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Abstract

All atom molecular dynamics (MD) simulations offer a powerful tool for molecular mod-
eling, but the short time steps required for numerical stability of the integrator place
many interesting molecular events out of reach of unbiased simulations. The popu-
lar and powerful Markov state modeling (MSM) approach can extend these timescales
by stitching together multiple short discontinuous trajectories into a single long-time
kinetic model, but necessitates a configurational coarse-graining of the phase space
that entails a loss of spatial and temporal resolution and an exponential increase in
complexity for multi-molecular systems. Latent space simulators (LSS) present an al-
ternative formalism that employs a dynamical, as opposed to configurational, coarse
graining comprising three back-to-back learning problems to (i) identify the molecular
system’s slowest dynamical processes, (ii) propagate the microscopic system dynamics
within this slow subspace, and (iii) generatively reconstruct the trajectory of the system
within the molecular phase space. A trained LSS model can generate temporally and
spatially continuous synthetic molecular trajectories at orders of magnitude lower cost
than MD to improve sampling of rare transition events and metastable states to reduce
statistical uncertainties in thermodynamic and kinetic observables. In this work, we
extend the LSS formalism to short discontinuous training trajectories generated by dis-
tributed computing and multi-molecular systems without incurring exponential scaling
in computational cost. First, we develop a distributed LSS model over thousands of
short simulations of a 264-residue proteolysis-targeting chimera (PROTAC) complex
to generate ultra-long continuous trajectories that identify metastable states and col-
lective variables to inform PROTAC therapeutic design and optimization. Second, we
develop a multi-molecular LSS architecture to generate physically realistic ultra-long
trajectories of DNA oligomers that can undergo both duplex hybridization and hair-
pin folding. These trajectories retain thermodynamic and kinetic characteristics of the
training data, while providing increased precision of folding populations and timescales

across simulation temperature and ion concentration.



1 Introduction

The expanding capabilities of molecular dynamics (MD) simulations have motivated the de-
velopment of many data-driven approaches to distill, interpret, and model increasing complex
systems. Markov state models (MSMs) are a powerful and popular approach to construct-
ing interpretable long-time kinetic models by reducing high-dimensional MD simulations
into a set of discrete configurational states and modeling the system’s kinetic evolution via
transition probabilities between these states.!? In the past decade, numerous techniques —
increasingly integrating deep learning — have been introduced to optimize some aspect of the
MSM pipeline®® or to replace the conventional pipeline all together.%” Although tremen-
dous progress has been made in this area, MSMs inherently model jump processes between
coarse-grained metastable states.® In addition to these spatial and temporal limits, global
MSMs can be inefficient or misleading when applied to large or multi-component systems.?

Recently, latent space simulators (LSS) were developed as learned kinetic models capa-
ble of generating temporally continuous synthetic molecular trajectories at a fraction of the
computational costs of MD.!® The LSS pipeline is trained on MD training data and uses
three distinct deep learning architectures to (i) encode molecular trajectories into a latent
space (ii) propagate low-dimensional trajectories in that latent space and (iii) decode latent
space back to configurational space. The fully trained pipeline learns the statistics of the
infinitesimal generator of microscopic transition elements and can therefore produce phys-
ically realistic molecular trajectories that are distinct from training data while still repro-
ducing thermodynamic and kinetic observables. The LSS approach shares similarities with
the variable-free/equation-free approach of Kevrekidis and co-workers, 11 17 but employs the
transfer operator formalism to directly estimate the slow modes and comes equipped with
decoders to efficiently lift back up to the high-dimensional molecular phase space. Previ-
ous techniques for synthetic trajectory generation based on time-lagged autoencoders were
limited by unstable propogators,!® and MSM-based approach such a deep generative MSMs

relied on a discretieztion of the latent space.'® Recently several approaches?’ 23 have been



introduced to generate synthetic trajectories using similar procedures to LSS, including learn-
ing of effective dynamics (LED)?? which uses a recurrent structure to add long-term memory
to the propagator. The LSS approach remains unique, however, in its ability to encode con-
figurations into an optimally slow basis, learn a microscopic generator in the latent space,
and decode the latent space using a high-fidelity generative model. Previously, the LSS was
applied to the fast-folding Trp-cage mini-protein, where thermodynamically and kinetically
accurate ultra-long simulations were generated at several orders of magnitude lower cost
compared to MD.!Y In this work, we have extended the LSS pipeline to two applications
which represent distinct challenges for kinetic modeling and synthetic trajectory generation:
training over short, discontinuous trajectories and multi-molecular systems.

First, we explore the training of LSS models not over a single long continuous trajec-
tory, but over a number of short MD simulations generated by distributed computing. In
MSMs, the configurational coarse-graining into metastable states presents a relatively forgiv-
ing training paradigm since the learning problem is well posed provided there are sufficiently
many pathways linking these states. The LSS eschews this configurational coarse-graining
for a dynamical one into the leading slow modes. Short trajectories that are not guaran-
teed to chart a continuous path through phase space could conceivably frustrate learning of a
slow subspace and /or the transition density elements within this projection. Training of LSS
models in this mode is desirable for their application to large molecular systems where gen-
eration of multiple short trajectories using distributed computing is more computationally
accessible than performing a single long calculation.

We demonstrate stable training of LSS models over distributed computing training data
in an application to a ternary degrader complex recently interrogated by Dixon et al.?* This
system comprises two large (>100 residue) proteins joined by a proteolysis-targeting chimera
(PROTAC) molecule. PROTACs compounds represent a novel and desirable drug design
paradigm in which a ubiquitin ligase is recruited to the protein of interest to mark the lat-

ter for degradation.?® As opposed to stoichiometric small molecule or biologic inhibitors, a



PROTAC compound can be recycled after each degradation event and so effectively tar-
get proteins at much lower concentration.? In the two decades since PROTACSs were first
demonstrated to facilitate degradation,?’ there has been tremendous progress in improving
target specificity and translating PROTACs molecules into clinically promising therapeu-
tics.?® Computational investigations of ternary PROTAC complexes have, however, been
relatively limited due in part to the system size and diversity of states involved in the binding
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mechanisms. While enhanced sampling techniques can traverse large free energy barri-

4 unbiased data is required to rigorously

ers and improve thermodynamic understanding,?
probe kinetics and binding mechanisms. In this work, we train the LSS on 9,800 indepen-
dent and relatively short ~650 ns equilibrium trajectories of the PROTACSs system collected
from distributed Folding@Home simulations.3? This represents the first training of the LSS
on distributed data, and we show that the LSS can effectively knit together thousands of
independent trajectories comprising 5.7 ms of total simulation time to produce a unified
long-time kinetic model. Similar to MSMs, the trained LSS model can produce synthetic
trajectories with comparable structural and thermodynamic observables to the discontinu-
ous training data at low computational cost, but unlike an MSM, the LSS trajectories are
temporally and spatially continuous. The trained LSS model can produce a 260 ms synthetic
trajectory in several GPU-minutes compared to the estimated ~7000 GPU-years required
to produce the same amount of data using Folding@Home. Furthermore, the LSS furnishes
inexpensive continuous trajectories that can efficiently and densely sample rare events in the
configurational phase space and, by learning the slowest dynamical modes across all training
trajectories, furnishes interpretable slow physical processes and metastable states we have
correlated with PROTAC degradation efficiency. These learned slow modes can thereby pro-
vide a basis to evaluate and optimize future PROTAC drug candidates by computational
screening.

Second, we make several architectural additions to the LSS to render it applicable to

multi-molecular systems. It has been shown MSMs can be inefficient, ineffective, or mis-



leading when they are applied to multi-molecular or partially coupled systems.?33 Recent
work to address the shortcomings has been driven in large part by Noé and co-workers, and
progress has been made in the development of so-called Markov field models.? This includes
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efforts to learn independent components of bio-molecular systems and couple MSMs via

reaction-diffusion dynamics.?*3% Here, we integrate a novel approach, related to that of del

1.,3¢ into the LSS pipeline which enables us to independently encode, propagate,

Razo et a
and decode molecular subsystems and generate ultra-long synthetic trajectories for multi-
molecular systems. To avoid learning degenerate dynamics, we build separate encoders and
latent spaces for each subsystem and use a joint propagator to ensure physically accurate
coupling between each system. We train additional propagators on the translational and
rotational degrees of freedom between strands to preserve the orientation of transition states
and ensure no overlap between dissociated configurations. Finally, we convert latent space
trajectories back to molecular configurational space either by decoding the complete system
directly or by decoding each strand independently and reconstructing the system based on
a learned inter-molecular orientation.

