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ABSTRACT

In this work we propose time-deniable signatures (TDS), a new
primitive that facilitates deniable authentication in protocols such
as DKIM-signed email. As with traditional signatures, TDS pro-
vide strong authenticity for message content, at least for a sender-
chosen period of time. Once this time period has elapsed, however,
time-deniable signatures can be forged by any party who obtains
a signature. This forgery property ensures that signatures serve
a useful authentication purpose for a bounded time period, while
also allowing signers to plausibly disavow the creation of older
signed content. Most critically, and unlike many past proposals
for deniable authentication, TDS do not require interaction with
the receiver or the deployment of any persistent cryptographic
infrastructure or services beyond the signing process (e.g., APIs to
publish secrets or author timestamp certificates.)

We first investigate the security definitions for time-deniability,
demonstrating that past definition attempts are insufficient (and
indeed, allow for broken signature schemes.) We then propose an
efficient construction of TDS based on well-studied assumptions.
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1 INTRODUCTION
Many communication systems use cryptographic signatures to ver-
ify the authenticity of data sent from one party to another over
untrusted networks. While cryptographic authentication is stan-
dard in end-to-end encrypted messaging systems, it is also increas-
ingly being deployed within traditionally non-encrypted protocols
such as SMTP email. Specifically, in the email setting, protocols
such as DKIM, DMARC and ARC [12] are routinely used to add
non-repudiable digital signatures to email in transit between Mail
Transfer Agents (MTAs): these signatures allow recipient spam fil-
tering software to verify that it originates from the claimed sender.
While cryptographic authenticity is valuable for preventing
spam and spoofing of email traffic, DKIM signatures have been
re-purposed for goals that may not have been anticipated by the
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designers of these protocols.! For example, news organizations rou-
tinely verify the authenticity of leaked or stolen email collections
using DKIM signatures [31, 38, 41]: this is possible because DKIM
signing keys are long-lived, and the protocol’s non-repudiable sig-
natures can be verified long after an email has been received and
processed. Organizations such as the Associated Press and Wik-
ileaks even publish detailed instructions and tools for verifying the
authenticity of DKIM signatures in leaked and stolen email corpora
to facilitate such verification. Since email signing is implemented by
commercial mail providers rather than end-users, users of popular
services cannot opt-out. These developments have ignited a techni-
cal debate around the desirability of long-term non-repudiability
guarantees in widely-used protocols such as email [23], and raised
questions around the value of adding cryptographic deniability to
these systems.

The need for deniability. Cryptographic deniability is a property
that allows communication participants to disavow authorship of
messages, e.g., in the event that they have been leaked or stolen. This
feature has frequently been incorporated in interactive messaging
protocols [1, 8, 42], which historically realize deniability through
the use of interactive key exchange protocols and symmetric au-
thentication primitives such as MACs. Achieving deniable authen-
tication in email authentication protocols such as SMTP/DKIM is
more challenging since these protocols support non-interactive and
asynchronous delivery via multiple intermediate recipients. Thus
interactive protocols are ruled out, and even designated-verifier
solutions can be more challenging due to the presence of interme-
diaries.

Despite these challenges, the problem of incorporating denia-
bility for the email setting has recently received some attention.
For example, in Usenix Security 2021, Specter et al. proposed two
technical replacements for DKIM signing that are designed to facil-
itate deniability. Both protocols ensure that messages are digitally
signed to enable sender-authenticity verification but feature a pro-
cess wherein senders, recipients, and even third parties can create
deliberate forgeries after the necessary anti-spam and spoofing
checks have been completed. The two protocols employ different
techniques: the first relies on the sender to author forgeries on re-
quest and/or publish expired secret keys, while the second employs
a trusted time server that publishes cryptographic timestamp cer-
tificates that allow forgery of signatures after some period of time
!Indeed, many early deployments of DKIM used weak signing keys, and some DKIM

standards authors proposed using e.g., 600-bit keys to balance the risks and benefits of
DKIM [12].
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has elapsed. Others have made even simpler proposals wherein
DKIM providers simply rotate and publish existing DKIM signing
keys on a periodic basis [11, 23]. Each proposal seeks to build signa-
tures that are unforgeable for a period of time necessary to support
short-term transport checks, but become forgeable after this period.

