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Abstract

All atom molecular dynamics (MD) simulations offer a powerful tool for molecular mod-

eling, but the short time steps required for numerical stability of the integrator place

many interesting molecular events out of reach of unbiased simulations. The popu-

lar and powerful Markov state modeling (MSM) approach can extend these timescales

by stitching together multiple short discontinuous trajectories into a single long-time

kinetic model, but necessitates a configurational coarse-graining of the phase space

that entails a loss of spatial and temporal resolution and an exponential increase in

complexity for multi-molecular systems. Latent space simulators (LSS) present an al-

ternative formalism that employs a dynamical, as opposed to configurational, coarse

graining comprising three back-to-back learning problems to (i) identify the molecular

system’s slowest dynamical processes, (ii) propagate the microscopic system dynamics

within this slow subspace, and (iii) generatively reconstruct the trajectory of the system

within the molecular phase space. A trained LSS model can generate temporally and

spatially continuous synthetic molecular trajectories at orders of magnitude lower cost

than MD to improve sampling of rare transition events and metastable states to reduce

statistical uncertainties in thermodynamic and kinetic observables. In this work, we

extend the LSS formalism to short discontinuous training trajectories generated by dis-

tributed computing and multi-molecular systems without incurring exponential scaling

in computational cost. First, we develop a distributed LSS model over thousands of

short simulations of a 264-residue proteolysis-targeting chimera (PROTAC) complex

to generate ultra-long continuous trajectories that identify metastable states and col-

lective variables to inform PROTAC therapeutic design and optimization. Second, we

develop a multi-molecular LSS architecture to generate physically realistic ultra-long

trajectories of DNA oligomers that can undergo both duplex hybridization and hair-

pin folding. These trajectories retain thermodynamic and kinetic characteristics of the

training data, while providing increased precision of folding populations and timescales

across simulation temperature and ion concentration.
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1 Introduction

The expanding capabilities of molecular dynamics (MD) simulations have motivated the de-

velopment of many data-driven approaches to distill, interpret, and model increasing complex

systems. Markov state models (MSMs) are a powerful and popular approach to construct-

ing interpretable long-time kinetic models by reducing high-dimensional MD simulations

into a set of discrete configurational states and modeling the system’s kinetic evolution via

transition probabilities between these states. 1,2 In the past decade, numerous techniques –

increasingly integrating deep learning – have been introduced to optimize some aspect of the

MSM pipeline3–5 or to replace the conventional pipeline all together. 6,7 Although tremen-

dous progress has been made in this area, MSMs inherently model jump processes between

coarse-grained metastable states.8 In addition to these spatial and temporal limits, global

MSMs can be inefficient or misleading when applied to large or multi-component systems. 9

Recently, latent space simulators (LSS) were developed as learned kinetic models capa-

ble of generating temporally continuous synthetic molecular trajectories at a fraction of the

computational costs of MD.10 The LSS pipeline is trained on MD training data and uses

three distinct deep learning architectures to (i) encode molecular trajectories into a latent

space (ii) propagate low-dimensional trajectories in that latent space and (iii) decode latent

space back to configurational space. The fully trained pipeline learns the statistics of the

infinitesimal generator of microscopic transition elements and can therefore produce phys-

ically realistic molecular trajectories that are distinct from training data while still repro-

ducing thermodynamic and kinetic observables. The LSS approach shares similarities with

the variable-free/equation-free approach of Kevrekidis and co-workers, 11–17 but employs the

transfer operator formalism to directly estimate the slow modes and comes equipped with

decoders to efficiently lift back up to the high-dimensional molecular phase space. Previ-

ous techniques for synthetic trajectory generation based on time-lagged autoencoders were

limited by unstable propogators,18 and MSM-based approach such a deep generative MSMs

relied on a discretieztion of the latent space.19 Recently several approaches20–23 have been
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introduced to generate synthetic trajectories using similar procedures to LSS, including learn-

ing of effective dynamics (LED)23 which uses a recurrent structure to add long-term memory

to the propagator. The LSS approach remains unique, however, in its ability to encode con-

figurations into an optimally slow basis, learn a microscopic generator in the latent space,

and decode the latent space using a high-fidelity generative model. Previously, the LSS was

applied to the fast-folding Trp-cage mini-protein, where thermodynamically and kinetically

accurate ultra-long simulations were generated at several orders of magnitude lower cost

compared to MD.10 In this work, we have extended the LSS pipeline to two applications

which represent distinct challenges for kinetic modeling and synthetic trajectory generation:

training over short, discontinuous trajectories and multi-molecular systems.

First, we explore the training of LSS models not over a single long continuous trajec-

tory, but over a number of short MD simulations generated by distributed computing. In

MSMs, the configurational coarse-graining into metastable states presents a relatively forgiv-

ing training paradigm since the learning problem is well posed provided there are sufficiently

many pathways linking these states. The LSS eschews this configurational coarse-graining

for a dynamical one into the leading slow modes. Short trajectories that are not guaran-

teed to chart a continuous path through phase space could conceivably frustrate learning of a

slow subspace and/or the transition density elements within this projection. Training of LSS

models in this mode is desirable for their application to large molecular systems where gen-

eration of multiple short trajectories using distributed computing is more computationally

accessible than performing a single long calculation.

We demonstrate stable training of LSS models over distributed computing training data

in an application to a ternary degrader complex recently interrogated by Dixon et al. 24 This

system comprises two large (>100 residue) proteins joined by a proteolysis-targeting chimera

(PROTAC) molecule. PROTACs compounds represent a novel and desirable drug design

paradigm in which a ubiquitin ligase is recruited to the protein of interest to mark the lat-

ter for degradation.25 As opposed to stoichiometric small molecule or biologic inhibitors, a
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PROTAC compound can be recycled after each degradation event and so effectively tar-

get proteins at much lower concentration.26 In the two decades since PROTACs were first

demonstrated to facilitate degradation,27 there has been tremendous progress in improving

target specificity and translating PROTACs molecules into clinically promising therapeu-

tics.28 Computational investigations of ternary PROTAC complexes have, however, been

relatively limited due in part to the system size and diversity of states involved in the binding

mechanisms.29–31 While enhanced sampling techniques can traverse large free energy barri-

ers and improve thermodynamic understanding, 24 unbiased data is required to rigorously

probe kinetics and binding mechanisms. In this work, we train the LSS on 9,800 indepen-

dent and relatively short ∼650 ns equilibrium trajectories of the PROTACs system collected

from distributed Folding@Home simulations. 32 This represents the first training of the LSS

on distributed data, and we show that the LSS can effectively knit together thousands of

independent trajectories comprising 5.7 ms of total simulation time to produce a unified

long-time kinetic model. Similar to MSMs, the trained LSS model can produce synthetic

trajectories with comparable structural and thermodynamic observables to the discontinu-

ous training data at low computational cost, but unlike an MSM, the LSS trajectories are

temporally and spatially continuous. The trained LSS model can produce a 260 ms synthetic

trajectory in several GPU-minutes compared to the estimated ∼7000 GPU-years required

to produce the same amount of data using Folding@Home. Furthermore, the LSS furnishes

inexpensive continuous trajectories that can efficiently and densely sample rare events in the

configurational phase space and, by learning the slowest dynamical modes across all training

trajectories, furnishes interpretable slow physical processes and metastable states we have

correlated with PROTAC degradation efficiency. These learned slow modes can thereby pro-

vide a basis to evaluate and optimize future PROTAC drug candidates by computational

screening.

Second, we make several architectural additions to the LSS to render it applicable to

multi-molecular systems. It has been shown MSMs can be inefficient, ineffective, or mis-
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leading when they are applied to multi-molecular or partially coupled systems. 9,33 Recent

work to address the shortcomings has been driven in large part by Noé and co-workers, and

progress has been made in the development of so-called Markov field models. 9 This includes

efforts to learn independent components of bio-molecular systems 33,34 and couple MSMs via

reaction-diffusion dynamics.35,36 Here, we integrate a novel approach, related to that of del

Razo et al.,36 into the LSS pipeline which enables us to independently encode, propagate,

and decode molecular subsystems and generate ultra-long synthetic trajectories for multi-

molecular systems. To avoid learning degenerate dynamics, we build separate encoders and

latent spaces for each subsystem and use a joint propagator to ensure physically accurate

coupling between each system. We train additional propagators on the translational and

rotational degrees of freedom between strands to preserve the orientation of transition states

and ensure no overlap between dissociated configurations. Finally, we convert latent space

trajectories back to molecular configurational space either by decoding the complete system

directly or by decoding each strand independently and reconstructing the system based on

a learned inter-molecular orientation.

