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Abstract 

Most research on network reliability has considered links to have a binary state, i.e., functioning or 

failed, whereas nodes are considered flawless. In a more realistic scenario, both links and nodes might fail 

or may exhibit degradation behavior before failing. This study develops a framework to estimate the all-

terminal reliability of a network that considers the degradation and probability of failure of all nodes and 

links in a network. Unlike previous works on network reliability that considered constant reliability for 

links, this paper considers the reliability of links, nodes, and the network as functions of time. In the 

proposed framework, the Bayesian methods (BM) are employed to estimate the reliability of links and 

nodes as functions of time considering degradation data. Due to the complexity of the all-terminal reliability 

problem, and to get fast estimations of the reliability of a network, an integration of Monte Carlo (MC) and 

Deep Neural Networks (DNNs) is proposed. The proposed MC algorithm can estimate the network 

reliability for given nodes and links reliability values. To speed up the calculation, a DNN model is 

integrated into the framework, thus enabling accurate and fast estimation of network reliability for given 

link and node reliability values. The DNN accuracy, based on the RMSE (0.01460), outperforms previous 

traditional artificial neural network (ANN) approaches. Moreover, the DNN model takes 0.3 ms to compute 

the reliability for any given links and reliability values. The proposed framework can provide not only 

reliability point estimates but also credible intervals. Finally, we take advantage of Bayesian methods to 

integrate new data into the framework as they become available. The framework uses the new data to refine 

and further update the degradation model parameters and the prediction of the reliability of links, nodes, 

mailto:om.yadav@ndsu.edu


Paper: Draft  2 

and the network. The proposed methodology has been demonstrated with the real-world network topology 

Ion (125 nodes, 150 links) with actual degradation data. 

 

Keywords: All-terminal network reliability, Bayesian methods, credible intervals, degradation, Monte 

Carlo, Deep neural networks. 
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𝑡 time 
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𝜎 Standard deviation 

𝜏 Square-root transformation for time 

𝜖 Residual deviation 
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1. Introduction 

Networks are commonly used to represent interconnected infrastructure systems such as computer 

networks, piping systems, or power supply systems [1-3]. Therefore, reliability assessment of these critical 

networks is imperative. Moreover, reliability assessment of the networks and their components is critical 

for the users as well as for the producers, especially in logistical decision making such as preventive 

maintenance, warranty policy, and spare parts management.  A network can be defined as a set of items 

(nodes or vertices) connected by edges or links [4]. Graphical models allow visualizing the 

interdependencies of the components in a system. Nodes characterize components and junctions of the 

system, and links represent the connections. For example, busbars in power systems or switches in 

telecommunication systems are modeled by nodes, whereas links characterize power lines in power systems 

and optical fibers in telecommunication systems.  Such graphical models are commonly based on graph 

theory (GT), where a graph 𝐺 (𝑁, 𝐿) denotes the graph 𝐺 composed by the set 𝑁 of nodes and the set 𝐿 of 

links or edges [5-7].  

Regardless of the number of nodes, links, or their interconnection, network reliability has several 

definitions. Most of them are associated with connectivity [8]. Three popular measures are all-terminal, 

two-terminal, and k-terminal [9]. All-terminal reliability is the probability that every node can communicate 

with every other node in the network, i.e., the network forms at least a minimum spanning tree [10]. The 

two-terminal reliability problem requires that a pair of specified nodes, e.g., source (𝑠) and terminal (𝑡), 

be able to communicate with one another. 𝑘-terminal reliability requires that a specified set of 𝑘 target 

nodes be able to communicate with one another. Even though the two-terminal reliability problem is slighlty 
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simpler than the all-terminal reliability problem [1], it might provide a dubious view of the system’s 

network [11, 12]. Advanced network reliability techniques have been oriented to the k-terminal and all-

terminal reliability [13-17]. This paper focuses on the all-terminal reliability, as it has practical applications, 

especially in communications networks [14, 18-21]. It requires all the nodes to be connected to each other 

without possible failures, providing a holistic reliability measure for the network.  

In most previous works on network reliability, binary states have been commonly assumed for links, 

and nodes have been considered perfect [1, 14, 17, 22, 23]. Even considering link failures only, the problem 

is complex and NP-hard [1, 14]. Traditional network reliability methods include exact NP-hard methods 

[1, 8, 9, 24] or approximated methods. Among approximated methods, there are several methods such as 

graph reduction [1, 9],  cut-set and tie-set approximations [1], Monte Carlo (MC) [25-29], and bounds [1, 

30, 31].  More recently, modern approaches based on percolation theory [32], All-Pairs Homogeneity-Arc 

[33], matrix-exponential [34], minimal cuts for demand (d-MC) [35], binary-addition tree [36, 37], among 

others, have been applied for network reliability as well. 

On the other hand, among modern approximated approaches based on deep learning, artificial neural 

networks (ANNs) have emerged as a promissory tool to estimate network reliability. Indeed, ANNs have 

been claimed to be one of the most efficient methodologies developed so far for the reliability estimation 

of networks [38].  

ANNs have been usually trained with the network topology and link reliability as inputs and with the 

target network reliability as desired output [14, 17, 23]. For example, Srivaree- Ratana et al. [14] utilized 

an ANN to predict the all-terminal network reliability; with the network architecture, the link reliability, 

and the network reliability upper bound (an approximation of network reliability which is not lower than 

the exact value [1, 10, 39]) as inputs, and the exact network reliability as the target. More recently, 

Altiparmak et al. [17]  proposed an ANN  model to predict the all-terminal network reliability, which takes 

the node degree and other connectivity metrics and the upper bound network reliability as inputs to predict 

the network reliability. Similarly, Dash et al. [23] proposed a method based on ANNs to maximize the 

reliability of fully connected networks subjected to some predefined total cost. Traditional ANNs have 
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evolved to deep learning (DL) approaches [40, 41], such as deep neural networks (DNNs), convolutional 

neural networks (CNNs), and recurrent neural networks (RNNs).  These advanced DL methods have been 

utilized in the reliability estimation problem. For instance, RNNs have been successfully applied to predict 

the health and remaining useful life of bearings [42], li-ion batteries [43]. Also, CNNs have been applied 

to evaluate online services reliability [44], software reliability [45], a robot's pose and reliability [46], 

rotating machinery reliability [47], and recently, network reliability [48]. Similarly, a DNN has been used 

for health prognostic of li-ion batteries [49, 50] and RUL of bearing [51]. Although DNNs have been 

applied for reliability estimation, little evidence is available of its use for network reliability estimation. 

Both traditional approximated methods like MC, and modern techniques, such as those based on ANN, 

have mostly considered link failures possibility only. However, in reality, both kinds of components, i.e., 

nodes and links, may fail. Moreover, both links and nodes may not only fail but exhibit degradation with 

time. Such degradation can provide useful information to estimate the reliability of both links and nodes of 

a network as functions of time. Research in network reliability estimation considering imperfect nodes is 

still scarce, i.e., [24, 52, 53]. Whereas most of the current work on network reliability considers that the 

reliability of links or nodes is constant or even perfect, the aim of this study is to consider the reliability of 

links and nodes as a function of time in the prediction of all-terminal network reliability.  

One major contribution of this article is to integrate the concepts of component reliability based on 

degradation data and network reliability by modeling components as nodes and links that degrade. This 

paper provides a sophisticated framework to estimate the all-terminal network reliability as an indicator of 

the overall health condition of the network. The proposed framework utilizes degradation data from both 

links and nodes of a network to estimate its all-terminal reliability as a function of time to account for its 

dynamic behavior. Due to the complexity of the problem, the proposed framework integrates Bayesian 

methods (BM), MC simulation, and  DNNs. Although the complexity of a given network could be first 

reduced by applying series-parallel laws, in our approach, we avoid this previous step because not all 

networks represented as series-parallel (sp) are reducible [54, 55] and because even if a network is sp-

reducible, it will add extra calculation time and steps. Moreover, sp-reduction may not be convenient since 
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we will be considering time-varying reliability values for links and nodes. The proposed approach 

contemplates three main steps. First, BM with low-information prior distributions is proposed to estimate 

the degradation parameters and further evaluate the reliability (as functions of time) of links and nodes from 

degradation data. As a second step, a method based on a MC algorithm is proposed to estimate network 

reliability function for given links and nodes reliability functions. The proposed MC algorithm can provide 

good estimates of the network reliability for given (fixed) nodes and links reliability values. Nevertheless, 

even this algorithm might not be practical for real-time applications. Therefore, to speed up the calculation, 

a DNN model is designed and integrated into the framework.  

Finally, the DNN model is trained for a range of links and nodes reliability values to learn the all-

terminal network reliability calculated with the MC method. In addition, the framework allows the 

incorporation of new data, as they become available, to update the reliability predictions of links, nodes, 

and the network.  The proposed framework provides point estimates and credible Bayesian intervals for the 

reliability functions of links, nodes, and all-terminal network reliability functions. To demonstrate the 

applicability of the proposed approach,  the real-world network topology Ion (125 nodes, 150 links, New 

York, USA) [56, 57]  was analyzed using the proposed framework. Real degradation data were considered 

for nodes [58]. Similarly, the data were simulated based on real degradation data for links [59]. In summary, 

This work presents a comprehensive approach to evaluate the all-terminal reliability of networked systems. 

Moreover, we have improved the network reliability assessment framework by considering the time-

dependent degradation behavior of both nodes and links in the system. While individual elements of this 

paper are not new, the integration of these elements makes the proposed method innovative, providing a 

balance between academic material and practical application. 

In the rest of the article, to avoid confusion, the DNN acronym will be used to refer to an artificial deep 

neural network, whereas the term network will be employed for the network whose reliability estimation 

will be performed. The remainder of this article is organized as follows: Section 2 provides a detailed 

discussion on the proposed methodology, which comprises links and nodes degradation models, MC 
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method, DNN model, and Bayesian updating. A case study of network reliability estimation is presented in 

Section 3. Finally, Section 4 concludes the work and highlights future research opportunities. 