The major limitation of the proposals above is that forgery re-

quires the active cooperation of signers, or else depends on the
continuous operation of new trusted infrastructure such as “time
servers” that publish keys or timestamp certificates on a periodic
basis [40]. The challenge in email systems is that the end-users
affected by non-repudiable authentication (e.g., Gmail customers)
rely on third-party providers to deploy these infrastructure services
and make them available for the often-controversial purpose of
forging past email. If this infrastructure is not deployed, then even
the Internet-wide adoption of a deniable signature standard will
not provide deniability in practice. What is needed is a signature
scheme that can be used in place of a normal signature scheme
within protocols; provides strong authenticity for a period of time;
and then subsequently becomes plausibly forgeable by any party
who simply obtains such a signature, with only the requirement that
parties have an (approximately) shared view of time. We refer to
such signatures as time-deniable signatures.
Properties of time-deniable signatures. Time-deniable signa-
tures operate much like a normal signature scheme, but with some
important differences. Like standard digital signatures, time-deniable
signatures are designed to be secure and non-repudiable for at least
some time period following signing. The duration of this time pe-
riod is strictly limited, however: any party who obtains a signature
on some message M can use it as input to a new forging algorithm
called AltSign that, after enforcing some approximate time delay,
will output a forgery on a new chosen message M’. A key require-
ment of these schemes is that neither signing nor forging should
require the cooperation of any other party or infrastructure. This
time delay is therefore enforced using a specific computational
assumption: the AltSign algorithm requires the forger to perform
a pre-specified number of sequential operations &, where the min-
imum time required for this calculation is roughly as long as the
desired length of the unforgeable phase.

Of course, the ability to forge signatures has no bearing on de-
niability if the resulting forgeries are easily distinguishable from
authentic signatures. To achieve plausible deniability, we therefore
require that forgeries are indistinguishable from signatures pro-
duced using the ordinary signing algorithm, and in fact that even
linking forgeries to the specific signatures that were used to create
them should be challenging. This indistinguishability property is a
fundamentally novel property of this work, that is not present in
previous attempts to solve this problem [3, 24]. It also has impor-
tant follow-on implications: since forgeries are indistinguishable
from true signatures, this implies that any forgery must be useful
to create still further forgeries.

Finally, we wish time-deniable signatures to be useful in practice.
Given the description above, time-deniable signatures would be
of limited usefulness: the revelation of a single signature would
allow for an unlimited number of forgeries, rendering the signing
key useless for authenticating further messages. To remove this
limitation, we slightly relax our forgery and unlinkability require-
ments. Our constructions allow for renewability via an additional
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timestamp t field that is specified in the signing algorithm and car-
ried with the signature. Forgers can produce a new signature on a
message M’ provided the new signature carries a timestamp ¢’ < .
For example, in a practical deployment, the timestamp ¢ can be
set to correspond to some real-world time counter, and recipients
can choose to accept as authentic any signature with a timestamp
greater than t — t5 where ts is the minimal expected time needed
to compute a forgery.? This approach requires only that honest
senders and receivers possess loosely synchronized clocks.

Our contributions. In this work we investigate the problem of
building time-deniable signatures. We first develop formal defini-
tions for this new primitive, then present a construction based on
several efficient components. Finally, we implement our approach
and show that it is practical enough to deploy today. Concretely,
we provide the following contributions:

Defining time-deniable signatures (TDS). We propose new def-
initions for the concept of time-deniable signatures, and
propose strong security definitions for this new primitive.
Defining security for time-deniable signatures is surpris-
ingly difficult: while developing our definitions, we found
that previous efforts to formalize the security of deniable
authentication schemes fall short. For example, we show
that the security definitions for some related primitives [24]
contain subtle weaknesses that admit practically-insecure
constructions. To provide evidence for the robustness of our
definitions, we prove that our definitions are strictly stronger
than these earlier definitions.

Efficient constructions. To demonstrate that the TDS primitive
is practical, we propose an efficient construction of time-
deniable signatures based on well-studied cryptographic as-
sumptions. Our constructions improve on previous work [24]
in that they do not require any a priori bound on the num-
ber of time epochs that the scheme can handle. We also
show that TDS can be realized using standard assumptions
in pairing-based cryptography and sequential puzzles based
on repeated-squaring assumption [36], without the need for
zkSNARKSs or other heavy-weight constructions.

