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Abstract
Background: Stress affects learning during training, and

virtual reality (VR) based training systems that manipulate stress
can improve retention and retrieval performance for firefighters.
Brain imaging using functional Near Infrared Spectroscopy (fNIRS)
can facilitate development of VR-based adaptive training systems
that can continuously assess the trainee’s states of learning and
cognition.

Objective: The aim of this study was to model the neural
dynamics associated with learning and retrieval under stress in
a VR-based emergency response training exercise.

Methods: Forty firefighters underwent an emergency
shutdown training in VR and were randomly assigned to either
a control or a stress group. The stress group experienced
stressors including smoke, fire, and explosions during the fa-
miliarization and training phase. Both groups underwent a stress
memory retrieval and no-stress memory retrieval condition.
Participant’s performance scores, fNIRS-based neural activity,
and functional connectivity between the prefrontal cortex
(PFC) and motor regions were obtained for the training and
retrieval phases.

Results: The performance scores indicate that the rate of
learning was slower in the stress group compared to the control
group, but both groups performed similarly during each retrieval
condition. Compared to the control group, the stress group
exhibited suppressed PFC activation. However, they showed
stronger connectivity within the PFC regions during the training
and between PFC and motor regions during the retrieval phases.

Discussion: While stress impaired performance during
training, adoption of stress-adaptive neural strategies (i.e.,
stronger brain connectivity) were associated with comparable
performance between the stress and the control groups during
the retrieval phase.
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Précis: Brain dynamics between themotor and
frontalregionscaneffectivelydifferentiatebetween
the neural strategies of learning with and without
stress. Integrating brain imaging in VR-based
adaptive training systems can make them more
effective in identifying states of stress and learning.

KEY POINTS

• Compared to the control group, the stress group
exhibited poorer training performance, while retrieval
performance was comparable between groups.

• Stress inhibits cognitive processing by suppressing
DLPFC activation.

• Functional connectivity within the DLPFC and
between DLPFC and the pre-motor regions is
strenthened when learning under stress.

• fNIRS can prove to be an effective component of
a VR-based adaptive training system for firefighter
training.

INTRODUCTION

In safety-critical domains like emergency re-
sponse, physical and mental stress burden workers
strenuously (Benedek et al., 2007; Lentz et al.,
2019). Emergency responders are more frequently
exposed to various types of psychological stres-
sors as compared to the general population, where
in some cases, frequent exposure to traumatic
events can lead to the development of post-
traumatic stress disorder and other comorbid-
ities (Regehr & LeBlanc, 2017). In 2012, 66% of
the firefighters surveyed from United States re-
ported to have occupational injuries and 56%
reported having multiple injuries (Hong et al.,
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2012). This illustrates that firefighters are often in
hostile environments exposing them to height-
ened risk and potential consequences associated
with team and victim safety. Therefore, im-
mersive firefighter trainings are needed that
prepare them to effectively respond and perform
in extremely hostile environment. Traditional
firefighter training environments, however, are
limited in exposing trainees to hazardous sit-
uations in interest of their safety (St Julien &
Shaw, 2003).

Virtual Reality (VR) based systems have
received substantial attention to enhance fire-
fighter training experience (Bliss et al., 1997;
Clifford et al., 2019; Engelbrecht et al., 2019;
Narciso et al., 2020). VR-based trainings that
use immersive headsets are able to simulate
a wide range of cost-effective emergency sce-
narios, are highly immersive as compared to
monitor-based virtual simulation trainings, and
are significantly safer than live fire and emer-
gency based exercises (Engelbrecht et al., 2019).
Additionally, VR-based trainings also provide
a unique opportunity for close monitoring of
the trainee, offer simulation playback for con-
structive feedback, and make highly personalized
and adaptive training systems possible. Adaptive
training can be defined as a training module
where the difficulty of the problem, stimulus, or
the nature of task can be modified based on task
performance or other desired measures (Kelley,
1969). Adaptive trainings that use performance,
physiological data, and subjective feedback to
assess the trainee’s state are more effective than
non-adaptive trainings (Jones et al., 2016; Peretz
et al., 2011; Zahabi & Razak, 2020).

One physiological measure that provides an
assessment of cognitive states and learning over
time is functional brain activity. Parasuraman (2003)
proposed neuroergonomics, a sub-discipline of
human factors, which examines the neural bases
of performance at work. Ambulatory functional
brain imaging techniques, such as functional
Near-Infrared Spectroscopy (fNIRS) and Elec-
troencephalography, have been used in natu-
ralistic or laboratory environments to assess
cognitive states such as fatigue, workload, and
stress (Ayaz et al., 2012; Borghetti et al., 2017;
Newman et al., 2003), in addition to monitoring
the learning process (Basso Moro et al., 2013).

