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Strain engineering a persistent spin helix with infinite spin lifetime
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Persistent spin textures (PSTs) in solid-state materials arise from a unidirectional spin-orbit field in momentum
space and offer a route to deliver long carrier spin lifetimes sought for future quantum microelectronic devices.
Nonetheless, few three-dimensional materials are known to host PSTs owing to crystal symmetry and chemical
requirements. There are even fewer examples demonstrated experimentally. Here we report that high-quality
persistent spin textures can be obtained in the polar point groups containing an odd number of mirror operations.
We use representation theory analysis and electronic structure calculations to formulate general discovery
principles to identify PSTs hidden in known complex ternary layered and perovskite structures with large electric
polarizations. We then show some of these materials exhibit PSTs without requiring any special crystalline
symmetries. This finding removes the limitation imposed by mirror-symmetry protected PSTs that has limited
compound discovery. Our general design approach enables the pursuit of persistent spin helices in materials
exhibiting the Cs, crystal class adopted by many quantum materials exhibiting large Rashba coefficients.

DOLI: 10.1103/PhysRevB.00.005100

I. INTRODUCTION

The persistent spin helix (PSH) is a spin-wave mode, in
which the spin can propagate with an infinite spin lifetime
[1-5]. This mode is enabled by a persistent spin texture (PST)
in momentum space, whereby unidirectional spin-momentum
locking occurs. This makes the PST a useful spin texture to
protect against spin decoherence where it can be exploited
in spin field-effect transistors [6] and spin Hall-effect ap-
plications [7]. The infinite spin lifetime in the PSH state is
enforced by an SU(2) symmetry of the spin components, in
which the effective field governing the spin precession of
the itinerant electrons is momentum independent, thus robust
to spin-independent disorder, including Coulomb and other
many-body interactions [1]. Therefore, the spin scattering is
essentially quenched in the PSH state, allowing precession
in the same direction after a scattering event and potentially
infinite spin lifetimes.

Although the PST is a highly sought spin texture for the
aforementioned reasons, few materials with PSTs in the bulk
are known [8]. Semiconducting GaAs/AlGaAs [2,9] and In-
GaAs/InAlAs [10,11] heterostructures can exhibit PSTs. In
these artificial quasi—two-dimensional systems, PSTs arise
from a balance between the strength of the Dresselhaus [12]
and Rashba [13] spin splitting of the electronic bands. These
effects are both correlated to the spin-orbital interaction (SOI)
and require broken inversion symmetry [1,5,9-11]. Such a
subtle balance can only be obtained by tuning the width of the
quantum wells, electrostatic gating, and carrier concentration.
If the interactions are not balanced, then the resulting effective
momentum-dependent field removes the SU(2) symmetry and
would permit scattering effects to reduce the spin lifetime
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through Dyakonov-Perel spin relaxation at low temperatures
[6]. Therefore, these artificial structures require atomic preci-
sion during growth and carefully controlled carrier densities.

Recently, another mechanism for PSTs was proposed
[14-29], which although remains to be confirmed experimen-
tally [30], permits bulk materials to exhibit the spin texture
without requiring the balancing of Dresselhaus and Rashba in-
teractions through interface design. This symmetry-protected
PST was predicted to occur when a nonsymmorphic sym-
metry operation (e.g., glide operation composed of a mirror
plane and translation) commutes with the effective SOI field,
B(k), in a material without inversion symmetry [16]; how-
ever, as we demonstrated recently [31], this is a sufficient but
not necessary condition. These minimal ingredients enable a
unidirectional spin orientation at the band edges in the
electronic structure (spin-momentum locking), which in the
absence of SOI would exist as a Kramers degeneracy. We also
demonstrated that any noncentrosymmetric material with a
high-symmetry k point exhibiting C,, little-group symmetry
with an even number of mirror operations intersecting at that
position in the Brillouin zone can be a potential PST material
[31]. This understanding can guide identification of crystals
exhibiting PSTs in other achiral polar groups. This finding
should allow us to surpass the apparent limitation of PSTs ap-
pearing as recent serendipitous discoveries in monoclinic and
orthorhombic crystal systems [20]. Indeed, high-quality PST
materials in the monoclinic crystal system are still missing,
and surprisingly, there are no reported PST materials among
the ferroelectric trigonal crystal system. Therefore, apart from
the previous significant efforts in exploring PSTs in space
groups with an even number of mirror symmetries, finding
more materials and crystal classes with an odd number of mir-
ror symmetries (i.e., monoclinic and trigonal crystal systems)
showing PST would further enable experimental demonstra-
tion.