2. Proposed Methodology 

This section presents the proposed framework for the all-terminal reliability function estimation of a 

network considering the degradation of its links and nodes. Different from previous works, we relax the 

perfect nodes assumption. We propose to model a network by a graph 𝐺(𝑁, 𝐿, 𝑝𝐿(𝑡), 𝑝𝑁(𝑡)), where 𝑁 is 

the set of nodes, 𝐿 is the set of links, 𝑝𝐿(𝑡) is the reliability of the link, and 𝑝𝑁(𝑡) is the reliability of the 

nodes. For a given network, the reliability values 𝑝𝐿 and 𝑝𝑁 in reality are not constant, as both links and 

nodes may not only fail but degrade with time. Therefore, such values can be considered as functions of 

time that can be calculated from the degradation data of the links and nodes, respectively. This paper 

considers nodes and links as sample units from two populations because nodes and links represent different 

types of components and may exhibit different degradation profiles. A representation of a network with 

degradation in links and nodes is shown in Figure 1 (a), whereas a general degradation path for a component 

(link or noded) is represented in Figure 1 (b). Degradation data from both links and nodes will be used to 

estimate the reliability values  𝑝𝐿, and 𝑝𝑁 as functions of time, respectively. In Figure 1 (a), degradation 

patterns for links are represented by solid blue curves, whereas degradation for nodes is symbolized by the 

red dashed curves.  
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Figure 1. (a) Representation of a network with degradation in links and nodes. (b) General 

degradation path for a component 

The proposed approach makes the following assumptions for the network: 

1. The links and nodes' failure probabilities are independent and equal at a given point of time. 

2. The network has non-redundant bi-directional links, e.g., communication or transportation networks. 

Therefore, a network is modeled with an undirected weighted simple graph. 

3. Links and nodes have a performance variable that degrades with time. 

The proposed framework is broadly composed of 1) The BM approach for links and nodes degradation 

models for reliability evaluation. 2) MC method for all-terminal network reliability estimation (for given 

reliability values of links and nodes). 3) A DNN model trained to learn the reliability values calculated with 

the MC method. 4) The Bayesian updating of parameters and network reliability. The four components of 

the framework are presented in Sections 2.1 to 2.4 and summarized in Section 2.5. 

2.1. Links and nodes degradation models for reliability evaluation  

Consider that the actual degradation path of a particular element (link or node) of a network is denoted 

by 𝐷(𝑡), 𝑡 > 0. Samples are observed at discrete points in time 𝑡1, 𝑡2, … 𝑡𝑗 . The observed sample 

degradation 𝑦𝑖𝑗 for sample 𝑖, at time 𝑡𝑗 in a general degradation path model is given as: 

𝑦𝑖𝑗 = 𝐷𝑖𝑗 + 𝜖𝑖𝑗 (1) 

where 𝐷𝑖𝑗 = 𝐷(𝑡𝑖𝑗, 𝛽1𝑖, … , 𝛽𝑘𝑖)  is the actual path of the unit 𝑖 at time 𝑡𝑖𝑗  and 𝜖𝑖𝑗~𝑁(0, 𝜎𝜖
2) is a residual 

deviation for the unit 𝑖 at time 𝑡𝑗. The total number of observations on unit 𝑖 is 𝑚𝑖. For the 𝑖th unit, 𝛽1𝑖, … , 𝛽𝑘𝑖 

is a vector of 𝑘 unknown parameters. A unit 𝑖  is assumed to fail when its degradation level first reaches a 

predefined threshold level 𝐷𝑓. 

For simplicity, the unit-to-unit variability in model parameters 𝛽1, … , 𝛽𝑘 can be modeled with a 

multivariate normal distribution with mean vectors 𝝁𝜷 and covariance matrices 𝚺𝜷 [60]. It is generally 
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assumed that the random parameters 𝛽1, … , 𝛽𝑘 are independent of the 𝜖𝑖𝑗 and that 𝜎𝜖 is constant. Let 𝜽𝜷 =

(𝝁𝜷, 𝚺𝜷) denote the overall population/process parameters. 

The likelihood for the random-parameter degradation model is given as [60]: 

𝐿(𝜽𝜷, 𝜎𝜖|𝐷𝐴𝑇𝐴) =∏ ∫ …

∞

−∞

𝑛

𝑖=1

∫ [∏
1

𝜎𝜖
𝜑nor(𝜁𝑖𝑗)

𝑚𝑖

𝑗=1

]

∞

−∞

× 𝑓𝜷(𝛽1𝑖, … , 𝛽𝑘𝑖; 𝜽𝜷)𝑑𝛽1𝑖, … , 𝛽𝑘𝑖 

(2) 

where 𝜁𝑖𝑗 = [𝑦𝑖𝑗 − 𝐷(𝑡𝑖𝑗, 𝛽1𝑖, … , 𝛽𝑘𝑖)]/𝜎𝜖, 𝜑nor(𝜁𝑖𝑗) is the standardized normal PDF, and 

𝑓𝜷(𝛽1𝑖, … , 𝛽𝑘𝑖; 𝜽𝜷) is the multivariate normal distribution density function. The evaluation of equation (2) 

requires the numerical approximation of 𝑛 integrals of dimension 𝑘 (𝑛 is the number of sample paths and 

𝑘 is the number of parameters for each path). Therefore, maximizing equation (2) with respect to 

(𝝁𝜷, 𝚺𝜷, 𝜎𝜖) directly can be extremely difficult, although there are some methods [61] and software 

packages, e.g., ‘nmle’ [62], to calculate the maximum likelihood estimates (MLE). As an alternative to 

MLE methods, Bayesian estimation approaches, which allow incorporation of prior information, are 

receiving more attention recently and will be considered for this study to obtain both initial parameter 

estimates and updated estimates. 

Considering degradation of a performance variable, a fixed value 𝐷𝑓 is used to denote the critical level 

for the degradation path. The failure time 𝑇 is defined as the time when the actual path 𝐷(𝑡) crosses the 

critical degradation level 𝐷𝑓. Therefore, if a unit fails at time 𝑡, i.e., the degradation level first reaches 𝐷𝑓 

at time 𝑡, the cumulative distribution function (CDF) of the failure-time distribution is given as: 

𝐹(𝑡) = Pr(𝑇 ≤ 𝑡) =𝐹(𝑡, 𝜽𝜷) = Pr[𝐷(𝑡, 𝛽1, … , 𝛽𝑘) ≥ 𝐷𝑓] (3) 

For most practical cases, where 𝐷(𝑡) is nonlinear and 𝛽1, … , 𝛽𝑘 are random parameters, there is no 

closed-form expression for 𝐹(𝑡), and it has to be evaluated by methods such as numerical integration or 

MC [60].  

In the present study, degradation will be considered for both links and nodes. Therefore, there will be a 

CDF of failure-time distribution for links, 𝐹𝐿(𝑡), and another CDF for nodes,  𝐹𝑁(𝑡). The functions 𝑝𝐿, and 

𝑝𝑁, can be calculated by 𝑝𝐿(𝑡) = 1 − 𝐹𝐿(𝑡), and 𝑝𝑁(𝑡) = 1 − 𝐹𝑁(𝑡), respectively. Furthermore, the 
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functions 𝑝𝐿(𝑡) and 𝑝𝑁(𝑡) estimated from degradation data can be used to evaluate the overall network 

reliability by using the approach described later in Section 2.3. 

The degradation patterns (e.g., linear, convex, or concave), and its consequence, the reliability functions  

𝑝𝐿(𝑡) and 𝑝𝑁(𝑡), will depend on the degradation characteristics of the links and the nodes of a particular 

network. The purpose of this paper is to provide a generic approach to estimate the reliability of a network 

considering the degradation of links and nodes, depending on the data available. To illustrate the detailed 

application of the proposed framework, particular models are described in the next sections (2.1.1 and 2.1.2) 

for links and nodes separately, as well as the expressions to evaluate the corresponding reliability functions 

𝑝𝐿(𝑡) and 𝑝𝑁(𝑡). Despite the assumed models as an example only, our proposed approach is generic and 

can be used with different degradation data/models, provided degradation data and a degradation model 

properly describing the specific degradation processes are supplied. Although, Sections 2.1.1 and 2.1.2 

present specific nonlinear and linear degradation profiles for links and nodes, respectively, different 

degradation profiles can be considered depending on the actual network and its components. 

 

2.1.1. Links degradation modeling 

Usually, links represent communication paths between the nodes in a network. For instance, the links 

may represent the optical fibers of a network, which can be affected by crack growth [63, 64]. For instance, 

when the fiber is exposed to sustained stress, degradation occurs as crack growth [65, 66]. Moreover, cracks 

are a kind of failure mechanism that leads to the degradation of light transmission capabilities [67]. Hence, 

a crack growth model is assumed for the degradation of links in this section. The model explained in this 

section is based on Ref. [60]. 

Let 𝑎(𝑡) be the size of a crack at time 𝑡. By the Paris-rule model [68], we have: 

𝑑𝑎(𝑡)

𝑑𝑡
= 𝐶 × [∆𝐾(𝑎)]𝑚 

(4) 

where, 𝐶 and 𝑚 are material properties. Typical values of 𝑚 range from 2 to 4.5. For example, for 

aluminum 7075-T6, 𝑚 is equal to 2.836. For this material, the dimensions for 𝐶 are  
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[(𝑐𝑦𝑐𝑙𝑒𝑠)(𝑃𝑎)2.836(𝑚)0.418]−1. Different powers of 𝑚 lead to different powers of the dimensional units 

[69]. ∆𝐾(𝑎) is the stress intensity range function. Considering a small crack, ∆𝐾(𝑎) = 𝑆𝑡𝑟𝑒𝑠𝑠√𝜋𝑎. The 

solution to the differential equation (4) is: 

𝑎(𝑡) =

{
 

 
[(𝑎(0))

1−
𝑚
2 + (1 −

𝑚

2
) × 𝐶 × (𝑆𝑡𝑟𝑒𝑠𝑠√𝜋)

𝑚
× 𝑡]

2
2−𝑚

, 𝑚 ≠ 2

𝑎(0) × exp [𝐶 × (𝑆𝑡𝑟𝑒𝑠𝑠√𝜋)
2
× 𝑡] 𝑚 = 2

 

(5) 

Considering the crack size as the links performance measure, the degradation path is given as  𝐷𝑖𝑗 =

𝑎(𝑡). Let 𝑆𝑡𝑟𝑒𝑠𝑠 = 1, 𝛽1 = 𝐶 × (√𝜋)
𝑚

, and 𝛽2 = 𝑚. 𝛽1 and 𝛽2 are modeled by a bivariate normal 

distribution with parameters (𝜇𝛽1 , 𝜇𝛽2 , 𝜎𝛽1 , 𝜎𝛽2 , 𝜌). Therefore, the general degradation path model for the 

observed degradation is given as: 

𝑦𝑖𝑗 = 𝑎(𝑡𝑖𝑗 , 𝑎(0), 𝛽1𝑖, 𝛽2𝑖) + 𝜖𝑖𝑗 (6) 

To estimate the parameters, we propose to use BM instead of maximizing equation (2) with respect to 

(𝝁𝜷, 𝚺𝜷, 𝜎𝜖) or employing software such as ‘nmle’ [62] R package to calculate the MLE estimates. Bayesian 

estimation is a promising alternative to maximum likelihood (ML) and has been getting attention recently. 

