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Abstract

Most research on network reliability has considered links to have a binary state, i.e., functioning or
failed, whereas nodes are considered flawless. In a more realistic scenario, both links and nodes might fail
or may exhibit degradation behavior before failing. This study develops a framework to estimate the all-
terminal reliability of a network that considers the degradation and probability of failure of all nodes and
links in a network. Unlike previous works on network reliability that considered constant reliability for
links, this paper considers the reliability of links, nodes, and the network as functions of time. In the
proposed framework, the Bayesian methods (BM) are employed to estimate the reliability of links and
nodes as functions of time considering degradation data. Due to the complexity of the all-terminal reliability
problem, and to get fast estimations of the reliability of a network, an integration of Monte Carlo (MC) and
Deep Neural Networks (DNNs) is proposed. The proposed MC algorithm can estimate the network
reliability for given nodes and links reliability values. To speed up the calculation, a DNN model is
integrated into the framework, thus enabling accurate and fast estimation of network reliability for given
link and node reliability values. The DNN accuracy, based on the RMSE (0.01460), outperforms previous
traditional artificial neural network (ANN) approaches. Moreover, the DNN model takes 0.3 ms to compute
the reliability for any given links and reliability values. The proposed framework can provide not only
reliability point estimates but also credible intervals. Finally, we take advantage of Bayesian methods to
integrate new data into the framework as they become available. The framework uses the new data to refine

and further update the degradation model parameters and the prediction of the reliability of links, nodes,
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and the network. The proposed methodology has been demonstrated with the real-world network topology

Ion (125 nodes, 150 links) with actual degradation data.

Keywords: All-terminal network reliability, Bayesian methods, credible intervals, degradation, Monte

Carlo, Deep neural networks.

List of abbreviations

ANN Artificial neural network
BM Bayesian methods
CDF Cumulative distribution function
CNN Convolutional neural network
DNN Deep neural network
MC Monte Carlo
MLE Maximum likelihood estimate
PDF Probability density function
PMF Probability mass function
RMSE Root mean square error
RNN Recurrent neural network
RUL Remaining useful life
List of symbols
f() Probability density function
Pr() Probability function
Vo Degrees of freedom
Dhor() Standardized normal CDF
Dy Threshold level
Djjx Actual degradation y; ;. for sample i, at time ¢; under stress level k
F(-) Cumulative distribution function
Riinks Reliability of links
Ryet Network reliability
Ruodes Reliability of nodes
b; it" slope in the linear degradation model
pL Links reliability
DN Nodes reliability
Yijk Observed sample degradation y; j; for sample i, at time ¢; under the multi-stress level k
So Inverse of scale matrix
Bi it" degradation model parameter
Pnor (") Standardized normal PDF
Pnor (") Standardized normal PDF
M Number of replications
R() Reliability function
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1. Introduction

Networks are commonly used to represent interconnected infrastructure systems such as computer
networks, piping systems, or power supply systems [1-3]. Therefore, reliability assessment of these critical
networks is imperative. Moreover, reliability assessment of the networks and their components is critical
for the users as well as for the producers, especially in logistical decision making such as preventive
maintenance, warranty policy, and spare parts management. A network can be defined as a set of items
(nodes or vertices) connected by edges or links [4]. Graphical models allow visualizing the
interdependencies of the components in a system. Nodes characterize components and junctions of the
system, and links represent the connections. For example, busbars in power systems or switches in
telecommunication systems are modeled by nodes, whereas links characterize power lines in power systems
and optical fibers in telecommunication systems. Such graphical models are commonly based on graph
theory (GT), where a graph G (N, L) denotes the graph G composed by the set N of nodes and the set L of
links or edges [5-7].

Regardless of the number of nodes, links, or their interconnection, network reliability has several
definitions. Most of them are associated with connectivity [8]. Three popular measures are all-terminal,
two-terminal, and k-terminal [9]. All-terminal reliability is the probability that every node can communicate
with every other node in the network, i.e., the network forms at least a minimum spanning tree [10]. The
two-terminal reliability problem requires that a pair of specified nodes, e.g., source (s) and terminal (t),
be able to communicate with one another. k-terminal reliability requires that a specified set of k target

nodes be able to communicate with one another. Even though the two-terminal reliability problem is slighlty
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simpler than the all-terminal reliability problem [1], it might provide a dubious view of the system’s
network [11, 12]. Advanced network reliability techniques have been oriented to the k-terminal and all-
terminal reliability [13-17]. This paper focuses on the all-terminal reliability, as it has practical applications,
especially in communications networks [14, 18-21]. It requires all the nodes to be connected to each other
without possible failures, providing a holistic reliability measure for the network.

In most previous works on network reliability, binary states have been commonly assumed for links,
and nodes have been considered perfect [1, 14, 17, 22, 23]. Even considering link failures only, the problem
is complex and NP-hard [1, 14]. Traditional network reliability methods include exact NP-hard methods
[1, 8,9, 24] or approximated methods. Among approximated methods, there are several methods such as
graph reduction [1, 9], cut-set and tie-set approximations [1], Monte Carlo (MC) [25-29], and bounds [1,
30, 31]. More recently, modern approaches based on percolation theory [32], All-Pairs Homogeneity-Arc
[33], matrix-exponential [34], minimal cuts for demand (d-MC) [35], binary-addition tree [36, 37], among
others, have been applied for network reliability as well.

On the other hand, among modern approximated approaches based on deep learning, artificial neural
networks (ANNs) have emerged as a promissory tool to estimate network reliability. Indeed, ANNs have
been claimed to be one of the most efficient methodologies developed so far for the reliability estimation
of networks [38].

ANNSs have been usually trained with the network topology and link reliability as inputs and with the
target network reliability as desired output [14, 17, 23]. For example, Srivaree- Ratana et al. [14] utilized
an ANN to predict the all-terminal network reliability; with the network architecture, the link reliability,
and the network reliability upper bound (an approximation of network reliability which is not lower than
the exact value [1, 10, 39]) as inputs, and the exact network reliability as the target. More recently,
Altiparmak et al. [17] proposed an ANN model to predict the all-terminal network reliability, which takes
the node degree and other connectivity metrics and the upper bound network reliability as inputs to predict
the network reliability. Similarly, Dash et al. [23] proposed a method based on ANNs to maximize the

reliability of fully connected networks subjected to some predefined total cost. Traditional ANNs have
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evolved to deep learning (DL) approaches [40, 41], such as deep neural networks (DNNs), convolutional
neural networks (CNNs), and recurrent neural networks (RNNs). These advanced DL methods have been
utilized in the reliability estimation problem. For instance, RNNs have been successfully applied to predict
the health and remaining useful life of bearings [42], li-ion batteries [43]. Also, CNNs have been applied
to evaluate online services reliability [44], software reliability [45], a robot's pose and reliability [46],
rotating machinery reliability [47], and recently, network reliability [48]. Similarly, a DNN has been used
for health prognostic of li-ion batteries [49, 50] and RUL of bearing [51]. Although DNNs have been
applied for reliability estimation, little evidence is available of its use for network reliability estimation.

Both traditional approximated methods like MC, and modern techniques, such as those based on ANN,
have mostly considered link failures possibility only. However, in reality, both kinds of components, i.e.,
nodes and links, may fail. Moreover, both links and nodes may not only fail but exhibit degradation with
time. Such degradation can provide useful information to estimate the reliability of both links and nodes of
a network as functions of time. Research in network reliability estimation considering imperfect nodes is
still scarce, i.e., [24, 52, 53]. Whereas most of the current work on network reliability considers that the
reliability of links or nodes is constant or even perfect, the aim of this study is to consider the reliability of
links and nodes as a function of time in the prediction of all-terminal network reliability.