Brain imaging has a comparative advantage over
other continuously monitored physiological sig-
nals such as heart rate, dermal activity, or muscle
activity, due to its increased spatial resolution
provided through multiple sensor locations and
region-specific responsibilities of the brain.
Cognitive states can be examined based on nu-
merous features of the neural signals (Newman
et al., 2003). While region-based activation is
traditionally used to identify cognitive states,
network analysis techniques such as functional
connectivity analysis can provide additional in-
formation about the coupling of different brain
regions (Rogers et al., 2007). Functional con-
nectivity measures the temporal correlation be-
tween signals of different regions of interest and
represents the functional integration between
specialized brain regions that may be spatially
segregated (Friston, 1994).

Adaptive neurofeedback-based training sys-
tems can monitor behavior-based brain activity
to assess the cognitive states and workload of the
trainee for effective state adaptation (Dey et al.,
2019) and can capture the neural changes as-
sociated with learning that can guide VR-based
trainings to adjust attributes of the training task
in real time for optimal performance (Afergan
et al., 2014). Similar studies in the past have
used neurofeedback to train and improve dif-
ferent cognitive states in VR. For example, Cho
et al. (2004) used neurofeedback to capture and
improve attention and impulsiveness in VR.
Despite these advantages, very little effort has
been made to integrate neuroergonomics into
adaptive VR-based emergency response trainings,
where stress manipulation for both task learning
and retention plays a critical role in allowing
firefighters to be better prepared for real-world
emergencies.

A neuroergonomics perspective allows for
further understanding of the mechanistic brain
behavior associated with movement and learning
under certain environmental or cognitive con-
ditions. Voluntary motor movements are orga-
nized and executed by the motor areas of the
brain. While, the primary motor cortex (M1) is
directly responsible for sending neural drive to
the muscle, the premotor (PM) and supplemen-
tary motor areas (SMA) are responsible for motor
planning and movement in response to sensory
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information (Roland, 1984; Tanji, 1994). SMA
and PM activation increases for more complex
motor tasks (Gerloff et al., 1997). The functional
connections between the prefrontal cortex (PFC)
and the premotor areas can also indicate learning
of motor skills and adaptation to stress. A study
assessing the bimanual skills of surgeons under
temporal pressure found that the signatures of
neural adaptation to stress over years of training
were characterized by more efficient functional
organization between the PFC and the motor
regions (Deligianni et al., 2020). Vice et al.,
2011 used the same approach to investigate the
fidelity requirements of a virtual training envi-
ronment to real-world military tasks for future
virtual training platforms for military trainings.
Performance and neural data indicated that there
was an effect of fidelity conditions on learning,
where the virtual environment was associated
with better performance and higher cognitive
processing. The study also found that neuro-
physiological data was better at identifying re-
sponse to stimulus than performance. Similar
investigations into the ability of VR environment
to simulate real-world environments relevant to
firefighter training and the neural signatures of
learning in these environments are also needed.

Stress plays a major role in emergency re-
sponse training; thus, it is important to understand
how stress impacts the learning process in order
to ensure effective performance. Stress is asso-
ciated with decreased activity in the PFC but
strengthened connectivity between the PFC and
motor areas for motor tasks (Deligianni et al.,
2020; Qin et al., 2009). Studies on learning in
classroom settings have found that successful
memory retrieval under a stressed state is more
probable if encoding of information also occurs
in a similar stressed state (Joëls et al., 2006; Vogel
& Schwabe, 2016). This effect is due to the nature
of memory consolidation under stress, where any
information unrelated to the task at hand is
suppressed and memory formation of the task
related details of the event are strengthened.
Similarly, Hordacre et al. (2016) found motor
learning is also facilitated under stress. Therefore,
it is important to simulate stress during firefighter
training, not only to prepare them for emergency
situations but to also ensure that memory retrieval
is possible in such situations. Therefore, any

neuroergonomics-based adaptable system needs
to be efficient at recognizing the states of stress
and how the process of learning is affected by it.
Understanding how stress affects the process of
learning will provide insight into when and what
is needed in training regimens for better retention
and performance in the field.

The present study aimed to model the neural
dynamics associated with learning and retrieval
under stress in a VR-based emergency response
training exercise. The VR environment was ma-
nipulated to induce stress during the visuospatial
sequence learning phase and participant fire-
fighters’ ability to retrieve the learned sequence
was assessed under stress and in no-stress
conditions. Along with performance during
the training and retrieval exercises, functional
hemodynamic responses from the stress-motor
circuitry brain regions (i.e., dorsolateral PFC,
SMA, and PM) were monitored using fNIRS.We
hypothesized that learning under stress would be
detrimental to memory retrieval in non-stressful
condition and facilitative to retrieval in stressful
condition. Based on results reported in Arnsten
(2009); Saleh et al. (2021), we also hypothesized
that activity in the PFC would decrease, but
functional connectivity between the PFC and
the premotor areas would be strengthened under
stress. Additionally, we aimed to identify fNIRS-
based neural signatures of learning under stress.
We hypothesized that neural activation and
functional connectivity of the prefrontal and
premotor regions of the brain would change as
the firefighters learned the sequence and it would
be different for learning with and without stress.
The results from this study may facilitate de-
velopment of personalized algorithms to accel-
erate and strengthen emergency response training
in VR environments.

