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Abstract: Pipeline networks are a crucial component of energy infrastructure, and natural force 

damage is an inevitable and unpredictable cause of pipeline failures. Such incidents can result in 

catastrophic losses, including harm to operators, communities, and the environment. Understand-

ing the causes and impact of these failures is critical to preventing future incidents. This study in-

vestigates artificial intelligence (AI) algorithms to predict natural gas pipeline failures caused by 

natural forces, using climate change data that are incorporated into pipeline incident data. The AI 

algorithms were applied to the publicly available Pipeline and Hazardous Material Safety Admin-

istration (PHMSA) dataset from 2010 to 2022 for predicting future patterns. After data pre-pro-

cessing and feature selection, the proposed model achieved a high prediction accuracy of 92.3% for 

natural gas pipeline damage caused by natural forces. The AI models can help identify high-risk 

pipelines and prioritize inspection and maintenance activities, leading to cost savings and improved 

safety. The predictive capabilities of the models can be leveraged by transportation agencies respon-

sible for pipeline management to prevent pipeline damage, reduce environmental damage, and ef-

fectively allocate resources. This study highlights the potential of machine learning techniques in 

predicting pipeline damage caused by natural forces and underscores the need for further research 

to enhance our understanding of the complex interactions between climate change and pipeline 

infrastructure monitoring and maintenance. 
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1. Introduction 

The increase in energy demand was driven by economic recovery after the pandemic 

lockdown and several occasions of extreme weather events [1]. Of various energy sources, 

natural gas is still the preferred energy source, displaying the highest portion of 36% of 

total energy production and energy consumption [2]. Natural gas pipelines are a crucial 

component of the general energy infrastructure as they supply natural gas from upstream 

sectors to downstream consumers, and the reliability and safety of these pipelines are es-

sential [3]. Currently, many pipelines in the United States (U.S.) are often operated near 

capacity due to the increase in demand and global population in general. Therefore, they 

are occasionally subjected to structural or nonstructural failures when this demand cou-

pled with extreme environmental conditions [4]. Understanding the causes of pipeline 

failures and the impact of the incidents is essential for preventing the occurrence of future 

incidents [5]. Based on past incidents in 2022, failures of pipeline infrastructure in the 

United States were commonly caused by corrosion (18%), material/weld/equipment fail-

ure (35%), excavation damage (18%), incorrect operation (8%), other outside force damage 

(5%), natural force damage (3%), and other causes due to harsh climatic and operational 

conditions [6]. Gas pipeline failures can also potentially result in more severe operator 

injuries, including fatalities and other substantial economic losses. Thus, pipeline 
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structural health monitoring and modeling are crucial for avoiding these undesirable ad-

verse effects caused by incidents of pipeline failure [7,8]. 

Various fields of research aim to enhance pipeline reliability and safety from physical, 

operational, and environmental perspectives. Efforts to improve physical characteristics 

involve analyzing material structures and understanding the complex physical phenom-

ena that lead to failure. For example, Lecuyer and Rice (2017) computed natural gas losses 

from damaged pipelines from a complex physics phenomena approach, using a combina-

tion of analytical discharge equations and computational fluid dynamics modeling soft-

ware [9]. Ozdemir et al. (2011) presented a numerical prediction model for pipeline re-

sponse to vibration induced by ground activities, such as earthquakes, construction, traf-

fic, explosions, or industrial activities [10], in addition to corrosion, which has been found 

to be another important cause inducing pipeline failure [11,12]. 

The pipeline damage risk is not only caused by physical phenomena such as internal 

and external corrosion. Since the pipeline infrastructure is spatially extensive, the location 

and the weather conditions at that location may influence the risk of pipeline damage. 

Azari and Karimi (2018) proposed a quantitative risk-based model to analyze the spatial 

patterns risk of urban natural gas pipelines [13]. Cobanoglu et al. (2016) studied a pipeline 

network’s trend in reliability due to internal and external corrosion using the Homogene-

ous Poisson Process (HPP) and Non-Homogeneous Poisson Process (NHPP) stochastic 

models [3]. Their results showed the two most significant failure characteristics were the 

age in decades of installation and previous failures [3]. With the current demanding pipe-

line operating conditions and the reliability of most pipeline infrastructure perpetually 

declining, pipelines require regular maintenance to ensure they are operating safely and 

efficiently. This can be challenging in remote areas where access is limited or in harsh 

environments where weather conditions are extreme. Thus, pipeline operation should em-

phasize seeking a balance between the increasing operational demand, aging infrastruc-

ture, and the occasional effects of extreme weather conditions. 

With sensor advancements, data collection has become more accessible, enabling 

data-driven analysis with machine learning, artificial intelligence, or big data. This has 

advanced pipeline analysis with various data sources [7]. Some examples of the applica-

tion of database or data-driven algorithms in pipeline assessment are as follows. Iesman-

tas and Alzbutas (2016) developed a criteria-dependent Poisson model as a quantitative 

integration method for various pipeline databases to improve pipeline reliability [14]. 