One major contribution of this article is to integrate the concepts of component reliability based on
degradation data and network reliability by modeling components as nodes and links that degrade. This
paper provides a sophisticated framework to estimate the all-terminal network reliability as an indicator of
the overall health condition of the network. The proposed framework utilizes degradation data from both
links and nodes of a network to estimate its all-terminal reliability as a function of time to account for its
dynamic behavior. Due to the complexity of the problem, the proposed framework integrates Bayesian
methods (BM), MC simulation, and DNNs. Although the complexity of a given network could be first
reduced by applying series-parallel laws, in our approach, we avoid this previous step because not all
networks represented as series-parallel (sp) are reducible [54, 55] and because even if a network is sp-

reducible, it will add extra calculation time and steps. Moreover, sp-reduction may not be convenient since
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we will be considering time-varying reliability values for links and nodes. The proposed approach
contemplates three main steps. First, BM with low-information prior distributions is proposed to estimate
the degradation parameters and further evaluate the reliability (as functions of time) of links and nodes from
degradation data. As a second step, a method based on a MC algorithm is proposed to estimate network
reliability function for given links and nodes reliability functions. The proposed MC algorithm can provide
good estimates of the network reliability for given (fixed) nodes and links reliability values. Nevertheless,
even this algorithm might not be practical for real-time applications. Therefore, to speed up the calculation,
a DNN model is designed and integrated into the framework.

Finally, the DNN model is trained for a range of links and nodes reliability values to learn the all-
terminal network reliability calculated with the MC method. In addition, the framework allows the
incorporation of new data, as they become available, to update the reliability predictions of links, nodes,
and the network. The proposed framework provides point estimates and credible Bayesian intervals for the
reliability functions of links, nodes, and all-terminal network reliability functions. To demonstrate the
applicability of the proposed approach, the real-world network topology Ion (125 nodes, 150 links, New
York, USA) [56, 57] was analyzed using the proposed framework. Real degradation data were considered
for nodes [58]. Similarly, the data were simulated based on real degradation data for links [59]. In summary,
This work presents a comprehensive approach to evaluate the all-terminal reliability of networked systems.
Moreover, we have improved the network reliability assessment framework by considering the time-
dependent degradation behavior of both nodes and links in the system. While individual elements of this
paper are not new, the integration of these elements makes the proposed method innovative, providing a
balance between academic material and practical application.

In the rest of the article, to avoid confusion, the DNN acronym will be used to refer to an artificial deep
neural network, whereas the term network will be employed for the network whose reliability estimation
will be performed. The remainder of this article is organized as follows: Section 2 provides a detailed

discussion on the proposed methodology, which comprises links and nodes degradation models, MC
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method, DNN model, and Bayesian updating. A case study of network reliability estimation is presented in
Section 3. Finally, Section 4 concludes the work and highlights future research opportunities.

2. Proposed Methodology

This section presents the proposed framework for the all-terminal reliability function estimation of a
network considering the degradation of its links and nodes. Different from previous works, we relax the
perfect nodes assumption. We propose to model a network by a graph G(N, L, p, (t), py(t)), where N is
the set of nodes, L is the set of links, p; (t) is the reliability of the link, and py (t) is the reliability of the
nodes. For a given network, the reliability values p; and py in reality are not constant, as both links and
nodes may not only fail but degrade with time. Therefore, such values can be considered as functions of
time that can be calculated from the degradation data of the links and nodes, respectively. This paper
considers nodes and links as sample units from two populations because nodes and links represent different
types of components and may exhibit different degradation profiles. A representation of a network with
degradation in links and nodes is shown in Figure 1 (a), whereas a general degradation path for a component
(link or noded) is represented in Figure 1 (b). Degradation data from both links and nodes will be used to
estimate the reliability values p;, and py as functions of time, respectively. In Figure 1 (a), degradation
patterns for links are represented by solid blue curves, whereas degradation for nodes is symbolized by the

red dashed curves.
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Figure 1. (a) Representation of a network with degradation in links and nodes. (b) General

degradation path for a component

The proposed approach makes the following assumptions for the network:
1. The links and nodes' failure probabilities are independent and equal at a given point of time.
2. The network has non-redundant bi-directional links, e.g., communication or transportation networks.

Therefore, a network is modeled with an undirected weighted simple graph.

3. Links and nodes have a performance variable that degrades with time.

The proposed framework is broadly composed of 1) The BM approach for links and nodes degradation
models for reliability evaluation. 2) MC method for all-terminal network reliability estimation (for given
reliability values of links and nodes). 3) A DNN model trained to learn the reliability values calculated with
the MC method. 4) The Bayesian updating of parameters and network reliability. The four components of
the framework are presented in Sections 2.1 to 2.4 and summarized in Section 2.5.

2.1.Links and nodes degradation models for reliability evaluation

Consider that the actual degradation path of a particular element (link or node) of a network is denoted

by D(t),t > 0. Samples are observed at discrete points in time t,t;,...t; . The observed sample
degradation y;; for sample i, at time t; in a general degradation path model is given as:
Yij = Dij + € (1)
where D;j = D(t;j, B1i» -, Bki) 18 the actual path of the unit i at time ¢;; and €;;~N (0, 0.%)is aresidual
deviation for the unit i at time ¢;. The total number of observations on unit i is m;. For the i"" unit, By;, ..., Bi;

is a vector of k unknown parameters. A unit i is assumed to fail when its degradation level first reaches a

predefined threshold level Dy.

For simplicity, the unit-to-unit variability in model parameters [, ..., 5x can be modeled with a

multivariate normal distribution with mean vectors pg and covariance matrices Zg [60]. It is generally
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assumed that the random parameters fy, ..., By are independent of the €;; and that o is constant. Let 8 =
(ﬂp, X ,;) denote the overall population/process parameters.

The likelihood for the random-parameter degradation model is given as [60]:

o | m;

L(6g,0¢|DATA) = ﬁ j? f l_[o_le(pnor((ij)‘ X fg(Biis - » Bri; 0p)dPris e Bri

i=1 —o —o | j=1

2

where {;; = [yl-j — D(tij, P1is ...,Bki)]/ae, (pnor(fij) is the standardized normal PDF, and
/g (ﬁl ir o Bris 0 3) is the multivariate normal distribution density function. The evaluation of equation (2)
requires the numerical approximation of n integrals of dimension k (n is the number of sample paths and
k is the number of parameters for each path). Therefore, maximizing equation (2) with respect to
(u,;, Zg, O'E) directly can be extremely difficult, although there are some methods [61] and software
packages, e.g., ‘nmle’ [62], to calculate the maximum likelihood estimates (MLE). As an alternative to
MLE methods, Bayesian estimation approaches, which allow incorporation of prior information, are
receiving more attention recently and will be considered for this study to obtain both initial parameter
estimates and updated estimates.

Considering degradation of a performance variable, a fixed value Dy is used to denote the critical level
for the degradation path. The failure time T is defined as the time when the actual path D(t) crosses the
critical degradation level Ds. Therefore, if a unit fails at time ¢, i.e., the degradation level first reaches D
at time t, the cumulative distribution function (CDF) of the failure-time distribution is given as:

F(t) =Pr(T < t) =F(t,0p) = Pr[D(t, By, ..., Bi) = Df] 3)

For most practical cases, where D(t) is nonlinear and f3;, ..., B are random parameters, there is no
closed-form expression for F(t), and it has to be evaluated by methods such as numerical integration or
MC [60].

In the present study, degradation will be considered for both links and nodes. Therefore, there will be a
CDF of failure-time distribution for links, F; (t), and another CDF for nodes, Fy(t). The functions p;, and

pyn, can be calculated by p,(t) =1 — F,(t), and py(t) = 1 — Fy(t), respectively. Furthermore, the
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functions p; (t) and py(t) estimated from degradation data can be used to evaluate the overall network
reliability by using the approach described later in Section 2.3.

The degradation patterns (e.g., linear, convex, or concave), and its consequence, the reliability functions
p.(t) and py (t), will depend on the degradation characteristics of the links and the nodes of a particular
network. The purpose of this paper is to provide a generic approach to estimate the reliability of a network
considering the degradation of links and nodes, depending on the data available. To illustrate the detailed
application of the proposed framework, particular models are described in the next sections (2.1.1 and 2.1.2)
for links and nodes separately, as well as the expressions to evaluate the corresponding reliability functions
p.(t) and py (t). Despite the assumed models as an example only, our proposed approach is generic and
can be used with different degradation data/models, provided degradation data and a degradation model
properly describing the specific degradation processes are supplied. Although, Sections 2.1.1 and 2.1.2
present specific nonlinear and linear degradation profiles for links and nodes, respectively, different

degradation profiles can be considered depending on the actual network and its components.