We demonstrate this multi-molecular generalization of the LSS approach (Multi-LSS) on
coarse-grained trajectories of two DNA strands that can form both duplex and hairpins. The
bimolecular LSS model generates stable and physically realistic synthetic molecular trajecto-
ries at five orders of magnitude lower cost than MD that preserve both the global dynamics of
duplex folding and the single-strand dynamics of hairpin folding. We learn interpretable slow
collective variables describing the dynamics of independent subsystems and leverage these
modes to generate novel and physically meaningful synthetic trajectories which reproduce
thermodynamic and kinetic observables with significantly lower uncertainties. Furthermore,
we show that our encoder/decoder can be extended to MD simulations under new temper-
atures and ion concentrations without re-training the complete pipeline. The trained LSS
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models provide better understand the role of secondary structure on hybridization and

inform potential applications of these sequences in DNA nanotechnology. 4243



2 Methods

2.1 All-atom simulations of PROTAC ternary complex

The PROTAC complex comprises three components and is schematically illustrated in Figure
1: (i) the 115-residue bromodomain of the human SWI/SNF related, matrix associated, actin
dependent regulator of chromatin, subfamily a, member 2 (SMARCA2 or SMC2) protein,
(ii) the the 149-residue von Hippel-Lindeu disease tumor suppressor protein (VHL), and
(iii) a heterobifunctional small molecule proteolysis targeting chimera (PROTAC) known as
PROTAC?2 that bridges SMC2 and VHL to form the ternary complex (PDB ID: 6HAX). All-
atom simulations of the complex were conducted as detailed in Ref.?4. In brief, the ternary
complex was solvated in explicit water and net charge was neutralized by the addition of
counter ions. The Amber ff14SB force field** was chosen for proteins, the TIP3 water model*®
was used for solvent, and in-house force field parameters were generated for the PROTAC2
molecule. The Verlet leapfrog algorithm?® was used integrate equations of motion at a
time step of 2 fs, and the LINCS algorithm was employed to restrain hydrogen bonds.*”

8

Particle-mesh Ewald summation®® was used to treat long-range electrostatic interactions

t49 and Parrinello-

employing a real-space cutoff of 1.2 nm. A velocity rescaling thermosta
Rahman barostat® were used to maintain system at 310 K and 1 atm. Energy minimization
was performed with the steepest descent algorithm, and equilibration was performed in the
NVT and NPT ensembles. All production runs were performed in the NPT ensemble. Initial
configurations for each short discontinuous simulation were seeded from Hamiltonian replica-
exchanged MD, in which trajectories were exchanged between replicas containing altered
potential energy functions in order to enhance sampling.®! To ensure adequate coverage of the
sampled phase space, k-means clustering was performed on a PCA projection of previously
collected Hamiltonian replica exchange molecular dynamics simulation data. A total of 98
seeds were collected from k-means centers, and 100 independent simulations were performed

2

from each seed. Simulations were distributed across Folding@Home?? computing resources



to produce at total of 9800 trajectories with a median length of ~650 ns for an aggregated
total of ~5.7 ms of simulation time. The estimated computational cost to produce these

trajectories is ~7000 GPU-years.
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Figure 1: Schematic of the VHL-PROTAC2-SMC2 ternary complex structure (inset) and
its placement within the full Cullin-RING E3 ubiquitin ligase (CRL). The inset presents
ribbon diagrams of the SMC2 (green) and VHL (orange) proteins as well as the implicitly
modeled PROTAC2 molecule (blue). The chemical structure of PROTAC2 is presented
to the left. The space filling rendering of the full CRL complex illustrates how the VHL
component of the ternary complex attaches to the Elongin C, Elongin B, Cul2, NEDDS,
EBE2D2, Ub, and RBX1 proteins, and how the protein of interest, here SMC2, is placed
within ~60 A of the ubiquitination zone enabling marking the target protein for proteosomal
degradation. The image of the protein complex on the right is adapted from Dixon et
al.?* with permission under the Creative Commons Attribution 4.0 International License
(www.creativecommons.org/licenses/by/4.0/) Copyright 2022 Springer Nature.

The aggregated simulation data were used to train an LSS model for the dynamical
evolution of the PROTAC ternary complex. The trajectories were subsampled at a 5 ns stride
and featurized by calculating the sin/cos of all backbone dihedral angles in addition to the
inverse pairwise distances between every fourth protein C,. These distances represent a set of

intra-molecular distances within VHL and SMC2 as well as inter-molecular distances between
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the two molecules. This procedure produced a total of 3197 translationally and rotationally
invariant features that were normalized to a [0, 1] range prior to passing to the LSS encoder.
The LSS decoder was trained to reconstruct the aligned Cartesian coordinates of the alpha
carbons of the SMC2 and VHL proteins from the latent space coordinates. The PROTAC2
small molecule was modelled implicitly by the LSS, therefore features of its geometry were
not encoded into the latent space and it was not reconstructed during the decoding process.
A consistent alignment was generated by performing Procrustes alignment to a metastable

52,53

“hub” configuration (see Section 3.1) using the Kabsch algorithm. implemented in the

mdtraj package.*

2.2 Coarse-grained simulations of DNA duplex and hairpin forma-
tion

We conducted coarse-grained MD simulations of a duplex DNA system containing two iden-
tical strands (5’-GCGGTTTCCGC-3') designed to admit both inter-molecular hybridization
and intra-molecular folding into a hairpin. The system is capable of forming up to eight
inter-molecular Watson-Crick-Franklin (WCF) pairs and four intra-molecular WCF pairs,
where the duplex structure is destabilized by four internal T-T mismatches. Hairpin struc-
tures with GC-rich stems and poly-T loops are frequently used in DNA nanotechnology
owing to the relative strength of G:C hydrogen bonds and the flexibility of consecutive
thymine stretches.?> 57 We constructed and simulated the DNA sequences using the coarse-
grained 3-Site-Per-Nucleotide v2 (3SPN.2) model that uses three spherical beads to repre-
sent the phosphate, deoxyribose sugar, and nitrogenous base of each nucleotide and employs
anisotropic interaction potentials to accurately treat intra-strand base-stacking, inter-strand
cross-stacking, and base pairing.®® The model was parameterized against experimental struc-

tural and kinetics data and has been extensively validated against experimental comparison
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of hybridization mechanisms and protein-DNA interactions. Kinetic timescales have

been shown to be accelerated compared to experiment, however, relative timescales can be



reliably evaluated after applying a corrective factor. %

All 3SPN.2 simulations were performed via the LAMMPS plugin accordance with best
practices®®% Two identical strands were placed in a cubic periodic box with side length 8.5
nm corresponding to a single-strand concentration of 5.4 mM. Solvent effects were modeled

implicitly by employing Langevin dynamics %465

with an experimentally motivated per-site
friction coefficient of 9.94 x 107! m? /s.%%% For wild type (WT) runs we specified a 100 mM
implicit NaCl concentration and treated electrostatic interactions using the Debye-Hiickel
with a 5 nm cutoff radius.®” Simulations were performed in the NVT ensemble employing a
Langevin thermostat.% A simulation temperature of 320 K was selected to maintain a large
and approximately equal population of both duplex and hairpins state and to maximize
the number of hybridization and folding events. For the transfer learning procedure, ion
concentrations were varied from 25 mM to 400 mM while holding temperature at 320 K;
temperatures were then varied from 310 K to 330 K while holding implicit ion concentration
at 100 mM. The Langevin equations of motion were integrated using the scheme of Bussi and
Parrinello% with a 20 fs integration time step. We performed 10 independent simulations for
each temperature and ion concentration with half of the runs initialized from the hybridized
state and half from the dissociated state. The initial hybridized state was defined based on
the crystal structure coordinates of Arnott et al.®® The dissociated state was generated from
the hybridized state by displacing one strand away from the other by 1 nm in each of the z, y,
and z directions. Initial bead velocities were assigned from a Maxwell-Boltzmann distribution
at the temperature of interest. Each simulation was conducted for 20 us and frames saved
to disc every 100 ps. Each simulation required ~24 CPU-hours on 28 xIntel E5-2680v4 CPU
cores. For WT simulations, we generated ten independent trajectories corresponding to a
combined total of 200 us simulation time, in which we sampled 18 hybridization events, 22
dehybridization events, and hundreds of hairpin folding and unfolding events. Based on a
center-of-mass cutoff of 1.5 nm between strands, we found that 27% of configurations were

in a hybridized state, 37% contained at least one folded hairpin, and 6% had both strands
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folded into hairpins.

To train the LSS encoder, simulation data were subsampled at a 100 ps stride and trans-
formed into a set of translationally and rotationally invariant features. For the global system
comprising both DNA strands (double stranded, DS) we used all inter-molecular distances
between nucleobases on each strand, corresponding to 121 total features. For the two single-
stranded DNA subsystems (strand 1, S1, and strand 2, S2) we extracted all possible intra-
molecular distances from each nucleobase for a total of 55 features each on each strand.
Each set of distances was normalized to a [0, 1] range prior to passing to the network. To
train the LSS decoder, we employed the orthogonal Proscrutes solver™ implemented in
scipy ! to align the DS and S1/S2 configurations to reference crystal structures.® For de-
hybridized frames, the relative distance and angles transformations applied to superpose
each strand were recorded for each frame and saved as three-dimensional translations and
three-dimensional Euler angles. Together, these six-dimensional coordinates describe all

translational and rotational degrees of freedom between S1 and S2.

2.3 Latent space simulators (LSS)

Molecular latent space simulators comprises three deep learning architectures to (i) encode
molecular trajectories into a latent space, (ii) propagate low-dimensional trajectories in that
latent space, and (iii) decode latent space back to configurational space. The low-dimensional
embedding learned by the encoder is required for training the propagator and decoder.
Therefore, once the encoder has been trained, the propagator and decoder can be trained
independently and in parallel. The three back-to-back learning problems are independent
and may be trained in a sequential fashion. The fully trained pipeline generates physically
realistic molecular trajectories that are distinct from training data but still reproduce ac-
curate thermodynamic and kinetics. Full details of the approach are reported in Sidky et
al.” and an open-source and user-friendly Python package implementing the LSS approach

is available from www.github.com/Ferg-Lab/LSS. Here we provide a brief description of the
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mathematical basis and numerical implementations underpinning each of the three steps.