Seghier et al. (2020) developed a hybrid AI model for the prediction of stress intensity 

factors [15]. The continuation of work from Seghier et al. (2021) compared various AI mod-

els (artificial neural network, M5 tree, multivariate adaptive regression splines, locally 

weighted polynomials, kriging, and extreme learning machines) for predicting the maxi-

mum pitting corrosion depth in oil and gas pipelines [16]. Li et al. (2021) fused a spatio-

temporal modeling approach with text mining to analyze the emergency severity in the 

natural gas distribution pipeline [17]. Popescu and Gabor (2021) analyzed pipeline inci-

dents from a statistical perspective by determining a hierarchy for the causes of the inci-

dent, assigning weights for the effect posed by the incidents and establishing correlations 

between various parameters [18]. Naik and Kiran (2018) performed data mining on the 

last 21 years of pipeline accident data from the United States and found that pipeline ac-

cidents due to natural force damage increase during the winter season [19]. 

Natural force damage is often referred to as outside force damage, which includes 

incidents caused by acts of nature such as earth movement, heavy rains, high winds, and 

extreme hot or cold temperatures [20]. Fluctuations in temperature can cause physical 

changes in materials, such as expansion and contraction, which can impact the integrity 

of pipelines. Although only a small percentage, approximately 3% of the overall pipeline 

incidents, were caused by natural forces in 2022 [6], their effect is often debilitating and 

may cause catastrophic failure across the energy industry [21]. The study presented in this 

paper aims to address the critical need to accurately forecast the natural force failure 

causes that impact natural gas pipelines. By incorporating comprehensive data on climate 
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change into the analysis of pipeline incidents, this research represents a significant ad-

vancement in our ability to predict and mitigate the effects of natural force failures on 

pipeline infrastructure. This study leverages cutting-edge data-driven analysis and so-

phisticated artificial intelligence (AI) or machine learning algorithms to provide actiona-

ble insights into the potential impact of natural force failure on pipeline infrastructure. 

AI algorithms can be used to predict pipeline damage caused by natural forces by 

analyzing various features such as pipeline characteristics, environmental conditions, and 

geographical location [22]. By analyzing these factors, AI algorithms can identify patterns 

and correlations that humans may not be able to detect, allowing for more accurate pre-

dictions of pipeline damage. Additionally, AI can be used to optimize pipeline mainte-

nance schedules by predicting when and where pipeline damage is most likely to occur, 

allowing for proactive maintenance and potentially reducing the likelihood of damage 

occurring in the first place [23]. Finally, AI approaches can also be used to monitor pipe-

lines in real time, identifying potential damage as soon as it occurs and alerting operators 

to take appropriate action. 

Although not all of the above-mentioned factors will be addressed in this paper, the 

main contributions of this paper include: (1) the proposed approach of incorporating cli-

mate change data into pipeline incident data, using artificial intelligence algorithms to 

predict pipeline failures caused by natural forces, (2) the high prediction accuracy 

achieved by the proposed model for natural gas pipeline damage caused by natural forces, 

and (3) the emphasis on the importance of enhancing the understanding of the complex 

interactions between climate change and pipeline infrastructure monitoring and mainte-

nance. By improving our ability to anticipate and respond to natural-force-related failures, 

this research holds the promise of minimizing environmental damage, reducing infra-

structure downtime, and increasing public safety. The rest of this paper is organized as 

follows: Section 2 details the proposed methodology, including the data collection, data 

pre-processing, and model selection of the machine learning algorithm, and Section 3 

demonstrates the effectiveness of the proposed method by elaborating on the results ob-

tained from the pipeline incidents analysis. Other discussions for the proposed method-

ology are detailed in Section 4, and the conclusions are summarized in Section 5. 

2. Methodology 

Natural gas pipeline failures caused by natural forces such as landslides, earth-

quakes, and floods can have severe consequences on pipeline operators, nearby commu-

nities, and the environment. These incidents can lead to major disruptions in the supply 

of natural gas, property damage, injuries, and even fatalities. Moreover, predicting these 

incidents is challenging due to the complexity of the underlying factors involved. There-

fore, there is a need to develop a natural force damage modeling framework to classify 

the causes of natural force damage to pipelines in the U.S. 

The proposed methodology involves collecting a dataset of pipeline incident data 

points and a corresponding dataset of climate change data points. These datasets contain 

various features related to pipeline failure, including location, time, pipeline age, pipeline 

material, temperature, humidity, and wind speed. The pipeline incident data undergoes 

pre-processing, feature selection, and descriptive statistical analysis. Supervised machine 

learning algorithms are utilized using the scikit-learn software machine learning library 

for the Python ecosystem [24]. The algorithms used in this study include the k-nearest 

neighbors (KNN), multilayer perceptron neural network (MLPNN), random forest, mul-

ticlass support vector machine (multiclass SVM), and extra gradient boosting classifier 