2.1.1. Links degradation modeling

Usually, links represent communication paths between the nodes in a network. For instance, the links
may represent the optical fibers of a network, which can be affected by crack growth [63, 64]. For instance,
when the fiber is exposed to sustained stress, degradation occurs as crack growth [65, 66]. Moreover, cracks
are a kind of failure mechanism that leads to the degradation of light transmission capabilities [67]. Hence,
a crack growth model is assumed for the degradation of links in this section. The model explained in this
section is based on Ref. [60].

Let a(t) be the size of a crack at time t. By the Paris-rule model [68], we have:

da(t)
at

“)

C x [AK(a)]™

where, C and m are material properties. Typical values of m range from 2 to 4.5. For example, for

aluminum 7075-T6, m is equal to 2.836. For this material, the dimensions for C are
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[(cycles)(Pa)?836(m)°418]~1, Different powers of m lead to different powers of the dimensional units
[69]. AK (a) is the stress intensity range function. Considering a small crack, AK (a) = Stressvma. The

solution to the differential equation (4) is:

" 2 5)
1__

a(t) = “(a(O))l_% + ( 2) X C X (Stressx/ﬁ)m X t]z_m, m#2

| a(0) x exp [C X (Stress\/ﬁ)2 X t] m=2
Considering the crack size as the links performance measure, the degradation path is given as D;; =

a(t). Let Stress=1, B, =C X (\/E)m, and B, =m. f; and B, are modeled by a bivariate normal
distribution with parameters (“ﬁl’ KB, OB,» OB, p). Therefore, the general degradation path model for the

observed degradation is given as:
yij = a(ti;, a(0), Byi, Bai) + € (6)

To estimate the parameters, we propose to use BM instead of maximizing equation (2) with respect to
(ul;, Lg, O'E) or employing software such as ‘nmle’ [62] R package to calculate the MLE estimates. Bayesian
estimation is a promising alternative to maximum likelihood (ML) and has been getting attention recently.
One advantage of Bayesian estimation is that modern Markov Chain Monte Carlo (MCMC) methods with
low-information prior distributions provide estimation results close to ML estimates [70]. In addition, BM
provides not only point estimates but also credible intervals, which can be derived from MCMC draws [70].
Credible intervals are commonly used to describe the Bayesian analog to non-Bayesian confidence intervals
[70]. One benefit of BM is that prior information, if available, can be incorporated into the analysis [71,
72], providing improvements in precision or cost savings in testing. Moreover, from a practical point of
view, Bayesian methods can handle complicated data-model combinations for which there is no maximum
likelihood (ML) software or for which implementing ML would be extremely challenging. For these
reasons, in this study, Bayesian estimation is used for both initial estimation of parameters and updating of

parameters with new degradation data. Bayesian estimation will be described in Section 2.1.3.
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Once the parameters 8; and 3, are estimated, an expression is needed for the links’ reliability p; (t), as
a function of time. Since the parameters f; and [, follow a bivariate normal distribution with parameters

2 2 . . . . .
(T e S and p, then a numerical integration approach can be given as :

_ _ @)
9(Dyt, 1) “BzIﬁH] 1 ¢nor<ﬁ1 Mm) ap,

F (t) = O] — —
L [o [ — =

98, 1

where, ®,,-(*) is the standardized normal CDF, @,,,,.(*) is the standardized normal probability density

function (PDF), g(Df, t, [31) is the value of B, that gives D(t) = Dy for specified By, ug,|p,=Hp, +

Bi-up 2 _ 2 2
Pog, ( op, 1) , and 982181 = 052(1 =P

Therefore, the links’ reliability is given as:

_ _ (3)
_g(Df’ t’ﬁl) 'uﬁz|31] 1 Bror <ﬁ1 #B1> dp,

pL(t) =1- f cI)nor[ -
98,181

— 00

9B, B1

2.1.2. Nodes degradation modeling

Degradation may also affect the transmitter nodes in a fiber-optic network [64, 73]. Thus, a light-
emitting diode (LED) degradation model is considered for nodes, as LEDs generate light in fiber optic
networks [74]. This section considers the modeling for data from accelerated degradation tests on LEDs
reported by Pascual et al. [S8]. The model detailed in this section is based on Ref. [70]. Sample LEDs were
tested at six different combinations of junction temperature and current. The performance characteristic
was the light output. An approximately linear degradation path is obtained by applying a square-root
transformation for the time axis only. Standard acceleration models are applied for temperature and current

[60, 75, 76]. The Arrhenius transformation is used on junction temperature in degrees Celsius, ° C,

(equation (9)) and the Black’s law for current acceleration in milliamps, mA, (equation (10)).

11605 9)
X1 =
T +273.15

x = log(lna) (10)
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The mixed-effects model for the actual LED light-output degradation for the sample i at (transformed)

time 7;, for test condition k, based on normalized data is given as [70]:
Dijiny = 14 By Cerx — XD Tj + Bon X2k — x3)7; + by (11)
where T « v/t because of the square-root transformation for time. The values x{ and x? should be
chosen to be near the center of the respective transformed variables to improve numerical stability [70].
The subscripts “N” are used to refer to the node’s degradation path and parameters, to avoid confusion with
the degradation path and parameters of links.

b; describes the randomness in the slopes for the different LED samples. b; is modeled by a normal
distribution: b;~N (up, 0,%). The model for the observed degradation is then given as:

Yijin = Dijion + €y = 1+ By (ake — 2075 + Bon (o — x9)75 + byt + €5jin (12)
where &, y~N (0, 0.2) describes the measurement error, with the independence assumption of b; and
across time [70].

The parameters By y, B2y Up, and o, will be estimated by BM as well, as discussed earlier. The
estimated parameters, together with the critical light-output level Dy y will determine the expression for
the nodes’ reliability py (t), as a function of time.

Since the light-output exhibits a decreasing degradation pattern, the probability of failure is given as:

Fy(t) = Pr(T < t) =Pr[D < Dy ] (13)
Fy(t) = Pr[l + Bin(y = xD)T+ Bon(xy — 2T+ bt < Df,N]

Den — (1 + By (xy — xD)T + By (xy — XS)T)

=Pr blS
T

Since b;~N (up, 0,2),

Dpy — (14 Bin(xy — xD)7; + Bon (X2 — x9)75) —u

Fy (t) = chor L o

Den — (1 + By — 2T+ Bon(xz — xT + HbT)
TO'b

= Dpor
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Letpu = —(1+ By n(xy — D)7 + Bon (X2 — x3)T + ), then

D —
N T H
Fy(t) = ®por o, ]
Therefore, the nodes’ reliability is given as:
D —
N T H (14)
pn(t) =1 —Dper [ 0, ]

2.1.3. Bayesian approach for links and nodes

Bayesian approach is based on Bayes’ theorem, which relates different kinds of conditional
probabilities (or conditional probability density functions) to one another. The Bayesian method for
statistical inference provides a mechanism to combine available data with prior information to obtain a
posterior distribution that can be used to make inferences about some vector 8 of unknown parameters.
Bayes’ theorem for continuous parameters in @ is given as:

L(DATA|0)f(6) (15)

f(BIDATA) = [ L(DATA|8)f(6)d®

where the joint prior distribution f (@) provides the available prior information about the unknown
parameters in 6. f (@|DATA) is the joint posterior distribution for @, which combines the information from
the data and the prior distribution. L(DATA|@) is the likelihood function and depends on the assumed model
for the data and the data itself. This function must be proportional to the probability of the data. The
denominator of the equation (15) is a normalizing constant that assures that the joint distribution is a proper
probability distribution [70].