©2023 American Physical Society
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Here we use k - p models and first-principles calculations
to show that PSTs can exist in polar structures of the trigonal
crystal system. The PST is confined either along k paths with
(symmetry protection) or without (symmetry unconstrained)
mirror elements. Our main finding from our k - p model is that
PSTs occur at the conduction band edge, if the conduction-
band minimum appears near the midway point of the k path
across the high-symmetry k point with C; symmetry (with
one mirror operation, m) in the trigonal noncentrosymmetric
crystal classes. We predict T13SbS; and LiNbO; satisfy this
requirement and exhibit PSTs. Furthermore, thin-film ver-
sions of these two compounds subjected to coherent epitaxial
constraints undergo a symmetry reduction from the Cs, crystal
class with three mirror operations to C;. The PSTs persist in
thin films of these materials and their quality is enhanced,
which we quantify using multiple criteria. The monoclinic Cm
structure of T13SbS; thin films supports a nearly perfect PST
without any spin deviation that also simultaneously spans a
large area of the Brillouin zone. These features enable access
to the PST through chemical doping. Our study provides a
promising route to find the persistent spin helix in 3D polar
phases with long spin lifetimes.

II. COMPUTATIONAL METHODS

Our total energy calculations were based on density-
functional theory (DFT) within the generalized gradient
approximation utilizing the revised Perdew-Burke-Ernzerhof
functional for solids [32] implemented in the Vienna Ab ini-
tio Simulation Package (VASP) [33-35]. We used a 550-eV
plane-wave cutoff energy for all calculations and the projector
augmented-wave method [36] with Li 1s and 2s electrons, Rb
4s, 4p, and Ss electrons, Tl 5d, 6s, and 6p electrons, Nb 4p,
4d, and 5s electrons, Ta 5p, 5d, and 6s electrons, Sb 5s and
5p electrons, O 2s and 2p electrons, and S 3s and 3p elec-
trons treated as valence states. Gaussian smearing (0.10-eV
width) is used for the Brillouin-zone integrations. The k-point
sampling was tested and converged for the different cells.
The convergence thresholds for the electronic relaxation and
structure relaxation are 1077 eV and 5meV/A, respectively.
We tested the effects of SOI in the relaxation and found only
tiny changes to the atomic structure; therefore, SOI effects
were not included in structure relaxations.

III. RESULTS AND DISCUSSION
A. Identification of PST in the trigonal system

We consider trigonal systems, because they host common
polar phases [23,37,38], such as in multiferroic BiFeO3 [39]
and polar chalcogenides Ag;AsS3 [40] with R3¢ symmetries.
Furthermore, a recent report showed a rational way to discover
materials with strong Rashba coefficients, where commonly
identified materials with large Rashba coefficients were found
to exhibit space groups in trigonal and hexagonal crystal sys-
tems and corresponding Cs, or Cg, point groups (i.e., 20 out
of 34 space groups) [41]. This contrasts with 6 out of 34 space
groups found in monoclinic and orthorhombic crystal systems
having C,, or C; point groups. Therefore, it is important to
formulate a strategy to search and sort which compounds in

the trigonal crystal system will exhibit PSTs to enable their
discovery.

The symmetry operations of the R3c phase with Cj,
point group in Supplemental Material, Table 1 (Ref. [42])
allow us to deduce that there may be three unidirec-
tional spin directions for the PST, which are along the
[110], [100], and [010] directions of the hexagonal cell.
The corresponding k paths for the [110], [100], and [010]
directions are {[k, —k, k], [1/2,1/2,k.],[—1/2,—1/2,k;]},
{lk, —2k, k.1, [, 0, k;]}, and {[2k, —k,k.]], [O,v,k.]}, re-
spectively, where p and v can take values of +1/2. If we
further constrain our investigation to the k, — k, plane, which
will help keep the SU(2) symmetry and long spin lifetime
under minimization of the commutator relations in Ref. [31],
we find that the k paths for the [110], [100], and [010]
unidirectional spin directions are [k, —k, 0], [k, —2k, 0], and
[2k, —k, 0], respectively. Next, we assess whether symmetry
requires the electronic bands to remain degenerate along these
k paths. For the [k, —k, 0], [k, —2k, 0], and [2k, —k, O] paths,
the little-group symmetries of k are mj,,, mj,, and my,,
respectively. Because there is no 7§ in the little group leading
to (TG)* ¥ = —, there is no space-group symmetry protect-
ing the Kramers degeneracy of the band edges by SOC effects
for the three paths; therefore, the bands no longer touch along
band trajectories in the k, — k, plane.