(XGBoost). These algorithms are widely used in supervised learning applications. The 

model is trained on a subset of the collected dataset, and its accuracy is evaluated by com-

paring the predicted outcomes with actual outcomes from a testing set. If necessary, ad-

justments are made to the model to ensure accurate predictions. Finally, the model is in-

tegrated into a production pipeline that inputs pipeline incident data and climate change 

data and outputs the probability of natural gas pipeline failures caused by natural forces. 
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The proposed AI algorithm shown in Figure 1, is expected to contribute to preventing 

future incidents and minimizing the catastrophic losses associated with natural gas pipe-

line failures caused by natural forces. By predicting the likelihood of pipeline failures, the 

algorithm will help operators take proactive measures to address potential issues before 

they become critical. Additionally, the algorithm will enable regulators to make more in-

formed decisions on safety regulations, thereby improving safety for both operators and 

the public. In short, the proposed natural force damage modeling framework, which uses 

machine learning algorithms, can accurately predict the likelihood of natural gas pipeline 

failures caused by natural forces. This framework will aid in proactive measures to pre-

vent pipeline failures, minimize catastrophic losses, and improve safety for both operators 

and the public. 

 

Figure 1. Main steps of the proposed research with machine learning methodology. 

2.1. Data Description 

In this study, data on pipeline incidents were obtained from publicly available 

sources provided by the Pipeline and Hazardous Material Safety Administration 

(PHMSA), a division of the United States Department of Transportation. The data per-

tained to incidents involving natural gas transmission pipelines and spanned from 2010 

to 2022, yielding 1321 data points across the U.S., as shown in Figure 2. Various causes can 

induce natural gas pipeline incidents such as excavation, incorrect operation, corrosion, 

material failure, and natural forces. Among these different causes, natural force incidents 

can significantly impact pipeline infrastructure, causing pipeline damage and failure. Nat-

ural forces, such as landslides, earthquakes, floods, and hurricanes, can lead to pipeline 

failure, resulting in environmental damage, injury, and even loss of life. The economic 

impact of pipeline damage caused by natural forces can also be substantial, with costs 

associated with repair, cleanup, and the potential loss of revenue due to service interrup-

tions. Therefore, understanding the impact of natural force incidents on pipeline infra-

structure is crucial for ensuring pipeline safety and resiliency in climate-change-induced 

extreme weather events [4]. Figure 3 shows the number of incidents induced by different 

causes, indicating that there were 96 incidents caused by natural forces from 2010 to 2022. 
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Figure 2. Distribution of natural gas incidents across the U.S. based on PHMSA 20 year 

incident historical data [6]. 

 

Figure 3. Number of natural gas incident causes based on PHMSA 20 year incident data. 

The causes of natural force damage to pipelines in the U.S. are diverse and can be 

characterized in different ways. This calls for the formulation of natural force damage 

modeling as a classification problem. This study developed and evaluated classification 

machine learning algorithms to address this issue. The different types of natural force 

damage were encoded into ordinal data to streamline the modeling process, as shown in 

Table 1. The integration of weather data into the PHMSA database was achieved by com-

bining the location and time components as a common denominator. 
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Table 1. Natural force damage type for pipelines. 

Damage Classification Descriptions 

1 Trees or vegetation 

2 Snow or ice impact accumulation 

3 High winds 

4 Temperature 

5 Heavy rains or floods 

6 Other types of natural force  

7 Lightning 

8 Earth movement not due to heavy rains or floods 

2.2. Coding and Software Libraries 

Data pre-processing and post-processing of the pipeline data were carried out using 

the Python programming language. The classification machine learning algorithms were 

implemented using scikit-learn, a free machine learning library. 

2.2.1. Data Selection and Pre-Processing 

Data pre-processing is essential for ensuring that the data are suitable for analysis, 

and it can help to improve the accuracy and effectiveness of machine learning models. 

Data pre-processing is essential for several reasons. First, it improves data quality. Pre-

processing helps identify and correct errors, missing values, and inconsistent data, which 

can improve the data quality. Second, it facilitates better feature selection. Data pre-pro-

cessing can also be used to ensure the most relevant features are selected during the fea-

ture selection process, which is detailed in the following subsections. Lastly, it enhances 

model performance. By pre-processing the data, the performance of the models can be 

enhanced by ensuring that the data are consistent, complete, and relevant to the problem 

at hand [24]. Table 2 presents the pipeline damage data and their respective descriptions 

based on the merged report formats to create pipeline incident trends, which PHMSA 

publishes in their pipeline incident 20 year trend dataset. 

Table 2. Sample of variables influencing pipeline damage description. 