We demonstrate this multi-molecular generalization of the LSS approach (Multi-LSS) on

coarse-grained trajectories of two DNA strands that can form both duplex and hairpins. The

bimolecular LSS model generates stable and physically realistic synthetic molecular trajecto-

ries at five orders of magnitude lower cost than MD that preserve both the global dynamics of

duplex folding and the single-strand dynamics of hairpin folding. We learn interpretable slow

collective variables describing the dynamics of independent subsystems and leverage these

modes to generate novel and physically meaningful synthetic trajectories which reproduce

thermodynamic and kinetic observables with significantly lower uncertainties. Furthermore,

we show that our encoder/decoder can be extended to MD simulations under new temper-

atures and ion concentrations without re-training the complete pipeline. The trained LSS

models provide better understand the role of secondary structure on hybridization 37–41 and

inform potential applications of these sequences in DNA nanotechnology. 42,43
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2 Methods

2.1 All-atom simulations of PROTAC ternary complex

The PROTAC complex comprises three components and is schematically illustrated in Figure

1: (i) the 115-residue bromodomain of the human SWI/SNF related, matrix associated, actin

dependent regulator of chromatin, subfamily a, member 2 (SMARCA2 or SMC2) protein,

(ii) the the 149-residue von Hippel-Lindeu disease tumor suppressor protein (VHL), and

(iii) a heterobifunctional small molecule proteolysis targeting chimera (PROTAC) known as

PROTAC2 that bridges SMC2 and VHL to form the ternary complex (PDB ID: 6HAX). All-

atom simulations of the complex were conducted as detailed in Ref. 24. In brief, the ternary

complex was solvated in explicit water and net charge was neutralized by the addition of

counter ions. The Amber ff14SB force field44 was chosen for proteins, the TIP3 water model45

was used for solvent, and in-house force field parameters were generated for the PROTAC2

molecule. The Verlet leapfrog algorithm46 was used integrate equations of motion at a

time step of 2 fs, and the LINCS algorithm was employed to restrain hydrogen bonds. 47

Particle-mesh Ewald summation48 was used to treat long-range electrostatic interactions

employing a real-space cutoff of 1.2 nm. A velocity rescaling thermostat 49 and Parrinello-

Rahman barostat50 were used to maintain system at 310 K and 1 atm. Energy minimization

was performed with the steepest descent algorithm, and equilibration was performed in the

NVT and NPT ensembles. All production runs were performed in the NPT ensemble. Initial

configurations for each short discontinuous simulation were seeded from Hamiltonian replica-

exchanged MD, in which trajectories were exchanged between replicas containing altered

potential energy functions in order to enhance sampling. 51 To ensure adequate coverage of the

sampled phase space, k-means clustering was performed on a PCA projection of previously

collected Hamiltonian replica exchange molecular dynamics simulation data. A total of 98

seeds were collected from k-means centers, and 100 independent simulations were performed

from each seed. Simulations were distributed across Folding@Home 32 computing resources
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to produce at total of 9800 trajectories with a median length of ∼650 ns for an aggregated

total of ∼5.7 ms of simulation time. The estimated computational cost to produce these

trajectories is ∼7000 GPU-years.

PROTAC 2

SMC2

SMC2

VHL

VHL

Figure 1: Schematic of the VHL-PROTAC2-SMC2 ternary complex structure (inset) and
its placement within the full Cullin-RING E3 ubiquitin ligase (CRL). The inset presents
ribbon diagrams of the SMC2 (green) and VHL (orange) proteins as well as the implicitly
modeled PROTAC2 molecule (blue). The chemical structure of PROTAC2 is presented
to the left. The space filling rendering of the full CRL complex illustrates how the VHL
component of the ternary complex attaches to the Elongin C, Elongin B, Cul2, NEDD8,
EBE2D2, Ub, and RBX1 proteins, and how the protein of interest, here SMC2, is placed
within ∼60 Å of the ubiquitination zone enabling marking the target protein for proteosomal
degradation. The image of the protein complex on the right is adapted from Dixon et
al.24 with permission under the Creative Commons Attribution 4.0 International License
(www.creativecommons.org/licenses/by/4.0/) Copyright 2022 Springer Nature.

The aggregated simulation data were used to train an LSS model for the dynamical

evolution of the PROTAC ternary complex. The trajectories were subsampled at a 5 ns stride

and featurized by calculating the sin/cos of all backbone dihedral angles in addition to the

inverse pairwise distances between every fourth protein Cα. These distances represent a set of

intra-molecular distances within VHL and SMC2 as well as inter-molecular distances between
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the two molecules. This procedure produced a total of 3197 translationally and rotationally

invariant features that were normalized to a [0, 1] range prior to passing to the LSS encoder.

The LSS decoder was trained to reconstruct the aligned Cartesian coordinates of the alpha

carbons of the SMC2 and VHL proteins from the latent space coordinates. The PROTAC2

small molecule was modelled implicitly by the LSS, therefore features of its geometry were

not encoded into the latent space and it was not reconstructed during the decoding process.

A consistent alignment was generated by performing Procrustes alignment to a metastable

“hub” configuration (see Section 3.1) using the Kabsch algorithm. 52,53 implemented in the

mdtraj package.54

2.2 Coarse-grained simulations of DNA duplex and hairpin forma-

tion

We conducted coarse-grained MD simulations of a duplex DNA system containing two iden-

tical strands (5′-GCGGTTTCCGC-3′) designed to admit both inter-molecular hybridization

and intra-molecular folding into a hairpin. The system is capable of forming up to eight

inter-molecular Watson-Crick-Franklin (WCF) pairs and four intra-molecular WCF pairs,

where the duplex structure is destabilized by four internal T-T mismatches. Hairpin struc-

tures with GC-rich stems and poly-T loops are frequently used in DNA nanotechnology

owing to the relative strength of G:C hydrogen bonds and the flexibility of consecutive

thymine stretches.55–57 We constructed and simulated the DNA sequences using the coarse-

grained 3-Site-Per-Nucleotide v2 (3SPN.2) model that uses three spherical beads to repre-

sent the phosphate, deoxyribose sugar, and nitrogenous base of each nucleotide and employs

anisotropic interaction potentials to accurately treat intra-strand base-stacking, inter-strand

cross-stacking, and base pairing.58 The model was parameterized against experimental struc-

tural and kinetics data and has been extensively validated against experimental comparison

of hybridization mechanisms59,60 and protein-DNA interactions.61,62 Kinetic timescales have

been shown to be accelerated compared to experiment, however, relative timescales can be
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reliably evaluated after applying a corrective factor. 60

All 3SPN.2 simulations were performed via the LAMMPS plugin accordance with best

practices58,63 Two identical strands were placed in a cubic periodic box with side length 8.5

nm corresponding to a single-strand concentration of 5.4 mM. Solvent effects were modeled

implicitly by employing Langevin dynamics 64,65 with an experimentally motivated per-site

friction coefficient of 9.94 × 10−11 m2/s.58,66 For wild type (WT) runs we specified a 100 mM

implicit NaCl concentration and treated electrostatic interactions using the Debye-Hückel

with a 5 nm cutoff radius.67 Simulations were performed in the NVT ensemble employing a

Langevin thermostat.68 A simulation temperature of 320 K was selected to maintain a large

and approximately equal population of both duplex and hairpins state and to maximize

the number of hybridization and folding events. For the transfer learning procedure, ion

concentrations were varied from 25 mM to 400 mM while holding temperature at 320 K;

temperatures were then varied from 310 K to 330 K while holding implicit ion concentration

at 100 mM. The Langevin equations of motion were integrated using the scheme of Bussi and

Parrinello65 with a 20 fs integration time step. We performed 10 independent simulations for

each temperature and ion concentration with half of the runs initialized from the hybridized

state and half from the dissociated state. The initial hybridized state was defined based on

the crystal structure coordinates of Arnott et al. 69 The dissociated state was generated from

the hybridized state by displacing one strand away from the other by 1 nm in each of the x, y,

and z directions. Initial bead velocities were assigned from a Maxwell-Boltzmann distribution

at the temperature of interest. Each simulation was conducted for 20 µs and frames saved

to disc every 100 ps. Each simulation required ∼24 CPU-hours on 28×Intel E5-2680v4 CPU

cores. For WT simulations, we generated ten independent trajectories corresponding to a

combined total of 200 µs simulation time, in which we sampled 18 hybridization events, 22

dehybridization events, and hundreds of hairpin folding and unfolding events. Based on a

center-of-mass cutoff of 1.5 nm between strands, we found that 27% of configurations were

in a hybridized state, 37% contained at least one folded hairpin, and 6% had both strands
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folded into hairpins.

To train the LSS encoder, simulation data were subsampled at a 100 ps stride and trans-

formed into a set of translationally and rotationally invariant features. For the global system

comprising both DNA strands (double stranded, DS) we used all inter-molecular distances

between nucleobases on each strand, corresponding to 121 total features. For the two single-

stranded DNA subsystems (strand 1, S1, and strand 2, S2) we extracted all possible intra-

molecular distances from each nucleobase for a total of 55 features each on each strand.

Each set of distances was normalized to a [0, 1] range prior to passing to the network. To

train the LSS decoder, we employed the orthogonal Proscrutes solver 70 implemented in

scipy71 to align the DS and S1/S2 configurations to reference crystal structures. 69 For de-

hybridized frames, the relative distance and angles transformations applied to superpose

each strand were recorded for each frame and saved as three-dimensional translations and

three-dimensional Euler angles. Together, these six-dimensional coordinates describe all

translational and rotational degrees of freedom between S1 and S2.

2.3 Latent space simulators (LSS)

Molecular latent space simulators comprises three deep learning architectures to (i) encode

molecular trajectories into a latent space, (ii) propagate low-dimensional trajectories in that

latent space, and (iii) decode latent space back to configurational space. The low-dimensional

embedding learned by the encoder is required for training the propagator and decoder.

Therefore, once the encoder has been trained, the propagator and decoder can be trained

independently and in parallel. The three back-to-back learning problems are independent

and may be trained in a sequential fashion. The fully trained pipeline generates physically

realistic molecular trajectories that are distinct from training data but still reproduce ac-

curate thermodynamic and kinetics. Full details of the approach are reported in Sidky et

al.7 and an open-source and user-friendly Python package implementing the LSS approach

is available from www.github.com/Ferg-Lab/LSS. Here we provide a brief description of the
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mathematical basis and numerical implementations underpinning each of the three steps.