2.3.1 Encoder: State-free reversible VAMPnets (SRVs)

For equilibrium systems obeying detailed balance, the transfer operator .7 propagates the
probability of microstates with respect to the equilibrium distribution. .7 possesses a com-

2727 where

plete set of eigenfunctions {1;(x)} with real eigenvalues 1 = \g > Ay > Ay > ...
the first eigenvector and eigenvalue pair correspond to the equilibrium distribution and the
implied timescales of higher order relaxation processes are determined by t; = —7/In \;.5
SRVs approximate these eigenvectors ¢;(x) = 3 ; SijXj(x) from molecular features x using

7275 wherein deep canonical

the variational approach to conformational dynamics (VAC),
correlation analysis (DCCA) ™ is used to solve for both an optimal basis {x;} and optimal
expansion coefficients s;;.5" Featurized molecular coordinates are used to train a twin-lobed
deep neural networks to minimize a VAMP-r loss function Zgy = — Y., AL.% where the
number of slow modes to retain m is identified by a gap in the eigenvalue spectrum, and
it is typical to adopt r=2. Collective couplings between the degrees of freedom in a molec-
ular system generically give rise to a separation of time scales and typically enabling the
identification of a slow subspace.” After training, the SRV represents an encoding E from a
molecular trajectory to a m-dimensional latent space (Figure 2A). Conceptually SRVs can
be considered a nonlinear generalization of time-independent components analysis (tICA) 7
in which the basis functions are learned from the data. SRVs are identical to the DeepTICA
approach subsequently introduced by Bonati et al. ”® In applications to the PROTAC system,
we employed an SRV network comprising two fully connected hidden layers of size 100, a
four-dimensional latent space, and a lag time of 200 ns. Training was conducted using the

Adam algorithm™ |, a batch size of 5000, a learning rate of 0.0005, and tanh activations, and

1 epoch.

12



2.3.2 Propagator: Mixture density networks (MDNs)

Mixture density networks (MDN) are used in the LSS framework to propagate SRV coordi-
nates and generate low-dimensional synthetic trajectories. Rather than “memorizing” exact
trajectories, MDNs use a mixture of Gaussian probability distributions to learn microscopic
transition density elements p; (1, .|1,) given a sufficiently large lag time time 7 and a latent
space 1 (x) spanned by the leading slow modes of 7. MDNs supplement mixture density
models with deep neural networks for the specialized task of learning multimodal proba-

80,81

bility distributions. Transition densities are represented by a linear combination of C

m-dimensional Gaussian kernels ¢,,

pr(Vyi.|t0,) = Zac V)PV yrs e (Yy), T (,)), (1)

During training, the 1,-dependent Gaussian means p., variances o, and linear mixing coef-
ficients .. are learned from training data projected by the SRV encoder into the latent space
such that the loss function Amn = — > Inp (], [1)) is minimized across time-lagged
training pairs 7 (Figure 2B). A softmax activation is used for a. to ensure mixing coefficients
sum to unity, and p,. are bounded from [0, 1| by sigmoid activations. During inference, the
MDN acts as a latent space propagator P iteratively samples transition densities p, (1, . |,)
from some initial ¥, to advance the system through time. Importantly, propagation is con-
ducted entirely within the latent space meaning that the system does not require repeated
decoding and encoding from configuration space in order to propagate the dynamics. This
avoids the computational overhead associated with encoding and decoding at each timestep
and any potential accumulation of errors from repeated decoding and re-encoding. **3 New
trajectories are generated by a sampling transition densities approximated by transition
statistics in the training data. The MDN therefore represents a microscopic generator con-
sistent with the learned microscopic dynamics within the training data that can produce

novel dynamical pathways through the latent space that are not simply carbon copies of the
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training trajectories. In applications to the PROTAC system, we employed a MDN network
comprising two hidden layers of size 100, swish activations, 50 Gaussian kernels, a lag time
of 200 ns, and a four-dimensional latent space. We have observed that adding additional
Gaussian kernels increases training time but does not offer further improvement in expres-
siveness or accuracy. Training was conducted for 5000 epochs using the Adam algorithm, ™

a batch size of 100,000, and a learning rate of 0.001.

2.3.3 Decoder: Conditional Wasserstein GAN (cWGAN)

The LSS decoder uses a conditional Wasserstein generative adversarial network (c(WGAN)
to reconstruct synthetic configurations from low-dimensional synthetic SRV coordinates. 3485
Adversarial training is performed between a generator G(z) that outputs molecular config-
urations from inputs z ~ P,(z) and a critic C'(x) that evaluates the quality of a molecular

configuration x (Figure 2C). The networks are jointly trained to minimize a loss function

based on the Wasserstein (i.e., earth mover’s) distance,

Zwaan = MAX Exp, [Co(x)] = Epnp. [Cu(G(2))]; (2)

where P,(x) is the distribution over molecular configurations sampled by the MD training
trajectory and {C, }wew is a family of K-Lipschitz functions enforced through a gradient
penalty. 848 To generate molecular configurations consistent with particular states in the
latent space we pass 1) as a conditioning variable to G and C'® and drive the generator with
d-dimensional Gaussian noise P,(z) = AN (0,1) € R% Conceptually, the cWGAN can be
thought of as generating molecular configurations with particular states of the slow modes
defined by a conditioning on the latent space coordinates and filling in the fast modes from
the learned distribution over these modes contained within the training data. As such, the
noise enables GG to generate multiple molecular configurations with different states of the

fast modes consistent with each conditioning latent space location that specifies the state of
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the slow modes. In applications to the PROTAC system, we employed a cWGAN network
comprising a generator and discriminator that each used 200 nodes per hidden layer and
were trained using the Adam algorithm ™ for 400 epochs and a batch size of 5000. The noise
dimension of the generator was set to 50. Gradients of the discriminator were updated five

times more frequently than those of the generator.

2.3.4 Deployment

After training the three components of the LSS pipeline the encoder, propagator, and de-
coder are assembled back-to-back and used to generate novel synthetic trajectories at a
fraction of the cost of MD. First a single initial configuration is passed through the encoder
to initialize a starting coordinates in the slow latent space. The propagator is then used to
efficiently generate a novel synthetic trajectory through the latent space. Importantly, since
the propagator was trained to learn the transition density elements in this space that are
subsequently sampled, it is not constrained to produce carbon copies of the training trajec-
tories, but rather stochastically generates novel trajectories consistent with the statistics of
the learned microscopic dynamical generator underpinning the molecular system. The latent
space is intrinsically low-dimensional since it retains only the leading slow dynamical modes
of the molecular system and this dynamical coarse-graining makes it both tractable to learn
the transition density elements within this space during learning and extremely efficient to
sample from them to propagate the dynamics during inference. Finally, the decoder oper-
ates upon the latent space trajectory produced by the propagator to generate representative
molecular structures corresponding to each instance of the trajectory. One can choose to
stochastically sample a single configuration corresponding to each instant or an ensemble of
configurations that will retain the same slow modes but different representations of the fast
modes not contained within the latent space. In applications to the PROTAC system, we
employed the trained LSS pipeline to generate a 1.3 million-frame C, trajectory at a step

size of 200 ns, corresponding to 260 ms of simulations data. This constitutes ~40x more
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data than was contained in the Folding@Home training data, is temporally and spatially
continuous single trajectory, and required only ~4 GPU-minutes to generate on an NVIDIA

GeForce RTX 2080 GPU card.
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Figure 2: Schematic of LSS and Multi-LSS architecture, training, and deployment. A) The
LSS SRV encoder is trained on molecular dynamics trajectories to learn a low-dimensional
latent space embedding into a slow subspace spanned by the maximally autocorrelated (i.e.,
slowest relaxing) dynamical modes as the optimal coordinates for construction of a long-time
kinetic model. B) The LSS MDN propagator is trained on time-lagged projections of training
data into the latent space to predict transition densities within the learned slow latent space.
C) The LSS ¢WGAN decoder is trained generate molecular configurations conditioned on
latent coordinates. D) The Multi-LSS for a bimolecular system is trained by separating
MD trajectories into four distinct components: DS — the global system comprising both
molecules; S1 and S2 — the independent subsystems comprising each molecule, and DoF —
the relative translational and orientational degrees of freedom defining the spatial location
of S2 relative to S1. Independent encoders and decoders are trained for S1, S2, and DS.
The latent spaces for these three systems are concatenated and the dynamical evolution
propagated simultaneously. DoF relative distance and relative orientation propagators are
trained sequentially and used to place S2 relative to S1. S1 and S2 decoding is employed
when the two molecules are in a non-interacting regime and their dynamical evolution is
weakly coupled. DS decoding is employed when the two molecules are interacting and their
dynamical evolution is strongly coupled. A switching function is employed to distinguish
which regime is active and therefore which decoding strategy to employ.

16



2.4 Multi-molecular latent space simulator (Multi-LSS)

Multi-molecular or loosely coupled systems have been shown to produce inefficiencies and in-
accuracies when modeled by MSMs and other global kinetic models. %3 These issues originate
from the approximately independent nature of the dynamical evolution of the constituent
subsystems that leads to an exponentially growing number of states — MY for N subsys-
tems each containing M metastable states — that are required to describe such a system.
Many of these states are physically degenerate and this state-space requires exponentially
more simulation time to adequately sample and necessitates learning of an exponentially
larger transition matrix. A primary outcome of this work is to address these challenges with
the development of a multi-molecular generalization of the LSS (Multi-LSS) and demon-
strate its application to our DNA simulations as a prototypical multi-molecular system that
exhibits weak coupling between the two single strands in the dehybridized state. In the
following sections, we described architectural components of the Multi-LSS to enable (i) sep-
arate encoding of each subsystem as well as the global system, (ii) serial propagators that
ensure physical agreement between the global system and individual component, and (iii)
a switchable decoding strategy that can reconstruct the complete structure at once in the

strongly-coupled regime or each component individually in the weakly coupled regime.