One advantage of Bayesian estimation is that modern Markov Chain Monte Carlo (MCMC) methods with 

low-information prior distributions provide estimation results close to ML estimates [70]. In addition, BM 

provides not only point estimates but also credible intervals, which can be derived from MCMC draws [70]. 

Credible intervals are commonly used to describe the Bayesian analog to non-Bayesian confidence intervals 

[70]. One benefit of BM is that prior information, if available, can be incorporated into the analysis [71, 

72], providing improvements in precision or cost savings in testing. Moreover, from a practical point of 

view, Bayesian methods can handle complicated data-model combinations for which there is no maximum 

likelihood (ML) software or for which implementing ML would be extremely challenging. For these 

reasons, in this study, Bayesian estimation is used for both initial estimation of parameters and updating of 

parameters with new degradation data. Bayesian estimation will be described in Section 2.1.3. 
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Once the parameters 𝛽1 and 𝛽2 are estimated, an expression is needed for the links’ reliability 𝑝𝐿(𝑡), as 

a function of time. Since the parameters  𝛽1 and  𝛽2 follow a bivariate normal distribution with parameters 

𝜇𝛽1
, 𝜇𝛽2

, 𝜎𝛽
2

1
, 𝜎𝛽
2

2
 and 𝜌, then a numerical integration approach can be given as :   

𝐹𝐿(𝑡) = ∫ Φnor [−
𝑔(𝐷𝑓 , 𝑡, 𝛽1) − 𝜇𝛽2|𝛽1

𝜎𝛽2|𝛽1
]
1

𝜎𝛽1

∞

−∞

 𝜑nor (
𝛽1 − 𝜇𝛽1
𝜎𝛽1

)𝑑𝛽1 

(7) 

where, Φnor(∙) is the standardized normal CDF, 𝜑nor(∙) is the standardized normal probability density 

function (PDF), 𝑔(𝐷𝑓 , 𝑡, 𝛽1) is the value of 𝛽2 that gives 𝐷(𝑡) = 𝐷𝑓 for specified 𝛽1, 𝜇𝛽2|𝛽1=𝜇𝛽2 +

𝜌𝜎𝛽2 (
𝛽1−𝜇𝛽1
𝜎𝛽1

) , and 𝜎𝛽2|𝛽1
2 = 𝜎𝛽2

2 (1 − 𝜌2). 

 

Therefore, the links’ reliability is given as: 

𝑝𝐿(𝑡) = 1 − ∫ Φnor [−
𝑔(𝐷𝑓 , 𝑡, 𝛽1) − 𝜇𝛽2|𝛽1

𝜎𝛽2|𝛽1
]
1

𝜎𝛽1

∞

−∞

 𝜑nor (
𝛽1 − 𝜇𝛽1
𝜎𝛽1

)𝑑𝛽1 

(8) 

2.1.2. Nodes degradation modeling 

Degradation may also affect the transmitter nodes in a fiber-optic network [64, 73]. Thus, a light-

emitting diode (LED) degradation model is considered for nodes, as LEDs generate light in fiber optic 

networks [74]. This section considers the modeling for data from accelerated degradation tests on LEDs 

reported by Pascual et al. [58]. The model detailed in this section is based on Ref. [70]. Sample LEDs were 

tested at six different combinations of junction temperature and current. The performance characteristic 

was the light output. An approximately linear degradation path is obtained by applying a square-root 

transformation for the time axis only. Standard acceleration models are applied for temperature and current 

[60, 75, 76]. The Arrhenius transformation is used on junction temperature in degrees Celsius, o C,  

(equation (9)) and the Black’s law for current acceleration in milliamps, mA, (equation (10)). 

𝑥1 =
11605

𝑇𝐶 + 273.15
 

(9) 

𝑥2 = log(𝐼𝑚𝐴) (10) 
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The mixed-effects model for the actual LED light-output degradation for the sample 𝑖 at (transformed) 

time 𝜏𝑗, for test condition 𝑘, based on normalized data is given as [70]: 

𝐷𝑖𝑗𝑘,𝑁 = 1 + 𝛽1,𝑁(𝑥1𝑘 − 𝑥1
0)𝜏𝑗 + 𝛽2,𝑁(𝑥2𝑘 − 𝑥2

0)𝜏𝑗 + 𝑏𝑖𝜏𝑗 (11) 

where 𝜏 ∝ √𝑡  because of the square-root transformation for time. The values 𝑥1
0 and 𝑥2

0 should be 

chosen to be near the center of the respective transformed variables to improve numerical stability [70]. 

The subscripts “𝑁” are used to refer to the node’s degradation path and parameters, to avoid confusion with 

the degradation path and parameters of links. 

𝑏𝑖 describes the randomness in the slopes for the different LED samples. 𝑏𝑖 is modeled by a normal 

distribution: 𝑏𝑖~𝑁(𝜇𝑏 , 𝜎𝑏
2). The model for the observed degradation is then given as: 

𝑌𝑖𝑗𝑘,𝑁 = 𝐷𝑖𝑗𝑘,𝑁 + 𝜀𝑖𝑗𝑘,𝑁 = 1 + 𝛽1,𝑁(𝑥1𝑘 − 𝑥1
0)𝜏𝑗 + 𝛽2,𝑁(𝑥2𝑘 − 𝑥2

0)𝜏𝑗 + 𝑏𝑖𝜏𝑗 + 𝜀𝑖𝑗𝑘,𝑁 (12) 

where 𝜀𝑖𝑗𝑘,𝑁~𝑁(0, 𝜎𝜀
2) describes the measurement error, with the independence assumption of 𝑏𝑖 and 

across time [70]. 

The parameters 𝛽1,𝑁, 𝛽2,𝑁 𝜇𝑏 , and 𝜎𝑏 will be estimated by BM as well, as discussed earlier. The 

estimated parameters, together with the critical light-output level 𝐷𝑓,𝑁  will determine the expression for 

the nodes’ reliability 𝑝𝑁(𝑡), as a function of time. 

Since the light-output exhibits a decreasing degradation pattern, the probability of failure is given as: 

𝐹𝑁(𝑡) = Pr(𝑇 ≤ 𝑡) =Pr[𝐷 ≤ 𝐷𝑓,𝑁] (13) 

𝐹𝑁(𝑡) = Pr[1 + 𝛽1,𝑁(𝑥1 − 𝑥1
0)𝜏 + 𝛽2,𝑁(𝑥2 − 𝑥2

0)𝜏 + 𝑏𝑖𝜏 ≤ 𝐷𝑓,𝑁] 

= Pr [𝑏𝑖 ≤
𝐷𝑓,𝑁 − (1 + 𝛽1,𝑁(𝑥1 − 𝑥1

0)𝜏 + 𝛽2,𝑁(𝑥2 − 𝑥2
0)𝜏)

𝜏
] 

Since 𝑏𝑖~𝑁(𝜇𝑏 , 𝜎𝑏
2),  

𝐹𝑁(𝑡) = Φnor [

𝐷𝑓,𝑁 − (1 + 𝛽1,𝑁(𝑥1 − 𝑥1
0)𝜏𝑗 + 𝛽2,𝑁(𝑥2 − 𝑥2

0)𝜏𝑗)
𝜏 − 𝜇𝑏

𝜎𝑏
] 

= Φnor [
𝐷𝑓,𝑁 − (1 + 𝛽1,𝑁(𝑥1 − 𝑥1

0)𝜏 + 𝛽2,𝑁(𝑥2 − 𝑥2
0)𝜏 + 𝜇𝑏𝜏)

𝜏𝜎𝑏
] 



Paper: Draft  14 

Let 𝜇 = −(1 + 𝛽1,𝑁(𝑥1 − 𝑥1
0)𝜏 + 𝛽2,𝑁(𝑥2 − 𝑥2

0)𝜏 + 𝜇𝑏𝜏), then 

𝐹𝑁(𝑡) = Φnor [
𝐷𝑓,𝑁 − 𝜇

𝜏𝜎𝑏
] 

Therefore, the nodes’ reliability is given as: 

𝑝𝑁(𝑡) = 1 − Φnor [
𝐷𝑓,𝑁 − 𝜇

𝜏𝜎𝑏
] 

(14) 

2.1.3. Bayesian approach for links and nodes 

Bayesian approach is based on Bayes’ theorem, which relates different kinds of conditional 

probabilities (or conditional probability density functions) to one another. The Bayesian method for 

statistical inference provides a mechanism to combine available data with prior information to obtain a 

posterior distribution that can be used to make inferences about some vector 𝜽 of unknown parameters. 

Bayes’ theorem for continuous parameters in 𝜽 is given as: 

𝑓(𝜽|DATA) =
𝐿(DATA|𝜽)𝑓(𝜽)

∫ 𝐿(DATA|𝜽)𝑓(𝜽)𝑑𝜽
 

(15) 

where the joint prior distribution 𝑓(𝜽) provides the available prior information about the unknown 

parameters in 𝜽. 𝑓(𝜽|DATA) is the joint posterior distribution for 𝜽, which combines the information from 

the data and the prior distribution. 𝐿(DATA|𝜽) is the likelihood function and depends on the assumed model 

for the data and the data itself. This function must be proportional to the probability of the data. The 

denominator of the equation (15) is a normalizing constant that assures that the joint distribution is a proper 

probability distribution [70].  