Next, we derive k - p models for each Cs, and C; symmetry,
because a k path with the mirror symmetry in the trigonal
system, such as one of [k, —k, O], [k, —2k, 0], and [2k, —k, O],
will connect the Cs, and Cs k points that we use to represent,
for example, the zone center, I', and the zone boundary, Y,
respectively. The detailed derivations of the k - p models are
provided in Supplemental Material, Note 1 and Supplemen-
tal Tables 2—-10 found in Ref. [42] (see also Refs. [43-49]
therein). The k- p model with C;, symmetry, spin-orbital
coupling terms up to third order in k, and constrained in the
k. — k, plane, is

Hr = aikeoy + arkyoy + azkeoy, + askyoy
+ Bi(k] — 3keky)o + Ba (k] + keky ) oy
+ Bs(ky + kyk?)or + Ba(ks + keky)ore
+ Bs(k; + kyk?)oy. (1)
The same constraints applied to C; symmetry give
Hy = yikyox + ki(y20y + y302), (@)

where o, 8, and y are the spin-orbital coupling coefficients,
using a Cartesian coordinate system. The matrix forms for the
wave functions including the spins for # and Hy are

2

o ot

2
yr = and gy = @) 3)

1
1
1
2
1

s

where E2, E', and E| in yr are irreducible representations
(irreps) of the double point group 3m (Supplemental Material,
Note 1) [42]. E] and E? are the two components of the two-
dimensional irrep E|. E? and E' in ry are irreps of the double
point group m. Here, we only consider the symmetries of the
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wave functions and not thelr exact forms. Y transforms as a
D3/? representation and ( El) transforms as a D'/? representa-
tion. With the Clebsch-Gordan (CG) coefficients, we can have
the following for y-:

E* = niA\E* + mE'E} + nyE’E],

E'= —n]AE" + n3E'E} + niE*E],
E‘-]l — anZEIZ,
E? = n3E'E], 4)

where A and E are the irreps of the double point group 3m.
E' and E? are the two components of the two-dimensional
irrep E. Similarly, we obtain for vy

P=AE + mAET,

E'= —njA\E? + n3ASE, (5)

where A| and A, are the irreps of the double point group m,
and 7 is a constant.

The above results can be applied to any space group with
(3, point symmetry. Through a detailed analysis of the polar
structures of the trigonal system, we notice that there are two
different trigonal polar space groups with the symmetries, that
is,

Set 1: P3ml, P31m, R3m

Set 2: P3c1, P31c, R3¢

In set 1, there are no glide (translation plus mirror) opera-
tions in the primitive cell. In set 2, there are nonsymmorphic
(glide) symmetries. After we obtain the symmetries of the
wave functions about the I' point, it can be seen that in both
wave functions represented by irreps EZ and E', the d orbitals
can be occupied by %-spin up (i.e., E?) and %-spin down (i.e.,
E 11) at the same time. Furthermore, there is no symmetry con-
straint on making the spin-dependent d orbitals occupancies
of E' (occupied by 1-spin up) equal to E? (occupied by 1-spin
down). Therefore, if k,0, exists, such as along the k, path with
mirror symmetry, then o, cannot be canceled by any of the d
orbitals of the same atom. Moreover, it is known that the spin
in the k, path will be constrained to be along the k, direction
by the mirror operation. So, oy is either canceled between
two different atoms or there is no orbital having spin along
oy. There are two atoms that can be connected by the mirror
symmetry in R3c; therefore, if no oy occurs along the k, path,
there will remain orbitals having spins along oy at each atom
leading to a reduction of spin magnitude along o, (i.e., the
PST direction). In R3m, the mirror symmetry will transform
one atom to itself, which will result in a situation in which
there is no orbital having spin along oy. Thus, if there are PSTs
in both R3c and R3m, the quality of the PST as determined
by the symmorphic mirror symmetry in R3m should be better
than that in R3c. Regarding the Y point, there is no oy, allowed
in the k, path as indicated in Eq. (2); therefore, there is no
significant reduction of the spin magnitude along o, in R3c.