Implementation and performance experiments. To further motivate
the usefulness of TDS in systems applications, we implement
our TDS constructions and show that the scheme has practi-
cal runtime and bandwidth performance for the applications
we consider. In particular, we show that our scheme has a
fast key setup time, which is particularly important for a
scheme with an unbounded number of time epochs.

2 TECHNICAL OVERVIEW

We now give an overview of the main contributions in this work,
starting with formalizing the notion, before moving on to the con-
structions.

2This naturally relaxes the unlinkability requirement: given a pair of signatures Oty Oty
with timestamps #; < ?; it cannot be the case that oy, is the original signature and oy,
is the forgery. However, given a sufficiently large collection of signatures containing
forgeries and original signatures, this approach still provides a degree of uncertainty
for all but the most recent signature.
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2.1 Defining Time-Deniable Signatures

We study signature schemes where signatures remain valid for a
short period of time after creation. Specifically, we consider the
notion of an unforgeability period that starts when a signer gen-
erates a signature for a message using its signing key sk, and the
signing algorithm Sign. But once the unforgeability period elapses,
any participant in the system can compute a “fake signature” (aka
forgery). To allow computation of forgeries, we consider an alter-
nate signing algorithm AltSign, that does not require the signing
key sk to generate signatures. Intuitively, as long as the signatures
generated by Sign and AltSign appear indistinguishable, such a
notion provides deniability after the unforgeability period since
a signer can claim that a signature attributed to them could have
been generated by anyone.

Key Challenges in the Definition. There are several key con-
siderations for formalizing the above intuition and defining time-
deniable signatures.

Challenge I: Preventing pre-computation of forgeries. Recall that any

party can compute a forgery (via the algorithm AltSign) after the
unforgeability period expires. But how do we ensure that a party
cannot execute AltSign in advance, thereby having the ability to
sign any message within the unforgeability period?

One natural approach is to bind signatures to some unpredictable
cryptographic beacon, perhaps generated at regular intervals by a
centralized server or a blockchain [17, 34]. For example, when
signing a message m (via Sign or AltSign) one might actually sign
the pair (m, b) where b is a beacon released at a time known by
the receiver. This value b can then be used as the “seed” to allow
forgery using AltSign, and verifiers can use the known publication
time of b to determine whether the signature is still within the
unforgeability period. Such models have been considered in prior
works, including the TimeForge scheme of Specter et al. [40] and a
recent proposal by Bonneau et al. [3].

In this work, we seek to avoid the use of unpredictable times-
tamps or centralized servers. In our notion, the Sign and AltSign
algorithms do indeed take as input a timestamp . Assuming that
receivers possess loosely synchronized clocks, these timestamps
can be used to verify that a received signature was authored within
the unforgeability period. However, crucially, these timestamps are
simply the output of a predictable clock operated by the signer,
which means that we do not require any security properties of this in-
put, nor do we require unpredictable beacons or new infrastructure
to produce them. To prevent pre-computation, we instead model
AltSign such that it requires a valid signature on some pair (m, t) as
input. This ensures that forgers do not have the necessary input(s)
to pre-compute forgeries until they obtain a signature.?

Challenge II: Selecting forged timestamps. In the proposal above,

AltSign requires a valid signature on some time t (and any message)
in order to compute a forgery. Naturally, the resulting forgery will
also need to contain its own timestamp ¢’. The selection of ¢’ is
crucial, however: if this forged timestamp can be chosen arbitrarily
by the forger, then an attacker may be able to forge new signatures
that appear (to an honest receiver) to be within the unforgeability

3Indeed, we show that the need for AltSign to use an existing signature (or portion
thereof) to produce a forgery is seemingly inherent if we do not want to use secure
infrastructure. We elaborate on this point in Appendix J.
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window, even when the original signature was not. One obvious
solution to this problem is to restrict the forged timestamp to ¢’ = .
Unfortunately, this restriction weakens the deniability properties of
the signature scheme: a signer can deny having signed a particular
message at time ¢, but it cannot deny having signed some message
at time ¢. To achieve stronger deniability where a signer can also
deny having signed any message at time t, we further strengthen
the AltSign algorithm. Namely, we require that on input a signature
on timestamp ¢, AltSign can compute forgeries for any message m
and any time stamp ¢’ < t.