METHODS

Experiment Variables

In order to test the hypotheses mentioned
above, we designed a study to capture sequence
learning and associated hemodynamic activity of
the brain in the VR environment. The independent
and dependent measures are outlined below and
further described in the remainder of the methods
section.
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Independent Measures

To study the effect of stress on learning,
a between-subject design was employed, where
participants were randomly assigned to a stress
group and a control group. The stress group
learned a sequence in a stressful VR environment,
whereas the control group learned the sequence in
a non-stressful environment. We were also in-
terested to see the changes in the dependent
measures based on different states of learning.
The two analyzed phases of learning were the
training phase, where the participants memorized
and practiced the sequencewith feedback, and the
retrieval phase, where the participants had to
retrieve the sequence from memory without any
feedback or help. Finally, to study whether re-
trieval is facilitated if it occurs in the state of
stress, both the stress and control groups retrieved
the sequence from memory in stressful and non-
stressful environment.

Dependent Measures

Task performance was measured during the
training phase, and during the retrieval phase in
the stressful and the non-stressful environments.
The State-Trait Anxiety Inventory (STAI) scores
were reported by firefighters after relaxing for
3 minutes, after being familiarized with the valve
sequence, and after completing the training
phase. Activation of the prefrontal and pre-motor
areas of the brain were calculated for training and
retrieval phases. Finally, the temporal correlation
between the brain regions was calculated for
training and retrieval phases.

Participants

Forty firefighters were recruited from the local
firefighting community in Bryan, TX, to partic-
ipate in the study. Of the recruited firefighters,
four participants were not able to complete the
study due to VR sickness, and two participants
performed a different study protocol that was not
used for further analysis. The participants were
randomly assigned to either a control group or
a stress group. All participants were healthy males
of at least 18 years of age who spoke English
fluently. We were unable to recruit women

participants due to a lack of diversity in the
local firefighter community; women make up
a very small percentage of the firefighting
community (Hulett et al., 2008). Table 1 provides
demographics of the included participant pool.
This research complied with the American Psy-
chological Association Code of Ethics and was
approved by the Institutional Review Board at
Texas A&M University (IRB2019-0943DCR).
All participants provided their informed con-
sent in writing before data collection.

Experiment Task

The experimental task employed in this study
was a pipe maintenance task performed in a VR
environment set in a chemical power plant that
holds hazardous and combustible elements. The
task chosen was to simulate a shutdown mainte-
nance scenario, where firefighters need to perform
a shutdown procedure to close valves in a partic-
ular order to cut the supply of hazardous materials
during a fire (Shi et al., 2020). The purpose of the
task was to simulate a real-world scenario where
firefighters are required to learn a shutdown
sequence of valve closure in situations like
safety-critical gas leaks, fires, or explosions in
manufacturing or power plants. The task was
based on the instruction manual of Alfa Laval
plate heat exchangers to simulate a real-world
scenario (AlfaLaval, 2016). The task was aimed
to assess the firefighters’ spatial sequence learning
capabilities. The participants were to turn the
valves in an 8-step sequence, given in Figure 1,
using a hand-held Controller. The tasks were
either visually guided or unguided. In the visually
guided trials, arrows highlighting the correct
valve appeared sequentially as the participants
selected each valve. In the unguided trials, the
participants had to turn the valves sequentially
without any aid.

VR-Based Stressors

The stressful environment was simulated via
sudden explosions, alarm sounds, and smoke as
these cues induce stress and represent a natu-
ralistic environment for a firefighter on the job
(Hall et al., 2016; Proulx, 1993). The second and
third trials in the familiarization phase, and the
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second, third, fifth, sixth, and seventh trials in
training phase included the stressors to keep
their occurrence unpredictable to prevent the
participant from becoming accustomed to the
stressor.