2.3.1 Encoder: State-free reversible VAMPnets (SRVs)

For equilibrium systems obeying detailed balance, the transfer operator T propagates the

probability of microstates with respect to the equilibrium distribution. T possesses a com-

plete set of eigenfunctions {ψi(x)} with real eigenvalues 1 = λ0 > λ1 ≥ λ2 ≥ . . .,5,72–74 where

the first eigenvector and eigenvalue pair correspond to the equilibrium distribution and the

implied timescales of higher order relaxation processes are determined by ti = −τ/ lnλi.5

SRVs approximate these eigenvectors ψ̃i(x) =
∑

j sijχj(x) from molecular features x using

the variational approach to conformational dynamics (VAC), 72,75 wherein deep canonical

correlation analysis (DCCA)76 is used to solve for both an optimal basis {χj} and optimal

expansion coefficients sij.5,72 Featurized molecular coordinates are used to train a twin-lobed

deep neural networks to minimize a VAMP-r loss function LSRV = −
∑

m λ
r
m,6 where the

number of slow modes to retain m is identified by a gap in the eigenvalue spectrum, and

it is typical to adopt r=2. Collective couplings between the degrees of freedom in a molec-

ular system generically give rise to a separation of time scales and typically enabling the

identification of a slow subspace.7 After training, the SRV represents an encoding E from a

molecular trajectory to a m-dimensional latent space (Figure 2A). Conceptually SRVs can

be considered a nonlinear generalization of time-independent components analysis (tICA) 3,77

in which the basis functions are learned from the data. SRVs are identical to the DeepTICA

approach subsequently introduced by Bonati et al. 78 In applications to the PROTAC system,

we employed an SRV network comprising two fully connected hidden layers of size 100, a

four-dimensional latent space, and a lag time of 200 ns. Training was conducted using the

Adam algorithm79 , a batch size of 5000, a learning rate of 0.0005, and tanh activations, and

1 epoch.
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2.3.2 Propagator: Mixture density networks (MDNs)

Mixture density networks (MDN) are used in the LSS framework to propagate SRV coordi-

nates and generate low-dimensional synthetic trajectories. Rather than “memorizing” exact

trajectories, MDNs use a mixture of Gaussian probability distributions to learn microscopic

transition density elements pτ (ψt+τ |ψt) given a sufficiently large lag time time τ and a latent

space ψ(x) spanned by the leading slow modes of T . MDNs supplement mixture density

models with deep neural networks for the specialized task of learning multimodal proba-

bility distributions.80,81 Transition densities are represented by a linear combination of C

m-dimensional Gaussian kernels φc,

pτ (ψt+τ |ψt) =
C∑
c=1

αc(ψt)φc(ψt+τ ;µc(ψt),σc(ψt)), (1)

During training, the ψt-dependent Gaussian means µc, variances σc, and linear mixing coef-

ficients αc are learned from training data projected by the SRV encoder into the latent space

such that the loss function LMDN = −
∑

γ ln pτ (ψ
γ
t+τ |ψ

γ
t ) is minimized across time-lagged

training pairs γ (Figure 2B). A softmax activation is used for αc to ensure mixing coefficients

sum to unity, and µc are bounded from [0, 1] by sigmoid activations. During inference, the

MDN acts as a latent space propagator P iteratively samples transition densities pτ (ψt+τ |ψt)

from some initial ψ0 to advance the system through time. Importantly, propagation is con-

ducted entirely within the latent space meaning that the system does not require repeated

decoding and encoding from configuration space in order to propagate the dynamics. This

avoids the computational overhead associated with encoding and decoding at each timestep

and any potential accumulation of errors from repeated decoding and re-encoding. 82,83 New

trajectories are generated by a sampling transition densities approximated by transition

statistics in the training data. The MDN therefore represents a microscopic generator con-

sistent with the learned microscopic dynamics within the training data that can produce

novel dynamical pathways through the latent space that are not simply carbon copies of the
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training trajectories. In applications to the PROTAC system, we employed a MDN network

comprising two hidden layers of size 100, swish activations, 50 Gaussian kernels, a lag time

of 200 ns, and a four-dimensional latent space. We have observed that adding additional

Gaussian kernels increases training time but does not offer further improvement in expres-

siveness or accuracy. Training was conducted for 5000 epochs using the Adam algorithm, 79

a batch size of 100,000, and a learning rate of 0.001.

2.3.3 Decoder: Conditional Wasserstein GAN (cWGAN)

The LSS decoder uses a conditional Wasserstein generative adversarial network (cWGAN)

to reconstruct synthetic configurations from low-dimensional synthetic SRV coordinates. 84,85

Adversarial training is performed between a generator G(z) that outputs molecular config-

urations from inputs z ∼ Pz(z) and a critic C(x) that evaluates the quality of a molecular

configuration x (Figure 2C). The networks are jointly trained to minimize a loss function

based on the Wasserstein (i.e., earth mover’s) distance,

LWGAN = max
w∈W

Ex∼Px [Cw(x)]− Ez∼Pz [Cw(G(z))], (2)

where Px(x) is the distribution over molecular configurations sampled by the MD training

trajectory and {Cw}w∈W is a family of K-Lipschitz functions enforced through a gradient

penalty.84,85 To generate molecular configurations consistent with particular states in the

latent space we pass ψ as a conditioning variable to G and C 86 and drive the generator with

d-dimensional Gaussian noise Pz(z) = N (0,1) ∈ Rd. Conceptually, the cWGAN can be

thought of as generating molecular configurations with particular states of the slow modes

defined by a conditioning on the latent space coordinates and filling in the fast modes from

the learned distribution over these modes contained within the training data. As such, the

noise enables G to generate multiple molecular configurations with different states of the

fast modes consistent with each conditioning latent space location that specifies the state of
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the slow modes. In applications to the PROTAC system, we employed a cWGAN network

comprising a generator and discriminator that each used 200 nodes per hidden layer and

were trained using the Adam algorithm79 for 400 epochs and a batch size of 5000. The noise

dimension of the generator was set to 50. Gradients of the discriminator were updated five

times more frequently than those of the generator.

2.3.4 Deployment

After training the three components of the LSS pipeline the encoder, propagator, and de-

coder are assembled back-to-back and used to generate novel synthetic trajectories at a

fraction of the cost of MD. First a single initial configuration is passed through the encoder

to initialize a starting coordinates in the slow latent space. The propagator is then used to

efficiently generate a novel synthetic trajectory through the latent space. Importantly, since

the propagator was trained to learn the transition density elements in this space that are

subsequently sampled, it is not constrained to produce carbon copies of the training trajec-

tories, but rather stochastically generates novel trajectories consistent with the statistics of

the learned microscopic dynamical generator underpinning the molecular system. The latent

space is intrinsically low-dimensional since it retains only the leading slow dynamical modes

of the molecular system and this dynamical coarse-graining makes it both tractable to learn

the transition density elements within this space during learning and extremely efficient to

sample from them to propagate the dynamics during inference. Finally, the decoder oper-

ates upon the latent space trajectory produced by the propagator to generate representative

molecular structures corresponding to each instance of the trajectory. One can choose to

stochastically sample a single configuration corresponding to each instant or an ensemble of

configurations that will retain the same slow modes but different representations of the fast

modes not contained within the latent space. In applications to the PROTAC system, we

employed the trained LSS pipeline to generate a 1.3 million-frame Cα trajectory at a step

size of 200 ns, corresponding to 260 ms of simulations data. This constitutes ∼40× more
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data than was contained in the Folding@Home training data, is temporally and spatially

continuous single trajectory, and required only ∼4 GPU-minutes to generate on an NVIDIA

GeForce RTX 2080 GPU card.

A

D

B C

Figure 2: Schematic of LSS and Multi-LSS architecture, training, and deployment. A) The
LSS SRV encoder is trained on molecular dynamics trajectories to learn a low-dimensional
latent space embedding into a slow subspace spanned by the maximally autocorrelated (i.e.,
slowest relaxing) dynamical modes as the optimal coordinates for construction of a long-time
kinetic model. B) The LSS MDN propagator is trained on time-lagged projections of training
data into the latent space to predict transition densities within the learned slow latent space.
C) The LSS cWGAN decoder is trained generate molecular configurations conditioned on
latent coordinates. D) The Multi-LSS for a bimolecular system is trained by separating
MD trajectories into four distinct components: DS – the global system comprising both
molecules; S1 and S2 – the independent subsystems comprising each molecule, and DoF –
the relative translational and orientational degrees of freedom defining the spatial location
of S2 relative to S1. Independent encoders and decoders are trained for S1, S2, and DS.
The latent spaces for these three systems are concatenated and the dynamical evolution
propagated simultaneously. DoF relative distance and relative orientation propagators are
trained sequentially and used to place S2 relative to S1. S1 and S2 decoding is employed
when the two molecules are in a non-interacting regime and their dynamical evolution is
weakly coupled. DS decoding is employed when the two molecules are interacting and their
dynamical evolution is strongly coupled. A switching function is employed to distinguish
which regime is active and therefore which decoding strategy to employ.

16



2.4 Multi-molecular latent space simulator (Multi-LSS)

Multi-molecular or loosely coupled systems have been shown to produce inefficiencies and in-

accuracies when modeled by MSMs and other global kinetic models. 9,33 These issues originate

from the approximately independent nature of the dynamical evolution of the constituent

subsystems that leads to an exponentially growing number of states – MN for N subsys-

tems each containing M metastable states – that are required to describe such a system.

Many of these states are physically degenerate and this state-space requires exponentially

more simulation time to adequately sample and necessitates learning of an exponentially

larger transition matrix. A primary outcome of this work is to address these challenges with

the development of a multi-molecular generalization of the LSS (Multi-LSS) and demon-

strate its application to our DNA simulations as a prototypical multi-molecular system that

exhibits weak coupling between the two single strands in the dehybridized state. In the

following sections, we described architectural components of the Multi-LSS to enable (i) sep-

arate encoding of each subsystem as well as the global system, (ii) serial propagators that

ensure physical agreement between the global system and individual component, and (iii)

a switchable decoding strategy that can reconstruct the complete structure at once in the

strongly-coupled regime or each component individually in the weakly coupled regime.