One of the reasons for controversy on the use of Bayesian methods is that it is possible that the prior 

distribution will have a strong influence on the resulting inferences, especially when the amount of 

information from the data is scarce. Therefore, the joint prior distribution must be carefully specified. If 

there is no agreement among the expert matters, e.g., manufacturers and customers, a convenient alternative 

is to use noninformative prior distributions. When the joint prior distribution is diffuse or relatively flat 

over the values of 𝜽 for which the likelihood is non-negligible, and if the data dominates the joint prior, the 

likelihood is approximately proportional to the joint posterior distribution. As a result, Bayesian inferences 
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are similar to those obtained from non-Bayesian methods, e.g., ML [70]. In this study, Bayesian inference 

with low-information distributions (which essentially reflects a lack of strong and precisely quantified prior 

information) will be employed for the initial estimation of parameters. 

The computation of the joint posterior distribution for 𝜽 (equation (15)) in closed form is impossible in 

many cases because computing the integral in the denominator can be intractable. As an alternative, modern 

methods for Bayesian analysis overcome this complexity by obtaining inferences based on draws from the 

joint posterior distribution [70]. A powerful method for simulating a sample from a particular joint posterior 

distribution is the Markov chain Monte Carlo (MCMC) approach [72]. Gibbs sampling and MCMC [72] 

provides an efficient method to simulate draws from a discrete-time continuous-space Markov chain. After 

reaching a steady-state, the sequence of draws provides a sample from the desired joint posterior 

distribution [70]. The MCMC simulation proposed is summarized in the following algorithm (2.1). 

WinBUGS software is an excellent alternative to perform the MCMC simulation [77] and will be used in 

the case study analysis to estimate the posterior parameters. 

Algorithm 2.1: 

Step 1: Set low-information prior distributions for parameters of the distributions assumed for random 

parameters. For example, set low-information prior distributions for 𝜇𝛽1
, 𝜇𝛽2

, 𝜎𝛽
2

1
, 𝜎𝛽
2

2
 and 𝜌, for the links 

degradation model 

Step 2: Generate a large number (T) of MCMC sample draws using prior distributions and degradation data 

from the assumed distributions until equilibrium is reached 

Step 3: Cut off (“burn-in”) the first B (e.g., B = 4,000) number of initial draws to omit the noise effect 

Step 4: Monitor the convergence of posterior equilibrium. If not, generate more sample draws. 

Step 5: Use MCMC sample draws of the model parameters (for both links and nodes degradation models) 

with equations (8) and (14), to evaluate the links and nodes reliability, respectively, for a large number of 

time values (e.g., between 0 to 10,000 hours). 
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Step 6: The available evaluation values of links and nodes reliability provide appropriate data to determine 

not only point estimates, but also credible intervals. Therefore in this step, from the reliability values 

evaluated for each time value, obtain the point estimates (or the median values) and the credible intervals 

(e.g., 95% credible intervals). 

2.2. Monte Carlo method for all-terminal network reliability estimation 

At any time, only some links and/or nodes of 𝐺 might be operational. Since the all-terminal reliability 

is the probability that every node can communicate with every other node in the network, the reliability of 

a network is given as: 

𝑅𝑛𝑒𝑡 = 𝑃𝑟{(𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑛𝑘𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠) 𝐴𝑁𝐷 (𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙)} (16) 

Even considering only link failures and due to the exponential growth of the number of states with the 

size of networks, the all-terminal reliability calculation is an NP-hard problem [78]. In previous studies 

based on deep learning techniques, the exact network reliability -calculated with a backtracking algorithm- 

was used to train specialized ANNs. This algorithm, although exact, is time-consuming and might not be 

practical for networks with more than ten nodes [14, 48]. For instance, the exact backtracking algorithm 

reportedly took an average of about 500 seconds per network [48] on ten-node networks. 

As an alternative, a MC method could be used to estimate the reliability of a network (𝑅𝑀𝐶). The 

algorithm should simulate 𝑀 states (replication) for the network. For each replication, the algorithm should 

simulate the nodes, considering the reliability of nodes 𝑝𝑁. If not all the nodes are present, then that state is 

not operational because there is no all-terminal communication. If all the nodes are present, the algorithm 

should simulate the links, considering the reliability of links 𝑝𝐿. If the operational links provide all-terminal 

connectivity, then that state is operational for the network, and the accumulator variable 𝑟 (with an initial 

value of zero) is increased by one. After 𝑀 replications, the estimated reliability would be given by the ratio 

of the number simulated operational states over the number of simulated states, i.e.: 

𝑅̂𝑛𝑒𝑡 = 𝑅𝑀𝐶 = 𝑟/𝑀 (17) 
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From equation (16) and assumptions 1 and 3, a more efficient way to estimate the network reliability 

can be derived. Given that the links and nodes reliability values are independent, equation (16) can be 

expressed as: 

𝑅𝑛𝑒𝑡 = 𝑃𝑟{(𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑛𝑘𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠)} × 𝑃𝑟{(𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙)} (18) 

Let, 𝑅𝑙𝑖𝑛𝑘𝑠 = 𝑃𝑟{(𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑛𝑘𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠)}, and  𝑅𝑛𝑜𝑑𝑒𝑠 =

𝑃𝑟{(𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙)}. 

Therefore, the reliability of the network can be expressed as the product of the reliability of links (𝑅𝑙𝑖𝑛𝑘𝑠) 

and reliability of nodes (𝑅𝑛𝑜𝑑𝑒𝑠) as: 

𝑅𝑛𝑒𝑡 = 𝑅𝑙𝑖𝑛𝑘𝑠 × 𝑅𝑛𝑜𝑑𝑒𝑠 (19) 

The reliability of nodes can be directly calculated by using the probability mass function (PMF) of 

binomial distribution 𝐵𝑖𝑛(|𝑁|, 𝑝𝑁) for |𝑁| successes. In other words, the reliability of nodes is given by 

equation (20). Consequently, the simulation of nodes is not required. 

𝑅𝑛𝑜𝑑𝑒𝑠 = 𝑝𝑁
|𝑁|

 (20) 

On the other hand, regarding the reliability of links (considering the independencies among the nodes 

and the links), at any time, only some links of 𝐺 might be operational. A state of 𝐺 is a sub-graph 𝐺′ =

(𝑁, 𝐿′), where 𝐿′ is the set of operational links, 𝐿′ ⊆ L. The reliability of links of state 𝐿′ ⊆ L is [12]: 

𝑅𝑙𝑖𝑛𝑘𝑠 =∑[∏𝑝𝐿
𝑗∈𝐿′

]

Ω

[ ∏ (1 − 𝑝𝐿)

𝑗∈(𝐿\𝐿′)

] 

(21) 

where, Ω is the set of all operational states. As mentioned before, due to the exponential growth of the 

number of states with the size of the network, the calculation of the reliability of links is an NP-hard 

problem. Hence, only the reliability of links needs to be simulated with a MC algorithm, which is proposed 

below: 

Algorithm 2.2: 

Let 𝑀 be the total number of independent replications for Monte Carlo simulation 

Let |𝑁| be the number of elements (nodes) in 𝑁 

𝑟 ← 0  

𝑘 ← 0  

while 𝑘 < 𝑀 do 
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𝐿𝑘 ← 𝐿  

  //Simulate the links … 

  for each 𝑙𝑗 ∈ 𝐿𝑘 do 

generate a random number 𝑟𝑒𝑝𝑙𝑗 from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝐿) 

if 𝑟𝑒𝑝𝑙𝑗 = 0 then remove 𝑙𝑗 from 𝐿𝑘 

  //Check connectivity … 

if all-node connectivity in 𝐺(𝑁, 𝐿𝑘)  then 𝑟 ← 𝑟 + 1 

  𝑘 ← 𝑘 + 1 

𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠 = 𝑟/𝑀  

 

By using the results of Algorithm 2.2 and equation (20), the network reliability can be estimated as: 

𝑅̂𝑛𝑒𝑡 = 𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠 × 𝑅𝑛𝑜𝑑𝑒𝑠 (22) 

where 𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠 is evaluated by Algorithm 2.2 and 𝑅𝑛𝑜𝑑𝑒𝑠 is calculated with equation (20). 

 

2.3. Deep neural network model 

Given a network 𝐺(𝑁, 𝐿, 𝑝𝐿 , 𝑝𝑁), with links reliability 𝑝𝐿, and nodes reliability 𝑝𝑁, the all-terminal 

network reliability can be estimated by equation (22), with 𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠 evaluated by Algorithm 2.2. The 

proposed MC algorithm can estimate the network reliability for given (fixed) nodes and links reliability 

values, even if this algorithm is not currently practical for real-time applications. Moreover, in our approach, 

there is a need for not only a quick network reliability estimation at each time point, but at each time point, 

we also consider several (thousands) samples of nodes and links reliability values. Therefore, to speed-up 

the calculation, a DNN is proposed to be trained with the estimated reliability of links 𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠 as the target, 

as a function of the links reliability value 𝑝𝐿 as the input. The reliability of links for a set of links reliability 

values (𝑝𝐿) can be calculated by using the MC proposed method before the training of the DNN. The DNN 

(to estimate the reliability of links 𝑅𝑙𝑖𝑛𝑘𝑠) along with equation (20) (to calculate the reliability of nodes 

𝑅𝑛𝑜𝑑𝑒𝑠) conform a DNN model. The DNN model is expected to predict the network reliability (for the new 

given 𝑝𝐿 and 𝑝𝑁) accurately and quickly. It is worth to mention that the DNN is trained specifically for a 

given network (topology). A representation of the DNN model is shown in Figure 2. 
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Deep Neural 
Network
Model

𝑅̂𝑛𝑒𝑡  

𝑝𝑁  

𝑝𝐿 

 

Figure 2. The deep neural network to estimate the reliability of a network 

A base dataset is formed by the pairs (𝑋𝑡 , 𝑦𝑡), where 𝑋𝑡 is the links reliability value (𝑝𝐿) and 𝑦𝑡 is 

corresponding estimated reliability of links (𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠), for each element in a set of the link’s reliability 

values, e.g., {0.01, 0.02, …, 0.99, 1.00}. 

