from ((u2, v2, v2), dku ), and � can be parameterized
as � = {((u∗(s), w∗(s), v∗(s)), dku + du(s)) : s ∈ (−ε, ε)}, where

u∗(s) = u2 + s

(dwμk + 1)(1 + v22)
cos

(kπ

l
x
) + sφ(s),

w∗(s) = v2 + s

dwμk + 1
cos

(kπ

l
x
) + sψ(s),

v∗(s) = v2 + s cos
(kπ

l
x
) + sϑ(s),

and du(s) : (−ε, ε) → R, φ(s), ψ(s), ϑ(s) : (−ε, ε) → Z are C1 functions,
such that du(0) = 0, φ(0) = ψ(0) = ϑ(0) = 0. Here, Z is any closed comple-

ment of one-dimensional space spanned by
( 1

(dwμk + 1)(1 + v22)
,

1

dwμk + 1
, 1

)

cos
(kπ

l
x
)
.

We use some numerical simulations to verify and extend our theoretical results
above. We choose A = 1, B = 0.45, dw = 1, l = 20, and dv = 0.5 which sat-
isfies dv > g∗

v = B = 0.45. Numerical calculation shows that (u2, v2, v2) =
(0.282, 1.595, 1.595), I = {p ∈ N : 1 ≤ p ≤ 19}, and d1u ≈ 68.135 > d2u ≈
21.395 > d3u ≈ 12.766 > d4u ≈ 9.834 > d5u ≈ 8.581 > d6u ≈ 8.018 > d7u ≈ 7.812,
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Fig. 2 The mode- j crossing curves on the dv − du plane. The dotted vertical line is dv = g∗
v and the cyan

curve is du = d∗
u (dv). Parameters: A = 1, B = 0.45, dw = 1, and l = 20 for k = 1, 2, 3, 4 and k = 7

(Color figure online)

and d7u ≈ 7.812 < d8u ≈ 7.839 < d9u ≈ 8.043 < · · · < d19u ≈ 50.411. So here
dM
u = d7u .
The mode-k (k = 1, 2, 3, 4, 7) bifurcation curves in dv − du plane are shown in

Fig. 2. In this figure, the dotted vertical line is dv = g∗
v ; the cyan curve denotes the

function du = d∗
u (dv). The mode-k curve intersects with the vertical line dv = g∗

v

at du = dku . Some points in Fig. 2 are marked and we will use these parameter
points in the latter simulations. From Theorem 3.1, all mode-k bifurcation curves are
above the curve du = d∗

u (dv). This implies that the constant steady state (u2, v2, v2)
is locally asymptotically stable when (dv, du) lies in the region {(dv, du) : dv >

g∗
v , du < d∗

u (dv)}. On the other hand, above the curve du = d∗
u (dv), the constant steady

state (u2, v2, v2) may lose its stability and a spatially non-homogeneous steady-state
solution can be observed.

In Fig. 3, we show the dynamic solutions of (4.4) when the diffusion coefficients
du and dv are varied. We choose (dv, du) (marked in Fig. 2) (5.5, 150), (2, 52),
(1.1, 26) and (0.8, 19), which are all on the right-hand side of the line dv = g∗

v .
For k = 1, 2, 3, 4, a mode-k spatially patterned steady states emerge near the mode-k
bifurcation curve. The steady-state densities of water u and plant v of system (4.4) in
these cases are shown in Fig. 4 Simulations show that the water amount in the patch
with denser biomass decreases, which means that the biomass and the water distri-
butions are anti-phase. The density of plant may have one, two, three or four spaced
bumps. The two bumps have same maximum height in Fig. 4b. While as dv and du
are varied, a new bump emerges with a much less maximum height in Fig. 4c. In Fig.
4d, there are two bumps, but two spikes with a much larger maximum height emerge.

In Fig. 5, some solution profile of densities of water u and plant v for system (4.4)
for (dv, du) on the left-hand side of the line dv = g∗

v are shown, as marked in Fig. 2.
Simulations show that water is almost exhausted and the plant density shows spiky
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(a) u concentration (b) v concentration (c) u concentration (d) v concentration

(e) u concentration (f) v concentration (g) u concentration (h) v concentration

Fig. 3 Pattern formation of system (4.4) with A = 1, B = 0.45, dw = 1, l = 20, ε = 0.01, and (dv, du) =
(5.5, 150) in (a, b), (dv, du) = (2, 52) in (c, d), (dv, du) = (1.1, 26) in (e, f), (dv, du) = (0.8, 19) in (g,
h) (Color figure online)
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(a) dv = 5.5, du = 150.
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(b) dv = 2, du = 52.
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(c) dv = 1.1, du = 26.
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(d) dv = 0.8, du = 19.