2.4.1 Encoder

In a multi-molecular system, SRV encoders are susceptible to learning many degenerate

modes representing closely related or identical slow processes in identical molecules. These

degeneracies can obscure faster but meaningful dynamics and require much higher dimen-

sional representations. Similar challenges have been noted in MSMs of multi-molecular sys-

tems.9,36 To address this issue in our DNA system, we built three distinct SRVs corresponding

the DS – the global system comprising both molecules – and S1 and S2 – the independent

subsystems comprising each molecule individually – components of the system. Each SRV

was trained using identical network hyperparameters of two hidden layers of size 100, a ReLu
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activation, 50,000 batch size, 10 training epochs, and 0.001 learning rate. A lag time of 1

ns was selected based on the convergence of leading timescales and the implied timescale of

the fastest relevant dynamics in each model. The two leading modes were retained for each

SRV, which were combined into a six-dimensional space describing the slowest dynamics –

including hybridization, fraying, and hairpin folding – of each strand and of the system as a

whole. The leading two modes of the DS encoder correlated highly with hybridization and

terminal fraying dynamics, respectively, while the leading modes of the S1 and S2 encoders

are correlated with hybridization and hairpin folding. Although we retained an equal number

of modes from each system, this is not a requirement and, in general, enough modes should

be selected to adequately represent the slow system dynamics as informed by a gap in the

spectrum of SRV implied time scales.

2.4.2 Propagator

In a unimolecular system, a single set of SRV modes are used for training and propagated

at a specified lag time.7 In multi-molecular systems, however, the slow dynamics of each

subsystem must be preserved and propagated while maintaining correct correlations and

physical constraints between each subsystems. To accomplish this for our DNA system, we

concatenate the leading modes from each of the DS, S1, and S2 systems and train a unified

MDN to generate synthetic trajectories through this six-dimensional latent space. Although

S1 and S2 modes capture enough global information to coarsely resolve the hybridization

process, we find that the intermolecular features distilled by the DS modes substantially

improve this resolution and report on more subtle processes such as termini fraying, which

are not captured by S1 and S2 alone. We used an architecture of two hidden layers of size

100, a batch size of 100, 100 training epochs, 0.001 learning rate, 1 ns lag time, and 50 mix-

ture components each corresponding to a trainable mean, standard deviation, and mixture

contribution which are optimized during training. In order to recover the relative orienta-

tion of S1 to S2, we also propagated the translational and rotational DoFs computed from
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the training data. To ensure physical agreement with the synthetic low-dimensional space,

we find that it is important to condition DoFs on past DoF coordinates as well as current

SRV coordinates. Specifically, we first propagate the translations T using pτ (Tt+τ |Tt, ψt+τ )

then use this information to propagate the rotations R as pτ (Rt+τ |Rt, Tt+τ , ψt+τ ). In this

way the propagators corresponding to SRV coordinates, relative translations, and relative

rotations, can be trained in series to ensure correct internal states and relative positions.

Although we do not enforce detailed balance when training the MDN in this work, we have

found comparable results when training on time-reversed data (Figure S1 in the Supporting

Information) and note that an equilibrium data set can be augmented with time-reversed

data to implicitly enforce detailed balance via a data augmentation strategy.

2.4.3 Decoder

As was done for the encoder, we train separated decoders for each of the encoded system

components. For the DNA system, this means training independent decoders for DS, S1,

and S2. The training configuration coordinates for each systems were aligned as described

in Section 2.2. The S1 and S2 decoders were trained on all available configurations. Since

the DS decoder is only used to generate configurations when the two strands are interacting

we simplify its training and enhance its performance by including configurations with at

least one WCF interaction (i.e., at least one pair of complementary base pairs within a 1 nm

cutoff) in training. Before training, all SRV coordinates and aligned Cartesian coordinates

were concatenated across trajectories and sub-sampled every 1 ns (10 frames). The same

cWGAN architecture and training procedure was used for each decoder and consisted of

two 100-dimensional hidden layers, 5 discriminators, a batch size of 1000, and 5000 training

epochs. The latent (input) dimension was defined by total number of SRV input modes, and

the output dimension was 3N where N is the total number of atoms in the structure (64 for

DS, 32 for S1 and S2).

For each set of low-dimensional synthetic coordinates, reconstruction was performed for
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the DS, S1, and S2 decoders. Although we learn a general model for the dynamics, we em-

ploy two switchable decoders to (i) capture fine-grained details of hybridized configurations

or (ii) accurately place and orient dissociated strands with respect to one another. The DS

decoder produced configurations of both strands directly and required no post-processing.

The relative orientations of synthetic S1 and S2 were obtained from the propagated DoFs

(Section 2.4.2) and the two strand were re-aligned using Procrustes alignment as detailed

in Section 2.2.52,53 These represent two independent approaches to reconstruction producing

either a DS configuration and a S1+S2 configuration. Although either decoded configura-

tion can be used, the DS approach is expected to produce higher fidelity structures when

strands are interacting since it explicitly accounts for interactions between the strands in the

associated state whereas the S1+S2 model treats the two strands as independent dynamical

systems. Conversely, the S1+S2 model is expected to be superior when the two strands

are separated in the dissociated state since each strand does now evolve as an independent

subsystem and training of the DS model is compromised by the exponential explosion in

number of equivalent and degenerate states of the two non-interacting strands. Empirical

testing reveals the DS decoder to outperform the S1+S2 when the predicted center-of-mass

between strands is less than 1 nm, and the converse to be true for distances greater than 1

nm (Figure S2). As such we employ a switching procedure such that the DS decoder is used

at predicted center-of-mass distances between strands of less than 1 nm, and the S1+S2 de-

coder otherwise. In practice, we find the reconstruction accuracy to be relatively insensitive

to the exact choice of this cutoff over the range [0.8, 1.6] nm.

2.4.4 Deployment

For the DNA system, we trained LSS models at a variety of temperatures in the range 310 K

to 330 K and implicit NaCl concentrations in the range 25 mM to 400 mM. The encoder and

decoder were trained only under “wild type” (WT) conditions at 320 K and 100 mM NaCl.

We then used the trained encoder and decoder transferably within Multi-LSS models at other

20



temperatures and salt concentrations under the assumption that the state space explored

by the system under these conditions is sufficiently representative of the other conditions to

provide an adequate encoding and decoding under the changed conditions. As we will show,

this proved to be a good approximation and validated the transferability of the encoder and

decoder. To account for the altered kinetics, independent propagators were trained for each

temperature and ion concentration. After training was complete, we deployed the trained

LSS models under each set of conditions to generate 10×200 µs trajectories, half commencing

from a hybridized duplex and half from a dissociated state, to produce 10× more trajectory

data than was contained in the training ensemble.

3 Results & Discussion

3.1 Application of LSS to PROTAC ternary complex

Our first goal was to train an LSS model of the PROTAC ternary complex illustrated in

Figure 1 from ∼5.7 ms of short simulation trajectories of median length ∼650 ns generated by

distributed computing using Folding@Home. 32 The ternary complex comprises a 149-residue

VHL protein that is complexed with the 115-residue bromodomain of the SMC2 protein by

the PROTAC2 molecule. The SMC2 is the degradation target of anti-cancer therapies 87

and the VHL protein is the substrate recognition domain of the multi-protein Cullin-RING

E3 ubiquitin ligase (CRL) that ubiquitinates and marks for proteosomal degradation target

proteins bound by VHL.87,88 The PROTAC2 molecule is heterobifunctional, with one end

comprising a binding moiety specific to VHL and the other to the SMC2 protein of interest.

The PROTAC mechanism of action is to effectively modulate VHL substrate specificity by

mediating its binding to proteins of interest. By recruiting VHL into a complex with SMC2,

the CRL is brought into proximity of SMC2 to ubiquitinate and selectively mark it for

proteosomal destruction.

Prior work by Dixon et al.24 suggests that the thermodynamics of the bound ternary com-
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plex mediated by the PROTAC molecule are an insufficient correlate of the observed degra-

dation efficiency for the three PROTAC molecules PROTAC1, PROTAC2, and ACBI1. Of

these three molecules, distinct binding poses of SMC2 relative to VHL were associated with

ACBI1 and PROTAC1, and ACBI1 promoted higher degradation activity than PROTAC1.

The ternary complex induced by PROTAC2 was hypothesized to oscillate between the two

binding poses and underpin the observed degradation activity intermediate to PROTAC1

and ACBI1. Taken together, this led Dixon et al. to propose a dynamical basis for PRO-

TAC activity based on the relative stability and net residence time within a binding pose

of SMC2 relative to VHL favorable to CRL ubiquitination. 24,87 This ensemble is challenging

to study experimentally given that its constituent states may not be favored by crystal-

lization,89,90 but it is also non-trivial to quantify and sample the ensemble computationally

without appropriate collective variables.

These findings motivated the two objectives for the present work. First, to demonstrate

training of LSS models over short trajectories generated by distributed computing and use

of the trained model to efficiently produce long spatially and temporally continuous molec-

ular trajectories. For large molecular systems such as the PROTAC ternary complex, these

single, long trajectories would be exceedingly expensive – if not impracticable – to produce

by direct molecular simulation, but are very valuable in exposing the dynamical transitions

and putative transition states between metastable minima and enabling dense sampling of

transition pathways to achieve good statistical power in kinetic estimates of rate constants

and dwell times. Second, we seek to determine if the LSS pipeline, and in particular the

SRV encoder, can identify and parameterize the important configurational motions char-

acterizing the transition between the two metastable VHL/SMC2 binding poses mediated

by PROTAC2. We hypothesize that if this is a sufficiently slow transition, that the SRV

should be capable of learning this dynamical motion in a completely unsupervised manner

and discovering a collective variable (CV) parameterizing this transition as a component of

the learned latent space. The trained LSS model can furnish an efficient dynamic simulator
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to interrogate and sample these transitions to both expose mechanistic understanding of this

conformational change and furnish a learned slow CV as a good discriminant of the two

poses and putative metric for rational design of novel PROTAC molecules by computational

screening.