Variable Index Variable Description 

1 Accident psig Estimated pressure at the point and time of the incident 

2 Incident year Year of incident 

3 Location datetime Earliest local time and date an incident reporting criterion was met 

4 Release type Type of release involved 

5 Longitude Location longitude 

6 Latitude Location latitude 

7 Commodity released type Type of gas commodity released 

8 Unintentional release Estimated volume of gas released unintentionally 

9 Number of people evacuated Number of members of the general public evacuated 

10 Incident identified date time Local time operator identified failure 

11 Incident area type Area of incident 

12 Operator identity Ops-issued operator identification number 

13 Depth cover Depth of cover 

14 Crossing Type of crossing 

15 Pipe facility type Indicates the type of pipeline system 

16 System part involved Part of the system involved in incident 

17 Installation year The year the item involved in the incident was installed 

18 Pipe diameter Nominal pipe size 

19 Pipe material Material involved in incident 
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20 Temperature 
Temperature recorded at the location, date, and time at which the 

incident occurred 

21 Humidity 
Humidity recorded at the location, date, and time at which the inci-

dent occurred 

22 Wind speed 
The wind speed recorded at the location, date, and time at which the 

incident occurred 

23 Pressure 
Atmospheric pressure recorded at the location, date, and time at 

which the incident occurred 

24 Normal psig Normal operating pressure at the point and time of the incident 

25 The estimated cost of gas Cost of gas in USD per thousand standard cubic feet (mcf) 

26 Cost of operator The estimated cost of the operator’s property damage and repairs 

27 Cost of emergency response The estimated cost of emergency response 

After screening 96 data points to remove incomplete and missing instances, the re-

sulting dataset consisted of 81 data points. Table 2 also contains a set of features with var-

ying magnitudes, units, and ranges; for example, the age of the pipeline is measured in 

years, whereas the pipe diameter is measured in meters. These various features create a 

magnitude discrepancy and may significantly impact the accuracy and interpretability of 

machine learning models. If the features are not properly scaled or normalized, those with 

larger values or a wider range of values can dominate the prediction outcome. Thus, it is 

necessary to standardize the features to a consistent level of magnitude with methods such 

as z-score normalization, min–max scaling, and logarithmic [25]. 

This paper employed the z-score approach to scale the numerical features in the da-

taset, as shown in Equation (1). The benefit of using the z-scores approach is that it allows 

for the standardized comparison of data points across different datasets with different 

means and standard deviations [26]. By converting the data points into a standard scale, 

it becomes easier to compare the relative position of a data point within its dataset and 

between different datasets. 

 𝑧 =  
𝑥 − 𝜇

𝜎
  (1) 

where z represents the scaled value of x, which is an unscaled variable with a mean of μ 

and a standard deviation of σ. 

Table 2 contains some categorical variables, such as pipe material, crossing, and inci-

dent area type. Most artificial intelligence or machine learning algorithms cannot process 

categorical variables as these data types are non-numerical data representing a group or 

category. Thus, these numerical data must be transformed into numerical values. PHMSA 

does not provide an ordinal or numerical scale for these categorical variables; therefore, 

they were converted into an ordinal scale to be interpreted by the machine learning algo-

rithms. For example, in Table 2, the categorical variable “crossing” was converted to 0, 1, 

2, and 3, representing bridge, railroad, road, and water crossings, respectively. Similarly, 

the rest of the categorical variables in Table 2 were also transformed into an ordinal scale 

of 0, 1, 2, …, n in which n is the number of categories available for a variable. 

2.2.2. Feature Selection 

Feature selection, a crucial step in data pre-processing, has demonstrated its effec-

tiveness and efficiency in readying high-dimensional data for various data analysis and 

machine learning tasks. The primary goals of feature selection are to simplify models, en-

hance predictive accuracy, enhance comprehensibility, and make inferences about the 

data [27]. Generally, various methods for feature selection can be categorized into three 

categories: filter, wrapper, and embedded methods [28]. The filter approach leverages the 

inherent features of the training data without relying on the specific predictive algorithm 

being used [28,29]. On the other hand, the wrapper method evaluates the correlation 
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between feature relevance and optimal feature subset selection by searching for the best 

subset of features that aligns with the chosen predictive algorithm [28,29]. Lastly, the em-

bedded approach integrates feature selection within the training process by utilizing a 

learning algorithm specifically designed for this purpose [28]. 

The Boruta feature selection method was selected for this study. Boruta is a wrapper 

method of feature selection, meaning it uses a model to evaluate the importance of each 

feature and select the most relevant features. The Boruta was selected because it imple-

ments an all-relevant approach, considering all features that impact the outcome variable. 

It is designed to handle datasets that have a large number of variables, including variables 

that may be correlated or redundant. In contrast, many other variable-selection algorithms 

follow a minimal optimal strategy, selecting only a small subset of features that produce 

a minimal error when using a specific classifier [30]. The pseudocode for implementing 

the Boruta feature selection is given as follows. 

Table 3. Pseudocode for Boruta feature selection. 

Algorithm 1: Boruta Feature Selection 

1: Create a copy of the original training data set and call it shadow features. 

2: Initialize the feature importance of all features to zero. 

3:  For each feature in the original data set: 

4:   Create a random permutation of the feature values. 

5:   Replace the feature values in the shadow features with the permuted values. 

6:   Calculate the feature importance using a decision tree (e.g., Random Forest). 

7:   
If the feature importance of the permuted feature is higher than the original feature, mark it as “not 

important”. 

8:   Repeat steps 4 to 7 for a predetermined number of iterations. 

9:  End. 

10: Keep only the features that are marked “important”and discard the rest. 