Procedure

Following informed consent, participants
filled a background questionnaire about their
previous experience with virtual reality and
completed the State-Trait Anxiety Inventory
(STAI) (Spielberger, 2010). STAI has two
scales, form Y1, which measures the “state” of
anxiety of a person in a particular situation,
and form Y2, which measures their “trait” or
disposition for anxiety. Participants were then

familiarized with subjective assessment scales
of the NASA Task Load Index (NASA-TLX;
Hart, 2006). The results of STAI scores are
reported here; however, detailed analysis of
NASATLX is discussed elsewhere. Participants
were then instrumented with the fNIRS head-cap
(NIRSport 2, NIRx Medical Technologies, New
York, NY, USA) and the virtual reality headset
(HTC Vive Head Mounted Display, USA). The
signal quality of the fNIRS probes were tested
before beginning the experiment using the fNIRS
acquisition software (Aurora fNIRS, NIRx Med-
ical Technologies, New York, NY, USA) and
monitored throughout the study.

Figure 2 illustrates the timeline of the ex-
periment, which lasted for approximately 45 mi-
nutes. Baseline: Participants sat quietly with their

Table 1. Demographics of Participants. All Values are Given as Mean ± SD.

Control (n = 17) Stress (n = 17)

Age (years) 31.71 ± 4.01 29.76 ± 4.25
Service (years) 7.29 ± 4.1 6.51 ± 3.95
Height (m) 1.83 ± 0.08 1.78 ± 0.06
Weight (Kg) 98.51 ± 14.91 94.83 ± 20.4
BMI (Kg/m2) 29.2 ± 3.11 29.66 ± 5.09
Sex 17 men, 0 women 17 men, 0 women

Figure 1. The valve sequence for the pipe maintenance task.
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Figure 2. Experiment protocol for the study. Note that the timeline is to scale and the sections in yellow signify the
participants being in the VR environment. Participants were randomly assigned to the control and stress groups. The
tasks performed in the familiarization phase were guided and the tasks in the training and retrieval phase were
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eyes closed for 3 minutes for measurement of
their baseline brain activity. VR practice: Par-
ticipants entered the VR environment with the
shutdown maintenance scenario and were dem-
onstrated how to turn valves in a sequence based
on visual cues. The purpose of this phase was to
acquaint the participants with the hand-held
controller to close valves. Familiarization: Par-
ticipants performed three visually guided trials of
the task, where the sequence of the valves was the
one given in Figure 1. The start times for con-
secutive trials were 60 s apart. Training: Partic-
ipants completed eight trials. Each trial required
participants to complete the same pipe mainte-
nance task as fast and accurately as they could
without visual guidance. In the event that a par-
ticipant made a mistake (i.e., incorrectly played
out the sequence) in any training trial, the trial
was terminated, and the subsequent trial pre-
sented was visually guided. The start times for
consecutive trials were 60 s apart. After training
trials, participants were again asked the sub-
jective assessment questionnaires. Buffer:During
the buffer task, participants were in a VR envi-
ronment for 5 minutes and were instructed to
move around freely without any specific goal.
The aim of the buffer task was to provide a break
between the training and retrieval phases to
provide adequate time for memory consolidation
(Nielson & Powless, 2007; Tse et al., 2007).
Retrieval: Participants were asked to perform the
pipe maintenance task without visual guidance as
quickly and as accurately as they could, and they
were not given any feedback on their perfor-
mance. Participants underwent two sets of four
retrieval trials, where one set was in the stressful
environment and the other in no-stress envi-
ronment. The order of the stress and no-stress
retrieval trials was counterbalanced between
individuals.

Task Performance and STAI

The performance score was calculated as the
number of correct valves turned in sequence be-
fore a wrong valve was selected for the unguided

trials of the training phase and all trials for the
retrieval phase. Speedwas not considered since the
trials where participants made an error were ter-
minated immediately. The medians of the per-
formance scores were calculated for training early
(first four training trials), training late (last four
training trials), stress retrieval and no-stress re-
trieval phases. The STAI scores were calculated
for the trait anxiety scores collected in the be-
ginning of the experiment, and state anxiety scores
collected after baseline and training period. The
percent change in STAI state scores from baseline
to training were calculated for each participant.

Neural Activity

Functional Near-Infrared Spectroscopy (fNIRS)
was employed to measure brain activations and
connectivity strengths. fNIRS is a brain imaging
technique that measures hemoglobin dynamics to
determine cortical activations through a variety of
different features. The cortical locations are de-
fined following the 10–20 international systems
using a sixteen-probe design with 21 measurable
channels that covered the regions of the brain
involved in motor learning, such as the supple-
mentarymotor area, and premotor area (Halsband
& Lange, 2006) and working memory function,
such as the dorsolateral prefrontal cortex (Figure 3;
Levy & Goldman-Rakic, 2000). The 21 channels
were allocated into the six regions of interest
(ROIs) according to their Brodmann locations
and functionalities, three in Brodmann area 9:
Dorsolateral PFC (Left/Mid/Right DLPFC), and
three in area 6/8: the Premotor (Left/Right PM)
and SupplementaryMotorArea (SMA) (Brodmann
Area Function Atlas, 2010, January; Ferng, 2020,
October 29).