One of the reasons for controversy on the use of Bayesian methods is that it is possible that the prior
distribution will have a strong influence on the resulting inferences, especially when the amount of
information from the data is scarce. Therefore, the joint prior distribution must be carefully specified. If
there is no agreement among the expert matters, e.g., manufacturers and customers, a convenient alternative
is to use noninformative prior distributions. When the joint prior distribution is diffuse or relatively flat
over the values of @ for which the likelihood is non-negligible, and if the data dominates the joint prior, the

likelihood is approximately proportional to the joint posterior distribution. As a result, Bayesian inferences
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are similar to those obtained from non-Bayesian methods, e.g., ML [70]. In this study, Bayesian inference
with low-information distributions (which essentially reflects a lack of strong and precisely quantified prior
information) will be employed for the initial estimation of parameters.

The computation of the joint posterior distribution for 8 (equation (15)) in closed form is impossible in
many cases because computing the integral in the denominator can be intractable. As an alternative, modern
methods for Bayesian analysis overcome this complexity by obtaining inferences based on draws from the
joint posterior distribution [70]. A powerful method for simulating a sample from a particular joint posterior
distribution is the Markov chain Monte Carlo (MCMC) approach [72]. Gibbs sampling and MCMC [72]
provides an efficient method to simulate draws from a discrete-time continuous-space Markov chain. After
reaching a steady-state, the sequence of draws provides a sample from the desired joint posterior
distribution [70]. The MCMC simulation proposed is summarized in the following algorithm (2.1).
WinBUGS software is an excellent alternative to perform the MCMC simulation [77] and will be used in
the case study analysis to estimate the posterior parameters.

Algorithm 2.1:
Step 1: Set low-information prior distributions for parameters of the distributions assumed for random

parameters. For example, set low-information prior distributions for Hp . Bg.) 051, 0/%2 and p, for the links

degradation model

Step 2: Generate a large number (T) of MCMC sample draws using prior distributions and degradation data
from the assumed distributions until equilibrium is reached

Step 3: Cut off (“burn-in”) the first B (e.g., B =4,000) number of initial draws to omit the noise effect
Step 4: Monitor the convergence of posterior equilibrium. If not, generate more sample draws.

Step 5: Use MCMC sample draws of the model parameters (for both links and nodes degradation models)
with equations (8) and (14), to evaluate the links and nodes reliability, respectively, for a large number of

time values (e.g., between 0 to 10,000 hours).
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Step 6: The available evaluation values of links and nodes reliability provide appropriate data to determine
not only point estimates, but also credible intervals. Therefore in this step, from the reliability values
evaluated for each time value, obtain the point estimates (or the median values) and the credible intervals
(e.g., 95% credible intervals).

2.2.Monte Carlo method for all-terminal network reliability estimation

At any time, only some links and/or nodes of G might be operational. Since the all-terminal reliability
is the probability that every node can communicate with every other node in the network, the reliability of
a network is given as:

Rye: = Pr{(Operational links connect all nodes) AND (all nodes are operational)} (16)

Even considering only link failures and due to the exponential growth of the number of states with the
size of networks, the all-terminal reliability calculation is an NP-hard problem [78]. In previous studies
based on deep learning techniques, the exact network reliability -calculated with a backtracking algorithm-
was used to train specialized ANNs. This algorithm, although exact, is time-consuming and might not be
practical for networks with more than ten nodes [14, 48]. For instance, the exact backtracking algorithm
reportedly took an average of about 500 seconds per network [48] on ten-node networks.

As an alternative, a MC method could be used to estimate the reliability of a network (Ry.). The
algorithm should simulate M states (replication) for the network. For each replication, the algorithm should
simulate the nodes, considering the reliability of nodes py. If not all the nodes are present, then that state is
not operational because there is no all-terminal communication. If all the nodes are present, the algorithm
should simulate the links, considering the reliability of links p; . If the operational links provide all-terminal
connectivity, then that state is operational for the network, and the accumulator variable r (with an initial
value of zero) is increased by one. After M replications, the estimated reliability would be given by the ratio
of the number simulated operational states over the number of simulated states, i.e.:

~

Ryet = Ryc =7/M (17
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From equation (16) and assumptions 1 and 3, a more efficient way to estimate the network reliability
can be derived. Given that the links and nodes reliability values are independent, equation (16) can be
expressed as:

Ryt = Pr{(Operational links connect all nodes)} X Pr{(all nodes are operational)}  (18)

Let, Rjinks = Pr{(Operational links connect all nodes)}, and Rodes =
Pr{(all nodes are operational)}.

Therefore, the reliability of the network can be expressed as the product of the reliability of links (Rjjpks)
and reliability of nodes (R;,5qes) aS:
Rnet = Riinks X Ruodes (19)

The reliability of nodes can be directly calculated by using the probability mass function (PMF) of
binomial distribution Bin(|N|, py) for |N| successes. In other words, the reliability of nodes is given by
equation (20). Consequently, the simulation of nodes is not required.

Rpodes = p)|vN| (20)

On the other hand, regarding the reliability of links (considering the independencies among the nodes
and the links), at any time, only some links of G might be operational. A state of G is a sub-graph G’ =
(N, L"), where L' is the set of operational links, L' € L. The reliability of links of state L' € L is [12]:

o= Y HH [T a-»
Q FECLNL

JeL!

€2y

where, () is the set of all operational states. As mentioned before, due to the exponential growth of the
number of states with the size of the network, the calculation of the reliability of links is an NP-hard
problem. Hence, only the reliability of links needs to be simulated with a MC algorithm, which is proposed
below:

Algorithm 2.2:
Let M be the total number of independent replications for Monte Carlo simulation
Let |N| be the number of elements (nodes) in N
r<20
k<0
while k < M do
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L, <L

//Simulate the links ...

for each [; € Ly do
generate a random number repy; from Bernoulli(p;)
if repy; = 0 then remove [; from Ly

//Check connectivity ...
if all-node connectivity in G(N, L) thenr «r + 1
ke<k+1

RMClinks = T/M

By using the results of Algorithm 2.2 and equation (20), the network reliability can be estimated as:

-~

Ryer = RMClinks X Rnodes (22)

where Ryc,,,... 18 evaluated by Algorithm 2.2 and Ry, 4 1s calculated with equation (20).

2.3.Deep neural network model

Given a network G(N, L, p;, py), with links reliability p;, and nodes reliability py, the all-terminal
network reliability can be estimated by equation (22), with Ry, .. evaluated by Algorithm 2.2. The
proposed MC algorithm can estimate the network reliability for given (fixed) nodes and links reliability
values, even if this algorithm is not currently practical for real-time applications. Moreover, in our approach,
there is a need for not only a quick network reliability estimation at each time point, but at each time point,
we also consider several (thousands) samples of nodes and links reliability values. Therefore, to speed-up
the calculation, a DNN is proposed to be trained with the estimated reliability of links Ry, . as the target,
as a function of the links reliability value p; as the input. The reliability of links for a set of links reliability
values (p;) can be calculated by using the MC proposed method before the training of the DNN. The DNN
(to estimate the reliability of links Rj;,ks) along with equation (20) (to calculate the reliability of nodes
Ry 04es) conform a DNN model. The DNN model is expected to predict the network reliability (for the new
given p; and py) accurately and quickly. It is worth to mention that the DNN is trained specifically for a

given network (topology). A representation of the DNN model is shown in Figure 2.
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Figure 2. The deep neural network to estimate the reliability of a network

A base dataset is formed by the pairs (X;, y;), where X; is the links reliability value (p;) and y; is
corresponding estimated reliability of links (Ryc,,,,.), for each element in a set of the link’s reliability

values, e.g., {0.01, 0.02, ..., 0.99, 1.00}.

2.3.1. DNN architecture
The proposed DNN architecture is based on feed-forward neural networks as they have proven to be
effective function approximators [79]. Furthermore, a fully connected multi-layer perceptron (MLP)
structure is employed. A sigmoid activation function is used at the output layer to ensure the reliability
predicted falls within the range [0,1], a feature that some previous ANN-based works lack [14, 17]. In
addition, a dropout layer is placed before the output layer to avoid overfitting by randomly dropping neurons
during the training [80]. To summarize, the architecture is a stack of the following layers: input: (X;), fully
connected hidden layers, dropout, output with sigmoid activation: ().