 

2.3.1. DNN architecture 

The proposed DNN architecture is based on feed-forward neural networks as they have proven to be 

effective function approximators [79]. Furthermore, a fully connected multi-layer perceptron (MLP) 

structure is employed. A sigmoid activation function is used at the output layer to ensure the reliability 

predicted falls within the range [0,1], a feature that some previous ANN-based works lack [14, 17]. In 

addition, a dropout layer is placed before the output layer to avoid overfitting by randomly dropping neurons 

during the training [80]. To summarize, the architecture is a stack of the following layers: input: (𝑋𝑡), fully 

connected hidden layers, dropout, output with sigmoid activation: (𝑦𝑡)̂. 

2.3.2. Training and evaluating 

Once a base dataset is available, and the architecture of the DNN is defined, the remaining phases are 

training and evaluating. Five-fold cross-validation is considered to compare the results obtained with 

different test sets from the same base dataset. The base dataset is (randomly) divided into five subsets of 

the same size. DNN training uses all but one subset, and the excluded subset is considered a test set for the 

trained DNN. After training, the DNNs are evaluated in terms of the error using the testing datasets from 

cross-validation.  
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2.3.3. Calculating the all-terminal network reliability 

The cross-validation error is used to select the best DNN. The best  trained DNN can be used to estimate 

the reliability of links (𝑅̂𝑙𝑖𝑛𝑘𝑠) for a given links reliability value (𝑝𝐿). The reliability of links 𝑅𝑙𝑖𝑛𝑘𝑠 depends 

not only on 𝑝𝐿 but also on the topology of the network. These dependencies are incorporated by the MC 

Algorithm 2.2 and learned by the DNN. Moreover, as expected, such dependences (captured by 𝑅̂𝑙𝑖𝑛𝑘𝑠) are 

reflected in the estimated network reliability 𝑅̂𝑛𝑒𝑡, as shown in equation (23). Further, the reliability of 

nodes (𝑅𝑛𝑜𝑑𝑒𝑠) for a given nodes reliability value (𝑝𝑁) is given by equation (20). Therefore, the estimated 

all-terminal reliability of the network is given by the proposed DNN model as: 

𝑅̂𝑛𝑒𝑡 = 𝐷𝑁𝑁(𝑝𝐿)⏟      
𝑅̂𝑙𝑖𝑛𝑘𝑠

× 𝑅𝑛𝑜𝑑𝑒𝑠(𝑝𝑁) = 𝐷𝑁𝑁(𝑝𝐿) × 𝑝𝑁
|𝑁|

 (23) 

where 𝐷𝑁𝑁(𝑝𝐿) represents the estimation of the reliability of links provided by the best DNN, i.e., 𝑅̂𝑙𝑖𝑛𝑘𝑠 

2.4. Bayesian updating of parameters and network reliability prediction  

To further reduce the uncertainty in parameter estimates and network reliability prediction obtained 

from the initial (possibly accelerated degradation test (ADT)) data and initial Bayesian parameter 

estimation, the framework allows updating the initial estimations with new data. The new data is 

incorporated according to Algorithm 2.3 proposed below. 

Algorithm 2.3: 

Step 1: From the initial MCMC draws obtained using Algorithm 2.1, obtain informative prior distributions 

for parameters of the distributions assumed for random parameters; i.e., informative prior distributions for 

𝜇𝛽1
, 𝜇𝛽2

, 𝜎𝛽
2

1
, 𝜎𝛽
2

2
 and 𝜌 in the case of the links degradation model. Besides information from historical 

data, experts' opinion is another source of prior information [70]. 

Steps 2 – 6: are the same Steps 2-6 as previously defined in Algorithm 2.1. 

2.5. Proposed framework for network reliability estimation and updating of parameters  

To summarize, the overall proposed framework can estimate the reliability of a network, considering 

the degradation data of links and nodes. The framework is broadly composed of a links degradation model, 

a nodes degradation model, and a DNN model (equation (23) and Figure 2) trained using reliability values 
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obtained by the Monte Carlo Algorithm 2.2. The links degradation model (Figure 3) provides the links’ 

reliability 𝑝𝐿(𝑡) based on degradation data. This model considers the updating of parameters if new data 

become available. Similar model is considered for the nodes degradation model, with the degradation data 

generated from nodes and an appropriate degradation model. The overall proposed framework is 

represented in  Figure 4. The outputs 𝑝𝐿(𝑡) and 𝑝𝑁(𝑡) are fed to the DNN model for it to predict the network 

reliability 𝑅̂𝑛𝑒𝑡. Moreover, the nodes reliability, the links reliability, and the overall network reliability can 

be updated as new data are available. 
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Figure 3. Links degradation model 
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Figure 4. Framework for all-terminal network reliability estimation 
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3. Case Study 

To demonstrate the proposed framework, the real-world network topology Ion (125 nodes, 150 links, 

New York, USA [56, 57]), shown in Figure 5, was analyzed using the proposed approach (Figure 5). The 

real degradation data was considered to simulate additional degradation data for links [59]. Similarly, the 

real degradation data was obtained for nodes from Ref. [58]. Since a crack growth model was assumed for 

the links, degradation data for 150 sample units would be needed. Lu and Meeker [59] reported crack size 

degradation data for 21 sample units only. In this study, the initial degradation parameters were estimated 

from such available real degradation data. Based on these estimated parameters, degradation data for 150 

sample units were simulated. On the other hand, a LED light-output degradation model was assumed for 

the nodes, and hence, degradation data for 125 sample units are required. Pascual et al. [58] provided 

appropriate LED light-output degradation data. They reported degradation data for six groups, with 30 

sample units per group and each group corresponding to a different test condition. Some data were removed 

to match the data required for 125 nodes, as detailed in Section 3.2.  

 

Figure 5. Ion network graphical representation 

3.1. Links degradation modeling for reliability evaluation  

For degradation modeling of links, the original degradation data for 21 sample units obtained from [59] 

were considered (shown in Figure 6). Considering the degradation model given by equation (6), the random 

parameters 𝛽1 and 𝛽2 are modeled by a bivariate normal distribution with parameters (𝜇𝛽1 , 𝜇𝛽2 , 𝜎𝛽1 , 𝜎𝛽2 , 𝜌), 
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and the residual deviation 𝜖 is described by a normal distribution with mean zero and standard deviation 

𝜎𝜖. We propose Bayesian estimation of such parameters. These parameters will be used to carryout 

simulation and obtain degradation data for 150 links of the network considered in this study. In addition to 

degradation data, prior distributions are needed for the parameters 𝜇𝛽1 , 𝜇𝛽2 , 𝜎𝛽1 , 𝜎𝛽2 , 𝜌, and 𝜎𝜖. 

 

Figure 6. Crack growth data 

The vector of random unknown parameters of the path model (
𝛽1
𝛽2
) described by a bivariate normal 

distribution, can be modeled as: 

(
𝛽1
𝛽2
)~𝑁((

𝜇𝛽1
𝜇𝛽2
) , (

𝜎𝛽1
2 𝜌𝜎𝛽1𝜎𝛽2

𝜌𝜎𝛽1𝜎𝛽2 𝜎𝛽2
2 )) 

(24) 

Or equivalently: 

(
𝛽1
𝛽2
)~𝑁(𝝁𝜷, 𝚺𝜷) 

(25) 

 

where,  𝝁𝜷 = (
𝜇𝛽1
𝜇𝛽2
), and 𝚺𝜷 = (

𝜎𝛽1
2 𝜌𝜎𝛽1𝜎𝛽2

𝜌𝜎𝛽1𝜎𝛽2 𝜎𝛽2
2 ) 
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Then, low-information prior distributions are considered for the parameters 𝝁𝜷, 𝚺𝜷, and 𝜎𝜖. For 𝝁𝜷 we 

assume a low-information bivariate normal distribution centered in 𝟎 with no correlation between and large 

variances for 𝜇𝛽1 and 𝜇𝛽2 [81]. In WinBUGS, the multivariate normal distribution is specified in terms of 

a mean vector and a precision matrix (inverse of the covariance matrix), as shown in equation (26): 

𝝁𝜷 = (
𝜇𝛽1
𝜇𝛽2
)~𝑁 (𝝁𝝁𝜷 , 𝐓𝝁𝜷

−1) 
(26) 

where 𝐓𝝁𝜷 is the precision matrix and given as 𝐓𝝁𝜷 = 𝚺𝝁𝜷
−1 

On the other hand, to represent a vague prior knowledge for 𝚺𝜷, a low-information Wishart distribution 

[71, 82] is used to describe the precision matrix 𝐓𝛃, where 𝐓𝛃 = 𝚺𝛃
−1, as shown in equation (27).  

𝐓𝛃 = 𝚺𝛃
−1~𝑊𝑝(𝐒𝟎

−𝟏, ν0) (27) 

 

The parameters of a Wishart distribution 𝑊𝑝 of a 𝑝 × 𝑝 symmetric positive definite matrix is the degrees 

of freedom ν0, and the 𝑝 × 𝑝  positive definite scale matrix 𝐒𝟎
−𝟏. In WinBUGS, the inverse of the scale 

matrix, i.e., 𝐒𝟎Must be specified. 

In this case study 𝐓𝝁𝜷
−1 is a 2 × 2 matrix, then 𝑝 = 2. To represent low prior knowledge, the (low-

information) Wishart distribution has the degrees of freedom as small as possible [71, 81], i.e., ν0 = 𝑝, and 

𝐒𝟎 represents a prior guess at the order of magnitude of the covariance matrix 𝚺𝛃 [81]. 