SRV encoder learns slow collective variables to explain differential PROTAC

degradation efficacy

We trained a LSS model for the VHL-PROTAC2-SMC2 ternary complex over 5.7 ms of dis-

continuous trajectories generated by distributed computing using Folding@Home. 32 We first

interrogate the slow modes learned by the trained SRV encoder that define the slow latent

space and correlate these with particular conformational motions of the ternary complex.

Four leading slow modes were resolved by the SRV encoder resulting in a 4D latent space

ψ = {ψ0, ψ1, ψ2, ψ3}. We illustrate in Figure 3 a projection of the aggregated 5.7 ms of

training trajectories into the latent space by passing each configuration through the trained

SRV encoder. Corresponding free energy landscapes are presented in Figure 4. The latent

space possesses five metastable basins containing particular metastable macrostates of the

ternary complex. In some cases the discontinuous training trajectories densely sample the

intermediate configurations linking these basins, and in other cases the transition pathway

is more sparsely sampled. A key benefit of the LSS paradigm is to patch together the dy-

namical information contained within these discontinuous trajectories into a single kinetic

model capable of generating long temporally and spatially continuous trajectories that can

inexpensively generate transitions between these states. Of course, transitions that are sam-

pled more densely in the training data are better parameterized in the LSS model, whereas

the model is forced to interpolate intermediate configurations between metastable states for

which transitions are less well represented in the training data. We return to this point

below and discuss means to adaptively improve sampling undersampled transition states in

the Conclusions.
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Figure 3: Analysis of slow latent space of the VHL-PROTAC2-SMC2 ternary complex. A-
D) Projecting the 5.7 ms of Folding@Home training data into the 4D latent space exposes
a simple “starburst” topology in which the metastable states are located at the termini of
spikes emerging from a central hub located at the origin. The embedded points are colored
by the helical fraction of the N-terminus SMC2 helix (left) and the “interface distance” (black
arrow in D) measuring the linear displacement between the top of the SMC2 helix and the tip
of the VHL tongue (right). Representative configurations at various locations in the latent
space (red) are superposed on a representative configuration from the central hub (blue)
to illustrate the structural changes associated with excursions along each of the learned
slow modes {ψ0, ψ1, ψ2, ψ3} spanning the axes of the latent space. Structural variations of
interest relative to the hub are shown by opaque coloring, and the remaining structure is
show transparently. Green arrows are labelled by the correspond ψ coordinate and highlight
the following transitions associated with each metastable state: A) folding/unfolding of the
two SMC2 terminal helices, B) stacking/unstacking of two helices near the C-terminus of
VHL, C) hinged opening/closing of the VHL-SMC2 interface, D) screw-like rotation of the
VHL-SMC2 interface. E) Free energy surface of the training data projected into ψ2.

The projection of the training data into the latent space defines a manifold with a rela-

tively simple “starburst” topology in which the metastable states are located at the termini of

spikes emerging from a central hub located at the origin (0, 0, 0, 0). This structure indicates

that transitions between metastable states tend to proceed through the central hub rather

than via direct interconversions. To gain intuition into the conformational motions associ-
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Figure 4: Thermodynamic and structural comparison between the 5.7 ms of discontinu-
ous Folding@Home training trajectories and the continuous 260 ms synthetic LSS trajec-
tory containing the same number of frames. A-D) Free energy surfaces are estimated as
βF (ψ) = − lnP (ψ) + C, where P (ψ) is the empirical probability distribution of the train-
ing data projected into the 4D slow latent space, β = (kBT )

−1 is the reciprocal temperature,
and C is an arbitrary additive constant reflecting our ignorance of the absolute free energy
scale. For visual clarity, we present 2D projections of the 4D free energy landscape con-
structed by marginalizing over the omitted dimensions. Since only free energy differences
are meaningful, we adjust the arbitrary additive constant in each plot such that the minimum
free energy is zero. The training and synthetic free energy landscapes are in good agreement.
Representative structures from the hold-out training (blue) and synthetic (red) trajectories
are extracted from the same location in the latent space indicated by the star, translation-
ally and rotationally superposed, and the Cα RMSD reported. Opaque residues highlight the
regions of interest within the ternary complex associated with structural changes relative to
the hub configuration at the origin of the latent space (cf. Figure 3): A) unfolding of the two
SMC2 terminal helices, B) stacking of two helices near the C-terminus of VHL, C) hinged
opening of the VHL-SMC2 interface, D) left-handed screw-like rotation of the VHL-SMC2
interface. The synthetic configurations faithfully reproduce the structural changes exhibited
in the training data.
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ated with excursions along each of the four slow modes ψ = {ψ0, ψ1, ψ2, ψ3} parameterizing

the axes of the slow latent space, we color the embeddings according to candidate physical

variables. We color the left plot in Figure 3 presenting the {ψ0, ψ1, ψ2} projection by the

helical fraction of the N-terminus SMC2 helix, and the right plot presenting the {ψ0, ψ1, ψ3}

projection by the “interface distance” measuring the linear displacement between the top of

the SMC2 helix and the tip of the VHL tongue. We also visualize a number of representative

configurations at selected locations in the latent space as red ribbon diagrams, and overlay

these with the hub configuration rendered in blue. We use opaque shading to highlight the

distinct structural characteristics of each metastable state relative to the hub and green ar-

rows to highlight the structural difference between the two configurations associated with

excursions along a particular dimension of the latent space and therefore the physical CVs

associated with each learned slow mode.

Commencing from the central hub configuration, excursions along ψ0 to the metastable

state located at approximately (−4, 1, 0, 0) correspond to partial unfolding of helices at the

N-terminus and C-terminus of SMC2 (Figure 3A). We note that there is a discontinuity along

ψ0 reflecting the absence of transitions along this mode in the training data, and we discuss

below the impact of this gap on the kinetics. Excursions along ψ1 from the central hub to

the metastable basin at approximately (1, 4, 0, 0) correspond to stacking of helices at the

C-terminus of VHL (Figure 3B). Accordingly, the first two learned slow modes correspond

to conformational changes within the SMC2 and VHL proteins distal from their binding

interface mediated by the PROTAC2 molecule. The VHL helix stacking associated with the

second mode may be relevant to recruitment/interaction with the other members of the CRL

complex, but are likely to be suppressed once VHL is complexed with Elongin B, Elongin C,

and Cul2 within the CRL (Figure 1). Additional simulations of VHL within the CRL would

be necessary to resolve this issue.

The conformational changes associated with excursions along ψ2 and ψ3 correspond to

global processes centered on the binding interface that change the relative orientations of
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SMC2 and VHL. Excursions along ψ2 to the basin at approximately (0, 0, 5, 0) are correlated

with hinged opening of the SMC2-VHL interface (Figure 3C), driven by the loss of inter-

molecular contacts between SMC2 and the VHL tongue. Excursions along ψ3 to the basin at

approximately (0, 0, 0, 3) are correlated with a left-handed screw-like motion of VHL relative

to SMC2 (Figure 3D). The hinge-like collective motions along the learned slow modes ψ2

is valuable understanding and rationalizing the SMC2 degradation efficacy of PROTAC2.

Comparing Figure 3C to Figure 7e in Ref.,24 we observe that ψ2 is well-suited to describe

the transition between two distinct poses of VHL and SMC2 when linked by PROTAC2. In

particular, the closed-hinge configuration at the hub state (Figure 3C, blue) is similar to the

pose induced by the ACBI1 linker with higher degradation efficiency, and the open-hinge

configuration is similar to that induced by the PROTAC1 linker with lower degradation

efficiency (Figure 3C, red). Dixon et al. hypothesized that the intermediate degradation effi-

ciency of PROTAC2 relative to ACBI1 and PROTAC1 resulted from its dynamic oscillation

between both of these binding poses, one of which (closed-hinge, ACBI1) is more favorable

in promoting ubiquitination in the CRL than the other (open-hinge, PROTAC1). 24

The 1D free energy landscape in ψ2 provides an estimate of the relative stability of these

two binding poses (Figure 3E). Sampling multiple ligase-target binding poses permits the

design of PROTAC molecules according to these different poses, thus amplifying the oppor-

tunity of a successful design. Under Dixon et al.’s hypothesis, shifting the population to the

closed-hinge configuration should improve degradation efficiency. As such, this landscape

presents a means to predict the degradation efficiency of novel PROTAC molecules from

molecular simulation data by estimating the relative stability of the desired closed-hinge

binding pose. This presents a putative objective function and optimization metric for the

computational design and evaluation of novel PROTAC molecules. Moreover, the ψ2 CV

learned by the SRV could be used as an order parameters for enhanced sampling calcu-

lations to accelerate sampling of this rare transition to reduce the computational cost of

the all-atom molecular simulations necessary to achieve converged thermodynamic stability

27



estimates.78,91–93

In sum, one of the slow modes learned from the training data by the SRV in an unsuper-

vised manner and without any prior physical knowledge characterizes the structural changes

associated with dynamical motions between open-hinge and closed-hinge VHL-SMC2 bind-

ing poses. The relative population of these poses has been conjectured to correlate with

PROTAC degradation efficiency, and the free energy landscape in this learned CV offers a

quantitative metric for PROTAC evaluation and design. Finally, the learned CV itself can be

implemented within enhanced sampling calculations to accelerate convergence of molecular

dynamics simulations and enable a high-throughput virtual screening (HTVS) campaign for

in silico screening of PROTAC candidates.