2.4.1 Encoder

In a multi-molecular system, SRV encoders are susceptible to learning many degenerate
modes representing closely related or identical slow processes in identical molecules. These
degeneracies can obscure faster but meaningful dynamics and require much higher dimen-
sional representations. Similar challenges have been noted in MSMs of multi-molecular sys-
tems. %3 To address this issue in our DNA system, we built three distinct SRVs corresponding
the DS — the global system comprising both molecules — and S1 and S2 — the independent
subsystems comprising each molecule individually — components of the system. Each SRV

was trained using identical network hyperparameters of two hidden layers of size 100, a ReL.u
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activation, 50,000 batch size, 10 training epochs, and 0.001 learning rate. A lag time of 1
ns was selected based on the convergence of leading timescales and the implied timescale of
the fastest relevant dynamics in each model. The two leading modes were retained for each
SRV, which were combined into a six-dimensional space describing the slowest dynamics —
including hybridization, fraying, and hairpin folding — of each strand and of the system as a
whole. The leading two modes of the DS encoder correlated highly with hybridization and
terminal fraying dynamics, respectively, while the leading modes of the S1 and S2 encoders
are correlated with hybridization and hairpin folding. Although we retained an equal number
of modes from each system, this is not a requirement and, in general, enough modes should
be selected to adequately represent the slow system dynamics as informed by a gap in the

spectrum of SRV implied time scales.

2.4.2 Propagator

In a unimolecular system, a single set of SRV modes are used for training and propagated
at a specified lag time.” In multi-molecular systems, however, the slow dynamics of each
subsystem must be preserved and propagated while maintaining correct correlations and
physical constraints between each subsystems. To accomplish this for our DNA system, we
concatenate the leading modes from each of the DS, S1, and S2 systems and train a unified
MDN to generate synthetic trajectories through this six-dimensional latent space. Although
S1 and S2 modes capture enough global information to coarsely resolve the hybridization
process, we find that the intermolecular features distilled by the DS modes substantially
improve this resolution and report on more subtle processes such as termini fraying, which
are not captured by S1 and S2 alone. We used an architecture of two hidden layers of size
100, a batch size of 100, 100 training epochs, 0.001 learning rate, 1 ns lag time, and 50 mix-
ture components each corresponding to a trainable mean, standard deviation, and mixture
contribution which are optimized during training. In order to recover the relative orienta-

tion of S1 to S2, we also propagated the translational and rotational DoFs computed from
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the training data. To ensure physical agreement with the synthetic low-dimensional space,
we find that it is important to condition DoFs on past DoF coordinates as well as current
SRV coordinates. Specifically, we first propagate the translations 7" using p. (T |1}, Yiir)
then use this information to propagate the rotations R as p,(Ryi,|Rs, Ty1r,Yisr). In this
way the propagators corresponding to SRV coordinates, relative translations, and relative
rotations, can be trained in series to ensure correct internal states and relative positions.
Although we do not enforce detailed balance when training the MDN in this work, we have
found comparable results when training on time-reversed data (Figure S1 in the Supporting
Information) and note that an equilibrium data set can be augmented with time-reversed

data to implicitly enforce detailed balance via a data augmentation strategy.

2.4.3 Decoder

As was done for the encoder, we train separated decoders for each of the encoded system
components. For the DNA system, this means training independent decoders for DS, S1,
and S2. The training configuration coordinates for each systems were aligned as described
in Section 2.2. The S1 and S2 decoders were trained on all available configurations. Since
the DS decoder is only used to generate configurations when the two strands are interacting
we simplify its training and enhance its performance by including configurations with at
least one WCF interaction (i.e., at least one pair of complementary base pairs within a 1 nm
cutoff) in training. Before training, all SRV coordinates and aligned Cartesian coordinates
were concatenated across trajectories and sub-sampled every 1 ns (10 frames). The same
cWGAN architecture and training procedure was used for each decoder and consisted of
two 100-dimensional hidden layers, 5 discriminators, a batch size of 1000, and 5000 training
epochs. The latent (input) dimension was defined by total number of SRV input modes, and
the output dimension was 3N where N is the total number of atoms in the structure (64 for
DS, 32 for S1 and S2).

For each set of low-dimensional synthetic coordinates, reconstruction was performed for
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the DS, S1, and S2 decoders. Although we learn a general model for the dynamics, we em-
ploy two switchable decoders to (i) capture fine-grained details of hybridized configurations
or (ii) accurately place and orient dissociated strands with respect to one another. The DS
decoder produced configurations of both strands directly and required no post-processing.
The relative orientations of synthetic S1 and S2 were obtained from the propagated DoFs
(Section 2.4.2) and the two strand were re-aligned using Procrustes alignment as detailed
in Section 2.2.5%%3 These represent two independent approaches to reconstruction producing
either a DS configuration and a S1+S2 configuration. Although either decoded configura-
tion can be used, the DS approach is expected to produce higher fidelity structures when
strands are interacting since it explicitly accounts for interactions between the strands in the
associated state whereas the S14+-S2 model treats the two strands as independent dynamical
systems. Conversely, the S1-+S2 model is expected to be superior when the two strands
are separated in the dissociated state since each strand does now evolve as an independent
subsystem and training of the DS model is compromised by the exponential explosion in
number of equivalent and degenerate states of the two non-interacting strands. Empirical
testing reveals the DS decoder to outperform the S1+S2 when the predicted center-of-mass
between strands is less than 1 nm, and the converse to be true for distances greater than 1
nm (Figure S2). As such we employ a switching procedure such that the DS decoder is used
at predicted center-of-mass distances between strands of less than 1 nm, and the S1-+S2 de-
coder otherwise. In practice, we find the reconstruction accuracy to be relatively insensitive

to the exact choice of this cutoff over the range [0.8, 1.6] nm.

2.4.4 Deployment

For the DNA system, we trained LSS models at a variety of temperatures in the range 310 K
to 330 K and implicit NaCl concentrations in the range 25 mM to 400 mM. The encoder and
decoder were trained only under “wild type” (WT) conditions at 320 K and 100 mM NaCl.

We then used the trained encoder and decoder transferably within Multi-LLSS models at other
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temperatures and salt concentrations under the assumption that the state space explored
by the system under these conditions is sufficiently representative of the other conditions to
provide an adequate encoding and decoding under the changed conditions. As we will show,
this proved to be a good approximation and validated the transferability of the encoder and
decoder. To account for the altered kinetics, independent propagators were trained for each
temperature and ion concentration. After training was complete, we deployed the trained
LSS models under each set of conditions to generate 10x200 us trajectories, half commencing
from a hybridized duplex and half from a dissociated state, to produce 10x more trajectory

data than was contained in the training ensemble.

3 Results & Discussion

3.1 Application of LSS to PROTAC ternary complex

Our first goal was to train an LSS model of the PROTAC ternary complex illustrated in
Figure 1 from ~5.7 ms of short simulation trajectories of median length ~650 ns generated by
distributed computing using Folding@Home. 3* The ternary complex comprises a 149-residue
VHL protein that is complexed with the 115-residue bromodomain of the SMC2 protein by
the PROTAC2 molecule. The SMC?2 is the degradation target of anti-cancer therapies®’
and the VHL protein is the substrate recognition domain of the multi-protein Cullin-RING
E3 ubiquitin ligase (CRL) that ubiquitinates and marks for proteosomal degradation target
proteins bound by VHL.378 The PROTAC2 molecule is heterobifunctional, with one end
comprising a binding moiety specific to VHL and the other to the SMC2 protein of interest.
The PROTAC mechanism of action is to effectively modulate VHL substrate specificity by
mediating its binding to proteins of interest. By recruiting VHL into a complex with SMC2,
the CRL is brought into proximity of SMC2 to ubiquitinate and selectively mark it for
proteosomal destruction.

Prior work by Dixon et al.?* suggests that the thermodynamics of the bound ternary com-
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plex mediated by the PROTAC molecule are an insufficient correlate of the observed degra-
dation efficiency for the three PROTAC molecules PROTAC1, PROTAC2, and ACBI1. Of
these three molecules, distinct binding poses of SMC2 relative to VHL were associated with
ACBI1 and PROTACI, and ACBI1 promoted higher degradation activity than PROTACI.
The ternary complex induced by PROTAC2 was hypothesized to oscillate between the two
binding poses and underpin the observed degradation activity intermediate to PROTAC1
and ACBI1. Taken together, this led Dixon et al. to propose a dynamical basis for PRO-
TAC activity based on the relative stability and net residence time within a binding pose
of SMC2 relative to VHL favorable to CRL ubiquitination. ?*8" This ensemble is challenging
to study experimentally given that its constituent states may not be favored by crystal-
lization,®>% but it is also non-trivial to quantify and sample the ensemble computationally
without appropriate collective variables.

These findings motivated the two objectives for the present work. First, to demonstrate
training of LSS models over short trajectories generated by distributed computing and use
of the trained model to efficiently produce long spatially and temporally continuous molec-
ular trajectories. For large molecular systems such as the PROTAC ternary complex, these
single, long trajectories would be exceedingly expensive — if not impracticable — to produce
by direct molecular simulation, but are very valuable in exposing the dynamical transitions
and putative transition states between metastable minima and enabling dense sampling of
transition pathways to achieve good statistical power in kinetic estimates of rate constants
and dwell times. Second, we seek to determine if the LSS pipeline, and in particular the
SRV encoder, can identify and parameterize the important configurational motions char-
acterizing the transition between the two metastable VHL/SMC2 binding poses mediated
by PROTAC2. We hypothesize that if this is a sufficiently slow transition, that the SRV
should be capable of learning this dynamical motion in a completely unsupervised manner
and discovering a collective variable (CV) parameterizing this transition as a component of

the learned latent space. The trained LSS model can furnish an efficient dynamic simulator
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to interrogate and sample these transitions to both expose mechanistic understanding of this
conformational change and furnish a learned slow CV as a good discriminant of the two
poses and putative metric for rational design of novel PROTAC molecules by computational

screening.