2.3.2. Training and evaluating

Once a base dataset is available, and the architecture of the DNN is defined, the remaining phases are
training and evaluating. Five-fold cross-validation is considered to compare the results obtained with
different test sets from the same base dataset. The base dataset is (randomly) divided into five subsets of
the same size. DNN training uses all but one subset, and the excluded subset is considered a test set for the
trained DNN. After training, the DNNs are evaluated in terms of the error using the testing datasets from

cross-validation.
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2.3.3. Calculating the all-terminal network reliability

The cross-validation error is used to select the best DNN. The best trained DNN can be used to estimate
the reliability of links (R;xs) for a given links reliability value (p). The reliability of links R;j,xs depends
not only on p; but also on the topology of the network. These dependencies are incorporated by the MC
Algorithm 2.2 and learned by the DNN. Moreover, as expected, such dependences (captured by Rj,x) are
reflected in the estimated network reliability R,,.¢, as shown in equation (23). Further, the reliability of
nodes (R,,4es) for a given nodes reliability value (py) is given by equation (20). Therefore, the estimated

all-terminal reliability of the network is given by the proposed DNN model as:

Rpet = DNN(pL) X Ruoaes(py) = DNN(p,) X ply (23)

Riinks

where DNN(p,) represents the estimation of the reliability of links provided by the best DNN, i.e., R}jnks

2.4. Bayesian updating of parameters and network reliability prediction

To further reduce the uncertainty in parameter estimates and network reliability prediction obtained
from the initial (possibly accelerated degradation test (ADT)) data and initial Bayesian parameter
estimation, the framework allows updating the initial estimations with new data. The new data is
incorporated according to Algorithm 2.3 proposed below.
Algorithm 2.3:
Step 1: From the initial MCMC draws obtained using Algorithm 2.1, obtain informative prior distributions
for parameters of the distributions assumed for random parameters; i.e., informative prior distributions for

Mg Bg.» 051, 052 and p in the case of the links degradation model. Besides information from historical

data, experts' opinion is another source of prior information [70].
Steps 2 — 6: are the same Steps 2-6 as previously defined in Algorithm 2.1.

2.5.Proposed framework for network reliability estimation and updating of parameters

To summarize, the overall proposed framework can estimate the reliability of a network, considering
the degradation data of links and nodes. The framework is broadly composed of a links degradation model,

a nodes degradation model, and a DNN model (equation (23) and Figure 2) trained using reliability values

Paper: Draft 20



obtained by the Monte Carlo Algorithm 2.2. The links degradation model (Figure 3) provides the links’
reliability p; (t) based on degradation data. This model considers the updating of parameters if new data
become available. Similar model is considered for the nodes degradation model, with the degradation data
generated from nodes and an appropriate degradation model. The overall proposed framework is
represented in Figure 4. The outputs p; (t) and py (t) are fed to the DNN model for it to predict the network
reliability R,,... Moreover, the nodes reliability, the links reliability, and the overall network reliability can

be updated as new data are available.

Links Degradation Model

7 777 7 " Informative Prior _i
| [ Degradaton] == ———————————— — — — — — — — T
| Data : Model Reliability | |
| [ Degradation Bayesian MCMC . [ > . (t)
| Model Estimation | Simulation »| Parameters »| Function | P
| — | (Estimates) (Estimated) | |
| | information gy sy p— 4 :
| Prior
| |
| | —————— NewPrior-——————I :
| | Posterior | |
Gy - |
| v | 1 i
| New | Model Reliability
Bavesi
| | Degradation > ayestan | .MCM_C —»{ Parameters —¥| Function L
Update Simulation [
| Data P | (Estimates) (Estimated) |
| .\ — ——F—  ———_——— 1

: Links | p.(t)

| Degradation | L 4

| Model Deep Neural ~
_____ Network [ Rpet (t)
|~~~ _| Model

| Nodes

| Degradation |l—4

| Model | pn ()

Figure 4. Framework for all-terminal network reliability estimation
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3. Case Study

To demonstrate the proposed framework, the real-world network topology Ion (125 nodes, 150 links,
New York, USA [56, 57]), shown in Figure 5, was analyzed using the proposed approach (Figure 5). The
real degradation data was considered to simulate additional degradation data for links [59]. Similarly, the
real degradation data was obtained for nodes from Ref. [58]. Since a crack growth model was assumed for
the links, degradation data for 150 sample units would be needed. Lu and Meeker [59] reported crack size
degradation data for 21 sample units only. In this study, the initial degradation parameters were estimated
from such available real degradation data. Based on these estimated parameters, degradation data for 150
sample units were simulated. On the other hand, a LED light-output degradation model was assumed for
the nodes, and hence, degradation data for 125 sample units are required. Pascual et al. [58] provided
appropriate LED light-output degradation data. They reported degradation data for six groups, with 30
sample units per group and each group corresponding to a different test condition. Some data were removed

to match the data required for 125 nodes, as detailed in Section 3.2.

Figure 5. Ion network graphical representation

3.1.Links degradation modeling for reliability evaluation
For degradation modeling of links, the original degradation data for 21 sample units obtained from [59]
were considered (shown in Figure 6). Considering the degradation model given by equation (6), the random

parameters 8, and 8, are modeled by a bivariate normal distribution with parameters (,u By B, OB1» OB, p),
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and the residual deviation € is described by a normal distribution with mean zero and standard deviation
o.. We propose Bayesian estimation of such parameters. These parameters will be used to carryout
simulation and obtain degradation data for 150 links of the network considered in this study. In addition to

degradation data, prior distributions are needed for the parameters pg , ug,, 9g,, 0p,, p, and de.

2.0 1
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§ 6 Failure Level Aﬁ
g ' 2
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) ] ZH 07—
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o ] =
O . oy E
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ojéﬁ -
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Figure 6. Crack growth data

B1

The vector of random unknown parameters of the path model (
2

) described by a bivariate normal

distribution, can be modeled as:

(ﬁl) [ () %" Popp, 24)
.82 Kp,/’ pog, 0p, 0'[;22
Or equivalently:
P (25)
(ﬂz) ~N (g, Zp)

2
o~ Pop, %)

Hp, (
where, ug = ,and X5 =
4 (“ﬁz) £ \pog, 05, 0p,?
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Then, low-information prior distributions are considered for the parameters g, Xg, and o. For pg we
assume a low-information bivariate normal distribution centered in 0 with no correlation between and large
variances for pg and pg, [81]. In WinBUGS, the multivariate normal distribution is specified in terms of

a mean vector and a precision matrix (inverse of the covariance matrix), as shown in equation (26):

Bp = (Zﬁ:) ~N (ﬂ”ﬁ’Tﬂﬁ_l) 2

where T, 5 is the precision matrix and given as T, 5= z, ﬁ_l
On the other hand, to represent a vague prior knowledge for g, a low-information Wishart distribution
[71, 82] is used to describe the precision matrix Tg, where Tg = 26_1’ as shown in equation (27).

Tg = 2 ~W,(So ™% vp) 27

The parameters of a Wishart distribution W}, of a p X p symmetric positive definite matrix is the degrees

of freedom Vg, and the p X p positive definite scale matrix So~ 1. In WinBUGS, the inverse of the scale
matrix, i.e., SgMust be specified.

In this case study TM_1 is a 2 X 2 matrix, then p = 2. To represent low prior knowledge, the (low-

information) Wishart distribution has the degrees of freedom as small as possible [71, 81], i.e., vy = p, and
So represents a prior guess at the order of magnitude of the covariance matrix Zg [81].

Finally, a prior distribution needs to be defined for the parameter o, which is considered to describe
the residual deviation as €;;~N (0, 0.%). In WinBUGS, a precision (inverse of the variance) parameter is
used to specify normal distributions. Therefore, using WinBUGS parameters, the residual deviation can be
described as:

€;;~N(0,7c71) (28)

where 7, = 0,72

T, can be described by a gamma distribution Gamma(a, f) with shape and rate parameters a, 3,

respectively:
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1. = 0. *~Gamma(a, B) (29)
A common low-information prior Gamma distribution is obtained by letting « = § = 0.001 [81],
which provides a mean of 1 and a large variance of 1000. Table I summarizes the low-information prior
distributions used for the initial estimation of parameters.