2.2.3. AI Approach: Machine Learning Algorithms 

Numerous AI or machine learning algorithms have been documented in the litera-

ture in the domain of machine learning. However, an exhaustive examination of all algo-

rithms is beyond the scope of this research. Thus, the authors focused on reviewing the 

most commonly employed multi-classification algorithms that have demonstrated supe-

rior performance compared to alternative approaches. In this paper, a comparison was 

conducted between the predictive performance of five commonly utilized machine learn-

ing classifiers in several domains to solve classification problems. The selected classifiers 

used in this paper included (1) k-nearest neighbors (KNN), (2) multilayer perceptron neu-

ral network (MLPNN), (3) random forest, (4) multiclass support vector machine (mul-

ticlass SVM), and (5) extra gradient boosting classifier (XGBoost). The summary of each 

of the classifiers is provided as follows. 

K-nearest neighbor (KNN): In practice, the KNN machine learning algorithm exhib-

its excellent performance compared to more complex machine learning algorithms [31]. 

This is due to its ability to determine similarities among data, enabling it to make predic-

tions on unseen data [32]. Furthermore, it does not make additional assumptions and is 

flexible, making it suitable for a variety of applications [31]. The KNN algorithm is widely 

considered to be one of the top 10 machine learning algorithms [33] and is often used as 

the baseline algorithm in several domain problems [34]. Additionally, KNN is capable of 

generalizing unseen data with potentially complex geometries compared to other algo-

rithms [31]. 

The KNN machine learning algorithm uses the k-closest data points in the feature 

space as inputs, and it outputs a classification of pipeline damage caused by natural forces. 

The damage type is determined by the majority vote of its k nearest neighbors in which k 
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is a positive integer that is chosen based on the data. The KNN classifier operates by find-

ing the nearest neighbors of each query point, with k being specified by the user. However, 

the optimal value of k is highly dependent on the data, which is why different values, 

ranging from 1 to 50, were explored in this study. The best value of k was determined 

using the grid search method, based on the scikit-learn 2019a user’s guide. 

Random forest: The concept of random forests was introduced by Leo Breiman in 

the early 2000s as a method for constructing a predictive ensemble using a collection of 

decision trees grown in randomly selected subspaces of the data [35]. The method involves 

utilizing multiple randomized decision trees and averaging their predictions, resulting in 

exceptional performance in scenarios in which the number of variables exceeds the num-

ber of observations [34]. Additionally, this approach is flexible and can be applied to com-

plex problems or customized to specific learning tasks and provides assessments of vari-

able significance. Its adaptability makes it a valuable tool for large-scale projects [35]. 

Multiclass support vector machine (SVM): SVM is predominantly used to solve bi-

nary classification problems by identifying a separating hyperplane for the data points 

[36]. For a multiclass classification problem, SVM has two methods: the one-versus-rest 

approach, which involves training m classifiers: one for each class in a dataset with m clas-

ses. During classification, each classifier predicts the probability of a specific class, and the 

class with the highest probability is selected. The one-versus-one classifier approach trains 

a classifier for each pair of classes, considering all possible combinations. During classifi-

cation, each classifier predicts the probability of one class, and the class with the most 

votes is chosen as the final classification [36]. SVM was selected as one of the algorithms 

because it generally performs well in high-dimensional spaces and can effectively classify 

new, unseen data [37]. SVMs can handle both linear and non-linear data, making them 

suitable for a wide range of classification tasks. 

Extra gradient boosting classifier (XGBOOST): XGBoost is a highly efficient imple-

mentation of gradient-boosted decision trees that prioritizes optimized memory usage 

and harnesses the full potential of hardware computing power. This results in a faster 

execution time and improved performance compared to many traditional machine learn-

ing algorithms and deep learning models. The core concept behind boosting is to construct 

subsequent sub-trees from the original tree in a sequential manner, with each new tree 

reducing the errors of the previous one. The new sub-trees modify the residuals from the 

previous iteration to minimize the error in the cost function [38]. 

Multilayer perceptron neural network (MLPNN): MLPNN is a supervised learning 

algorithm that learns a function 𝑓(∙): 𝑅𝑚 → 𝑅𝑜 by training on a dataset in which m is the 

number of input dimensions and o is the number of dimensions for output (Scikit-Learn 

2007). An MLPNN operates in three stages. Firstly, during the forward pass, the model 

inputs are multiplied by the weights, the bias is applied to each layer, and the model out-

put is calculated. This predicted output is then evaluated against the given inputs, and the 

loss is determined at the output. The output model provides predicted results based on 

the input parameters, and a backpropagation algorithm is used to compare the predicted 

results with the actual results. Different loss functions may be employed, depending on 

the desired performance and requirements [39]. 

During the backward pass, partial derivatives of the cost function that concern vari-

ous parameters are propagated back into the network [40]. This process involves the back-

propagation of loss, and the model weights are updated using gradient descent. An 

MLPNN typically consists of at least three layers of nodes: an input layer, a hidden layer, 

and an output layer [38]. Given a set of features 𝑋 = 𝑥1, 𝑥2, … . 𝑥𝑚  and a target 𝑦 , an 

MLPNN can learn a non-linear function approximator for a classification problem [40]. 