SRV encoder learns slow collective variables to explain differential PROTAC

degradation efficacy

We trained a LSS model for the VHL-PROTAC2-SMC2 ternary complex over 5.7 ms of dis-
continuous trajectories generated by distributed computing using Folding@Home. 32 We first
interrogate the slow modes learned by the trained SRV encoder that define the slow latent
space and correlate these with particular conformational motions of the ternary complex.
Four leading slow modes were resolved by the SRV encoder resulting in a 4D latent space
¥ = {Wo, 1, 1Y2,13}. We illustrate in Figure 3 a projection of the aggregated 5.7 ms of
training trajectories into the latent space by passing each configuration through the trained
SRV encoder. Corresponding free energy landscapes are presented in Figure 4. The latent
space possesses five metastable basins containing particular metastable macrostates of the
ternary complex. In some cases the discontinuous training trajectories densely sample the
intermediate configurations linking these basins, and in other cases the transition pathway
is more sparsely sampled. A key benefit of the LSS paradigm is to patch together the dy-
namical information contained within these discontinuous trajectories into a single kinetic
model capable of generating long temporally and spatially continuous trajectories that can
inexpensively generate transitions between these states. Of course, transitions that are sam-
pled more densely in the training data are better parameterized in the LSS model, whereas
the model is forced to interpolate intermediate configurations between metastable states for
which transitions are less well represented in the training data. We return to this point
below and discuss means to adaptively improve sampling undersampled transition states in

the Conclusions.

23



wl

Helical Fraction

0.2 0.4 0.6 2 4

E g 12s

10.0
75

5.0

Free Energy /

25

0.0

Figure 3: Analysis of slow latent space of the VHL-PROTAC2-SMC2 ternary complex. A-
D) Projecting the 5.7 ms of Folding@Home training data into the 4D latent space exposes
a simple “starburst” topology in which the metastable states are located at the termini of
spikes emerging from a central hub located at the origin. The embedded points are colored
by the helical fraction of the N-terminus SMC2 helix (left) and the “interface distance” (black
arrow in D) measuring the linear displacement between the top of the SMC2 helix and the tip
of the VHL tongue (right). Representative configurations at various locations in the latent
space (red) are superposed on a representative configuration from the central hub (blue)
to illustrate the structural changes associated with excursions along each of the learned
slow modes {tyg, 11,192,193} spanning the axes of the latent space. Structural variations of
interest relative to the hub are shown by opaque coloring, and the remaining structure is
show transparently. Green arrows are labelled by the correspond ¢ coordinate and highlight
the following transitions associated with each metastable state: A) folding/unfolding of the
two SMC2 terminal helices, B) stacking/unstacking of two helices near the C-terminus of
VHL, C) hinged opening/closing of the VHL-SMC2 interface, D) screw-like rotation of the
VHL-SMC?2 interface. E) Free energy surface of the training data projected into 1)s.

The projection of the training data into the latent space defines a manifold with a rela-
tively simple “starburst” topology in which the metastable states are located at the termini of
spikes emerging from a central hub located at the origin (0,0, 0,0). This structure indicates
that transitions between metastable states tend to proceed through the central hub rather

than via direct interconversions. To gain intuition into the conformational motions associ-
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Figure 4: Thermodynamic and structural comparison between the 5.7 ms of discontinu-
ous Folding@Home training trajectories and the continuous 260 ms synthetic LSS trajec-
tory containing the same number of frames. A-D) Free energy surfaces are estimated as
BF(¢) = —In P(¢) + C, where P(1)) is the empirical probability distribution of the train-
ing data projected into the 4D slow latent space, 8 = (kgT)~! is the reciprocal temperature,
and (' is an arbitrary additive constant reflecting our ignorance of the absolute free energy
scale. For visual clarity, we present 2D projections of the 4D free energy landscape con-
structed by marginalizing over the omitted dimensions. Since only free energy differences
are meaningful, we adjust the arbitrary additive constant in each plot such that the minimum
free energy is zero. The training and synthetic free energy landscapes are in good agreement.
Representative structures from the hold-out training (blue) and synthetic (red) trajectories
are extracted from the same location in the latent space indicated by the star, translation-
ally and rotationally superposed, and the C, RMSD reported. Opaque residues highlight the
regions of interest within the ternary complex associated with structural changes relative to
the hub configuration at the origin of the latent space (cf. Figure 3): A) unfolding of the two
SMC2 terminal helices, B) stacking of two helices near the C-terminus of VHL, C) hinged
opening of the VHL-SMC2 interface, D) left-handed screw-like rotation of the VHL-SMC2
interface. The synthetic configurations faithfully reproduce the structural changes exhibited
in the training data.

Free Energy / kT
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ated with excursions along each of the four slow modes ¢ = {t)g, 11, 12, 103} parameterizing
the axes of the slow latent space, we color the embeddings according to candidate physical
variables. We color the left plot in Figure 3 presenting the {1y, 1,99} projection by the
helical fraction of the N-terminus SMC2 helix, and the right plot presenting the {1y, 11,13}
projection by the “interface distance” measuring the linear displacement between the top of
the SMC2 helix and the tip of the VHL tongue. We also visualize a number of representative
configurations at selected locations in the latent space as red ribbon diagrams, and overlay
these with the hub configuration rendered in blue. We use opaque shading to highlight the
distinct structural characteristics of each metastable state relative to the hub and green ar-
rows to highlight the structural difference between the two configurations associated with
excursions along a particular dimension of the latent space and therefore the physical CVs
associated with each learned slow mode.

Commencing from the central hub configuration, excursions along 1 to the metastable
state located at approximately (—4,1,0,0) correspond to partial unfolding of helices at the
N-terminus and C-terminus of SMC2 (Figure 3A). We note that there is a discontinuity along
1o reflecting the absence of transitions along this mode in the training data, and we discuss
below the impact of this gap on the kinetics. Excursions along 1/ from the central hub to
the metastable basin at approximately (1,4,0,0) correspond to stacking of helices at the
C-terminus of VHL (Figure 3B). Accordingly, the first two learned slow modes correspond
to conformational changes within the SMC2 and VHL proteins distal from their binding
interface mediated by the PROTAC2 molecule. The VHL helix stacking associated with the
second mode may be relevant to recruitment/interaction with the other members of the CRL
complex, but are likely to be suppressed once VHL is complexed with Elongin B, Elongin C,
and Cul2 within the CRL (Figure 1). Additional simulations of VHL within the CRL would
be necessary to resolve this issue.

The conformational changes associated with excursions along 1, and 13 correspond to

global processes centered on the binding interface that change the relative orientations of
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SMC2 and VHL. Excursions along 5 to the basin at approximately (0,0, 5,0) are correlated
with hinged opening of the SMC2-VHL interface (Figure 3C), driven by the loss of inter-
molecular contacts between SMC2 and the VHL tongue. Excursions along 13 to the basin at
approximately (0,0, 0, 3) are correlated with a left-handed screw-like motion of VHL relative
to SMC2 (Figure 3D). The hinge-like collective motions along the learned slow modes 1,
is valuable understanding and rationalizing the SMC2 degradation efficacy of PROTAC2.

f.,%* we observe that 1y is well-suited to describe

Comparing Figure 3C to Figure 7e in Re
the transition between two distinct poses of VHL and SMC2 when linked by PROTAC2. In
particular, the closed-hinge configuration at the hub state (Figure 3C, blue) is similar to the
pose induced by the ACBI1 linker with higher degradation efficiency, and the open-hinge
configuration is similar to that induced by the PROTACI linker with lower degradation
efficiency (Figure 3C, red). Dixon et al. hypothesized that the intermediate degradation effi-
ciency of PROTAC?2 relative to ACBI1 and PROTACI1 resulted from its dynamic oscillation
between both of these binding poses, one of which (closed-hinge, ACBI1) is more favorable
in promoting ubiquitination in the CRL than the other (open-hinge, PROTACT).?!

The 1D free energy landscape in 1), provides an estimate of the relative stability of these
two binding poses (Figure 3E). Sampling multiple ligase-target binding poses permits the
design of PROTAC molecules according to these different poses, thus amplifying the oppor-
tunity of a successful design. Under Dixon et al.’s hypothesis, shifting the population to the
closed-hinge configuration should improve degradation efficiency. As such, this landscape
presents a means to predict the degradation efficiency of novel PROTAC molecules from
molecular simulation data by estimating the relative stability of the desired closed-hinge
binding pose. This presents a putative objective function and optimization metric for the
computational design and evaluation of novel PROTAC molecules. Moreover, the 1y CV
learned by the SRV could be used as an order parameters for enhanced sampling calcu-
lations to accelerate sampling of this rare transition to reduce the computational cost of

the all-atom molecular simulations necessary to achieve converged thermodynamic stability
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estimates. /891793

In sum, one of the slow modes learned from the training data by the SRV in an unsuper-
vised manner and without any prior physical knowledge characterizes the structural changes
associated with dynamical motions between open-hinge and closed-hinge VHL-SMC2 bind-
ing poses. The relative population of these poses has been conjectured to correlate with
PROTAC degradation efficiency, and the free energy landscape in this learned CV offers a
quantitative metric for PROTAC evaluation and design. Finally, the learned CV itself can be
implemented within enhanced sampling calculations to accelerate convergence of molecular
dynamics simulations and enable a high-throughput virtual screening (HTVS) campaign for

in silico screening of PROTAC candidates.