Next, we derive whether PSTs exists in the R3¢ and R3m
space groups. From Egs. (1) and (2), we can see the spin
direction will be uniform, that is, along the o, direction in the
ky, path, regardless of the high-symmetry point considered.

This is the same result as that in C,,, because of the mirror
symmetry in the k, path. The main difference between C3, and
(>, is that the spin deviation part led by k,, which is present
in the Hamiltonian having C,, symmetry and contributes to
the term k.0, about both I' and Y, adds additional terms of the
form /31(k;?—3kxky2.)c7z + ﬂz(kg + kxky2 oy, + ﬂskykfay around
I" and y3k.0, around Y in C3,. These terms are responsible for
the spin deviation. From Egs. (1) and (2), the spin-deviation
angles (0),6;) about I' and Y with respect to o, are
k(1 +B2k2) —3B1kek?
larctan (g e ran ) A (g e @ A )
and [arctan Vz *) arctan y‘ . )] respectively. Then, a small

deviation is expected to occur somewhere along the k,
path away from both the I' and Y points, i.e., around the
midway point of the k, path, because large k, minimizes
the spin-deviation angles (6,, 0;). This conclusion is also
consistent with the results derived by solving Eq. (2) (see
Supplemental Note 1, Eqs. S6-S11). Last, if the SOC
parameters in the directions of o, and o, are also small,
the angles (6, 0;) would further decrease. If the third-order
terms are ignored in Eq. (1), we can obtain spin-deviation

angles that reduce to [arctan( k"‘lﬂj‘ T ), 0], which is similar

to the spin deviation present in the C,, Hamiltonian. The
PST phenomena were reported previously for materials
with G, and C; point groups. Here, the k, path having
the mirror symmetry in the C;, point group resembles the
points having C,, symmetry and point having C; symmetry.
This simplification can be more effective when the k point
is around the midway point of the k, path, where the
spin-deviation angles (6,, 6,) are also minimal.

D. Validation of the k - p model

We now apply these guidelines to materials with Cj,
point-group symmetry and compute the spin textures us-
ing density-functional theory calculations. We first choose
RbNDbO; with R3m symmetry and LiTaO3 with R3¢ symme-
try, whose primitive structures in real and reciprocal space are
shown in Figs. 1(a), 1(b), 2(a), and 2(b). Both compounds are
insulators and have a conduction-band minimum (CBM) at
I" [Figs. 1(c) and 2(c)]. The conduction band edges of both
compounds indicate the PSTs occur along the k, direction
[Figs. 1(d) and 2(d)], because there is a mirror symmetry in
the k, path. The length of the arrows for the spin textures in
Figs. 1(d) and 2(d) indicate that the spin amplitude along the
k. direction in RbNbOj is larger than that in LiTaOs3. This
result is consistent with our k - p model, which finds that the
spins along the k, direction on the two Ta atoms with opposite
directions are allowed and reduce the spins magnitude along
the k, direction (i.e., PST direction), when closer to the I
point. Another conclusion from our k - p model analysis is that
the PST can also occur at the midway point of the &, path from
I' to Y as shown in Figs. 1(d) and 2(d). The PST areas with
deviation angles (5°, 5°) for the two materials are enclosed
by the orange lines. If we want to access the PST and its
associated helix experimentally, one additional requirement
must be satisfied. The PST region should be located around
the CBM to enable its access through n-type doping. Although
we find the PST in both RbNbO3 and LiTaO3; materials, this
requirement is not satisfied. The PSTs will be difficult to
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FIG. 1. (a) Trigonal cell of RbNbO3; with R3m symmetry along
the threefold axis. The mirror symmetries are also shown. (b) Bril-
louin zone of the trigonal-cell reciprocal lattice vectors (g;, g2, g3)-
High-symmetry k points are shown in red with values specified in
Supplemental Material, Table 11 [42]. (c) Band structure of the
trigonal cell. The energy is given with respect to the CBM. (d) Spin
textures in the k, = 0 (fractional coordinate) plane of the lowest
conduction band around the I' — Y path. Arrows indicate the spin
direction. Color scale represents the degree of spin deviation out of
the xy plane (i.e., along the k, direction). Area within the orange lines
indicates spin deviations less than (5°, 5°).
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FIG. 2. (a) Trigonal cell of LiTaO; with R3c symmetry along
the threefold axis. Mirror symmetries are also shown. (b) Brillouin
zone of the trigonal cell with reciprocal lattice vectors (g1, g2, g3)-
High-symmetry k£ points are shown in red with values specified in
Supplemental Material, Table 11 [42]. (c) Band structure of the
trigonal cell. Energy is given with respect to the CBM. (d) Spin
textures in the k, = O (fractional coordinate) plane of the lowest
conduction band around the I' — Y path. Arrows indicate the spin
direction. Color scale represents the degree of spin deviation out of
the xy plane (i.e., along the k, direction). Area within the orange lines
indicates spin deviations less than (5°, 5°).
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FIG. 3. (a) Trigonal cell of Tl3SbS; with R3m symmetry along
the threefold axis. Mirror symmetries are also shown. (b) Brillouin
zone of the trigonal cell with reciprocal lattice vectors (g1, g2, g3)-
High-symmetry k points are shown in red and specified in Supple-
mental Material, Table 12 [42]. (c) Band structure of the trigonal
cell. Energy is given with respect to the CBM. (d) Spin textures in the
k, = 1/2 (fractional coordinate) plane of the lowest conduction band
around the A — Z path. Arrows indicate the spin direction. Color
scale represents the degree of spin deviation out of the xy plane (i.e.,
along the k, direction). Area within the orange lines indicates spin
deviations less than (5°, 5°).