Signal processing was completed using al-
gorithms built into MATLAB based processing
software (Homer2, 2021). The first corrective
algorithm was for motion artifacts (Figure 3).
Each data channel was reviewed for sharp fluc-
tuations within a time range of 0.5 s using a SD
threshold of 50 and an amplitude threshold of five
optical units. Any segment that met the criteria

unguided. If a participant made an error in one of the training trials, the next trial was guided. The stress group
performed two of the familiarization trials and five of the training trials under stress in random order.
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was marked as a motion artifact and removed
along with 0.75 s before and after the segment
(Molavi & Dumont, 2012). Each participant had
an average of 14.5 flagged segments. While trials
were not removed based on the number of arti-
facts, specific channels were removed based on
recommendations from Homer2. No participant
had more than four bad channels, and each ROI
had at least two channels averaged together for all
participants. The flagged and removed segments
were then interpolated using a spline function
(Jahani et al., 2018). Following, a bandpass filter
was applied that kept the data’s frequencies be-
tween 0.010 Hz and 0.50 Hz (Zhu et al., 2020).
The next major correction was to convert the
optical density to concentrations to measure
oxygenated, deoxygenated, and total hemoglobin
measures. Of these, oxygenated hemoglobin
measure was chosen for further analysis since it is
the most sensitive to changes in cerebral blood
flow and motor related tasks (Hoshi et al., 2001).
The partial pathlength factors for each wave-
length were kept at six as the absorption change
was assumed to be uniform over the tissue in the
prefrontal cortex.

Following signal processing, the baseline mea-
surement was calculated by averaging oxygenated
hemoglobin (HBO) over the last 2 minutes of the
baselining period. Every trial within each of the
phases (familiarization, training, buffer, and re-
trieval phases) was optimized to find the peak
activation for each channel individually. Once the
peak was identified, the 2 s segment around the
peak was averaged followed by subtraction of the
baseline value to obtain peak4HBO (Zhu et al.,
2020). The resulting values were then averaged
by region of interest. All phases with repeated
measurements were averaged together resulting
in six 4HBO values (one for each region) per
participant for each phase. Specifically, within the
training phase, some of the trials were visually
guided and were thus not included in the analysis.

Figure 3 illustrates the analysis of fNIRS
signals performed to obtain functional connec-
tivity maps (steps 3–6) to identify the magnitude
of the coupling of regions that may be func-
tionally working together. Within a phase, each
trial was segmented into active sections, where
the firefighters performed the pipe maintenance
task, removing any downtime between trials

(Step 3). These segments were concatenated and
detrended using a first order linear model for
each channel (Step 4). Channels within the same
region of interest were then averaged together
(Step 5). Pearson correlations were calculated by
comparing the resulting curves between two
regions of interest effectively over the entire
active phase (Step 6). Pearson correlations were
transformed into a Fisher z-score, and any scores
below a threshold of 0.4 were reduced to zero to
reduce the likelihood of a false positive con-
nection (Rhee & Mehta, 2018).

Statistical Analysis

To test the influence of group (control vs.
stress) and training phase (training early vs.
training late) on performance (calculated as the
number of correct valves turned in sequence be-
fore a wrong valve was selected), ordinal logistic
regression was performed with performance as
the dependent variable, and group, phase, and
their interaction as predictor variables. Similarly,
ordinal logistic regression was also performed
with the performance of retrieval phase as the
dependent variable and with group (control vs.
stress), condition (stress retrieval vs. no-stress
retrieval), and their interaction as predictor var-
iables. In both analyses, the coefficients of the
regression models were tested against the null
hypothesis at significance level p < .05. Addi-
tionally, to test if both stress and control group
went through a similar number of training trials,
the Mann–Whitney U test at significance level p
< .05 was performed on the number of visually
guided trials performed in the training phase. To
evaluate group differences in anxiety scores,
independent t-tests were performed on the trait
scores and on the percent change from baseline in
state scores during the training period at signif-
icance level p < .05.

The Anderson–Darling test with threshold α
= 0.05 was performed on the peak activation of
each ROI to check the goodness of fit of the data
to assume normality. Once normality was con-
firmed, separate phase (training early vs. training
late) × group (stress vs. control) and condition
(stress retrieval vs. no-stress retrieval) × group
(stress vs. control) ANOVAs were performed on
peak4HbO from each ROI. To capture significant
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Figure 3. Probe design and overview of fNIRS processing and analysis approach. The fNIRS channels were split
into six regions of interest (ROIs) and signal corrections were applied. The peak 4HBO values were obtained for
each channel then averaged to an ROI, where trials were averaged over phases. The corrected signal was further
analyzed via steps 3–6 to obtain functional connectivity maps.
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connectivity differences between the groups, in-
dependent t-tests were performed on the Fisher z-
scores of ROIs between the stress and control
groups for the training, stress retrieval, and no-stress
retrieval phases. The level of significance for all
analyses was set at p < .05. Where required, post
hoc comparisons were performed using simple
effects tests with a predetermined alpha of 0.05. All
analyses were conducted using SPSS 26 (IBM
SPSS Statistics, NY, USA).