Challenge III: Avoiding strong clock synchronization. The closely re-

lated prior work of epochal signatures by Hiilsing and Weber [24]
considers a security notion that crucially relies on various partici-
pants having synchronized clocks. Roughly, in an epochal signature
scheme, (real) time is divided into discrete epochs where a new key
is generated at the start of every epoch. Signatures are associated
with the epoch they were generated in, where unforgeability re-
quirements state that no adversary can forge signatures for an
epoch during the epoch. As we show in §3, the security definitions
for epochal signatures are fragile: there exist epochal signature
schemes that are secure under the given definitions and yet be-
come completely insecure when clocks are even slightly out of sync.
This problem stems from the fact that the unforgeability notion
proposed for the primitive puts strict time limits on the adversary
while it queries a signing oracle. We show that if enforcement of
these query restrictions is violated (even slightly) by a real-world
signing oracle at epoch e, an epochal signature scheme can become
catastrophically insecure for all future epochs.

Unfortunately, avoiding such outcomes is not easy, and in this
work, we seek to strengthen our security definitions to avoid such
issues. We do this in two ways: unlike [24], our definitions model
the unforgeability period computationally — through the widely-
adopted technique of bounding the number of sequential compu-
tation steps the adversary may compute [6, 16, 35, 36, 43]. While
this still requires conversion when used in the real world, it does
not embed the conversion into the security definition. Much more
importantly, our definition allows the adversary to participate in
a “pre-processing” phase to ensure the robustness of our notion in
scenarios where there may be clock synchronization issues. During
this phase, the adversary is given free rein (within only a polyno-
mial time-bound) to query the signing oracle and forge signatures.
This phase significantly loosens the restrictions on the adversary,
allowing them to query for signatures and run the AltSign algo-
rithm (or any other process) as many times as they wish. Once the
pre-processing phase is complete, the adversary then enters a sec-
ond forgery phase in which their runtime is more strictly bounded.
Our sole restriction is that the forgery produced in the second
phase must be computed on a timestamp t* that is greater than any
timestamp queried during the pre-processing phase.

Our Definition. We are now ready to provide an (informal) defini-
tion of time-deniable signatures. We refer the reader to the technical
sections for more details.

The protocol is parameterized by A, the duration of the un-
forgeability period, and described by the algorithms KeyGen, Sign,
AltSign and Verify. The KeyGen and Verify algorithms are the same
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as standard signature schemes while the Sign algorithm, also simi-
lar to the standard notion, takes in as input a message m and time
stamp ¢ to generate a signature on (m, t). The main new component
is the algorithm AltSign which takes as input a message m’, time
stamp ¢/, signature o, ;) such that t’ < ¢, and uses the verifica-
tion key to generate a signature o,y ;). For the correctness of the
scheme, we require that AltSign generates a verifying signature
as long as it’s given as input the output of the Sign algorithm, or
(repeated applications) of the AltSign algorithm. We now provide
an overview of the two key security properties required by our
notion.

Unforgeability. This property captures the notion that no adversary
capable of computing fewer than A sequential steps can generate
a forgery. Specifically, we allow an initial pre-processing stage for
the adversary where it is not bounded by the number of sequential
steps, gathering as much information as it can. At the end of this
stage, say at timestamp t*, it passes along any information onto the
next stage where the adversary that runs in at most A sequential
steps needs to produce a signature for a message with a time stamp
> t*.

Deniability. This property asks an adversary to distinguish between
a “fresh” signature generated using Sign, and a signature gener-
ated using AltSign. We formalize this by defining two experiments,
where the adversary is allowed to specify a tuple (my,t1,01 =
Sign(my, t1), mg, tz) with t2 < #1. In the first world, the output is
simply the signature oy = Sign(my, t2, sk), whereas in the second
world, the output is oy = AltSign(my, t2, 01, vk). We say a TDS is
deniable if no computationally bounded adversary can distinguish
the two with a significant probability.