TABLE I: LOW-INFORMATION PRIOR DISTRIBUTION FOR LINKS DEGRADATION MODEL

Parameter Prior distribution
_ (M 0\ (1.0 x 10~¢ 0 -
Hg = (#ﬁz) N<(0)’( 0 1.0 x 10—6>
——_— _< 9p,” p%“fa)_l W ((1.0 x 1073 0 )‘1 2)
B~ B 2 2 -3 ’
pog, g, ag, 0 1.0 X 10
0. %=1, Gamma(0.001,0.001)

To summarize, a WinBUGS model was built considering the original degradation data [59], the
degradation model given by equation (6), the distributions assumed for the parameters 3, §, and €, and the
low-information prior distributions assumed for parameters pg, g, and o, (see Table I). The initial 4,000
MCMC sample draws were dropped (“burn-in”) and the sample draws were “thinned” [77] to reduce
autocorrelation by setting a lag parameter L of 30, i.e.; in the sequence, every 30" value was retained. In
general, L would be larger if autocorrelation is stronger in the preliminary experiments [70]. The point
estimates are obtained by the median values from the MCMC sample draws [83]. The results are: fig =

(3'717), fﬁ = ( 0.5219 _0'1735), and 6. = 0.008008. WinBUGS also provides kernel density

5.225 —0.1735 0.2349
o . . o _ (M8
estimations. As an example, Figure 7 shows the kernel density estimations of parameter ug = ( up )
2
mu.beta[1] sample: 10000 mu.beta[2] sample: 10000
3.0f 40r
20t 3.0
20p
10F 10+
0.0 0.0
25 3.0 35 40 45 5.0 £S5

Figure 7. Bayesian kernel density estimation of parameter pg
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Using the estimated parameters fig, fp, and &,, degradation data were simulated for 150 sample units

to match the number of links of the network analyzed. 12 measures were simulated for each sample unit,
i.e., considering readings at 0.01, 0.02, 0.03, ..., 0.12 Mcycles. The simulated data were divided into two
parts: “initial data” , i.e., readings at times from 0.01 to 0.08 Mcycles, and “new data”, i.e., readings at times
from 0.09 to 0.12 Mcycles. The purpose of this division is to illustrate the initial Bayesian estimation of
parameters with the “initial data”, and subsequently, the Bayesian updating of parameters as “new data”
become available.

3.1.1. Bayesian estimation of parameters

A WinBUGS model was built considering the “initial data”, the degradation model given by equation
(6), the distributions assumed for the parameters 51, 8, and €, and the low-information prior distributions
assumed for parameters pg, Xg, and o, as given in Table 1. A lag parameter L of 60 was applied. The point

3.608), s

estimates obtained by the median values from the MCMC sample draws are: fig = (5 370 Ipg =

( 0.4458 —0.2215

_02215  0.2604 ), and 6. = 0.008012. Figure 8 shows the kernel density estimations of parameter

_ (B
Hg = (Hﬁz)‘
mu.beta[1] sample: 10000 mu.beta[2] sample: 10000
2.0r 6.0
6.0 4.0}
40r
20t 2.0r
0.0 0.0
32 3.4 36 38 0 £2 5.4 £6

Figure 8. Bayesian kernel density estimation of parameter pg for “initial data”

3.1.2. Links reliability estimation
Both “initial data” and “new data”, for links, have Mcycles as “time” axis, whereas nodes degradation

data, considered in Section 3.2 have hours in the time axis. Therefore, to make the time units consistent for
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reliability calculations, an arbitrary scaling was adopted by setting 64,000 hours as equivalent to one Mcycle
for links “initial data” and “new data”.

The 10,000 MCMC sample draws from the joint posterior distributions of the model parameters were
used in equation (8) to obtain links reliability draws for 1,001 time values between 0 and 10,000 hours. In
other words, to plot the link reliability, we considered 1,001 points in the time axis, and for each of those
points, there are 10,000 MCMC samples from which the median values and credible bounds were derived
and plotted in the reliability axis. The same plotting parameters will be used consistently in the case study
to draw nodes reliability and network reliability. The median values (solid line) and the 95% credible
bounds (dashed lines) are shown in Figure 9.

Reliability
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0.75-

Reliability
=
(5]
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0.00-

0 2500 5000 7500 10000
Time[hours]

Figure 9. Links reliability and 95% credible intervals

3.1.3. Bayesian updating of parameters
As aresult of the proposed time scaling, “new data” include degradation measures at time = 5,760 hours
(i.e., 64,000 hours/Mcycle X 0.09 Mcycles), 6,400 hours, 7,040 hours, and 7,680 hours. A WinBUGS model

was built considering the “new data,” the degradation model given by equation (6), the distributions
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assumed for the parameters B, 8, and €, and informative prior distributions assumed for parameters ug,
and Xpg. Initial MCMC sample draws obtained in Section 3.1.1 are used to estimate the parameters of
informative prior distributions (see Table II). The prior distribution for pg is specified with the MLE
estimates obtained for a bivariate normal distribution from the MCMC draws of ug (obtained in Section
3.1.1). On the other hand, the prior Wishart distribution for 23_1 is specified by considering that the true

covariance matrix Xy can be estimated by the median values from the MCMC sample draws [83] obtained
in Section 3.1.1. To make Xg closely centered around X, a large vy, is selected [71], whereas Sy is given
by equation (30) [71]:
So = (vo —p— DZp (30)
Since this updating process is intended to take place with “new data” obtained during normal operation,

which does not necessarily offer the same testing conditions as for “initial data,” a low-information prior is

still considered for the precision parameter o, 2.

The lag parameter was L = 100. The point estimates obtained by the median values from the MCMC

3.609) s ( 0.4354 —0.1479

5333 ,Lg = —01479 02221 ), and 6, = 0.008611. Figure 10 shows the

sample draws are: fig = (

kernel density estimations of parameter pg = (Zﬁ 1).
2

TABLE II: INFORMATIVE PRIOR DISTRIBUTION SPECIFICATIONS FOR LINKS DEGRADATION

MODEL
Parameter Prior distribution
_ (M8 3.6084\ (409.8462 131.6914\ !
”ﬁ_(ﬂﬁz) N<(5.3716)’(131.6914 247.8900) )
ZB_l - T[s 1
2 -1 3.1206 —1.5505\" )
=< i paﬁl?) W2<(—1.5505 Lar2g) 110
PIp, 9, 0B,
o, %2=1, Gamma(0.001,0.001)
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mu.beta[1] sample: 10000 mu.beta[2] sample: 10000
150 10.0f
10,0} ;g I
S0r /\ 25}
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Figure 10. Bayesian kernel density estimation of parameter pg for “new data”

To verify the robustness of the posterior distributions, we performed sensitivity analysis by considering
a plausible alternative model with changes in informative prior distributions [77]. A natural sensitivity
analysis considers longer-tailed alternatives instead of normal distributions [72]. Hence, in the alternative
model, a prior distribution for pg was specified with the MLE estimates [84] obtained for a multivariate
Student’s t-distribution from the MCMC draws obtained in Section 3.1.1. In WinBUGS, the (noncentral)
multivariate Student’s t-distribution is specified in terms of the mean vector, precision matrix (inverse of

the covariance matrix), and degrees of freedom. In the alternative model, the prior distribution for pg is

iven as t((3'6085) (422.0977 135.4642
s 5.3715/'\135.4642 255.4619

inference in terms of the median and 95% credible intervals obtained from the MCMC sample drawings.

-1
) ,67 ) Table III shows the sensitivity of posterior

Minor differences are observed between the posteriors resulted from the model with normal distribution
and the alternative model with the ¢ distribution. Therefore, the original model that considers the informative

prior distributions in Table II was used for Bayesian updating of parameters.