Finally, a prior distribution needs to be defined for the parameter 𝜎𝜖, which is considered to describe 

the residual deviation as 𝜖𝑖𝑗~𝑁(0, 𝜎𝜖
2). In WinBUGS, a precision (inverse of the variance) parameter is 

used to specify normal distributions. Therefore, using WinBUGS parameters, the residual deviation can be 

described as: 

𝜖𝑖𝑗~𝑁(0, 𝜏𝜖
−1) (28) 

where 𝜏𝜖 = 𝜎𝜖
−2. 

𝜏𝜖 can be described by a gamma distribution 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) with shape and rate parameters 𝛼, 𝛽, 

respectively: 
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𝜏𝜖 = 𝜎𝜖
−2~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) (29) 

A common low-information prior Gamma distribution is obtained by letting 𝛼 = 𝛽 = 0.001 [81], 

which provides a mean of 1 and a large variance of 1000. Table I summarizes the low-information prior 

distributions used for the initial estimation of parameters. 

TABLE I: LOW-INFORMATION PRIOR DISTRIBUTION FOR LINKS DEGRADATION MODEL 

Parameter Prior distribution 

𝝁𝜷 = (
𝜇𝛽1
𝜇𝛽2
) 𝑁((

0
0
) , (1.0 × 10

−6 0
0 1.0 × 10−6

)
−1

) 

𝚺𝛃
−1 = 𝐓𝛃 = (

𝜎𝛽1
2 𝜌𝜎𝛽1𝜎𝛽2

𝜌𝜎𝛽1𝜎𝛽2 𝜎𝛽2
2 )

−1

 𝑊2 ((
1.0 × 10−3 0

0 1.0 × 10−3
)
−1

, 2) 

𝜎𝜖
−2 = 𝜏𝜖 𝐺𝑎𝑚𝑚𝑎(0.001,0.001) 

 

To summarize, a WinBUGS model was built considering the original degradation data [59], the 

degradation model given by equation (6), the distributions assumed for the parameters 𝛽1, 𝛽2 and 𝜖, and the 

low-information prior distributions assumed for parameters 𝝁𝜷, 𝚺𝜷, and 𝜎𝜖 (see Table I). The initial 4,000 

MCMC sample draws were dropped (“burn-in”) and the sample draws were “thinned” [77] to reduce 

autocorrelation by setting a lag parameter 𝐿 of 30, i.e.; in the sequence, every 30th value was retained. In 

general, 𝐿 would be larger if autocorrelation is stronger in the preliminary experiments [70]. The point 

estimates are obtained by the median values from the MCMC sample draws [83]. The results are: 𝝁̂𝜷 =

(
3.717
5.225

), 𝚺̂𝜷 = (
0.5219 −0.1735
−0.1735 0.2349

), and 𝜎̂𝜖 = 0.008008. WinBUGS also provides kernel density 

estimations. As an example, Figure 7 shows the kernel density estimations of parameter 𝝁𝜷 = (
𝜇𝛽1
𝜇𝛽2
). 

 

Figure 7. Bayesian kernel density estimation of parameter 𝝁𝜷 
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Using the estimated parameters 𝝁̂𝜷, 𝚺̂𝜷, and 𝜎̂𝜖, degradation data were simulated for 150 sample units 

to match the number of links of the network analyzed. 12 measures were simulated for each sample unit, 

i.e., considering readings at  0.01, 0.02, 0.03, …, 0.12 Mcycles. The simulated data were divided into two 

parts: “initial data” , i.e., readings at times from 0.01 to 0.08 Mcycles, and “new data”, i.e., readings at times 

from 0.09 to 0.12 Mcycles. The purpose of this division is to illustrate the initial Bayesian estimation of 

parameters with the “initial data”, and subsequently, the Bayesian updating of parameters as “new data” 

become available. 

3.1.1. Bayesian estimation of parameters 

A WinBUGS model was built considering the “initial data”, the degradation model given by equation 

(6), the distributions assumed for the parameters 𝛽1, 𝛽2 and 𝜖, and the low-information prior distributions 

assumed for parameters 𝝁𝜷, 𝚺𝜷, and 𝜎𝜖 as given in Table I. A lag parameter 𝐿 of 60 was applied. The point 

estimates obtained by the median values from the MCMC sample draws are: 𝝁̂𝜷 = (
3.608
5.370

), 𝚺̂𝜷 =

(
0.4458 −0.2215
−0.2215 0.2604

), and  𝜎̂𝜖 = 0.008012. Figure 8 shows the kernel density estimations of parameter 

𝝁𝜷 = (
𝜇𝛽1
𝜇𝛽2
).  

 

 

Figure 8. Bayesian kernel density estimation of parameter 𝝁𝜷 for “initial data” 

3.1.2. Links reliability estimation  

Both “initial data” and “new data”, for links, have Mcycles as “time” axis, whereas nodes degradation 

data, considered in Section 3.2 have hours in the time axis. Therefore, to make the time units consistent for 
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reliability calculations, an arbitrary scaling was adopted by setting 64,000 hours as equivalent to one Mcycle 

for links “initial data” and “new data”.  

 The 10,000 MCMC sample draws from the joint posterior distributions of the model parameters were 

used in equation (8) to obtain links reliability draws for 1,001 time values between 0 and 10,000 hours. In 

other words, to plot the link reliability, we considered 1,001 points in the time axis, and for each of those 

points, there are 10,000 MCMC samples from which the median values and credible bounds were derived 

and plotted in the reliability axis. The same plotting parameters will be used consistently in the case study 

to draw nodes reliability and network reliability. The median values (solid line) and the 95% credible 

bounds (dashed lines) are shown in Figure 9. 

 

Figure 9. Links reliability and 95% credible intervals 

3.1.3. Bayesian updating of parameters  

As a result of the proposed time scaling, “new data” include degradation measures at time = 5,760 hours 

(i.e., 64,000 hours/Mcycle × 0.09 Mcycles), 6,400 hours, 7,040 hours, and 7,680 hours. A WinBUGS model 

was built considering the “new data,” the degradation model given by equation (6), the distributions 
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assumed for the parameters 𝛽1, 𝛽2 and 𝜖, and informative prior distributions assumed for parameters 𝝁𝜷, 

and 𝚺𝜷. Initial MCMC sample draws obtained in Section 3.1.1 are used to estimate the parameters of 

informative prior distributions (see Table II). The prior distribution for 𝝁𝜷 is specified with the MLE 

estimates obtained for a bivariate normal distribution from the MCMC draws of 𝝁𝜷 (obtained in Section 

3.1.1). On the other hand, the prior Wishart distribution for 𝚺𝛃
−1 is specified by considering that the true 

covariance matrix 𝚺𝟎 can be estimated by the median values from the MCMC sample draws [83] obtained 

in Section 3.1.1. To make 𝚺𝛃 closely centered around 𝚺𝟎, a large ν0 is selected [71], whereas 𝐒𝟎 is given 

by equation (30) [71]:   

𝐒𝟎 = (ν0 − 𝑝 − 1)𝚺𝟎 (30) 

Since this updating process is intended to take place with “new data” obtained during normal operation, 

which does not necessarily offer the same testing conditions as for “initial data,” a low-information prior is 

still considered for the precision parameter 𝜎𝜖
−2. 

The lag parameter was 𝐿 = 100. The point estimates obtained by the median values from the MCMC 

sample draws are: 𝝁̂𝜷 = (
3.609
5.333

), 𝚺̂𝜷 = (
0.4354 −0.1479
−0.1479 0.2221

), and 𝜎̂𝜖 = 0.008611. Figure 10 shows the 

kernel density estimations of parameter 𝝁𝜷 = (
𝜇𝛽1
𝜇𝛽2
).   

TABLE II: INFORMATIVE PRIOR DISTRIBUTION SPECIFICATIONS FOR LINKS DEGRADATION 

MODEL 

Parameter Prior distribution 

𝝁𝜷 = (
𝜇𝛽1
𝜇𝛽2
) 𝑁((

3.6084
5.3716

) , (
409.8462 131.6914
131.6914 247.8900

)
−1

) 

𝚺𝛃
−1 = 𝐓𝛃

= (
𝜎𝛽1

2 𝜌𝜎𝛽1𝜎𝛽2
𝜌𝜎𝛽1𝜎𝛽2 𝜎𝛽2

2 )

−1

 
𝑊2 ((

3.1206 −1.5505
−1.5505 1.8228

)
−1

, 10) 

𝜎𝜖
−2 = 𝜏𝜖 𝐺𝑎𝑚𝑚𝑎(0.001,0.001) 
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Figure 10. Bayesian kernel density estimation of parameter 𝝁𝜷 for “new data” 

To verify the robustness of the posterior distributions, we performed sensitivity analysis by considering 

a plausible alternative model with changes in informative prior distributions [77]. A natural sensitivity 

analysis considers longer-tailed alternatives instead of normal distributions [72]. Hence, in the alternative 

model, a prior distribution for 𝝁𝜷 was specified with the MLE estimates [84] obtained for a multivariate 

Student’s t-distribution from the MCMC draws obtained in Section 3.1.1. In WinBUGS, the (noncentral) 

multivariate Student’s t-distribution is specified in terms of the mean vector, precision matrix (inverse of 

the covariance matrix), and degrees of freedom. In the alternative model, the prior distribution for 𝝁𝜷 is 

given as 𝑡 ((
3.6085
5.3715

) , (
422.0977 135.4642
135.4642 255.4619

)
−1

, 67 ). Table III shows the sensitivity of posterior 

inference in terms of the median and 95% credible intervals obtained from the MCMC sample drawings. 