RESULTS

Performance and Anxiety Scores

Training. The median performance scores for
training early and training late phases are illus-
trated in Figure 4a. Group had a significant re-
lationship with performance (coefficient = 2.268
± 0.742, p = .002), where performance of the
stress group was lower than that of the control
group. Phase also significantly predicted per-
formance (coefficient = 1.493 ± 0.700, p = .033),
where performance was significantly higher in
training late phase as compared to training early
phase. There was no significant relationship of
the phase × group interaction with performance
(p = .278). On average, the stress group un-
derwent significantly (p = .005) greater number of
visually guided trials (3.19 ± 0.81) than the
control group (2.00 ± 1.37).

There was no statistical difference between
the trait anxiety scores of the control and stress
groups recorded before the experiment (p = .884).
The state anxiety scores for the control group in-
creased by 8.4% ± 24.9% from the baseline to
training period and increased by 16.9%± 26.9% for
the stress group. The independent sample t-tests

revealed no significant difference between the
scores of the control and stress groups (p = .383).

Retrieval. Themedian performance scores for
stress and no-stress retrieval are illustrated in
Figure 4b. There were no significant relation-
ships between any of the predictor variables with
performance (all p > .886).

Brain Activation

Training. Table 2 lists all significant main and
interaction effects of phase and group across each
ROI. The stress group exhibited lower brain ac-
tivation than the control group in the MDLPFC,
RDLPFC, and LDLPFC, illustrated in Figure 5
(top panel). Activation in the LPM and the RPM
increased from the early to late training phase.
Finally, a phase × group interaction effect was also
observed in the SMA. Post hoc analysis revealed
that activation in the SMA increased from the early
to the late training phase for the stress group, but
SMA activation remained comparable over time in
the control group (Figure 5, bottom panel).

Retrieval. The stress group exhibited lower
brain activation than the control group in the
MDLPFC, LDLPFC and the RDLPFC, as
shown in Figure 5 (top panel). There was a main
effect of condition, where activation in the
MDLPFCwas higher during stress retrieval than
no-stress retrieval. The effect of group × con-
dition interaction was not significant for any
other ROIs (all p’s > .503).

Functional Connectivity

Training. Figure 6 illustrates the functional
connectivity magnitudes between different brain

Figure 4. Themedian performance scores in the control and stress groups for the (a) training and (b) retrieval phases.
Error bars represent SE.
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Table 2. F-statistics, p-values, and Effect Sizes (ηp
2) for Significant Main and Interaction Effects for

ANOVAs in the Training and Retrieval.

MDLPFC LDLPFC RDLPFC SMA LPM RPM

Training Group F(1,31) 6.827 6.923 6.643
p-value .014 .013 .015
ηp

2 0.18 0.183 0.18
Phase F(1,31) 6.643 7.466

p-value .015 .01
ηp

2 0.18 0.194
Group × Phase F(1,31) 7.536

p-value .01
ηp

2 0.196
Retrieval Group F(1,31) 7.236 9.499 4.861

p-value .011 .004 .035
ηp

2 0.189 0.235 0.136
Condition F(1,31) 4.899

p-value .034
ηp

2 0.136
Group × Phase F(1,31)

p-value
ηp

2

Figure 5. Difference in activation of control group and stress group for the six ROIs for training early (TE), training
late (TL), stress retrieval (SR), and no-stress retrieval (NR) across the PFC and motor regions. Error bars represent
SE.
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regions. The stress group exhibited significantly
stronger functional connectivity than the control
group between LDLPFC-RDLPFC (p = .0136),
and MDLPFC-RDLPFC (p = .0378). No other
connectivity patterns were found significant
between groups (all p’s > .1467).

Retrieval. The stress group exhibited signifi-
cantly greater strength in functional connectivity
than the control group between MDLPFC-
RDLPFC (p = .0195), and a marginally greater
strength in functional connectivity between
LDLPFC-RDLPFC (p = .0596), MDLPFC-RPM
(p=.0554),andRDLPFC-RPM(p=.0576)during
the stress retrieval phase. Apart from a significant
group difference in connectivity between
MDLPFC-RDLPFC (p = .0002), and marginal
group difference in connectivity between
LDLPFC-RDLPFC (p= .0537)where the stress

group exhibited stronger connectivity in no
stress retrieval, no other connectivity patterns were
found significant between groups during the no-
stress retrieval phase (all p’s > .1927).