access because the PST region is at a much higher energy than
the CBM.

E. Identification of PSTs in Tl3SbS; and LiNbO;

We now apply our group theory analysis and k - p model
to T13SbS; with a polar R3m ground-state structure [50]
[Figs. 3(a) and 3(b)]. Our computed electric polarization is
approximately 23 uC cm~2. The band structure of Tl3SbS;
reveals it has a DFT indirect band gap of 0.88 eV in bulk with
the CBM along the A’ — Z path [Fig. 3(c)]. We find A’ — Z:
(1/6,1/6,1/6)—(1/2,1/2, —1/2) at a k, = % (fractional coor-
dinate) plane [Fig. 3(c)], which exhibits a mirror symmetry
perpendicular to x, can be transformed to a [k, —k, 1/2] path
in a hexagonal system. Following the group analysis above,
the unidirectional spin direction should then be along the x
direction since the mirror symmetry is perpendicular to x.
Indeed, Fig. 3(d) shows there is a PST with a unidirectional
spin direction along the x direction for bands dispersing along
the k, direction. Since the PST regionis ata k, = % plane, the
spin deviation is unaffected by k.. Because space group R3m
has threefold rotational symmetry, we expect three directions
in the Brillouin zone exhibit a PST, which are symmetry
related to each other, and provide persistent spin helices.

To determine the spin lifetime for the PSHs in T13SbSs,
we adopt a Hamiltonian with C; symmetry, because the PST
region is located around the middle of the k, path with a
mirror operation. The SOC strength in the PST region along k,
are y; = 0.69eVA and those along k, are y, = 0.06eVA and
ys = 0.71eVA. Figure 3(d) shows that the PST persists and
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FIG. 4. (a) Orientation for building thin films from T1;SbS; with a trigonal cell and R3m symmetry. Black arrow indicates the film direction.
(b) Structure of TI;SbS; film with Cm symmetry. Brillouin zone of the film is the same as that of the trigonal cell. Values of the high-symmetry
k points are specified in Supplemental Material, Table 13 [42]. (c) Band structure of the film. Energy is given with respect to the CBM. (d)
Energy surface of the lowest conduction band spanning a k,— k, plane around the I'—L path. Arrows indicate the spin direction. Color scale
represents the band energies. All the spins are oriented along the k, direction.

spans an area from the CBM to 45 meV above it. Simultane-
ously, the spin deviation away from the x direction is also less
than (5°, 5°). With the SOC parameters and a Fermi wave-
length kr = 0.025 A, we compute the spin lifetime 7, =
1 ps for the PSH mode and the characteristic spin lifetime
is T;ﬁ = 8.8, where the spin-procession period time Tpsy =
ﬁ The spin lifetime in TI3SbS; is much shorter com-
pared to canonical materials such as GaAs/AlGaAs (~200)
[45].