The MLPNN was selected as one of the algorithms because of its capabilities of mod-

eling complex, non-linear relationships between input and output variables with a wide 

range of input data types [40]. Additionally, MLPNNs can generalize well to new data 

and adapt to changes in the input data by adjusting their internal parameters, making 

them useful for applications in which the data are subject to change over time. With regard 
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to handling complex data, an MLPNN can be scaled up by adding more layers or nodes 

to the overall neural network architecture [41]. 

Model Evaluation. After employing the five algorithms on the training data, the 

models were evaluated using an independent testing dataset to assess their performance. 

The confusion matrix was calculated, and performance metrics, including accuracy, recall, 

and precision, were measured using the following equations: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝐹𝑁
 (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  (4) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
 (5) 

where TP = true positives; TN = true negatives; FP = false positives; and FN = false nega-

tives. Accuracy measures the model’s overall prediction correctness, recall measures the 

prediction sensitivity, and precision is known as positive predictive value. A way to bal-

ance the trade-off between precision and recall is the F1 score. 

3. Results 

As outlined in the “Feature Selection” of the research methodology section, the Bo-

ruta algorithm was utilized for feature selection. The top 12 features that influence pipe-

line damage are shown in Figure 4. The Boruta algorithm was employed for feature selec-

tion on the pipeline damage dataset. The dataset consisted of 27 features. After running 

the Boruta algorithm, 12 relevant features were identified, including the pipe diameter, 

crossing, temperature, humidity, longitude, pipe age, type of pipe material, latitude, soil 

type, depth of the pipe, and others. These 12 features were considered important predic-

tors for pipeline damage due to natural forces and align with previous research findings 

[42]. The Boruta algorithm also successfully identified the redundant features, which did 

not significantly impact pipeline damage. These features were removed from the dataset. 

 

Figure 4. Results from the feature selection process. 
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The diameter of a gas pipeline plays a significant role in its susceptibility to natural 

force damage and subsequent deterioration. A pipeline with a larger diameter is typically 

more resistant to damage caused by natural forces, such as earthquakes, landslides, and 

soil erosion, as it has a greater mass and more structural integrity. On the other hand, a 

pipeline with a smaller diameter may be more vulnerable to damage as it may be more 

susceptible to deformation and stress due to natural forces. Moreover, the diameter of a 

pipeline also affects the pressure level at which the gas is transported. Suppose the pipe-

line diameter is too small for the anticipated amount of gas. In that case, the pressure 

required to meet demand may exceed the maximum operating pressure, leading to in-

creased stress on the pipeline and a greater likelihood of deterioration over time [43]. 

Therefore, it is important to carefully consider the appropriate diameter of a gas pipeline 

to ensure its safety and longevity in the face of natural force damage. 

Other important features for pipeline damage are temperature and humidity. The 

PHMSA classifies natural force damage to pipelines into distinct categories, which are 

outlined in Table 1. Temperature is among the natural forces that can cause pipeline dam-

age in multiple ways. Extremely cold temperatures can cause water to freeze, leading to 

ice buildup and pressure on pipelines, which results in cracks. Similarly, high tempera-

tures can cause materials to expand, leading to stress and the potential failure of the pipe-

line structure. Additionally, temperature changes can cause ground movement or shifting, 

leading to instability and the potential damage to or rupture of pipelines. Therefore, tem-

perature is an important factor to consider when assessing the risk of pipeline damage 

due to natural forces. 

Given the various ways temperature can impact pipeline infrastructure, it is essential 

to assess the risk of natural force damage and consider climate change parameters in the 

prediction of such incidents. In this context, Naik and Kiran (2018) used data mining al-

gorithms to explore the effects of temperature on pipeline damage incidents. Their analy-

sis showed that natural force damage was the most frequent type of pipeline accident 

when temperatures were below 266.5 Kelvin [19]. Notably, unlike other types of pipeline 

accidents, natural force damage was not susceptible to a specific range of temperatures. 

This highlights the importance of incorporating climate change parameters into the pre-

diction of natural force-induced pipeline damage and adopting a comprehensive ap-

proach that considers the effects of changing temperatures on infrastructure and natural 

systems. 

The outcome of the feature selection process highlighted the importance of incorpo-

rating the impacts of climate change stressors on natural gas pipeline damages induced 

by natural forces. The natural gas pipeline systems are vulnerable to various effects of 

climate change, including alterations in temperature ranges, heightened thermal stress, 

increased runoff leading to heavy precipitation and flooding, and more frequent occur-

rences of hurricanes, landslides, and land subsidence [44]. This will enable a more com-

prehensive understanding of their effects and help to prevent disruptions to the distribu-

tion of gas products to consumers. The complex and interconnected nature of natural gas 

pipelines, coupled with the prolonged economic lifetime of the infrastructure, makes it 

crucial to address and adapt to the challenges posed by climate change [45]. 

