
Demo: Simulation and Security Toolbox for
Cyber-Physical Systems

Lin Zhang, Mengyu Liu, Fanxin Kong
Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse NY

lzhan120@syr.edu, mliu71@syr.edu, fkong03@syr.edu

Abstract—The paper describes the design of a simulation and
security toolbox for cyber-physical systems, and demonstrates
two real-time recovery cases based on the toolbox.
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I. INTRODUCTION

Cyber-physical systems (CPSs) seamlessly integrate com-
putational resources and physical components with sensing
and actuation. The integration expands the capability of these
critical components and services in numerous domains, such
as healthcare, aviation, transportation, and manufacturing. De-
spite the benefits, attacks targeted at CPSs can effortlessly
cause severe consequences that damage economic interests,
endanger personal safety, and disrupt social order.

Urgent needs to secure CPSs motivated many defense
mechanisms. Attack detectors aim at identifying attacks at the
earliest time, and attack recovery methods try to eliminate the
impact caused by these attacks and even steer the system’s
physical states to a target set [1], [2]. However, there are
few solutions that help to evaluate the efficacy and efficiency
of these security countermeasurements due to the following
challenges: (i) tremendous efforts are required to collect
benchmark plants, design controllers, customize attacks, build
defense approaches, and evaluate these approaches. (ii) the
existing solutions are difficult to add new features or integrate
with existing simulators. (iii) besides cyber states, the physical
behavior of systems also requires to be simulated.

To address these challenges, we develop a simulation and se-
curity toolbox with high extendibility and flexibility. One can
easily switch between different experiment settings and apply
defense prototypes responding to different attacks. The source
code is available at https://github.com/lion-zhang/CPSim.

II. SECURITY TOOLBOX DESIGN

A. Toolbox Overview
The proposed toolbox includes a CPS simulator and a set of

security tools. As shown in Fig. 1, the simulator mimics the
behavior of a CPS: Sensors measure system states and forward
measurements to observers. Meanwhile, the measurements
could suffer from external uncertainties and attacks to meet
experiment needs. On the basis of them, the observers are
responsible for providing state estimates for the controllers.
Then, the controllers generate control input to be implemented
in physical plants. Plant simulators update system states ac-
cording to system dynamics and control input. To secure

Fig. 1: Design Overview of Simulation and Security Toolbox
CPS, various attack detectors and real-time attack recovery
controllers are included to respond to those attacks.
B. Component Implementations

This section elaborates all components in the toolbox.
Plant Simulators: The toolbox provides some out-of-the-

box CPS benchmarks from different domains. Linear bench-
marks are defined using state-space linear time-invariant (LTI)
models, including the F16 fighting falcon, serial RLC circuit,
motor speed, etc. Nonlinear benchmarks are defined by order
differential equations (ODEs), including continuous stirred
tank reactor, inverted pendulum, quadrotor, etc. It is simple
to switch between all these benchmark plants with controllers
by modifying the configuration file.

Controllers: The toolbox integrates common nominal con-
trollers, such as PID, LQR, and MPC controllers. It is
convenient to complete various control tasks, such as cruise
control and lane keeping in an autonomous vehicle, using those
nominal controllers with appropriate parameters. In addition,
the toolbox also supports real-time attack-recovery controllers,
which take over the system after identifying an attack. The
controllers can generate a recovery control sequence that steers
CPS’s physical states back to a target set after an attack. The
recovery controllers rely on the formal method component.

Observers: Some controllers rely on state estimates calcu-
lated from sensor measurements by observers. The toolbox
provides common observers, such as the Kalman filter for
linear systems and extended Kalman filter for nonlinear sys-
tems. In most cases, we obtain the ground-truth states from the
simulators directly, and the observers then become optional.

https://github.com/lion-zhang/CPSim


Online Reachability Analysis: Reachability analyses pre-
dict system’s reachable states, all possible physical states at
subsequent control steps. If reachable states do not intersect
with an unsafe set, the safety property must be satisfied. The
toolbox contains efficient approaches to online reachability
analysis. For linear systems, it leverages the properties of
linear transformation of the zonotope and the support function
method. For nonlinear systems, it uses interval arithmetic. In
addition, the toolbox supports other formal representations,
such as half-space and strip, to express unsafe and target
state sets. Moreover, it also supports operations on Gaussian
distributions to deal with stochastic systems.