LSS generates realistic ultra-long simulation of PROTACSs

We now test the thermodynamic and kinetic consistency of the trained LSS model and use
it to efficiently generate ultra-long continuous simulation trajectories to predict, expose, and
densely sample conformational mechanistic changes. The LSS model was trained over 5.7
ms of discontinuous Folding@Home trajectories produced at a cost of ~7000 GPU-years,
but the trained model can generate a 260 ms spatially and temporally continuous trajectory
containing the same number of frames in less than 4 GPU-minutes. Short segments of
the LSS trajectory showing the conformational transitions associated with each of the four
dimensions of the latent space are provided as Movies S1-4 in the Supporting Information.
Having produced this long synthetic trajectory, we now assess its thermodynamic, structural,
and kinetic consistency with the training data.

Thermodynamically, we compare in Figure 4 the free energy landscapes over the slow
latent space constructed from the 5.7 ms Folding@Home training data and the 260 ms
synthetic LSS trajectory. For visual clarity, we present 2D projections of the full 4D free
energy landscape. Despite being initiated from a single seed, the synthetic trajectory fully

explores all of the metastable states of the system, and the location and relative stability of
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these states are in good agreement between the training and synthetic data. As anticipated
from the topology of the latent space, transitions between the metastable minima residing at
the tips of the “spikes” in each latent space dimension always proceed through the hub state
located at the origin. The length of the LSS trajectory means that thousands of transitions
in and out of the hub state are observed, and each metastable state is visited a minimum
of 75 times. The synthetic data exhibits slightly denser sampling of the interstitial regions
between the metastable basins. The transition pathways by their very nature tend to lie in
high-free energy regions of configurational phase space and are therefore only transiently and
sparsely sampled in the Folding@Home training data. It is not surprising, therefore, that the
free energy predictions of the LSS model in these regions are in less good agreement than in
the metastable free energy minima. Furthermore, although the Folding@Home trajectories
had a median length of ~650 ns, these appear to have been sufficiently long to sample all
relevant dynamical transitions between metastable states and furnish a fully-connected LSS
model capable of visiting all relevant regions of the latent space.

Structurally, we assessed the decoder’s ability to properly reconstruct molecular struc-
tures from the latent space. We present next to each pair of free energy landscapes in Figure
4 representative configurations harvested from the training and synthetic data from various
metastable minima in the latent space free energy surfaces. We encoded and decoded the
60,000 frames within the 5% hold-out test partition not included in the LSS training pipeline
and computed the mean C, root mean squared deviations (RMSD) between the true and
reconstructed configurations. This data set contained at least 780 frames in each of the
metastable minima discussed above. We observe very good agreement between the training
and synthetic structures in all metastable minima, achieving C, root mean squared devia-
tions (RMSD) of (0.85 + 0.12) nm or better. Visual inspection confirms that the expected
conformational changes associated with these metastable minima (cf. Figure 3) are correctly
predicted by the synthetic LSS structures. Overall, low RMSD values show that the LSS

decoder produces a distribution of predicted molecular structures in good agreement with
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the distribution in the training data, and local structural agreement as a function of ¥ shows
the distribution is properly conditioned by the latent space coordinates. Conceptually, the
1 conditioning informs the decoder as to the status of the four slow degrees of freedom
identified by the SRV and encoded in the latent space, and the decoder then generates an
ensemble of molecular configurations with different fast degrees of freedom that are annealed
to the state of the slow collective variables and correctly match the distribution observed in
the training data.

Kinetically, we compare the LSS model with the training data in two ways. First, we
computed the autocorrelation times associated with the four slow modes {1, 11, ¥, 93} cal-
culated from the 5.7 ns of discontinuous Folding@Home trajectories and compare these with
the implied timescales learned by the trained SRV encoder (Table 1). The good agreement
between these values indicates that the SRV encoder is faithfully learning the dynamical
relaxations associated with these leading slow modes. Second, we computed the slow mode
autocorrelation times from the synthetic LSS trajectory. These timescales are in similar
agreement with those computed from the training data, with the exception of the leading
slow timescale associated with )y, which was accelerated by almost an order of magnitude in
the synthetic data. We attribute this to the fact that no transitions along v, were observed
in the training data, and therefore we do not possess an accurate ground-truth estimate
for this timescale. Interestingly, despite there being no transitions in the training data, the
MDN propagator learns to make transitions in ¥y to sample to and fro between the central
hub configuration at the origin of the latent space and the metastable state with unfolded
SMC2 helices at approximately (—4,1,0,0). Empirically, we observe that during training
the propagator initially transitions between all states very rapidly and first optimizes ther-
modynamic agreement, it then gradually slows the kinetics down to approach those of the
training data. The propagator is, of course, not capable of learning the kinetics for unsam-
pled transitions, and the learned LSS time scales are therefore an unconverged estimate for

a ground truth time scale to which we do not have access in the training data. We expect
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that if we were to train the MDN propagator for a substantially longer number of epochs,
the LSS may cease hopping across v, entirely to reflect that this transition does not occur
in the training data. The timescale agreement in the higher-order modes is much better
and we attribute this agreement to superior sampling of transitions in {11, s,¥3}. Some-
what fortuitously, the synthetic trajectory timescale of the ¥ mode — the mode associated
with VHL-SMC2 interface hinging and the most relevant mode for PROTAC engineering —
is in agreement to within error of that estimated from the training data. Further work is
warranted to better understand the effect of median trajectory length and undersampling of
transition pathways in training LSS models on short, discontinuous training trajectories, but
this application has demonstrated that it is possible to train a converged LSS model with
excellent thermodynamic and structural accuracy, and good kinetic accuracy except in the
case of very sparse sampling of particular conformational changes.

Table 1: Comparison of the timescales of the learned slow dynamical modes calculated from
(i) the encoder eigenvalues, (ii) the Folding@Home training data autocorrelation times, and
(iii) the LSS synthetic data autocorrelation times.

Leading kinetic Timescales

Leading Modes Yo U Yo U3

SRV Leading Timescales 384 253 73.5 17.9
Training Autocorrelations 332 + 50.0 280 + 67.5 67.0 £ 16.8 12.7 + 0.7
Synthetic Autocorrelations 58.5 4+ 18.7 187 +£24.8 792 +3.4 84 4+ 0.7

3.2 Application of Multi-LSS to DNA system

Our second goal was to train a Multi-LLSS model for a DNA system that reversibly folds
into duplex and hairpin states under equilibrium conditions. The duplex state tends to be
strongly favored over the hairpin state due to more stabilizing WCF base pairings and base

stacking interactions. This equilibrium towards the duplex states motivates the use of hair-

42,43

pins as “molecular fuel” in various DNA nanotechnology applications, and their relative

stabilities can be modulated by changing environmental conditions,*? chemically modifying

94 95-97 In

base pairs,”® or selectively adding mismatches to destabilize the hybridized state.
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this work, we employ the latter technique, adding three mismatched T-T base-pairs to an
otherwise G-C rich, self-complementary DNA duplex. The resulting system consists of two
identical DNA strands 5-GCGGTTTCCGC-3' capable of forming up to eight complemen-
tary WCF pairs in the duplex state and four pairs in the hairpin state. We model this system

158 that enables us to rela-

using the computationally efficient coarse grained 3SPN.2 mode
tively easily conduct 200 ps of simulations. Nevertheless, the hybridization/dehybridization
dynamics are sufficiently slow that we only sample ~20 of each event within these training
data. This motivates the construction of efficient Multi-L.SS simulators to learn the mi-
croscopic dynamics of these processes over relatively modest numbers of dynamical events,

and then use the trained model to efficiently and densely sample these rare events to gain

improved statistical resolution of kinetic observables.

Multi-LSS trajectories preserve DNA structures and thermodynamics

We first trained a Multi-L.SS on 10 x 20 us = 200 s training trajectories collected under
“wild type” (WT) conditions of 320 K and 100 mM NaCl concentration. We then employed
the trained model to produce 10 x 200 pus = 2 ms spatially and temporally continuous
synthetic trajectories. We first test the thermodynamic and structural consistency of the
synthetic trajectories with the training data. In Figure 5 we present a comparison of the free
energy surfaces collected over the 200 us training data and 2 ms synthetic data. We project
these into a consistent basis defined by the two leading TICA modes (TICs) computed over
a translationally and rotationally invariant featurization comprising the 231 intra-molecular
and inter-molecular distances as a more visually interpretable low-dimensional embedding of
the 6D SRV latent space.%% The training and synthetic data both occupy the same phase
space volume and define a bimodal free energy surface comprising a deep global minimum
at (—1.3,0) containing the duplex state and a broader, shallower local minimum centered
at (0.6,0) containing the dehybridized state. The dehybridized basin exhibits two lobes

at (0.6,1) and (0.6, —1) corresponding to the single-strand hairpin configurations. These
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lobes are slightly less pronounced in the synthetic data and — as was observed for the ternary
complex — the transition pathway between the two metastable states are slightly oversampled
by the Multi-LSS. As we discuss below in our analysis of the kinetic predictions of the model,
this leads to a mild ~10% acceleration of the hairpin transitions in the trained LSS model
relative to the training data. Nevertheless, the landscapes are in quantitative agreement to
within better than ~1 k'T. Representative structures visualized at particular locations over
the embedding are also in excellent agreement between the training and synthetic data, with
the synthetic model generating physically realistic configurations with properly formed intra-
molecular and inter-molecular bond lengths, angles, and energies. In Figure S3 we present
a comparison of the distribution of WCF bond lengths, hairpin bond lengths, and backbone
dihedral angles and observe excellent agreement between the training and synthetic data.
We further probe the thermodynamic and structural properties of the two models by ana-
lyzing the distribution of hybridized vs. dehybridized states for the pair of strands and hairpin
vs. coil configurations for each single strand. In Figure 6A we color the TICA embeddings
of the training and synthetic data according to three physical variables: the inter-strand
center-of-mass distance (ISD), the end-to-end distance of the first strand (EE1), and the
end-to-end distance of the second strand (EE2). The heatmaps visually confirm that TIC1
is strongly correlated with duplex formation and TIC2 with hairpin formation, and motivate
the construction of Figure 6B, in which we project all training and synthetic data into ISD,
EE1, and EE2. Distributions exposed by these histograms are very similar between training
and synthetic, particularly for the ISD distributions characterizing the relative proportion
of hybridized and dehybridized states. The EE distributions are also in good agreement and
place the probability maxima in the correct locations, but the shapes of the distributions
are slightly different and the synthetic data possess slightly longer low-EE tails. The longer
tails appear to be correlated with the generation of slightly more structurally diverse hairpin
states generated by the Multi-LSS. In Figure 6C we integrate over the population below a

distance cutoff of 1.5 nm for ISD, EE1 and EE2 to determine the fraction of duplex config-
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Figure 5: Thermodynamic of free energy landscapes computed by projecting the 200 us
training and 2 ms Multi-LSS synthetic trajectories for the DNA system projected into a
2D TICA embedding. The training and synthetic data explore the same volume of phase
space and the relative free energy values are in quantitative agreement within ~1 kT . The
landscaped define a bimodal topography with the deep global minimum on the left containing
the duplex state and the broader local minimum on the right containing the dehybridized
and hairpin states.