The selected features were used in the subsequent modeling process to develop a 

predictive model for pipeline damage. Overall, the results from the Boruta feature selec-

tion process provided valuable insights into the most important features that affected 

pipeline damage and improved the accuracy of the predictive model. Table 3 shows a sta-

tistical summary of the response and the obtained predictive variables. 

Table 3. Statistical summary of response and predictive variables. 

Variables Count Mean STD Min 25% 50% 75% Max 

Natural Force Type 81 3.04 1.95 0 1 3 4 7 
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Age 81 39.67 25.55 1 23 38 52 109 

Temperature 81 52.95 22.92 2 35 57 72 92 

Humidity 81 73.74 19 9 61 77 90 100 

Latitude 81 40.74 4.55 30.34 38.96 41.12 43.32 60.57 

Longitude 81 −90.25 14.83 −151.3 −95.27 −88.94 −80.25 −71.09 

Pipeline Diameter 81 2.25 3.433 0 0 0.625 4 16 

Pipeline Material 81 2.64 1.49 0 2 3 4 5 

Number of Residences Affected 81 103.17 364.11 0 1 1 17 2584 

Number of Commercial Affected 81 3.65 1.15 0 0 0 0 770 

Crossing 81 0.06 0.24 0 0 0 0 1 

Cost of Operator 81 588,721 1,889,704 0 58,420 11,2502 287,156 15,400,000 

Injury patient Hospitalization 81 0.17 0.378 0 0 0 0 1 

The K-nearest neighbor (KNN) algorithm was used with the grid search method to 

classify the pipeline damage dataset. The dataset consisted of 12 relevant features ob-

tained through the Boruta feature selection process. The grid search technique was em-

ployed to find the optimal hyperparameters for the KNN model, which included the num-

ber of neighbors (k) and the distance metric for classification. The results of the grid search 

showed that k = 3 and the Manhattan distance metric were the optimal hyperparameters 

for the KNN model. After training the KNN model using the optimal hyperparameters, 

the model was evaluated using the testing data. The model achieved an accuracy of 74% 

(Figure 5) on the testing dataset, indicating that it was able to classify pipeline damage 

instances with acceptable accuracy. However, accuracy alone does not provide a compre-

hensive picture of the model’s performance, especially in the case of imbalanced classes. 

To further assess the model’s performance, precision (Equation (3)) and recall (Equa-

tion (4)) values were computed for each class. In a classification problem, a class refers to 

a category or label that an observation or data point belongs to. The model showed a pre-

cision and recall of 76% on average for each class, indicating that the model was reasona-

bly effective in identifying pipeline damage instances caused by natural forces across all 

classes. The precision and recall values provide insights into the model’s ability to accu-

rately predict positive instances and capture all relevant instances, respectively. Overall, 

the results from the KNN algorithm with the grid search method demonstrate that the 

KNN model, with the identified optimal hyperparameters, can classify pipeline damage 

instances with acceptable accuracy. Therefore, this model could potentially be used as a 

valuable tool for predicting pipeline damage. In addition to the KNN algorithm, four 

other machine learning algorithms were implemented to classify the pipeline damage 

data: the support vector machine (SVM), random forest, XGBoost, and multilayer percep-

tron neural network (MLPN) algorithms. The comparison results of these five algorithms 

are shown in Figure 5. 
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Figure 5. Performance of algorithms used to model natural gas pipeline. 

The grid search technique was also used to identify the optimal hyperparameters for 

each algorithm, and the optimal hyperparameters varied between algorithms. For SVM, 

the optimal values tested were kernel type, gamma, and C. For XGBoost, the objective 

type, maximum depth, and the number of estimators were tested. Lastly, for MLPN, the 

number of neurons per layer, learning rate, and activation function were tested. The re-

sults from the grid search revealed that the optimal hyperparameters for each algorithm 

were as follows: for SVM, kernel type = ‘rbf’, gamma = 0.01, and C = 1000; for XGBoost, 

maximum depth = 3, objective = multisoftmax, and the number of estimators = 100; and 

for MLPN, the number of neurons per layer = 100, learning rate = 0.01, and activation 

function = ReLU. 

The random forest algorithm’s hyperparameter was not tuned since the model em-

ploys randomization when creating trees to avoid increasing the complexity of the algo-

rithm. The algorithms were trained using the optimal hyperparameters and evaluated us-

ing testing data. The results indicated that the XGBoost algorithm had the highest accu-

racy of 92.3% on the validation dataset. The random forest was the second-best-perform-

ing algorithm with an accuracy of 92.0%, followed by SVM with 89.74% and MLPN with 

87.18%. Precision and recall values were calculated for each class, and the results showed 

that XGBoost had the highest precision and recall values for all the classes, as shown in 

Figure 5. 

Overall, XGBoost was found to be the most suitable algorithm for classifying pipeline 

damage instances with high accuracy. However, the random forest and SVM algorithms 

also showed promising results and can be considered alternative options. The results 

demonstrate the effectiveness of machine learning algorithms in classifying pipeline dam-

age instances and suggest that these models can be used as valuable tools for predicting 

pipeline damage. 