We refer to the above description of deniability to be “1-hop-
deniable”, i.e. a signature generated via Sign is indistinguishable
from one generated via AltSign. In the technical section, we extend
this notion to “k-hop-deniability”, which intuitively corresponds
to the indistinguishability between a signature generated via Sign
and one generated via k applications of AltSign.

2.2 Construction

Time-Deniable Signatures from Delegatable Functional Sig-
natures. Our construction centers around the following natural
idea: with each signature produced by the signer, we leak a re-
stricted signing oracle that can be used to forge later signatures. A
signing oracle, as the name suggests, allows a party with access to
the aforementioned oracle to sign any message of its choice. For
instance, the signing key can be viewed as an oracle since it allows
one to sign any message of their choice. A restricted signing oracle
limits the messages that can be signed. Thus, continuing with our
analogy of signing keys corresponding to an oracle, a restricted
signing oracle corresponds to a signing key that is restricted in a
fine-grained manner.

When the Sign algorithm generates a signature on message m
and time stamp t, it also reveals a restricted signing key sk, that
can be used to sign any message m’ with time stamp ¢’ < t. Such a
key can then be used by the AltSign algorithm to create forgeries.
Revealing the restricted key with the signature, however, allows
anyone in possession of the signature to create forgeries during the
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unforgeability period. To prevent this, we need to hide this restricted
signing key until after the unforgeability period, and we do so using
time-lock puzzles [36]. Intuitively, a time-lock puzzle allows one
to “lock” a secret s for a predetermined amount of time (i.e., time
parameter). Thus, the output of the Sign algorithm will consist
of the signature oy, |; along with the time-lock puzzle containing
the secret sk;, computed with time parameter A. We note that a
similar approach has been considered in constructing notions such
as epochal signatures [24], and we refer the reader to Section 3 for
a more detailed comparison.

To implement restricted signing keys, we turn to the notion
of functional signatures (FS) [4, 5, 9]. Functional signatures are
equipped with functional keys skf (instead of “regular” signing
keys) such that it allows one to sign f(m) for any message m. We
consider the following specific function for our application:

tlm t<T } )

L otherwise

fr(t,m) :{

We call such functions prefix functions (the function prepends the
time stamp to the message). It is evident from the above description
that with a functional key sk one can generate a signature for
any message m and time stamp ¢ as long as t < T.*

For our TDS construction, we leverage specific properties of
the functional signature scheme. We provide a more general (and
detailed) definition in the technical sections, but for the purposes
of the overview, we shall discuss the relevant properties of func-
tional signatures for the specific function fr described above: (i)
delegatability: given a key sk, for function f7, using only public
parameters, one can derive a key sk, for a function fr- if T <T;
(ii) key indistinguishability: it should be computationally infeasible
to differentiate between a fresh key sk, and a key derived; and (iii)
unforgeability: it should be computationally infeasible to generate
signatures o,)|, unless one has a key skg where T > t. While
delegatability has previously been studied for functional signatures,
the notion of key indistinguishability is new to our work. The latter
is crucial to achieving deniability.

Putting things together, we have:

Sign On input message m and time stamp ¢, the Sign algorithm
generates the key sk £ (using the master secret key, see tech-
nical section for details), and uses it to compute the signature
O¢||m- It then encrypts the key sk £ within a time-lock puzzle
with time parameter A.

AltSign On input message m’, time stamp ¢/, and signature
¢ |ml |TimeLock(skﬁ), the AltSign algorithm first solves the
time-lock puzzle to obtain sk, . It next uses the delegation
functionality to derive a key sk ¢, from sk f and then follows
the description of the Sign algorithm.

A potentially useful property of the above approach is that the
sequential part of the computation performed by AltSign, namely,
solving the time-lock puzzle, can be reused for computing many
forgeries in parallel. This is because once the restricted signing key
is obtained - a one-time work, it can be used to compute signatures
in parallel.