To further enhance the quality of the PST in TI;3SbS3,
we need to eliminate the influence of the SOC terms along
k.. Often when investigating Rashba, Dresselhaus, and per-
sistent spin textures in quantum-well materials, k - p models
in two dimensions are invoked and the average momentum
along the out-of-plane direction of a confined electron gas
or thin-film/heterostructure is set to zero within a mean-field
approximation. The consequence is that odd-order SOC terms
in the Hamiltonian can be neglected. In a similar way, we
build a thin film with k, along the out-of-plane direction and a
mirror symmetry in the in-plane direction. Since k, and k, then
become the in-plane reciprocal lattice vectors for the thin film,
we explore the SOC terms along both &, and k; directions.
Based on C; symmetry, we have y k.0, in Hy, which also
supports the uniform spin direction along the k, direction
same as that led by the SOC effects along the k, direction
[Eq. (2)]. Therefore, a thin film on (011) TbAIO; substrate
with its out-of-plane (in-plane) direction aligned along k, (k,
and k) of the bulk structure [see Figs. 4(a) and 4(b)] should
support a uniform spin direction along the out-of-plane direc-

tion with zero spin deviation. This behavior is demonstrated
by our direct DFT calculations [Fig. 4(d)] with strains along
the a and b directions of 1.8 and —0.2%, respectively. We find
a perfect PST spanning a large portion of the Brillouin zone
and a high-energy range above the CBM.

If we further redefine the in-plane direction (k) of the
thin film to be along y 1k, + y/k; of the bulk state, which
is a direction about 34 ° away from k. direction, then the
CBM occurs along this direction in the thin film as seen in
the I" — L path of the band structure [Fig. 4(c)]. The SOC
parameter is 1.71 eVA around the CBM along the I' — L path,
which is comparable to other predicted PST materials with
strong SOC coefficients, such as that of 1.9 eVA in BilnOs.
The TI3SbS; film is a three-dimensional material showing a
perfect PST without any spin deviation. Our finding stems
from careful analyses of trigonal polar groups and reducing
the C3, crystal class to Cs by engineering an epitaxial thin
film using demonstrated approaches [39] applied to realize
monoclinic BiFeOs. Figure 4(b) shows that a TI3SbS5 film has
Cm symmetry and the computed polarization for this phase
is about 23 uC cm~2 along the b direction. Because there is
no spin deviation, the spin lifetime will ideally diverge to-
ward infinity at low temperatures until another spin-scattering
mechanism becomes operative. Alternative to the thin-film
geometry [51], this optimal PST may also be observed in bulk
T15SbS; along the &, direction via laser-induced formation of
surface nanolayers [52].

A PSH state with the spin-spiral plane perpendicular to
the unidirectional effective field has long been pursued [5].
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FIG. 5. (a) Trigonal cell of LiNbO3 with R3¢ symmetry along the threefold axis. Mirror symmetries are also shown. (b) Brillouin zone of
the trigonal cell with reciprocal lattice vectors (g;, g, g3). High-symmetry k points are shown in red with values specified in Supplemental
Material, Table 14 [42]. (c) Band structure of the trigonal cell. Energy is given with respect to the CBM. (d) Structure of a LiNbOj; film with Cc
symmetry. Brillouin zone of the film is the same as that of the trigonal cell. Values of the high-symmetry k points are shown in Supplemental
Material, Table 15 [42]. (e) Band structure of the film. (f) Spin textures in the k, = O (fractional coordinate) plane of the lowest conduction
band around the I' — Y path. Arrow indicates the spin direction. Color scale represents the degree of spin deviation out of the xy plane (i.e.,
along the k, direction). Area within the orange lines indicates spin deviations less than (5°, 5°). Arrow indicates the spin direction (in the yz
plane) projected into the k, = 0 plane, whose components along k. and k, in the plot are along the Cartesian y and z directions, respectively.
Color scale represents the degree of spin deviation out of the yz plane (i.e., along the k, direction), that is, 90° indicates the spin is in the yz
plane. Area within the orange lines indicates spin deviation towards the k, direction is less than 10°.