4. Discussion 

Pipeline damage caused by natural forces is a serious problem that affects various 

industries, including oil and gas, water management, and transportation. The develop-

ment of predictive models that can help identify potential natural gas pipeline damage 

before it occurs, thus preventing costly repairs and minimizing the impact on the environ-

ment, is essential. This study utilized various machine learning techniques, the random 

forest, SVM, XGBoost, MLPN, and KNN algorithms, to predict pipeline damage caused 

by natural forces. The findings indicate that all the models display a high predictive accu-

racy, with the XGBoost and random forest algorithms performing exceptionally well. By 

utilizing these machine learning models, natural gas pipeline operators can proactively 

manage their infrastructure and prevent potential hazards, leading to cost savings, 
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improved safety, and environmental protection. By identifying key factors that contribute 

to natural gas pipeline damage, future pipeline design and maintenance practices can be 

improved, leading to the overall safety and reliability of pipeline operations. 

This study aligns with the existing literature on the potential of machine learning 

techniques to predict pipeline damage. Previous studies have demonstrated the effective-

ness of these techniques in predicting failures of natural gas and oil gas pipelines. For 

example, Manan et al. (2021) utilized the support vector machine (SVM) algorithm, back-

propagation neural networks, and statistical techniques to predict natural gas pipeline 

failures [6] accurately. Similarly, Aljameel et al. (2022) employed five machine learning 

models to detect anomalies in oil and gas pipelines, reporting impressive accuracy levels 

[22]. Ihsan and Astuti (2022) utilized deep learning algorithms for anomaly detection in 

natural gas pipelines, highlighting the versatility of machine learning in the industry [46]. 

These studies provided an important context for the potential impact of this study. 

Furthermore, the presented research indicates that machine learning techniques can 

provide a valuable tool for predicting pipeline damage in the oil and gas industry. Our 

focus on predicting pipeline damage caused by natural forces extends the current litera-

ture, which has primarily focused on predicting damage due to corrosion. This study 

highlights the potential of integrating climate data into the prediction of pipeline damage 

caused by natural forces. This integration can assist operators in identifying pipelines that 

are at high risk of damage and prioritize their inspection and maintenance activities. By 

incorporating climate data and using various machine learning techniques, including the 

random forest, SVM, XGBoost, MLPN, and KNN algorithms, we have shown that ma-

chine learning models can effectively predict pipeline damage caused by natural forces 

with high accuracy. The implications of the present study are significant for the pipeline 

industry, as it provides a reliable tool for predicting pipeline damage induced by natural 

forces and implementing appropriate measures to prevent or mitigate such damage. For 

example, the models developed in this study can be used to identify pipelines that are at 

high risk of damage due to natural forces and prioritize them for inspection and mainte-

nance. 

In terms of future research directions, it would be interesting to investigate the per-

formance of other machine learning techniques, such as deep learning and reinforcement 

learning, in predicting pipeline damage caused by natural forces. Researchers can poten-

tially develop more accurate predictive models for pipeline damage due to natural forces. 

These advanced AI algorithms can further improve the accuracy of prediction and enable 

the development of proactive measures to prevent pipeline damage. Additionally, it 

would be useful to explore the impact of different variables on pipeline damage, such as 

soil type, pipeline material, and weather conditions. Incorporating these variables into the 

predictive models can create more comprehensive predictive models that consider various 

factors influencing pipeline damage, leading to more effective solutions. The broader im-

pact of this work is significant, as it can positively impact a range of industries that rely 

on natural gas pipelines. This work also aids in minimizing the risk of environmental 

damage and ensuring the continued supply of natural gas to society. 

5. Conclusions 

This study has made a significant contribution to the literature by demonstrating the 

potential of machine learning techniques in predicting pipeline damage caused by natural 

forces. This paper investigated the effectiveness of integrating climate data into pipeline 

incident data and achieved a high predictive accuracy of 92.3% for natural gas pipeline 

damage caused by natural forces. The findings of the study offer a framework for trans-

portation agencies to efficiently manage their natural gas pipeline systems and preemp-

tively avoid potential dangers. The developed models are reliable tools for identifying 

pipelines at high risk of damage and prioritizing inspection and maintenance activities. 

The implications of this study for the pipeline industry are vast, and it highlights the po-

tential for cost savings and improved safety. Predicting pipeline damage accurately can 
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help prevent failures and avoid costly emergency repairs. An accurate prediction can also 

enable operators to take proactive measures to prevent accidents and ensure that pipelines 

are safe for public use. Furthermore, the early prediction of potential damage can help 

mitigate the significant environmental consequences of pipeline failures. 

The potential for future research in exploring the performance of other machine 

learning techniques and investigating the impact of different variables on pipeline dam-

age suggests that there is scope for further development in this area. Overall, the study 

underscores the importance of leveraging the power of machine learning in predicting 

pipeline damage and emphasizes the need for ongoing research to enhance our under-

standing of the complex interactions between climate change and pipeline infrastructure 

monitoring and maintenance. 
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