Paper: Draft 29



Table III: Parameters under different prior assumptions

Distribution for pg
Multivariate normal Multivariate Student’s t-distribution
Parameter
95% posterior credible 95% posterior credible
Posterior median Posterior median
interval interval
” (3.609) [3.533,3.683] (3.609) [3.534,3.684]
B 5.333 [5.247,5.416] 5.333 [5.248,5.418]
0.3531, —0.2288, 0.3528, —0.2310,
¥ ( 0.4354 —0.1479) 0.5509 —0.0815 ( 0.4359 —0.1490) 0.5497 —0.0830
B —-0.1479 0.2221 —0.2288, 0.1604,] —0.1490 0.2223 —0.2310, 0.1611,
—0.0815 0.3093 —0.0830 0.3089
O¢ 0.0086111 [0.008002,0.009317] 0.008613 [0.00798,0.009315]

3.1.4. Links reliability estimation updating

The updated 10,000 MCMC draws from the joint posterior distributions of the model parameters were

used in equation (8) to compute links reliability draws, considering the same plotting parameters defined in

Section 3.1.2. The median values, as well as the 95% credible intervals, are shown in Figure 11. As

expected, the informative prior Bayesian updating improved the precision of the estimates. Figure 12 shows

both the initial links reliability estimation and credible intervals in solid blue lines. Figure 12 also shows

the updated links reliability estimation along with credible intervals in red dashed lines. The updated

reliability and credible intervals are shown from the time = 5,760 hours when “new data” become available.

The additional new data improves the credible interval and provides a narrower range compared to the

initial credible interval. This is caused by a reduction in uncertainty because of the availability of additional

new data.
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Figure 11. Updated links reliability and 95% credible intervals
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Figure 12. Initial and updated links reliability and 95% credible intervals

3.2.Nodes degradation modeling for reliability evaluation
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In this section, normalized (relative to an initial measurement taken on each unit) degradation data [58]
for LED light-output are considered, as shown in Figure 13. A decrease in light intensity output with time
and LED failure is defined when the relative light intensity output reaches 60% level of the initial value
[58]. In the first 138 hours, the sample degradation paths had a complicated irregular behavior for which
LED experts had no explanation [58, 70]. Since the primary interest is in the long-run behavior of the LEDs,
the first 138 hours of data were omitted. The remaining data were renormalized so that all the units start
with a (normalized) output value of 1 at time = 138 hours. The truncated renormalized data are shown in
Figure 14.

The group at 130 °C junction temperature and 40 mA current are believed to cause the occurrence of a
new failure mechanism [58]. Hence the degradation data of this group were removed before the parameters
estimation. Moreover, from each of the remaining five groups, the degradation data of five sample units
were removed so that the “initial data” for the analysis contain degradation paths for 125 sample units (five
groups with 25 sample units per group) to match the 125 nodes of the case study network. Bayesian
parameter estimation based on the “initial data” will be described in the next Section (3.2.1). Additionally,
using the initial estimated parameters, “new data” will be generated to demonstrate the Bayesian parameter

updating in Section 3.2.3.
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The degradation model is given by equation (12) with random parameters b and €. b can be described

by a normal distribution with parameters (1, 05), and the residual deviation ¢ is described by a normal

distribution with mean zero and standard deviation parameter o.. Bayesian estimation of parameters was

carried out in the same way as for the case of links (Section 3.1.1). Low-information distributions [70] will

be considered for such parameters, as shown in Table IV. “Flat” priors correspond to uniform distributions

between —oo and oo [70].

TABLE IV: LOW-INFORMATION THE PRIOR DISTRIBUTION SPECIFICATIONS FOR NODES

DEGRADATION MODEL
Parameter Prior distribution
Up Flat
Uniform(1.0 x 107>,1.0
% x 10%)
Bin Flat
Ban Flat
- Uniform(1.0 x 107>,1.0
€ x 10%)

A WinBUGS model was built considering the “initial data,” the degradation model given by equation

(12), the distributions assumed for the parameters b and &, and the low-information prior distributions

assumed parameters iy, 0y, B1 n, B2,n, and o, given in Table IV. The lag parameter was L of 40. The point

estimates obtained by the median values from the MCMC sample draws are: i, = —0.008122, G, =

6.04 x 107%, By = 3.961 x 10™*, B, y = —0.002555, and 6, = 0.004661. These parameters will be

used to simulate “new data” at normal operating conditions, defined by the test engineers as 40°C junction

temperature and 20 mA current [58]. Figure 15 shows the kernel density estimations of parameter fij,.
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Figure 15. Bayesian kernel density estimation of parameter p,; for “initial data”

3.2.2. Nodes reliability estimation
The 10,000 MCMC sample draws from the joint posterior distributions of the model parameters were
used in equation (14) to obtain nodes reliability curves, considering the same plotting parameters defined

in Section 3.1.2. The median values (solid line), as well as the 95% credible bounds (dashed lines), are

shown in Figure 16.
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Figure 16. Nodes reliability and 95% credible intervals

3.2.3. Bayesian updating of parameters

“New data” were simulated considering time = 5,760 hours, 6,400 hours, 7,040 hours, and 7,680 hours,
i.e., at the same time values as the “new data” for the links. A WinBUGS model was built considering the
“new data,” the degradation model given by equation (12), the distributions assumed for the parameters b
and &, and informative prior distributions assumed for parameters uy,0p,B;y, and B, . Bayesian

estimation was performed in the same way as for the case of links (Section 3.1.3). A lag parameter L of 100
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was considered. The point estimates obtained by the median values from the MCMC sample draws are:
Ap = —0.008117, 6, = 5918 x 107%, By y = 4.019 x 107%, B, y = —0.002658, and 6, = 0.004668.
Figure 17 shows the kernel density estimations of parameter ;.

TABLE V: INFORMATIVE PRIOR DISTRIBUTION SPECIFICATIONS FOR LINKS DEGRADATION

MODEL
Parameter Prior distribution
Up N(—0.008121648,295558733~1)
Op Gamma(220.2973,363870.2)
Bin N(0.0003961045,101276557371)
Ban N(—0.002557142,6333426™1)
¢ Uniform(1.0 x 1075,1.0 x 10%)
mu.b sample: 10000
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Figure 17. Bayesian kernel density estimation of parameter u; for “new data”

Like the nodes’ case, we performed a sensitivity analysis to verify the robustness of the posterior

distributions. In the alternative model, the prior distributions for mp, B4y, and B,y are given as
t(—0.008121633,301507501°1,100 ), t(0.000396097,10595452127 1,46 ), and
t(—O. 002557149,64609931,100 ), respectively. Table VI shows the sensitivity analysis results. Due

to minor differences between the results obtained with original and alternative models, the original model

that considers the informative prior distributions in Table V was used for Bayesian updating of parameters.

TABLE VI: POSTERIOR MEDIAN AND 95% CREDIBLE INTERVALS OF PARAMETERS UNDER
DIFFERENT PRIOR ASSUMPTIONS

Distributions for u,, B y, and B v

Parameter

Normal Student’s t- Distribution
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Posterior 95% posterior credible interval | T oStrior 95% posterior credible interval
median median

w —0.008117 [~0.008235, —0.008005] —0.008116 [~0.008230, —0.008006]

o 5918x 104 | [5394x 107% 6504 x 1074] | 5910x10~* | [5.399 x 10~,6.480 x 10~*]
Bin 4019x10* | [3531x 1044516 x 1074] | 4.023x10~* | [3.543 x 10~4,4.529 x 10~*]
Ban —0.002658 [~0.003160, —0.002164] —0.002648 [~0.003141,-0.002137]

o, 0.004668 [0.004353,0.005016] 0.004670 [0.004350,0.005034]

3.2.4. Nodes reliability estimation updating

The updated 10,000 MCMC draws from the joint posterior distributions of the model parameters were

used in equation (14) to compute the nodes reliability curves, considering the same plotting parameters

defined in Section 3.1.2. Similar to what occurred in the case of links reliability, figures 18 and 19 show

narrower credible intervals after updating.
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Figure 18. Updated nodes reliability and 95% credible intervals
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Figure 19. Initial and updated nodes reliability and 95% credible intervals

3.3.MC method and DNN model for all-terminal network reliability estimation

In this section, the use of the MC method and DNN to evaluate the network reliability is illustrated.
MC method (Algorithm 2.2) is applied to the selected lon network to obtain a set of estimated reliability
values of links (Ry¢;;,s ) RMCimys- Will be the target during the training process, i.e., the y; values. The best
trained DNN is expected to estimate the network reliability of links (Rjs) for any given value of p;.
Finally, the all-terminal network reliability will be calculated by using equation (23) for any given p; and
Pn-

A dataset of 100 link reliability values is considered, i.e., {0.01, 0.02, ..., 0.99, 1.00}. Based on this set
of link reliability values, a base dataset of pairs (X¢,y;) is formed. X; is the links reliability value (p;) and
Yt is corresponding estimated reliability of links (Ryc,,,, ), for each element in the set of link reliability
values. The base dataset is divided into training and testing datasets by applying five-fold cross-validation.