Minor differences are observed between the posteriors resulted from the model with normal distribution 

and the alternative model with the t distribution. Therefore, the original model that considers the informative 

prior distributions in Table II was used for Bayesian updating of parameters. 
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Table III: Parameters under different prior assumptions 

Parameter 

Distribution for 𝝁𝜷 

Multivariate normal Multivariate Student’s t-distribution 

Posterior median 

95% posterior credible 

interval 

Posterior median 

95% posterior credible 

interval 

𝝁𝜷 (
3.609
5.333

) 
[3.533, 3.683]

[5.247, 5.416]
 (

3.609
5.333

) 
[3.534, 3.684]

[5.248, 5.418]
 

𝚺𝛃 (
0.4354 −0.1479
−0.1479 0.2221

) 
[
0.3531,
 0.5509

] [
−0.2288,
 −0.0815

]

[
−0.2288,
−0.0815

] [
0.1604,
 0.3093

]
 (
0.4359 −0.1490
−0.1490 0.2223

) 
[
0.3528,
 0.5497

] [
−0.2310,
 −0.0830

]

[
−0.2310,
 −0.0830

] [
0.1611,
 0.3089

]
 

𝜎𝜖 0.0086111 [0.008002, 0.009317] 0.008613 [0.00798, 0.009315] 

 

3.1.4. Links reliability estimation updating 

The updated 10,000 MCMC draws from the joint posterior distributions of the model parameters were 

used in equation (8) to compute links reliability draws, considering the same plotting parameters defined in 

Section 3.1.2. The median values, as well as the 95% credible intervals, are shown in Figure 11. As 

expected, the informative prior Bayesian updating improved the precision of the estimates. Figure 12 shows 

both the initial links reliability estimation and credible intervals in solid blue lines. Figure 12 also shows 

the updated links reliability estimation along with credible intervals in red dashed lines. The updated 

reliability and credible intervals are shown from the time = 5,760 hours when “new data” become available. 

The additional new data improves the credible interval and provides a narrower range compared to the 

initial credible interval. This is caused by a reduction in uncertainty because of the availability of additional 

new data.  
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Figure 11. Updated links reliability and 95% credible intervals 

 

Figure 12. Initial and updated links reliability and 95% credible intervals 

3.2. Nodes degradation modeling for reliability evaluation  
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In this section, normalized (relative to an initial measurement taken on each unit) degradation data [58] 

for LED light-output are considered, as shown in Figure 13. A decrease in light intensity output with time 

and LED failure is defined when the relative light intensity output reaches 60% level of the initial value 

[58]. In the first 138 hours, the sample degradation paths had a complicated irregular behavior for which 

LED experts had no explanation [58, 70]. Since the primary interest is in the long-run behavior of the LEDs, 

the first 138 hours of data were omitted. The remaining data were renormalized so that all the units start 

with a (normalized) output value of 1 at time = 138 hours. The truncated renormalized data are shown in 

Figure 14.  

The group at 130 °C junction temperature and 40 mA current are believed to cause the occurrence of a 

new failure mechanism [58]. Hence the degradation data of this group were removed before the parameters 

estimation. Moreover, from each of the remaining five groups, the degradation data of five sample units 

were removed so that the “initial data” for the analysis contain degradation paths for 125 sample units (five 

groups with 25 sample units per group) to match the 125 nodes of the case study network. Bayesian 

parameter estimation based on the “initial data” will be described in the next Section (3.2.1). Additionally, 

using the initial estimated parameters, “new data” will be generated to demonstrate the Bayesian parameter 

updating in Section 3.2.3. 



Paper: Draft  33 

 

Figure 13. Original normalized LED degradation data 

 

Figure 14. Renormalized LED degradation data 

3.2.1. Bayesian estimation of parameters  
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The degradation model is given by equation (12) with random parameters 𝑏 and 𝜀. 𝑏 can be described 

by a normal distribution with parameters (𝜇𝑏 , 𝜎𝑏), and the residual deviation 𝜀 is described by a normal 

distribution with mean zero and standard deviation parameter 𝜎𝜀. Bayesian estimation of parameters was 

carried out in the same way as for the case of links (Section 3.1.1). Low-information distributions [70] will 

be considered for such parameters, as shown in Table IV. “Flat” priors correspond to uniform distributions 

between −∞ and ∞ [70]. 

TABLE IV: LOW-INFORMATION THE PRIOR DISTRIBUTION SPECIFICATIONS FOR NODES 

DEGRADATION MODEL 

Parameter Prior distribution 

𝜇𝑏 𝐹𝑙𝑎𝑡 

𝜎𝑏 
𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1.0 × 10−5, 1.0

× 104) 

𝛽1,𝑁 𝐹𝑙𝑎𝑡 

𝛽2,𝑁 𝐹𝑙𝑎𝑡 

𝜎𝜀 
𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1.0 × 10−5, 1.0

× 104) 
 

A WinBUGS model was built considering the “initial data,” the degradation model given by equation 

(12), the distributions assumed for the parameters 𝑏 and 𝜀, and the low-information prior distributions 

assumed parameters 𝜇𝑏 , 𝜎𝑏 , 𝛽1,𝑁, 𝛽2,𝑁, and 𝜎𝜀 given in Table IV. The lag parameter was 𝐿 of 40. The point 

estimates obtained by the median values from the MCMC sample draws are: 𝜇̂𝑏 = −0.008122, σ̂𝑏 =

6.04 × 10−4, 𝛽1,𝑁 = 3.961 × 10
−4, 𝛽2,𝑁 = −0.002555, and 𝜎̂𝜖 = 0.004661. These parameters will be 

used to simulate “new data” at normal operating conditions, defined by the test engineers as 40°C junction 

temperature and 20 mA current [58]. Figure 15 shows the kernel density estimations of parameter 𝜇̂𝑏. 
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Figure 15. Bayesian kernel density estimation of parameter 𝝁𝒃 for “initial data” 

3.2.2. Nodes reliability estimation  

The 10,000 MCMC sample draws from the joint posterior distributions of the model parameters were 

used in equation (14) to obtain nodes reliability curves, considering the same plotting parameters defined 

in Section 3.1.2. The median values (solid line), as well as the 95% credible bounds (dashed lines), are 

shown in Figure 16. 

 

Figure 16. Nodes reliability and 95% credible intervals 

3.2.3. Bayesian updating of parameters  

“New data” were simulated considering time = 5,760 hours, 6,400 hours, 7,040 hours, and 7,680 hours, 

i.e., at the same time values as the “new data” for the links. A WinBUGS model was built considering the 

“new data,” the degradation model given by equation (12), the distributions assumed for the parameters  𝑏 

and 𝜀, and informative prior distributions assumed for parameters 𝜇𝑏 , 𝜎𝑏 , 𝛽1,𝑁, and 𝛽2,𝑁. Bayesian 

estimation was performed in the same way as for the case of links (Section 3.1.3). A lag parameter 𝐿 of 100 
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was considered. The point estimates obtained by the median values from the MCMC sample draws are: 

𝜇̂𝑏 = −0.008117, σ̂𝑏 = 5.918 × 10
−4, 𝛽1,𝑁 = 4.019 × 10

−4, 𝛽2,𝑁 = −0.002658, and 𝜎̂𝜖 = 0.004668. 

Figure 17 shows the kernel density estimations of parameter 𝜇̂𝑏.   

TABLE V: INFORMATIVE PRIOR DISTRIBUTION SPECIFICATIONS FOR LINKS DEGRADATION 

MODEL 

Parameter Prior distribution 

𝜇𝑏 𝑁(−0.008121648, 295558733−1) 

𝜎𝑏 𝐺𝑎𝑚𝑚𝑎(220.2973,363870.2) 

𝛽1,𝑁 𝑁(0.0003961045, 1012765573−1) 

𝛽2,𝑁 𝑁(−0.002557142, 6333426−1) 

𝜎𝜀 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1.0 × 10−5, 1.0 × 104) 

 

 

Figure 17. Bayesian kernel density estimation of parameter 𝝁𝒃 for “new data” 

Like the nodes’ case, we performed a sensitivity analysis to verify the robustness of the posterior 

distributions. In the alternative model, the prior distributions for 𝝁𝒃, 𝜷𝟏,𝑵, and 𝜷𝟐,𝑵 are given as 

𝒕(−𝟎. 𝟎𝟎𝟖𝟏𝟐𝟏𝟔𝟑𝟑, 𝟑𝟎𝟏𝟓𝟎𝟕𝟓𝟎𝟏−𝟏, 𝟏𝟎𝟎 ), 𝒕(𝟎. 𝟎𝟎𝟎𝟑𝟗𝟔𝟎𝟗𝟕, 𝟏𝟎𝟓𝟗𝟓𝟒𝟓𝟐𝟏𝟐−𝟏, 𝟒𝟔 ), and 

𝒕(−𝟎. 𝟎𝟎𝟐𝟓𝟓𝟕𝟏𝟒𝟗, 𝟔𝟒𝟔𝟎𝟗𝟗𝟑−𝟏, 𝟏𝟎𝟎 ), respectively. Table VI shows the sensitivity analysis results. Due 

to minor differences between the results obtained with original and alternative models, the original model 

that considers the informative prior distributions in Table V was used for Bayesian updating of parameters. 

TABLE VI: POSTERIOR MEDIAN AND 95% CREDIBLE INTERVALS OF PARAMETERS UNDER 

DIFFERENT PRIOR ASSUMPTIONS  

 

Parameter 

Distributions for 𝜇𝑏, 𝛽1,𝑁, and 𝛽2,𝑁 

Normal Student’s t- Distribution 
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Posterior 

median 
95% posterior credible interval 

Posterior 

median 
95% posterior credible interval 

𝜇𝑏 −0.008117 [−0.008235,−0.008005] −0.008116 [−0.008230,−0.008006] 

𝜎𝑏 5.918 × 10−4 [5.394 × 10−4, 6.504 × 10−4] 5.910 × 10−4 [5.399 × 10−4, 6.480 × 10−4] 

𝛽1,𝑁 4.019 × 10−4 [3.531 × 10−4, 4.516 × 10−4] 4.023 × 10−4 [3.543 × 10−4, 4.529 × 10−4] 

𝛽2,𝑁 −0.002658 [−0.003160,−0.002164] −0.002648 [−0.003141,−0.002137] 

𝜎𝜀 0.004668 [0.004353, 0.005016] 0.004670 [0.004350, 0.005034] 

 

3.2.4. Nodes reliability estimation updating 

The updated 10,000 MCMC draws from the joint posterior distributions of the model parameters were 

used in equation (14) to compute the nodes reliability curves, considering the same plotting parameters 

defined in Section 3.1.2. Similar to what occurred in the case of links reliability, figures 18 and 19 show 

narrower credible intervals after updating. 