LSS generates realistic ultra-long simulation of PROTACs

We now test the thermodynamic and kinetic consistency of the trained LSS model and use

it to efficiently generate ultra-long continuous simulation trajectories to predict, expose, and

densely sample conformational mechanistic changes. The LSS model was trained over 5.7

ms of discontinuous Folding@Home trajectories produced at a cost of ∼7000 GPU-years,

but the trained model can generate a 260 ms spatially and temporally continuous trajectory

containing the same number of frames in less than 4 GPU-minutes. Short segments of

the LSS trajectory showing the conformational transitions associated with each of the four

dimensions of the latent space are provided as Movies S1-4 in the Supporting Information.

Having produced this long synthetic trajectory, we now assess its thermodynamic, structural,

and kinetic consistency with the training data.

Thermodynamically, we compare in Figure 4 the free energy landscapes over the slow

latent space constructed from the 5.7 ms Folding@Home training data and the 260 ms

synthetic LSS trajectory. For visual clarity, we present 2D projections of the full 4D free

energy landscape. Despite being initiated from a single seed, the synthetic trajectory fully

explores all of the metastable states of the system, and the location and relative stability of
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these states are in good agreement between the training and synthetic data. As anticipated

from the topology of the latent space, transitions between the metastable minima residing at

the tips of the “spikes” in each latent space dimension always proceed through the hub state

located at the origin. The length of the LSS trajectory means that thousands of transitions

in and out of the hub state are observed, and each metastable state is visited a minimum

of 75 times. The synthetic data exhibits slightly denser sampling of the interstitial regions

between the metastable basins. The transition pathways by their very nature tend to lie in

high-free energy regions of configurational phase space and are therefore only transiently and

sparsely sampled in the Folding@Home training data. It is not surprising, therefore, that the

free energy predictions of the LSS model in these regions are in less good agreement than in

the metastable free energy minima. Furthermore, although the Folding@Home trajectories

had a median length of ∼650 ns, these appear to have been sufficiently long to sample all

relevant dynamical transitions between metastable states and furnish a fully-connected LSS

model capable of visiting all relevant regions of the latent space.

Structurally, we assessed the decoder’s ability to properly reconstruct molecular struc-

tures from the latent space. We present next to each pair of free energy landscapes in Figure

4 representative configurations harvested from the training and synthetic data from various

metastable minima in the latent space free energy surfaces. We encoded and decoded the

60,000 frames within the 5% hold-out test partition not included in the LSS training pipeline

and computed the mean Cα root mean squared deviations (RMSD) between the true and

reconstructed configurations. This data set contained at least 780 frames in each of the

metastable minima discussed above. We observe very good agreement between the training

and synthetic structures in all metastable minima, achieving Cα root mean squared devia-

tions (RMSD) of (0.85 ± 0.12) nm or better. Visual inspection confirms that the expected

conformational changes associated with these metastable minima (cf. Figure 3) are correctly

predicted by the synthetic LSS structures. Overall, low RMSD values show that the LSS

decoder produces a distribution of predicted molecular structures in good agreement with
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the distribution in the training data, and local structural agreement as a function of ψ shows

the distribution is properly conditioned by the latent space coordinates. Conceptually, the

ψ conditioning informs the decoder as to the status of the four slow degrees of freedom

identified by the SRV and encoded in the latent space, and the decoder then generates an

ensemble of molecular configurations with different fast degrees of freedom that are annealed

to the state of the slow collective variables and correctly match the distribution observed in

the training data.

Kinetically, we compare the LSS model with the training data in two ways. First, we

computed the autocorrelation times associated with the four slow modes {ψ0, ψ1, ψ2, ψ3} cal-

culated from the 5.7 ns of discontinuous Folding@Home trajectories and compare these with

the implied timescales learned by the trained SRV encoder (Table 1). The good agreement

between these values indicates that the SRV encoder is faithfully learning the dynamical

relaxations associated with these leading slow modes. Second, we computed the slow mode

autocorrelation times from the synthetic LSS trajectory. These timescales are in similar

agreement with those computed from the training data, with the exception of the leading

slow timescale associated with ψ0, which was accelerated by almost an order of magnitude in

the synthetic data. We attribute this to the fact that no transitions along ψ0 were observed

in the training data, and therefore we do not possess an accurate ground-truth estimate

for this timescale. Interestingly, despite there being no transitions in the training data, the

MDN propagator learns to make transitions in ψ0 to sample to and fro between the central

hub configuration at the origin of the latent space and the metastable state with unfolded

SMC2 helices at approximately (−4, 1, 0, 0). Empirically, we observe that during training

the propagator initially transitions between all states very rapidly and first optimizes ther-

modynamic agreement, it then gradually slows the kinetics down to approach those of the

training data. The propagator is, of course, not capable of learning the kinetics for unsam-

pled transitions, and the learned LSS time scales are therefore an unconverged estimate for

a ground truth time scale to which we do not have access in the training data. We expect
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that if we were to train the MDN propagator for a substantially longer number of epochs,

the LSS may cease hopping across ψ0 entirely to reflect that this transition does not occur

in the training data. The timescale agreement in the higher-order modes is much better

and we attribute this agreement to superior sampling of transitions in {ψ1, ψ2, ψ3}. Some-

what fortuitously, the synthetic trajectory timescale of the ψ2 mode – the mode associated

with VHL-SMC2 interface hinging and the most relevant mode for PROTAC engineering –

is in agreement to within error of that estimated from the training data. Further work is

warranted to better understand the effect of median trajectory length and undersampling of

transition pathways in training LSS models on short, discontinuous training trajectories, but

this application has demonstrated that it is possible to train a converged LSS model with

excellent thermodynamic and structural accuracy, and good kinetic accuracy except in the

case of very sparse sampling of particular conformational changes.

Table 1: Comparison of the timescales of the learned slow dynamical modes calculated from
(i) the encoder eigenvalues, (ii) the Folding@Home training data autocorrelation times, and
(iii) the LSS synthetic data autocorrelation times.

Leading kinetic Timescales
Leading Modes ψ0 ψ1 ψ2 ψ3

SRV Leading Timescales 384 253 73.5 17.9
Training Autocorrelations 332 ± 50.0 280 ± 67.5 67.0 ± 16.8 12.7 ± 0.7
Synthetic Autocorrelations 58.5 ± 18.7 187 ± 24.8 79.2 ± 3.4 8.4 ± 0.7

3.2 Application of Multi-LSS to DNA system

Our second goal was to train a Multi-LSS model for a DNA system that reversibly folds

into duplex and hairpin states under equilibrium conditions. The duplex state tends to be

strongly favored over the hairpin state due to more stabilizing WCF base pairings and base

stacking interactions. This equilibrium towards the duplex states motivates the use of hair-

pins as “molecular fuel” in various DNA nanotechnology applications, 42,43 and their relative

stabilities can be modulated by changing environmental conditions, 43 chemically modifying

base pairs,94 or selectively adding mismatches to destabilize the hybridized state. 95–97 In
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this work, we employ the latter technique, adding three mismatched T-T base-pairs to an

otherwise G-C rich, self-complementary DNA duplex. The resulting system consists of two

identical DNA strands 5′-GCGGTTTCCGC-3′ capable of forming up to eight complemen-

tary WCF pairs in the duplex state and four pairs in the hairpin state. We model this system

using the computationally efficient coarse grained 3SPN.2 model 58 that enables us to rela-

tively easily conduct 200 µs of simulations. Nevertheless, the hybridization/dehybridization

dynamics are sufficiently slow that we only sample ∼20 of each event within these training

data. This motivates the construction of efficient Multi-LSS simulators to learn the mi-

croscopic dynamics of these processes over relatively modest numbers of dynamical events,

and then use the trained model to efficiently and densely sample these rare events to gain

improved statistical resolution of kinetic observables.

Multi-LSS trajectories preserve DNA structures and thermodynamics

We first trained a Multi-LSS on 10 × 20 µs = 200 µs training trajectories collected under

“wild type” (WT) conditions of 320 K and 100 mM NaCl concentration. We then employed

the trained model to produce 10 × 200 µs = 2 ms spatially and temporally continuous

synthetic trajectories. We first test the thermodynamic and structural consistency of the

synthetic trajectories with the training data. In Figure 5 we present a comparison of the free

energy surfaces collected over the 200 µs training data and 2 ms synthetic data. We project

these into a consistent basis defined by the two leading TICA modes (TICs) computed over

a translationally and rotationally invariant featurization comprising the 231 intra-molecular

and inter-molecular distances as a more visually interpretable low-dimensional embedding of

the 6D SRV latent space.3,98,99 The training and synthetic data both occupy the same phase

space volume and define a bimodal free energy surface comprising a deep global minimum

at (−1.3, 0) containing the duplex state and a broader, shallower local minimum centered

at (0.6, 0) containing the dehybridized state. The dehybridized basin exhibits two lobes

at (0.6, 1) and (0.6,−1) corresponding to the single-strand hairpin configurations. These
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lobes are slightly less pronounced in the synthetic data and – as was observed for the ternary

complex – the transition pathway between the two metastable states are slightly oversampled

by the Multi-LSS. As we discuss below in our analysis of the kinetic predictions of the model,

this leads to a mild ∼10% acceleration of the hairpin transitions in the trained LSS model

relative to the training data. Nevertheless, the landscapes are in quantitative agreement to

within better than ∼1 kT. Representative structures visualized at particular locations over

the embedding are also in excellent agreement between the training and synthetic data, with

the synthetic model generating physically realistic configurations with properly formed intra-

molecular and inter-molecular bond lengths, angles, and energies. In Figure S3 we present

a comparison of the distribution of WCF bond lengths, hairpin bond lengths, and backbone

dihedral angles and observe excellent agreement between the training and synthetic data.