DISCUSSION

This study investigated the neural activity
associated with sequence learning and memory
retrieval under stress for VR-based firefighter
training. Important findings of this investigation
can be summarized as follows: (1) while the rate
of learning was different between the stress
group and control group, retrieval performance
was similar between groups; (2) the stress group
performed a higher number of visually guided
trials as compared to the control group, and (3)
stress-adaptive neural strategies, such as increased

Figure 6. Functional connectivity maps of the control (top row) and stress (middle row) group during training, stress
retrieval, and no-stress retrieval phases, averaged by participant. No negatively correlated connections were found
when averaged across group, thus connectivity is plotted from no correlation to highly positively correlated based on
the color bar map indicated in the figure. Significant increases in connectivity in the stress group, compared to the
control group, are highlighted in the bottom panel.
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activation in the SMA and stronger functional
connectivity within the frontal region and between
the frontal and pre-motor regions may contribute
to the comparable retrieval performance between
groups.

Performance scores of both the stress group
and control group improved significantly from
the early to late training phases. The experi-
mental task entailed participants to close valves,
distributed spatially, in a specific 8-sequence
order, requiring them to incorporate both mo-
tor and cognitive resources to perform the task.
As such, the performance improvements were
accompanied by increases in neural activation in
the pre-motor areas for both groups and acti-
vation in the SMA for the stress group. Indeed,
the pre-motor and supplementary motor areas
are involved in motor planning and execution
(Picard & Strick, 2003; Tanji, 1994). These areas
are also recruited for working memory main-
tenance during cognitive tasks (Marvel et al.,
2019) and to account for increases in cognitive
demands (Küper et al., 2016).

During the early stage of training, the stress
group’s performance scores were poorer than
those of the control group. It is likely that early
performance by the stress group was poorer than
that by the control group due to the distracting
nature of the types of stressors employed, such
as explosions, fire, smoke, and alarms that
burden auditory and visual cognitive resources.
The stress group experienced suppressed activity
in the left and medial DLPFC in comparison to
the control group. Previous studies have also
reported suppression of working memory-related
activation in the DLPFC in the presence of stress
(Mehta, 2016; Qin et al., 2009; Shortz et al.,
2015). Qin et al. (2009) attributed this phe-
nomenon to the sensitivity of the PFC to the
neurochemical changes caused by the increased
sympathetic activity and decreased parasympathetic
activity under stress. These neural findings also
provide support that the VR-based environmental
stressors were effective in manipulating neuro-
physiological responses in the stress group.

In the retrieval phase, the stress group’s per-
formance was comparable to the control group.
One possibility to explain this outcome is to
compare the differences in the nature of learning
that the control and stress group experienced

during the training phase. Because the stress
group made more mistakes, they received more
visually guided training trials than the control
group. This means that, while control group
learned the sequence primarily by repetition, the
stress group learned the sequence via visual
guidance. However, while visual guidance has
shown to reduce cognitive load during training
and facilitate translation of cognition to action
(Carroll & Bandura, 1987), it has also shown to
be less effective for learning (Yuviler-Gavish
et al., 2011). Thus, the differential learning ex-
periences (repetition vs. visual guidance) do not
completely explain how both groups exhibited
comparable retrieval performances despite dif-
ferent learning rates during the training phase.

Brain dynamics during the retrieval phase
may potentially explain comparable perform-
ances between the control and stress groups.
Despite the stress group having suppressed ac-
tivation in the DLPFC regions during training,
they exhibited stronger connectivity within the
DLPFC during training and retrieval as well as
between the DLPFC and the pre-motor areas
during retrieval, when compared to the control
group.While neural activation indicates increase
or decrease in activity in a region of the brain,
functional connectivity is an indicator of func-
tional integrity between brain regions and tells
us if the brain regions work together (Friston,
1994). These findings implicate a stress-adaptive
neural strategy, in that while activation within
the DLPFC region was lower under stress, the
different DLPFC subregions developed stronger
positive connections. Kohn et al. (2017) found
that under stress, better performance was asso-
ciated with stronger connectivity within the
Executive Control Network (ECN), which in-
cludes the DLPFC and pre-motor regions. The
reasoning given behind this phenomenon was
that while stress is related to lower executive
functioning to facilitate reduction in processing
of irrelevant information, accuracy of task is
achieved by an increased recruitment of a wide-
spread network of brain regions associated with
the ECN. The ECN is responsible for planning,
decision making, and error detection and works
with other attentional networks to facilitate
perceptual processing (Callejas et al., 2005).
Therefore, an increase in functional connectivity
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between the DLPFC and the pre-motor regions,
observed during the retrieval phase in the stress
group, could be an indication of a strategy to
improve ECN performance hindered by sup-
pression of the PFC by expanding the recruitment
to the pre-motor regions by the PFC.