 

Figure 18. Updated nodes reliability and 95% credible intervals 
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Figure 19. Initial and updated nodes reliability and 95% credible intervals 

3.3. MC method and DNN model for all-terminal network reliability estimation  

In this section, the use of the MC method and DNN to evaluate the network reliability is illustrated. 

MC method (Algorithm 2.2) is applied to the selected Ion network to obtain a set of estimated reliability 

values of links (𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠)𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠. will be the target during the training process, i.e., the 𝑦𝑡 values. The best 

trained DNN is expected to estimate the network reliability of links (𝑅̂𝑙𝑖𝑛𝑘𝑠) for any given value of 𝑝𝐿. 

Finally, the all-terminal network reliability will be calculated by using equation (23) for any given 𝑝𝐿 and 

𝑝𝑁.  

A dataset of 100 link reliability values is considered, i.e., {0.01, 0.02, …, 0.99, 1.00}. Based on this set 

of link reliability values, a base dataset of pairs (𝑋𝑡 , 𝑦𝑡)  is formed. 𝑋𝑡 is the links reliability value (𝑝𝐿) and 

𝑦𝑡 is corresponding estimated reliability of links (𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠), for each element in the set of link reliability 

values. The base dataset is divided into training and testing datasets by applying five-fold cross-validation. 

The DNN architecture has two hidden layers. Different number of neurons ({5, 10, 20, 30, 40, 50}) 

were investigated for each hidden layer [85]. The dropout probability values from the set {0, 0.05, 0.10, 
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0.15, 0.20, 0.25}, where 0 indicates no dropout  were employed. This provides a total of 216 experiments 

(six numbers of neurons in the first layer, six numbers of neurons in the second layer, and six dropout 

values). The average root mean square error (RMSE) considering cross-validation [86] is used to select the 

best DNN architecture. The best architecture is (5, 30, 0.15), i.e., 5 and 30 neurons in the first and second 

hidden layers, respectively, with a dropout of 0.15. The final application DNN is trained using all the 100 

members of the data set, and its validation error is inferred using the average cross-validation error (Table 

VII, column 2). The average cross validation-error is given by equation (31) [14, 48]. 

𝑅𝑀𝑆𝐸𝑐𝑣=√
1

100
∑∑(𝑦(𝑔−1)×20+ℎ − 𝑦̂(𝑔−1)×20+ℎ)

2
20

ℎ=1

5

𝑔=1

 

(31) 

 

Figure 20. Predicted (𝑹̂𝒍𝒊𝒏𝒌𝒔) and actual (𝑹𝑴𝑪𝒍𝒊𝒏𝒌𝒔) reliability of links, as a function of links 

reliability (𝒑𝑳) 

TABLE VII: MC AND DNN PERFORMANCE 

Architecture Error Paired t-test Computation time 

Best DNN RMSE p-value 95% C.I. Monte Carlo [s] 
MC-DNN 

model [ms] 

5, 30, 0.15 0.01460 0.1029 [-0.0005, 0.0053] 1223.59 0.316 

 

The RMSE measures the accuracy of the DNN prediction. The error (0.01460) outperforms previous 

results achieved by ANN-based approaches, e.g., RMSE of 0.06260 [14] and RMSE of 0.04406 [48]. Also, 
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a paired t-test between the actual reliability and the reliability predicted by the DNN was performed. P-

values and 95% confidence intervals (Table VII, columns 3, 4) for the mean difference show no significant 

pairwise difference between actual and the predicted values. Therefore, the DNN provides a good fit, as 

shown in Figure 20. Figure 20 also shows that the predicted values (𝑅𝑙𝑖𝑛𝑘𝑠) noticeably underestimate the 

actual reliability (𝑅𝑀𝐶𝑙𝑖𝑛𝑘𝑠 calculated with Algorithm 2.2) when the links reliability values (𝑝𝐿) are greater 

than 0.99 (approximately). To improve this performance, a hierarchical approach that integrates a 

specialized DNN trained for link reliabilities greater than 0.99 is used. The best specialized DNN 

architecture was (50, 50, 0). Therefore, the appropriate DNN should be selected in equation (23) when 

applied for network reliability estimation. 

The hierarchical approach allows a smooth fit even at high-reliability values, as shown in Figure 21. 

Figure 21 provides a graphical view of the performance of the DNN model to predict the network reliability 

(𝑅̂𝑛𝑒𝑡) as a function of the links and nodes reliability values, i.e., 𝑝𝐿 and 𝑝𝑁, respectively. The estimated 

network reliability for a combination of 10,000 values for both 𝑝𝐿  and 𝑝𝑁 uniformly distributed between 0 

and 1 is plotted in Figure 21. As we can expect, both 𝑝𝐿 and 𝑝𝑁, have effect in 𝑅̂𝑛𝑒𝑡. Figure 21 shows that 

the nodes reliability is more dominant than the links reliability, which can be explained because a failure in 

a node immediately interrupts the all-terminal communication. In contrast, a link failure may be alleviated 

by communication through other surviving links. Therefore, the network reliability 𝑅̂𝑛𝑒𝑡 is more sensitive 

to the nodes reliability 𝑝𝑁 than to the links reliability 𝑝𝐿 
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Figure 21. Estimated reliability of networks (𝑹̂𝒏𝒆𝒕), as a function of links reliability (𝒑𝑳)  and 

nodes reliability (𝒑𝑵) 

There is a significant computation time difference between the pure MC algorithm and the integrated 

framework based on MC-DNN (Table VII, columns 5, 6). Table VII (columns 5, 6) shows the computation 

time of a single network reliability value 𝑅̂𝑛𝑒𝑡, for a given combination of input pair of values (𝑝𝐿 , 𝑝𝑁).  

The MC average time calculation (1223.59 s) for a single value 𝑅̂𝑛𝑒𝑡 is based on the total time to estimate 

100 link reliability values. On the other hand, the total time to compute the network reliability for 10,000 

input pairs (links and nodes reliability draws) for a total of 1,001 time values (between 0 and 10,000 hours) 

was 3,162 seconds. However, the DNN model average computation time for a single value of 𝑅̂𝑛𝑒𝑡 is only 

0.316 ms (i.e., 
3,162𝑠

10,000 ×1,001
). It is worth mentioning that the execution time (0.316ms) does not consider the 

training time, which is in the order of 60s, but it has to be done only once for a given network. This time 

reduction is convenient for fast reliability estimation as in approximately 3 seconds, 10,000 network 

reliability draws can be obtained, providing not only a point estimate but also credible bounds for any given 

time value. A laptop with a processor Intel(R) Core (TM) i7-8565U CPU @ 1.80GHz, and 16GB in RAM 

was used.  

3.4. Network reliability estimation  
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In this section, the network reliability estimation is illustrated. The links reliability draws (Section 

3.1.2), and the nodes reliability draws (Section 3.2.2) were fed to the hierarchical DNN model (equation 

(23) with the appropriate DNN) to obtain network reliability curves, considering the same plotting 

parameters defined in Section 3.1.2. The median values (solid line), as well as the 95% credible bounds 

(dashed lines), are shown in Figure 22. 

 

Figure 22. Network reliability and 95% credible intervals 

The sharp decline of network reliability between 5,000 and 7,500 hours approximately (Figure 22) 

could be explained because a rapid decrease of links reliability starts around 6,000 hours (Figure 12), and 

a similar situation occurs with nodes reliability (Figure 19). Moreover, this behavior is expected due to the 

high sensitivity of network reliability to nodes reliability 𝒑𝑵, shown in Figure 21 and explained by equations 

(20) and (22). 

3.5. Network reliability estimation updating 

Once additional information becomes available, the updated links reliability draws (discussed in 

Section 3.1.4) and nodes reliability draws (discussed in Section 3.2.4) are fed to the proposed DNN model 
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to obtain updated network reliability draws for the corresponding 1,001 time values between 0 and 10,000 

hours. The median values (solid line), as well as the 95% credible bounds (dashed lines), are shown in 

Figure 23. As expected, the informative prior Bayesian updating improved the precision of the estimates. 

Figure 24 shows the initial network reliability estimation with credible intervals in solid blue lines. Figure 

24 also shows the updated network reliability estimation with credible intervals in red dashed lines. The 

updated reliability and credible intervals start at time = 5,760 hours, i.e., when “new data” become available. 

Credible intervals for updated network reliability are narrower than the initial credible intervals. 

 

Figure 23. Updated network reliability and 95% credible intervals 
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Figure 24. Initial and updated network reliability and 95% credible intervals 

 

4. Conclusion 

Most of the current work on network reliability considers perfect nodes and that the reliability of links 

or nodes is constant or even perfect. This study has considered the reliability of both links and nodes as a 

function of time in the prediction of all-terminal network reliability. This paper has proposed a framework 

that accounts for the dynamic behavior of a network by using the degradation data from both links and 

nodes of the network to estimate its all-terminal reliability as a function of time. Due to the complexity of 

the problem, the proposed framework integrates BM, MC simulation, and DNN. BM allows both initial 

estimations of degradation model parameters and updating of parameters with new data. Links and nodes 

reliability estimates can be evaluated from the model parameters. In addition, the integration of MC-DNN 

with the Bayesian approach provides an accurate and fast estimation of both initial and updated predictions 
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of links/nodes and/or all-terminal network reliability functions for any given time, not only as point 

estimates but as credible intervals.  

The proposed framework could be used in situations where fast links, nodes, and/or network reliability 

estimations and updating are required, such as an online reliability monitoring system. Based on (usually 

limited) initial accelerated degradation test data, the framework could provide reliability estimates as a 

function of time. Furthermore, suppose during the normal operation, links, nodes, or both change their 

degradation profile. In that case, this variation in new data can be captured by the framework for proper 

and timely updating of the reliability predictions. Therefore, the proposed framework is compatible with 

and provides a way to take advantage of modern sensors technology as sources of new degradation data to 

update the reliability predictions. The updated reliability predictions may provide valuable information to 

decision-makers for taking proper actions regarding network operations management. This information is 

important for the users as well as for the manufacturers, especially in logistical decision-making such as 

preventive maintenance, warranty policy, and spare parts management. A future research direction may 

include remaining useful life (RUL) estimation and identifying critical elements of a network. 
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