We further probe the thermodynamic and structural properties of the two models by ana-

lyzing the distribution of hybridized vs. dehybridized states for the pair of strands and hairpin

vs. coil configurations for each single strand. In Figure 6A we color the TICA embeddings

of the training and synthetic data according to three physical variables: the inter-strand

center-of-mass distance (ISD), the end-to-end distance of the first strand (EE1), and the

end-to-end distance of the second strand (EE2). The heatmaps visually confirm that TIC1

is strongly correlated with duplex formation and TIC2 with hairpin formation, and motivate

the construction of Figure 6B, in which we project all training and synthetic data into ISD,

EE1, and EE2. Distributions exposed by these histograms are very similar between training

and synthetic, particularly for the ISD distributions characterizing the relative proportion

of hybridized and dehybridized states. The EE distributions are also in good agreement and

place the probability maxima in the correct locations, but the shapes of the distributions

are slightly different and the synthetic data possess slightly longer low-EE tails. The longer

tails appear to be correlated with the generation of slightly more structurally diverse hairpin

states generated by the Multi-LSS. In Figure 6C we integrate over the population below a

distance cutoff of 1.5 nm for ISD, EE1 and EE2 to determine the fraction of duplex config-
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Figure 5: Thermodynamic of free energy landscapes computed by projecting the 200 µs
training and 2 ms Multi-LSS synthetic trajectories for the DNA system projected into a
2D TICA embedding. The training and synthetic data explore the same volume of phase
space and the relative free energy values are in quantitative agreement within ∼1 kT . The
landscaped define a bimodal topography with the deep global minimum on the left containing
the duplex state and the broader local minimum on the right containing the dehybridized
and hairpin states.

urations, S1 hairpins, and S2 hairpins, respectively. We calculate these fractions over each

trajectory independently and show the standard deviation between trajectories as error bars.

Because each synthetic trajectory contains 10× more data than a training trajectory, the

Multi-LSS allows us to substantially reduce our statistical uncertainties in reporting these

values. With respect to duplex formation, we report a melted fraction of (0.29±0.05) in

the synthetic data compared to (0.26±0.16) from training data. The estimated fraction of

folded hairpins in the synthetic data is consistent between S1 and S2 at (0.28±0.01) and in
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agreement with the value of (0.29±0.05) in the training data.

Figure 6: Structural comparison of the 200 µs training and 2 ms Multi-LSS synthetic tra-
jectories for the DNA system. A) The 2D TICA embedding colored by three physical CVs
corresponding to the inter-strand center-of-mass distance (ISD), the end-to-end distance of
the first strand (EE1), and the end-to-end distance of the second strand (EE2). The em-
beddings are consistent between training and synthetic trajectories. B) Violin plots of the
training and synthetic distributions along these three physical coordinates to expose the dis-
tributions of hybridized/dehybridized states for the pair of strands (ISD) and hairpin/coil
configurations for each single strand (EE1, EE2). C) Fraction of each CV that in a hy-
bridized or hairpin state as determined by a distance cutoff of 1.5 nm. The 10× longer
synthetic trajectories permit an approximately

√
10× reduction in the estimated statistical

uncertainties.

Multi-LSS trajectories preserve DNA hybridization and hairpin folding kinetics

After validating the thermodynamics of synthetic trajectories, we next evaluated if the Multi-

LSS preserves the correct kinetics of the system. While a naive MDN propagator could
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reproduce an equilibrium thermodynamic distribution by generating correctly distributed

configurations in an erroneous order, maintaining correct kinetics represents a more sub-

stantial challenge and validation of a properly trained Multi-LSS pipeline. In Figure 7A and

B we show segments of training and synthetic trajectories as a function of ISD and EE1

distances. Hybridized duplex and folded hairpin states are marked by sustained decreases in

ISD and EE1 values, respectively, and we observe qualitative similarities between the train-

ing and synthetic in terms of both the magnitude of the fluctuations and and the dwell times

in each state and frequency of the transitions. In Figure 7C, we quantify kinetics of ISD,

EE1, and EE2 by computing their autocorrelation curves within the training and synthetic

trajectories as a function of lag time. These autocorrelation times furnish implied timescales

associated with the dynamical processes associated with these physical order parameters,

respectively, duplex hybridization/diffusion and hairpin folding of each strand. We find the

hybridization timescale to be about an order of magnitude slower than individual hairpin

folding timescales. We observe excellent agreement of the implied timescale curves between

the training and synthetic data, demonstrating that the Multi-LSS has faithfully learned

the dynamics associated with duplex (de)hybridization and hairpin (un)folding. Again, we

also note the greatly reduced statistical uncertainties associated with the synthetic data

compared to the training data due to the 10× increased data volume.

In Figure 8 we present a comparison of hybridization events extracted from the train-

ing and synthetic trajectories. Hybridization can proceed by multiple different pathways

depending on the particular orientation of colliding strands. The synthetic trajectory gener-

ates physically realistic hybridization events that are not simply learned copies of the events

within the training data, demonstrating that the trained Multi-LSS model has learned the

underlying microscopic dynamics of the molecular system within the MDN propagator, and

can sample from these dynamics to produce novel molecular events.

It is a key property of the LSS paradigm to learn the microscopic generators of the

molecular dynamics from relatively modest trajectory data and numbers of rare dynamical
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Figure 7: Kinetic comparison of the 200 µs training and 2 ms Multi-LSS synthetic trajectories
for the DNA system. A) Inter-strand center-of-mass distance (ISD) for representative 20
µs regions of training and synthetic trajectories. Hybridized regions are shown by sharp
reductions in ISD and suppression of fluctuations. B) End-to-end distance (EE1) of the first
strand for representative 1 µs regions of training and synthetic trajectories. Hairpin states
correspond to low EE1 values. C) Implied timescale plots for reporting the autocorrelation
time of the physical variables ISD, EE1, and EE2 as a function of lag time. The light solid
lines represent ten equal length trajectories of length 20 µs for the training data and 200 µs for
the synthetic data. Heavy dashed lines represent means equipped with associated standard
errors computed over these ten replicates. Note the higher variance and greater prevalence
of non-representative, outlier trajectories associated with the ISD implied timescales due to
the slow hybridization/dehybridization dynamics.

events – in this case, ∼20 (de)hybridization events – and then enable the generation of novel

synthetic trajectories at orders of magnitude lower cost. We chose to generate only 2 ms

of synthetic data for the purposes of comparison, but the exceedingly low 4 GPU-minute

cost to do so means that it is possible to generate vastly more data and drive the statistical

uncertainties in our dynamical observables towards zero. There are, of course, systematic

uncertainties that are not captured within our standard error estimates, and we provide

some discussion and commentary on these factors in the Conclusions.
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Figure 8: Visualization of representative DNA hybridization events extracted from the train-
ing and synthetic trajectories. We select as an example for comparison a hybridization event
that adopts frayed configurations for several ns before transitioning to a fully hybridized
state (inset) since these events proved to be particularly challenging for the Multi-LSS to
correctly simulate due to the relative paucity of training data and the importance in select-
ing an appropriate cutoff in switching between the DS and S1+S2 decoders. The synthetic
trajectory produces physically realistic hybridization events that are not just carbon copies
of those present in the training data and are indistinguishable by eye from real simulated
events.

To understand how synthetic trajectories transition between various metastable states,

we constructed MSMs using an SRV embedding trained on all inter-molecular and intra-

molecular features in the training data. We used a consistent k-means micro-state clustering

procedure and PCCA+100 macro-state state assignments for both training and synthetic

data. The limitations of using MSMs to fully describe this system were discussed previ-

ously9,36 and they do not generate temporally continuous synthetic trajectories like an LSS,

but they do provide a robust method to compare the macrostate jump dynamics between

the training and synthetic trajectories. Chapman-Kolmogorov (CK) tests and implied time

scale plots for the two MSMs are reported in Figures S4-S7. For each MSM we computed
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the stationary distributions of seven metastable macrostates and mean first passage times

(MFPT) between each state. We observe excellent agreement between the macrostate free

energy assignments between the training and synthetic data, with a mean difference of just

0.9 kT and a maximum 1.8 kT discrepancy over the seven macrostates (Figure 9). We also

see good agreement in the MFPTs between macrostates with low wait times out of frayed

and hairpins states and much longer wait times for (de)hybridization transitions (Figure

9B). While hairpin folding timescales are within error of the training data, (de)hybridization

processes are slightly accelerated, likely because some transition region configurations that

are oversampled in the synthetic data are clustered into the hybridized state. This is also

consistent with a mild ∼2× acceleration of the leading implied timescales of the MSM built

from synthetic data relative to that constructed over the simulation data (Figures S6-S7),

although this may also be due to the elimination of fast dynamical modes during encoding

and/or the reduced temporal resolution of the synthetic trajectory relative to the simulation

data. Overall, however, the hierarchy of MFPTs from each state is preserved (Figure S8),

indicating that kinetic behavior is well reproduced by the synthetic Multi-LSS trajectories.

Figure 9: Markov state model (MSM) comparison of the 200 µs training and 2 ms Multi-
LSS synthetic trajectories for the DNA system. A) Stationary probabilities for each MSM
macrostate computed from the training and synthetic SRV-MSMs. B) Mean first passage
times between each pair of SRV-MSM macrostates.
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Multi-LSS transfer learning to different temperatures and salt concentrations

After performing structural, thermodynamic, and kinetic validation of the Multi-LSS pipeline

on a system under the “wild type” (WT) conditions of 320 K and 100 mM NaCl concentra-

tion, we used a transfer learning approach to extend the framework to new temperatures and

ionic strengths. Previously it has been shown that the same time-lagged, low-dimensional

space can be used to encode or bias a related system.93,101 We adopt a similar approach by

using the same SRV encoders and cWGAN decoders trained on the WT data, but retrain

the MDN propagators on new trajectory data. The underlying principle for transferability

is that the state space explored by the system under the WT conditions is sufficiently rep-

resentative of the perturbed conditions that the learned SRV slow latent space remains a

good representation of the slow dynamics of the perturbed systems and that no substantially

new molecular configurations emerge that would require retraining of the decoder. The only

update to the model is to update the MDN propagator to learn the new dynamics over the

same latent space. This approach can potentially reduce the volume of training data and

training time required to parameterize new systems in related Multi-LSS models. The ability

to reuse components of a pre-trained LSS model is particularly valuable for DNA systems

where simulation data can suffer from from a strong imbalance in hybridized or dissociated

data when the system is pushed away from the melting temperature, and the thermodynam-

ics and kinetics are highly sensitive to changes in temperature and ion concentration. 102–104

To evaluate temperature dependence, we repeated our MD simulation protocol at 310 K,

315 K, 325 K, and 330 K. We projected these trajectories into the same latent space using

SRV encoders trained on WT data and re-trained independent MDN propagators to learn

the dynamics at each temperature. We repeated this procedure over ion concentrations 25

mM, 50 mM, 200 mM, and 400 mM while holding temperature fixed at 320 K. Given that

only the propagator was re-trained, we conserved 50% of training cost compared to training

the full LSS pipeline. As in the previous section, 10 × 200 µs synthetic trajectories were

generated and decoded into configuration space using cWGAN decoders trained on the WT
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data.