In contrast to our hypothesis, there was no
statistical difference between performances in
either retrieval phases (stress or no stress) across
both groups (Callejas et al., 2005). This can be
explained by the fact that since the stress group
exhibited poorer performance in the beginning
of the training trials, they were provided with
a greater number of opportunities to learn the
sequence via the visually guided trials (Carroll
& Bandura, 1987). Additionally, the buffer
period provided to both groups may have al-
lowed for memory consolidation that facilitated
learning (Tse et al., 2007). As discussed before,
the stress group exhibited strengthened func-
tional connectivity as compared to the control
group between the prefrontal regions and the
pre-motor regions during stress retrieval. This
strengthened functional connectivity within the
DLPFC was also seen in the no-stress retrieval
phases in the stress group. The altered functional
connectivity during retrieval phase indicates the
difference in neural strategies for memory re-
trieval between individuals who learned under
stress and those who learned under no-stress
conditions. Therefore, these activation and func-
tional connectivity patterns can act as markers of
learning under stress for adaptive training systems
for firefighters. Identification of the neural strat-
egies of learning can determine how well simu-
lated stress was manipulated during emergency
trainings. Future work is also needed to identify
which of these different neural strategies of
learningwill prove to bemore effective inmemory
retrieval in field conditions.

As with many studies, the limitations need to
be addressed. This study was limited tomen, who
may adopt different learning strategies under
stress than women. Future work that compares
the neural process of learning under stress be-
tween sexes is warranted. Within the fNIRS
design, only the frontal and premotor regions of
the brain were monitored. Future studies should
expand by monitoring visuomotor regions to
systematically understand the effect of stress on

attention and to capture the neural strategies in-
volved in regulating selective attention in re-
sponse to stress. This study evaluated firefighter
performance for visuospatial sequence learning
under stress and provided reinforcement via vi-
sually guided trials when a mistake was made.
However, due to initial poor performance of the
stress group, both groups had different learning
experiences. While the neural data may partially
help explain the comparable retrieval perform-
ances between the two groups, future work
should use a more standardized protocol that
ensures consistent learning experiences for both
groups. The results of the analyses of activation
and functional connectivity were not corrected
for multiple comparisons in this study. This is
because the power of the statistical analysis was
small to yield significant results after Bonferroni
or FDR corrections. Limitations to the power of
analysis arise from the fact that there were multiple
regions monitored (6 regions and therefore, 15
connections). We hope that the results of this
study contribute to localizing the areas of interest
for functional connectivity analysis, so that future
studies can use fewer regions of interest and
minimize errors due to multiple comparisons.

The anxiety scores also were not statistically
significantly different between conditions, per-
haps due very high variability in self-reported
scores. Future studies should recruit a larger par-
ticipant pool to increase the power of their analyses,
but could also include a measure of participants’
cortisol levels before and after stress is applied to
determine successful stress induction. It should
be noted that there were significant differences
between performance scores of the stress and
control groups, where the stress group per-
formed poorly in the early stages of the training
phase, and as a result, underwent more guided
trials than the control group. The stress group
also exhibited stunted PFC activity, which is
a common indicator of stress (Arnsten, 2009;
Mehta, 2016). However, the STAI, which is
a common subjective measure for stress and
anxiety, was found comparable between the
stress and control group. Previous evaluations of
this questionnaire have indicated that the STAI
scores can produce inconsistent results and
misfit responses (Tenenbaum et al., 1985). The
present study found that the STAI scores did not
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differentiate between the states of stress pro-
duced by the different VR environments, which
were otherwise captured by both performance
and brain hemodynamic data. The stressors that
were used to simulate an emergency were pro-
vided to the firefighters continuously and con-
sistently during a trial. More sudden and randomly
distributed stressors, such as sudden explosion
sounds and structural collapse, can provide
a more realistic setting for emergency training
and stronger stress responses. Finally, brain dy-
namics differ under virtual versus physical re-
alities (Vice et al., 2011), and as such comparative
studies that examine the commonalities and de-
viation of learning under stress in a range of
virtual, to mixed, to physical realities will be
beneficial.

CONCLUSION

In this study, we identified the differences in
neural strategies, activation and connectivity
patterns, involved in learning under stress versus
without stress. Firefighters who experienced the
stressors during learning compensated with PFC
suppression under stress and with strengthened
functional connectivity between the PFC and
pre-motor regions. These strategies can serve as
potential learning markers during training to alter
or enhance skill acquisition in VR training sys-
tems, which have typically relied on downstream
performance outcomes that are lagging indicators
of learning. Integrating brain dynamics using
ambulatory neuroergonomic techniques, such as
fNIRS, within VR-based trainings can facilitate
expertise development with adaptive models that
account for both trainee states of stress and as-
sociated learning and consolidation strategies.
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