urations, S1 hairpins, and S2 hairpins, respectively. We calculate these fractions over each
trajectory independently and show the standard deviation between trajectories as error bars.
Because each synthetic trajectory contains 10x more data than a training trajectory, the
Multi-LSS allows us to substantially reduce our statistical uncertainties in reporting these
values. With respect to duplex formation, we report a melted fraction of (0.29+0.05) in
the synthetic data compared to (0.26+0.16) from training data. The estimated fraction of

folded hairpins in the synthetic data is consistent between S1 and S2 at (0.28+0.01) and in
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agreement with the value of (0.2940.05)
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Figure 6: Structural comparison of the 200 us training and 2 ms Multi-LSS synthetic tra-
jectories for the DNA system. A) The 2D TICA embedding colored by three physical CVs
corresponding to the inter-strand center-of-mass distance (ISD), the end-to-end distance of
the first strand (EE1), and the end-to-end distance of the second strand (EE2). The em-
beddings are consistent between training and synthetic trajectories. B) Violin plots of the
training and synthetic distributions along these three physical coordinates to expose the dis-
tributions of hybridized/dehybridized states for the pair of strands (ISD) and hairpin/coil
configurations for each single strand (EE1, EE2). C) Fraction of each CV that in a hy-
bridized or hairpin state as determined by a distance cutoff of 1.5 nm. The 10x longer
synthetic trajectories permit an approximately v/10x reduction in the estimated statistical
uncertainties.

Multi-LSS trajectories preserve DNA hybridization and hairpin folding kinetics

After validating the thermodynamics of synthetic trajectories, we next evaluated if the Multi-

LSS preserves the correct kinetics of the system. While a naive MDN propagator could
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reproduce an equilibrium thermodynamic distribution by generating correctly distributed
configurations in an erroneous order, maintaining correct kinetics represents a more sub-
stantial challenge and validation of a properly trained Multi-LSS pipeline. In Figure 7A and
B we show segments of training and synthetic trajectories as a function of ISD and EE1
distances. Hybridized duplex and folded hairpin states are marked by sustained decreases in
ISD and EE1 values, respectively, and we observe qualitative similarities between the train-
ing and synthetic in terms of both the magnitude of the fluctuations and and the dwell times
in each state and frequency of the transitions. In Figure 7C, we quantify kinetics of ISD,
EE1l, and EE2 by computing their autocorrelation curves within the training and synthetic
trajectories as a function of lag time. These autocorrelation times furnish implied timescales
associated with the dynamical processes associated with these physical order parameters,
respectively, duplex hybridization/diffusion and hairpin folding of each strand. We find the
hybridization timescale to be about an order of magnitude slower than individual hairpin
folding timescales. We observe excellent agreement of the implied timescale curves between
the training and synthetic data, demonstrating that the Multi-LLSS has faithfully learned
the dynamics associated with duplex (de)hybridization and hairpin (un)folding. Again, we
also note the greatly reduced statistical uncertainties associated with the synthetic data
compared to the training data due to the 10X increased data volume.

In Figure 8 we present a comparison of hybridization events extracted from the train-
ing and synthetic trajectories. Hybridization can proceed by multiple different pathways
depending on the particular orientation of colliding strands. The synthetic trajectory gener-
ates physically realistic hybridization events that are not simply learned copies of the events
within the training data, demonstrating that the trained Multi-LSS model has learned the
underlying microscopic dynamics of the molecular system within the MDN propagator, and
can sample from these dynamics to produce novel molecular events.

It is a key property of the LSS paradigm to learn the microscopic generators of the

molecular dynamics from relatively modest trajectory data and numbers of rare dynamical
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Figure 7: Kinetic comparison of the 200 us training and 2 ms Multi-L.SS synthetic trajectories
for the DNA system. A) Inter-strand center-of-mass distance (ISD) for representative 20
us regions of training and synthetic trajectories. Hybridized regions are shown by sharp
reductions in ISD and suppression of fluctuations. B) End-to-end distance (EE1) of the first
strand for representative 1 us regions of training and synthetic trajectories. Hairpin states
correspond to low EE1 values. C) Implied timescale plots for reporting the autocorrelation
time of the physical variables ISD, EE1, and EE2 as a function of lag time. The light solid
lines represent ten equal length trajectories of length 20 us for the training data and 200 us for
the synthetic data. Heavy dashed lines represent means equipped with associated standard
errors computed over these ten replicates. Note the higher variance and greater prevalence
of non-representative, outlier trajectories associated with the ISD implied timescales due to
the slow hybridization/dehybridization dynamics.

events — in this case, ~20 (de)hybridization events — and then enable the generation of novel
synthetic trajectories at orders of magnitude lower cost. We chose to generate only 2 ms
of synthetic data for the purposes of comparison, but the exceedingly low 4 GPU-minute
cost to do so means that it is possible to generate vastly more data and drive the statistical
uncertainties in our dynamical observables towards zero. There are, of course, systematic
uncertainties that are not captured within our standard error estimates, and we provide

some discussion and commentary on these factors in the Conclusions.
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Figure 8: Visualization of representative DNA hybridization events extracted from the train-
ing and synthetic trajectories. We select as an example for comparison a hybridization event
that adopts frayed configurations for several ns before transitioning to a fully hybridized
state (inset) since these events proved to be particularly challenging for the Multi-LSS to
correctly simulate due to the relative paucity of training data and the importance in select-
ing an appropriate cutoff in switching between the DS and S1+S2 decoders. The synthetic
trajectory produces physically realistic hybridization events that are not just carbon copies
of those present in the training data and are indistinguishable by eye from real simulated
events.

To understand how synthetic trajectories transition between various metastable states,
we constructed MSMs using an SRV embedding trained on all inter-molecular and intra-
molecular features in the training data. We used a consistent k-means micro-state clustering
procedure and PCCA+ % macro-state state assignments for both training and synthetic
data. The limitations of using MSMs to fully describe this system were discussed previ-

936 and they do not generate temporally continuous synthetic trajectories like an LSS,

ously
but they do provide a robust method to compare the macrostate jump dynamics between
the training and synthetic trajectories. Chapman-Kolmogorov (CK) tests and implied time

scale plots for the two MSMs are reported in Figures S4-S7. For each MSM we computed
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the stationary distributions of seven metastable macrostates and mean first passage times
(MFPT) between each state. We observe excellent agreement between the macrostate free
energy assignments between the training and synthetic data, with a mean difference of just
0.9 kT and a maximum 1.8 k7" discrepancy over the seven macrostates (Figure 9). We also
see good agreement in the MFPTs between macrostates with low wait times out of frayed
and hairpins states and much longer wait times for (de)hybridization transitions (Figure
9B). While hairpin folding timescales are within error of the training data, (de)hybridization
processes are slightly accelerated, likely because some transition region configurations that
are oversampled in the synthetic data are clustered into the hybridized state. This is also
consistent with a mild ~2x acceleration of the leading implied timescales of the MSM built
from synthetic data relative to that constructed over the simulation data (Figures S6-S7),
although this may also be due to the elimination of fast dynamical modes during encoding
and /or the reduced temporal resolution of the synthetic trajectory relative to the simulation
data. Overall, however, the hierarchy of MFPTs from each state is preserved (Figure S8),

indicating that kinetic behavior is well reproduced by the synthetic Multi-LSS trajectories.
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Multi-LSS transfer learning to different temperatures and salt concentrations

After performing structural, thermodynamic, and kinetic validation of the Multi-LSS pipeline
on a system under the “wild type” (WT) conditions of 320 K and 100 mM NaCl concentra-
tion, we used a transfer learning approach to extend the framework to new temperatures and
ionic strengths. Previously it has been shown that the same time-lagged, low-dimensional

93,101 We adopt a similar approach by

space can be used to encode or bias a related system.
using the same SRV encoders and cWGAN decoders trained on the WT data, but retrain
the MDN propagators on new trajectory data. The underlying principle for transferability
is that the state space explored by the system under the WT conditions is sufficiently rep-
resentative of the perturbed conditions that the learned SRV slow latent space remains a
good representation of the slow dynamics of the perturbed systems and that no substantially
new molecular configurations emerge that would require retraining of the decoder. The only
update to the model is to update the MDN propagator to learn the new dynamics over the
same latent space. This approach can potentially reduce the volume of training data and
training time required to parameterize new systems in related Multi-LSS models. The ability
to reuse components of a pre-trained LSS model is particularly valuable for DNA systems
where simulation data can suffer from from a strong imbalance in hybridized or dissociated
data when the system is pushed away from the melting temperature, and the thermodynam-
ics and kinetics are highly sensitive to changes in temperature and ion concentration. 1027104
To evaluate temperature dependence, we repeated our MD simulation protocol at 310 K,
315 K, 325 K, and 330 K. We projected these trajectories into the same latent space using
SRV encoders trained on WT data and re-trained independent MDN propagators to learn
the dynamics at each temperature. We repeated this procedure over ion concentrations 25
mM, 50 mM, 200 mM, and 400 mM while holding temperature fixed at 320 K. Given that
only the propagator was re-trained, we conserved 50% of training cost compared to training

the full LSS pipeline. As in the previous section, 10 x 200 us synthetic trajectories were

generated and decoded into configuration space using cWGAN decoders trained on the WT
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data.