We find that the thermodynamics of synthetic trajectories are in strong agreement with

training data under our transfer learning procedure. In Figure 10A we show the fraction of

hybridized duplex and folded hairpin as a function of temperature. We observe a distinct

melting transition over the 20 K temperature range where the system shifts from mostly

hybridized to dissociated at an approximate melting temperature of 317 K. There is a wider

melting transition for hairpin DNA, which is expected given lower entropic favorability at

higher temperatures.105 The synthetic data quantitatively reproduces these trends within

error bars and also reduces the statistical uncertainty, especially at low temperatures where

half of training trajectories contain only a single (de)hybridization event. For example, at

310 K duplex population in (78 ± 18)% for training data and (87 ± 6)% for synthetic data

and the hairpin population is (53 ± 10)% for training data and (49 ± 3)%. Figure 10B

shows training and synthetic thermodynamics as a function of ion concentration. At low

sodium concentration, there is minimal screening between negatively charged DNA strands,

and we observe low duplex population in both training (7 ± 7)% and synthetic (7 ± 3)%

trajectories. Duplex populations increase asymptotically with ion concentration to (71±17)%

for training data and (80 ± 4)% for synthetic data at 400 mM. The population of folded

hairpins increase slightly with ion concentration, however less than might be expected given

previous single-molecule studies.105 Synthetic trajectories reproduce these trends extremely

well, although not with quite the same quantitative accuracy as the temperature comparison.

This may indicate that ion concentrations induce changes to hairpin structures that are less

well represented within the shared SRV latent space or previously experienced by the cWGAN

decoder.

We next test whether our Multi-LSS transfer learning procedure reproduces meaning-

ful kinetics across temperature and ion concentration. Kinetics can be expressed in terms

of kon and koff rates which are frequently monitored in single-molecule studies 102,105 and

nanotechology applications such as DNA-PAINT. 106,107 We calculated rates by collecting all
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Figure 10: Comparison of thermodynamic predictions of temperature and salt concentration
transferability of DNA Multi-LSS model. All synthetic data were generated using an SRV
encoder and cWGAN decoder trained over the wild type conditions of 320 K and 100 mM
NaCl; only the MDN propagator was retrained over simulation data collected under the new
conditions. Hybridized duplex and folded hairpin fractions as a function of A) temperature
at 100 mM NaCl and B) ion concentration at 320 K. Error bars represent the standard
deviation across 10 independent trajectories.

hybridized/dissociated dwell times and fitting a single exponential distribution to determine

kon and koff (Figure 11). Uncertainties were determined via a bootstrapping procedure

where dwell times were randomly sampled with replacement and the model refitted. As ex-

pected for an activated process, we observe an exponential increase in koff with an increase

temperature, and a minimal impact on kon 106,108 (Figure 11A). We see very close agreement

for synthetic koff rates as a function of temperature, but find that kon rates are, although

still very good, slightly faster on average than the training data. We see closer agreement
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for kon rates as a function of ion concentration, where association increases approximately

linearly in agreement with single-molecule experiments over a similar concentration range 105

(Figure 11B). We calculated analogous rates – kfold and kunfold – for the hairpin folding

process by using a cutoff along EE1 and EE2 to discretize hairpin trajectories into folded

and unfolded regions. In agreement with the training data, we observe that synthetic kunfold

rates increase with temperature and decrease with ion concentration (Figure 11A,B). Syn-

thetic kfold rates qualitatively follow training rates, however, for both temperature and ion

concentration we observe systematically higher synthetic kfold values that lie slightly outside

training uncertainties. We attribute this in part to a higher degree of structural variance in

synthetic hairpin states that may lead to more frequent re-crossing of the binding cutoff.

4 Conclusions

In this work, we have applied our previously introduced molecular latent space simulators

(LSS)10 to a PROTAC ternary complex and a two-strand DNA system that can undergo

both hybridization and hairpin folding. The former application demonstrates the viability of

constructing LSS models of large biomolecular complexes of biomedical relevance from short,

discontinuous training data generated by distributed computing. The latter application re-

quired the development of the Multi-LSS framework as a generalized LSS approach applicable

to multi-molecular systems. In both cases, the trained LSS models can generate ultra-long

trajectories of realistic molecular configurations with low computational overhead. Thermo-

dynamics and kinetics of both systems were well reproduced, and statistical uncertainties are

reduced by generating longer trajectories containing more conformational transitions than

are available in the training data.

For the PROTAC system, we show that the learned latent encoding provides valuable

insights into structural changes and dynamics associated with degradation efficiency. We

hypothesize that latent coordinates can be leveraged as collective variables for the evalua-
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Figure 11: Comparison of kinetics predictions of temperature and salt concentration trans-
ferability of DNA Multi-LSS model. All synthetic data were generated using an SRV encoder
and cWGAN decoder trained over the wild type conditions of 320 K and 100 mM NaCl; only
the MDN propagator was retrained over simulation data collected under the new conditions.
Hybridization and folding rates as a function of A) temperature at 100 mM NaCl and B) ion
concentration at 320 K. Rates determined by fitting single exponential to empirical dwell
time distributions. Error bars show standard deviation over 100 bootstrap samples.

tion of candidate PROTAC molecules, and furnish good coordinates for putative enhanced

sampling calculations and high throughput virtual screening (HTVS) campaigns for rational

in silico design of PROTACs with elevated degradation efficiency. We find that training

on many short trajectories poses some limitations to the accurate estimation of timescales

associated with transitions that are sparsely sampled or unsampled within the training data.

However, this represents a challenge for any kinetic modeling technique including MSMs,

and we are encouraged by the good kinetic and thermodynamic agreement for those states
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and transitions that are sufficiently sampled in the training trajectories.

For the DNA system, the Multi-LSS approach introduces multiple encoders and decoders

to capture the leading modes of the global system as well as of the individual sub-systems.

This avoids the pitfalls associated with the exponential increase in the number of states

and complexity of the transition matrix associated with the approximately independent dy-

namical evolution of the constituent subsystems in the non-interacting regime. Synthetic

configurations can then be reproduced by decoding and re-orienting each individual strand

or, for interacting configurations, by decoding of the global system configuration. We demon-

strated this approach for a two-molecule system, but it is, in principle, scalable to systems

containing arbitrary numbers of molecules. The model produces synthetic trajectories that

substantially reduce both thermodynamic and kinetic statistical uncertainties associated

with duplex hybridization and hairpin folding. This increase in precision becomes particu-

larly important when folding and hybridization events are sparse, such as at low temperature

or low ion concentration. Furthermore, we show that our encoder and decoder are transfer-

able across a range of simulations conditions and that training efficiency can be enhanced by

re-training the propagator alone. Although outside the scope of this work, we hypothesize

that a propagator may be trained to interpolate or extrapolate over a tunable system param-

eter (e.g., temperature, pressure, salt concentration) in order produce meaningful synthetic

trajectories under new thermodynamic states of interest without requiring the collection of

new training data.

Although the LSS can push statistical uncertainties towards zero, we emphasize that

systematic uncertainties present in the training data persist within the trained LSS model.

The most common sources of systematic errors are approximations in the molecular force

field and the presence of unsampled/undersampled states and transitions in the training tra-

jectories. As an example of the first of these systematic errors, the artificial acceleration of

hybridization dynamics associated with the 3SPN.2 coarse-grained model 60 are internalized

by the LSS to produce rate estimates consistent with the training data but faster than what
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might be observed experimentally or in all-atom calculations. Such systematic errors can, of

course, only be ameliorated by the use of higher accuracy models in generation of the training

data. As an example of the second of these systematic errors, poor sampling of particular

transitions between metastable states of the PROTAC ternary complex along ψ0 did not pre-

vent the LSS model from learning a fully-connected long-time dynamical model, but it was

compelled to “hallucinate” transition paths and timescales without a good ground-truth ref-

erence. Such systematic errors can be quite readily engaged by adaptive sampling strategies

that determine where to collect new training data to better sample undersampled states and

transitions. The LSS framework is particularly well-suited to adaptive sampling since the

decoder can readily furnish molecular configurations to initialize new training simulations

near the transition state of an undersampled transition or by extrapolating into unexplored

regions of latent space. Cross validation protocols and an assessment of the change in the

learned SRV modes, MDN transition density elements, and cWGAN reconstruction accuracy

can then provide an internal assessment of when sufficient data has been collected and the

training data are sufficiently rich and representative that the trained LSS model ceases to

change with the addition of more training data.

In future work, we plan to continue to refine and extend the Multi-LSS paradigm to

larger and more complex systems such as molecular self-assembly, to incorporate adaptive

sampling strategies, and to explore the use of dynamical reweighting to enable the use of

biased trajectories within model training.109–111
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