Fig. 4 Steady-state densities of water u and plant v of system (4.4) with A = 1, B = 0.45, dw = 1, l =
20, ε = 0.01 and varied values of dv, du . Here, the solid blue curve is the density of plant v, the solid purple
curve denotes the density of water u, and the dotted blue (purple) line is the density of vegetated state v (u)
(Color figure online)

solutions which may have one, two, three or four spikes. Fixed dv , as the decrease in
du , more spikes emerge and the maximum height of all spiky solutions decreases from
Fig. 5a–d. The two spikes or three spikes have same maximum height in Fig. 5b and
c, respectively. While in Fig. 5d, there are two different maximum heights.

In order to compare the effect of the non-local dispersal term on the dynamics of the
system to the diffusive effect, in Fig. 6, we show the densities of water u and plant v
of the corresponding reaction–diffusion system (4.2) with the same parameter values
and varied du as in Fig. 5. We find that the solutions for the reaction–diffusion system
are smoothly bumped solutions instead of spiky solutions shown in Fig. 5. As the
decrease in du , more bumps may emerge (see Fig. 6c–d) and the maximum height of
all bumps decrease from Fig. 6a–d. Note that the solutions for the non-local dispersal
system (4.4) are less smooth, as the solutions do not have high order of regularity as
the ones of diffusive system.
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(a) dv = 0.3, du = 180.
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(b) dv = 0.3, du = 120.
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(c) dv = 0.3, du = 40.
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(d) dv = 0.3, du = 26.

Fig. 5 Interior spiky solutions of system (4.4) with A = 1, B = 0.45, dw = 1, l = 20, ε = 0.01, dv = 0.3
and varied values of du . Here, the solid blue curve is the density of plant v, the solid purple curve denotes
the density of water u. a The one-spike solution; b the two-spike solution; c the three-spike solution; d the
four-spike solution (Color figure online)
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(b) dv = 0.3, du = 120.
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(c) dv = 0.3, du = 40.
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Fig. 6 Solutions of system (4.2) with A = 1, B = 0.45, l = 20, dv = 0.3 and varied values of du . Here,
the solid blue curve is the density of plant v, the solid purple curve denotes the density of water u (Color
figure online)

5 Discussion

In this paper, we aim to study the stability of a constant steady state with respect to a
general activator–inhibitor model with non-local dispersal term. By approximating the
non-local spatial dispersal equation by an associated reaction–diffusion system, the
non-local spatial dispersal model is transformed into a reaction–diffusion system cou-
pled with one ordinary differential equation. For a very slow time scale, the dynamics
of the non-local dispersal system can be approximated by the reaction–diffusion-
ordinary differential system. To some extent, the non-local-induced instability of
the non-local system can be regarded as diffusion-driven instability of the reaction–
diffusion-ordinary differential system. The reaction–diffusion-ordinary differential
system can be analyzed to gain insight to the dynamics of the non-local dispersal
system. We show that Turing-type instability can occur for the reaction–diffusion-
ordinary differential system, and non-constant steady states emerge as a result of
symmetry-breaking bifurcations. This suggests that non-local dispersal can also play
an active role in the generation of spatial patterns. Note that such analysis still depends
on the choice of particular convolution kernel functions in the non-local dispersal. It
is desirable to develop a more general theory of pattern formation for a more general
kernel function.

As an example of our theoretical results, we study a modified Klausmeier–Gray–
Scott model of water–plant with non-local diffusion term. By transforming it into
a reaction–diffusion-ordinary differential system, we use theoretical approach and
numerical simulations to show that the reaction–diffusion-ordinary differential system
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admits many different patterned steady-state solutions with different maximum height
and width when the diffusion terms of water and plant are varied. Compared with the
system in which local disperse strategy is considered, simulations show the existence
of sharp spiky solutions instead of bump solutions found in the classical reaction–
diffusion system through Turing bifurcation. There is much work to be done in these
spiky solutions. Exploring these spiky solutions may be deferred to our future work.
It would be of interest to study the stability of a constant steady state with respect to
a general activator–inhibitor model with a general non-local dispersal term.
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