By solving a microscopic spin-diffusion equation in quantum-
well structures, previous studies found an enhanced spin
lifetime 7, occurs at a “magic” wave vector of 2g, where ¢
corresponds to the shifting vector induced by the Kramers
degeneracy from time-reversal symmetry on the Fermi sur-
face [1,5]. This well-known PSH state at 2g occurs as
a consequence of the C,, or C; symmetry of the SOC
Hamiltonian—the only two previously known symmetries of
the SOC Hamiltonian that can produce the PSH state with a
long spin lifetime [5,20]. This PSH mode is due to a PST spin
texture that occurs in a k path starting from a high-symmetry
k point having C,, or C; symmetry, resulting in a uniform spin
direction that is in a direction perpendicular to the k path
[31]. However, there exists a k path under C; symmetry,
which may induce a spin texture: k(y»0y + y30;) such that &,
does not contain a mirror plane. In this defined spin texture,
the spin texture in the plane perpendicular to k, depends on
the ratio of y»/y3. This special situation can occur because
the SOC strengths along k, are smaller than those along the &,
direction. Therefore, we call the PST along a k path without
mirror symmetry a type-II or accidental PST to contrast it with
type-1 PSTs that are enforced along a k path with a mirror
symmetry.

Next, we will elucidate how a type-II PST occurs in the
important optoelectronic material LiNbOj [53] [Fig. 5(a)], for
which we calculate an electric polarization of 68 uC cm=2.

Our computed polarization is underestimated compared with
the experimentally observed polarization [54] (77 uC cm™2).
Figure 5(c) shows that the CBM is not along a high-symmetry
ky path having the mirror symmetry but is at different k point
compared to LiTaO; where the CBM is in the k, path. The
location of the CBM in LiNbQOs is consistent with the previous
calculations [55]. Since we are interested in the k, — k, plane
for searching for possible PST regions, we construct a thin-
film LiNbO3 geometry with Cc symmetry (a ~ b = 3.68 A)
[see Fig. 5(d)], which should be accessible in experiment
using demonstrated growth approaches [39] to realize Cc
BiFeOs. The computed polarization for the film is 71 uC cm 2
along a direction 37° from the ¢ direction in the (110) plane.
We find that the CBM is located at a point in the k, path along
the [110] direction in the thin film. We further interpolate
the band structure in a k, — k, plane at kK, =0 by carrying
out WANNIER90+4-SOC calculations (Supplemental Material,
Fig. 1) [42], which further supports our identification of the
CBM as the minimum energy along the k, path. Surprisingly,
although the k, path only possesses the identify operation,
there is still a region showing a uniform spin direction de-
termined by y»0, + y30;. This type-II PST region also has a
sizable area as shown in Fig. 5(f), enclosed by the (orange)
boundary line demarcating the spin deviation from a direction
determined by y,0, + y30; [i.e., ~arctan(ys/y,) = 33° from
the k, direction] is also less than 10°. The SOC strength in
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the PST region along k, is y; = 0.14 eV A and along k, it is
¥ =0.51eV A and 3 = 0.33eV A in the Cc structure. With
these SOC parameters and a Fermi wavelength of 0.04 A~!,
we compute the spin lifetime for the PSH mode in LiNbO;
to be 11 ps and T:T = 127. Therefore, a possibly better PST
in the polar structure with C3, symmetry can be obtained by
reducing its symmetry to Cs in a thin film, while there is no
PST accessible in bulk R3c structure.

IV. CONCLUSION

We proposed a strategy to identify and design optimal
PSTs in bulk crystals based on polar space groups showing
an odd number of mirror operations. We showed that com-
pounds with point groups Cz, may also exhibit PSTs, which
expands the phenomenon to more readily n-type dopable
chalcogenide compounds and perovskite oxides with R3¢ and
R3m symmetries. We also found that using strain to reduce
the crystalline symmetry is a useful strategy for improving
the performance of bulk PST materials and unlocking hidden
type-1I (or accidental) PSTs in thin films of many previ-
ously identified Rashba compounds [23,50]. This approach

brings PST properties to more complex crystal structures and
chemistries with strong Rashba coefficients and/or topological
insulator and Weyl semimetal phases. Noncentrosymmetric
compounds with high-symmetry wave vectors in reciprocal
space exhibiting C; point symmetry are an important initial
phase space to search for PSTs in known materials. Last,
our study demonstrates a type of PST that does not require
symmetry protection, which will bring further opportunities
to find high-quality PSHs in future spin-orbitronic devices.
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