Noise and Attacks: The toolbox simulates the ubiquitous
noise or disturbance in real systems. The uncertainty may
follow bounded uniform distributions, unbounded Gaussian
distributions, etc. Besides, the toolbox simulates attacks that
compromise the integrity or availability of sensor measure-
ments, such as bias, replay, and delay attacks.

Supporting Components: The timer device simulates the
system clock and activates control steps. The logger check-
points historical data, such as the state estimate, sensor
measurement, and control input, and prints the necessary
debug information. The toolbox also reserves the interface for
different attack detectors, such as CUSUM, chi-square.
C. Requirements and Customizability

The toolbox is implemented in Python 3, and thus can be
installed in various operating systems with a Python environ-
ment. The main dependencies are scipy, numpy and cvxpy
packages. Moreover, it is convenient to carry out secondary
development because of two aspects:
(i) high extendibility. The toolbox is written in a modular
fashion, and each component is organized into a package.
Thus, it is easy to extend its built-in functions or add new
features. For example, users can add a new CPS according to
their needs by modifying the system dynamics and controllers
from the template file.
(ii) high flexibility. Besides numerical simulations, the toolbox
can be easily deployed in common high-fidelity simulators,
such as AirSim and CARLA. Also, it can be integrated into the
Robot operating system (ROS), a set of open-source software
libraries and tools for building robot applications. Thus, the
toolbox is effortlessly deployed in real robots or CPS testbeds.

III. TOOLBOX DEMONSTRATION

To demonstrate the toolbox usage, we show a real-time
attack recovery on CSTR numerical simulator and another one
on SVL high-fidelity simulator.
A. Working with a built-in numerical simulator

First, we aim to evaluate the recovery performance of differ-
ent baseline recovery controllers. We only require modifying
the configuration file rather than writing simulation code.
In this file, we choose a benchmark plant, CSTR shown in
Fig. 2a, controller by a PID controller. Also, we define a bias
sensor attack that subtracts 25K from the temperature sensor
feedbacks start from the 9th second. The detector identifies the
attack at the 10th second, and triggers the recovery controllers.

(a) CSTR (b) Recovery Results
Fig. 2: Attack Recovery Performance for Baselines

(a) Attacked (b) Recovering (c) Recovered
Fig. 3: Attack Recovery Performance for Baselines

The baseline recovery controllers include (i) no recovery
method [none], (ii) software-sensor-based recovery (ssr [3]),
(iii) linear-quadratic-regulator-based recovery (lqr [4]), and
(vi) data-predictive recovery (mpc [5]).

Fig. 2b plots the ground truth temperature from the simu-
lator. From the curve, we can intuitively analyze the recovery
performance of each baseline recovery controller.
B. Working with an external high-fidelity simulator

Then, we demonstrate how to use the toolbox to recover an
autonomous vehicle in the SVL simulator. The vehicle suffers
from an IMU sensor attack, deviates from its own lane, and
even enters the oncoming lane, as shown in Fig. 3a. To apply
the lqr recovery controller after detecting the attack, we need
to integrate the toolbox with SVL simulator. Since there is a
ROS bridge communicating with the simulator, we load the
toolbox in a ROS node, which is responsible for recovering
the vehicle from the attack within a safety deadline.

Fig. 3b shows that the vehicle returns to its lane during the
recovery process. Fig. 3c shows that the recovery controller
steers the vehicle to a safe region, the road shoulder, to avoid
collision after recovery.
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