We find that the thermodynamics of synthetic trajectories are in strong agreement with
training data under our transfer learning procedure. In Figure 10A we show the fraction of
hybridized duplex and folded hairpin as a function of temperature. We observe a distinct
melting transition over the 20 K temperature range where the system shifts from mostly
hybridized to dissociated at an approximate melting temperature of 317 K. There is a wider
melting transition for hairpin DNA, which is expected given lower entropic favorability at
higher temperatures.'% The synthetic data quantitatively reproduces these trends within
error bars and also reduces the statistical uncertainty, especially at low temperatures where
half of training trajectories contain only a single (de)hybridization event. For example, at
310 K duplex population in (78 £ 18)% for training data and (87 £ 6)% for synthetic data
and the hairpin population is (53 £ 10)% for training data and (49 £ 3)%. Figure 10B
shows training and synthetic thermodynamics as a function of ion concentration. At low
sodium concentration, there is minimal screening between negatively charged DNA strands,
and we observe low duplex population in both training (7 £ 7)% and synthetic (7 £+ 3)%
trajectories. Duplex populations increase asymptotically with ion concentration to (71+£17)%
for training data and (80 £ 4)% for synthetic data at 400 mM. The population of folded
hairpins increase slightly with ion concentration, however less than might be expected given
previous single-molecule studies. % Synthetic trajectories reproduce these trends extremely
well, although not with quite the same quantitative accuracy as the temperature comparison.
This may indicate that ion concentrations induce changes to hairpin structures that are less
well represented within the shared SRV latent space or previously experienced by the cWGAN
decoder.

We next test whether our Multi-LSS transfer learning procedure reproduces meaning-
ful kinetics across temperature and ion concentration. Kinetics can be expressed in terms

102,105

of kon and k,¢y rates which are frequently monitored in single-molecule studies and

nanotechology applications such as DNA-PAINT. 96107 We calculated rates by collecting all
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Figure 10: Comparison of thermodynamic predictions of temperature and salt concentration
transferability of DNA Multi-LLSS model. All synthetic data were generated using an SRV
encoder and cWGAN decoder trained over the wild type conditions of 320 K and 100 mM
NaCl; only the MDN propagator was retrained over simulation data collected under the new
conditions. Hybridized duplex and folded hairpin fractions as a function of A) temperature
at 100 mM NaCl and B) ion concentration at 320 K. Error bars represent the standard
deviation across 10 independent trajectories.

hybridized /dissociated dwell times and fitting a single exponential distribution to determine
kon and k,¢r (Figure 11). Uncertainties were determined via a bootstrapping procedure
where dwell times were randomly sampled with replacement and the model refitted. As ex-
pected for an activated process, we observe an exponential increase in k, ;s with an increase
temperature, and a minimal impact on k,, %1% (Figure 11A). We see very close agreement
for synthetic k,;s rates as a function of temperature, but find that k,, rates are, although

still very good, slightly faster on average than the training data. We see closer agreement
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for k,, rates as a function of ion concentration, where association increases approximately
linearly in agreement with single-molecule experiments over a similar concentration range 1°°
(Figure 11B). We calculated analogous rates — kjfoq and Kypfoiq — for the hairpin folding
process by using a cutoff along EE1 and EE2 to discretize hairpin trajectories into folded
and unfolded regions. In agreement with the training data, we observe that synthetic &y foa
rates increase with temperature and decrease with ion concentration (Figure 11A,B). Syn-
thetic ky.q rates qualitatively follow training rates, however, for both temperature and ion
concentration we observe systematically higher synthetic kyyq values that lie slightly outside
training uncertainties. We attribute this in part to a higher degree of structural variance in

synthetic hairpin states that may lead to more frequent re-crossing of the binding cutoff.

4 Conclusions

In this work, we have applied our previously introduced molecular latent space simulators
(LSS)!Y to a PROTAC ternary complex and a two-strand DNA system that can undergo
both hybridization and hairpin folding. The former application demonstrates the viability of
constructing LSS models of large biomolecular complexes of biomedical relevance from short,
discontinuous training data generated by distributed computing. The latter application re-
quired the development of the Multi-LSS framework as a generalized LSS approach applicable
to multi-molecular systems. In both cases, the trained LSS models can generate ultra-long
trajectories of realistic molecular configurations with low computational overhead. Thermo-
dynamics and kinetics of both systems were well reproduced, and statistical uncertainties are
reduced by generating longer trajectories containing more conformational transitions than
are available in the training data.

For the PROTAC system, we show that the learned latent encoding provides valuable
insights into structural changes and dynamics associated with degradation efficiency. We

hypothesize that latent coordinates can be leveraged as collective variables for the evalua-
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Figure 11: Comparison of kinetics predictions of temperature and salt concentration trans-
ferability of DNA Multi-LSS model. All synthetic data were generated using an SRV encoder
and cWGAN decoder trained over the wild type conditions of 320 K and 100 mM NaCl; only
the MDN propagator was retrained over simulation data collected under the new conditions.
Hybridization and folding rates as a function of A) temperature at 100 mM NaCl and B) ion
concentration at 320 K. Rates determined by fitting single exponential to empirical dwell
time distributions. Error bars show standard deviation over 100 bootstrap samples.

tion of candidate PROTAC molecules, and furnish good coordinates for putative enhanced
sampling calculations and high throughput virtual screening (HTVS) campaigns for rational

in silico design of PROTACs with elevated degradation efficiency. We find that training

on many short trajectories poses some limitations to the accurate estimation of timescales
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associated with transitions that are sparsely sampled or unsampled within the training data.
However, this represents a challenge for any kinetic modeling technique including MSMs,

and we are encouraged by the good kinetic and thermodynamic agreement for those states




and transitions that are sufficiently sampled in the training trajectories.

For the DNA system, the Multi-LSS approach introduces multiple encoders and decoders
to capture the leading modes of the global system as well as of the individual sub-systems.
This avoids the pitfalls associated with the exponential increase in the number of states
and complexity of the transition matrix associated with the approximately independent dy-
namical evolution of the constituent subsystems in the non-interacting regime. Synthetic
configurations can then be reproduced by decoding and re-orienting each individual strand
or, for interacting configurations, by decoding of the global system configuration. We demon-
strated this approach for a two-molecule system, but it is, in principle, scalable to systems
containing arbitrary numbers of molecules. The model produces synthetic trajectories that
substantially reduce both thermodynamic and kinetic statistical uncertainties associated
with duplex hybridization and hairpin folding. This increase in precision becomes particu-
larly important when folding and hybridization events are sparse, such as at low temperature
or low ion concentration. Furthermore, we show that our encoder and decoder are transfer-
able across a range of simulations conditions and that training efficiency can be enhanced by
re-training the propagator alone. Although outside the scope of this work, we hypothesize
that a propagator may be trained to interpolate or extrapolate over a tunable system param-
eter (e.g., temperature, pressure, salt concentration) in order produce meaningful synthetic
trajectories under new thermodynamic states of interest without requiring the collection of
new training data.

Although the LSS can push statistical uncertainties towards zero, we emphasize that
systematic uncertainties present in the training data persist within the trained LSS model.
The most common sources of systematic errors are approximations in the molecular force
field and the presence of unsampled /undersampled states and transitions in the training tra-
jectories. As an example of the first of these systematic errors, the artificial acceleration of

160

hybridization dynamics associated with the 3SPN.2 coarse-grained model®” are internalized

by the LSS to produce rate estimates consistent with the training data but faster than what
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might be observed experimentally or in all-atom calculations. Such systematic errors can, of
course, only be ameliorated by the use of higher accuracy models in generation of the training
data. As an example of the second of these systematic errors, poor sampling of particular
transitions between metastable states of the PROTAC ternary complex along ¢y did not pre-
vent the LSS model from learning a fully-connected long-time dynamical model, but it was
compelled to “hallucinate” transition paths and timescales without a good ground-truth ref-
erence. Such systematic errors can be quite readily engaged by adaptive sampling strategies
that determine where to collect new training data to better sample undersampled states and
transitions. The LSS framework is particularly well-suited to adaptive sampling since the
decoder can readily furnish molecular configurations to initialize new training simulations
near the transition state of an undersampled transition or by extrapolating into unexplored
regions of latent space. Cross validation protocols and an assessment of the change in the
learned SRV modes, MDN transition density elements, and cWGAN reconstruction accuracy
can then provide an internal assessment of when sufficient data has been collected and the
training data are sufficiently rich and representative that the trained LSS model ceases to
change with the addition of more training data.

In future work, we plan to continue to refine and extend the Multi-LSS paradigm to
larger and more complex systems such as molecular self-assembly, to incorporate adaptive
sampling strategies, and to explore the use of dynamical reweighting to enable the use of

biased trajectories within model training. 19911
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