The DNN architecture has two hidden layers. Different number of neurons ({5, 10, 20, 30, 40, 50})

were investigated for each hidden layer [85]. The dropout probability values from the set {0, 0.05, 0.10,
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0.15, 0.20, 0.25}, where 0 indicates no dropout were employed. This provides a total of 216 experiments
(six numbers of neurons in the first layer, six numbers of neurons in the second layer, and six dropout
values). The average root mean square error (RMSE) considering cross-validation [86] is used to select the
best DNN architecture. The best architecture is (5, 30, 0.15), i.e., 5 and 30 neurons in the first and second
hidden layers, respectively, with a dropout of 0.15. The final application DNN is trained using all the 100
members of the data set, and its validation error is inferred using the average cross-validation error (Table

VIL column 2). The average cross validation-error is given by equation (31) [14, 48].
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Figure 20. Predicted (R;i,xs) and actual (R MCyinys) Teliability of links, as a function of links

reliability (p;)

TABLE VII: MC AND DNN PERFORMANCE

Architecture Error Paired t-test Computation time
MC-DNN
Best DNN RMSE p-value 95% C.I. Monte Carlo [s]
model [ms]
5,30,0.15 0.01460 0.1029 [-0.0005, 0.0053] 1223.59 0.316

The RMSE measures the accuracy of the DNN prediction. The error (0.01460) outperforms previous

results achieved by ANN-based approaches, e.g., RMSE of 0.06260 [14] and RMSE of 0.04406 [48]. Also,
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a paired t-test between the actual reliability and the reliability predicted by the DNN was performed. P-
values and 95% confidence intervals (Table VII, columns 3, 4) for the mean difference show no significant
pairwise difference between actual and the predicted values. Therefore, the DNN provides a good fit, as
shown in Figure 20. Figure 20 also shows that the predicted values (R;;,xs) noticeably underestimate the
actual reliability (R, . calculated with Algorithm 2.2) when the links reliability values (p) are greater
than 0.99 (approximately). To improve this performance, a hierarchical approach that integrates a
specialized DNN trained for link reliabilities greater than 0.99 is used. The best specialized DNN
architecture was (50, 50, 0). Therefore, the appropriate DNN should be selected in equation (23) when
applied for network reliability estimation.

The hierarchical approach allows a smooth fit even at high-reliability values, as shown in Figure 21.
Figure 21 provides a graphical view of the performance of the DNN model to predict the network reliability
(R,.0¢) as a function of the links and nodes reliability values, i.e., p, and py, respectively. The estimated
network reliability for a combination of 10,000 values for both p; and py uniformly distributed between 0
and 1 is plotted in Figure 21. As we can expect, both p, and py, have effect in R,,,;. Figure 21 shows that
the nodes reliability is more dominant than the links reliability, which can be explained because a failure in
a node immediately interrupts the all-terminal communication. In contrast, a link failure may be alleviated
by communication through other surviving links. Therefore, the network reliability R,,.; is more sensitive

to the nodes reliability py than to the links reliability p;
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Figure 21. Estimated reliability of networks (R,,.,), as a function of links reliability (p,) and

nodes reliability (py)

There is a significant computation time difference between the pure MC algorithm and the integrated
framework based on MC-DNN (Table VIL, columns 5, 6). Table VII (columns 5, 6) shows the computation
time of a single network reliability value R, for a given combination of input pair of values (pL, py)-
The MC average time calculation (1223.59 s) for a single value R, is based on the total time to estimate
100 link reliability values. On the other hand, the total time to compute the network reliability for 10,000
input pairs (links and nodes reliability draws) for a total of 1,001 time values (between 0 and 10,000 hours)

was 3,162 seconds. However, the DNN model average computation time for a single value of R, is only

3,162s

0.316 ms (i.e., —oeo
10,000 x1,001

). It is worth mentioning that the execution time (0.316ms) does not consider the

training time, which is in the order of 60s, but it has to be done only once for a given network. This time
reduction is convenient for fast reliability estimation as in approximately 3 seconds, 10,000 network
reliability draws can be obtained, providing not only a point estimate but also credible bounds for any given
time value. A laptop with a processor Intel(R) Core (TM) i7-8565U CPU @ 1.80GHz, and 16GB in RAM
was used.

3.4.Network reliability estimation
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In this section, the network reliability estimation is illustrated. The links reliability draws (Section
3.1.2), and the nodes reliability draws (Section 3.2.2) were fed to the hierarchical DNN model (equation
(23) with the appropriate DNN) to obtain network reliability curves, considering the same plotting
parameters defined in Section 3.1.2. The median values (solid line), as well as the 95% credible bounds
(dashed lines), are shown in Figure 22.
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Figure 22. Network reliability and 95% credible intervals

The sharp decline of network reliability between 5,000 and 7,500 hours approximately (Figure 22)
could be explained because a rapid decrease of links reliability starts around 6,000 hours (Figure 12), and
a similar situation occurs with nodes reliability (Figure 19). Moreover, this behavior is expected due to the

high sensitivity of network reliability to nodes reliability py, shown in Figure 21 and explained by equations

(20) and (22).

3.5.Network reliability estimation updating
Once additional information becomes available, the updated links reliability draws (discussed in

Section 3.1.4) and nodes reliability draws (discussed in Section 3.2.4) are fed to the proposed DNN model
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to obtain updated network reliability draws for the corresponding 1,001 time values between 0 and 10,000
hours. The median values (solid line), as well as the 95% credible bounds (dashed lines), are shown in
Figure 23. As expected, the informative prior Bayesian updating improved the precision of the estimates.
Figure 24 shows the initial network reliability estimation with credible intervals in solid blue lines. Figure
24 also shows the updated network reliability estimation with credible intervals in red dashed lines. The
updated reliability and credible intervals start at time = 5,760 hours, i.e., when “new data” become available.
Credible intervals for updated network reliability are narrower than the initial credible intervals.
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Figure 23. Updated network reliability and 95% credible intervals
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Figure 24. Initial and updated network reliability and 95% credible intervals

4. Conclusion

Most of the current work on network reliability considers perfect nodes and that the reliability of links
or nodes is constant or even perfect. This study has considered the reliability of both links and nodes as a
function of time in the prediction of all-terminal network reliability. This paper has proposed a framework
that accounts for the dynamic behavior of a network by using the degradation data from both links and
nodes of the network to estimate its all-terminal reliability as a function of time. Due to the complexity of
the problem, the proposed framework integrates BM, MC simulation, and DNN. BM allows both initial
estimations of degradation model parameters and updating of parameters with new data. Links and nodes
reliability estimates can be evaluated from the model parameters. In addition, the integration of MC-DNN

with the Bayesian approach provides an accurate and fast estimation of both initial and updated predictions
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of links/nodes and/or all-terminal network reliability functions for any given time, not only as point
estimates but as credible intervals.

The proposed framework could be used in situations where fast links, nodes, and/or network reliability
estimations and updating are required, such as an online reliability monitoring system. Based on (usually
limited) initial accelerated degradation test data, the framework could provide reliability estimates as a
function of time. Furthermore, suppose during the normal operation, links, nodes, or both change their
degradation profile. In that case, this variation in new data can be captured by the framework for proper
and timely updating of the reliability predictions. Therefore, the proposed framework is compatible with
and provides a way to take advantage of modern sensors technology as sources of new degradation data to
update the reliability predictions. The updated reliability predictions may provide valuable information to
decision-makers for taking proper actions regarding network operations management. This information is
important for the users as well as for the manufacturers, especially in logistical decision-making such as
preventive maintenance, warranty policy, and spare parts management. A future research direction may
include remaining useful life (RUL) estimation and identifying critical elements of a network.
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