“Note that while we have thus far described signatures on messages of the form m||z,
the above description of fr flips it to be ¢||m. Looking ahead, the change is due to our
construction of functional signatures.
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Intuitively, we prove unforgeability by leveraging the unforge-

ability of the functional signature scheme and the security of time-
lock puzzles, while deniability follows from the key indistinguisha-
bility property of the functional signature scheme.
Prefix Function FS from Hierarchical Identity Based Encryp-
tion. We construct functional signatures for prefix functions from
Hierarchical Identity Based Encryption (HIBE). At a high level,
HIBE is an encryption scheme that allows one to encrypt to iden-
tities, (treated as bit strings in this work) such that only someone
in possession of the secret key corresponding to the identity can
decrypt messages. The hierarchical nature of the scheme allows
for the delegation of keys, i.e. if one is in possession of a key for
an identity 7 which is a prefix of an identity 7’, one can derive
the key for 7’ from the key for 7. The identities in our setting
will correspond to the nodes of a binary tree with nodes labeled by
binary strings corresponding to their path from the root (left is 0,
right is 1).

HIBE schemes can be used generically to construct a signature
scheme [7] - to sign a message m, use the HIBE scheme to generate a
key for the “identity” m with the key corresponding to the signature.
The verification of the signature is performed by encrypting a
random message to the message (treated as the identity) and using
the signature as a key to check whether the decryption is correct.

In our setting, the identities will be the bit strings corresponding
to t||m. Structuring as above has the following benefit - if one
were in possession of a HIBE key for a time stamp t, then one
can derive keys for t||m for any message m since t||m is “lower”
in the hierarchy from t. Therefore to sign a message m at time
stamp exactly t it suffices to possess the key for ¢, which serves as
the signing key. But recall from the description of f; in the prior
section, the signing key corresponding to f; should allow one to
sign messages for any time stamp smaller than t. A naive way
would be to generate the signing key for f; would be to concatenate
the HIBE keys for all ¢’ < t, but this is approach is clearly infeasible
since the signing key would grow linearly with the total number of
possible time stamps.

To overcome this efficiency barrier, we leverage the tree structure
of the HIBE scheme with the following insight - it suffices to have
a small number of keys as long as we are able to derive keys for
any t’ < t. At a high level, the signing key sk £ will consist of keys
for all identities that are the left siblings of the nodes along the path
from t + 1 to the root’, resulting in at most log(t) many keys. A
detailed description is provided in the technical sections, but here
we provide an illustrative example.

In the HIBE identity tree of Figure 1, the key corresponding to
fio is both skg and skjo. To derive a key for fyo, one executes the
HIBE’s delegate algorithm using sky to create the key skgp. In fact,
to derive a key for skg, from sk for any t’ < t one can simply
use the HIBE delegation algorithm, i.e. there is no need to run the
key generation algorithm afresh.

Looking ahead, we want to allow the adversary to choose the
message it wants to compute a forgery on after it has seen other
signatures, we require the HIBE scheme to be adaptively secure (i.e.
the adversary can choose the identity of the HIBE scheme it wants

5One can also view it as the nodes in the stack during the depth-first traversal of the
(identity) binary tree when node ¢ + 1 is visited.
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O O O O

skoo skoq skyo skyq

Figure 1: Each node in the tree represents a HIBE secret
key sk;y for the identity id. Trace(root = 0,10) constitutes
the nodes which represent the secret key for fj, i.e. skf10 =
(skg, skyg). Using this set, all messages with prefixes in the
green nodes can be signed.

to break after seeing keys for other identities). HIBE schemes satis-
fying the necessary requirements can be instantiated e.g., assuming
the Decisional Linear (DLIN) assumption on Bilinear groups of
prime order [26].

3 RELATED WORK

Concurrent work. A concurrent and independent work of Arun
et al. [3] also studies a notion similar to time-deniable signatures.
Similar to our work, they make use of sequentially-ordered compu-
tation as a means to enforce time delay during which signatures are
unforgeable, but become forgeable afterward. However, their work
considers a different model than ours. Specifically, their system
relies on the use of unpredictable beacons that are presumably re-
leased periodically by some trusted outside source. In contrast, we
do not do rely on any randomness beacons or time servers. Unlike
our work, they also explore time-based deniability in proof systems.
Our work also has many similarities to that of [40]. Particularly our
construction is similar to one of theirs in its usage of a HIBE for
creating signatures. However, their setting is more limited: they as-
sume that a central server provides key material for forgery so that
if the server is knocked offline, deniability does not necessarily hold.
For us, the ability to forge solely depends on seeing the signature
itself. This change in the model comes with new subtle challenges
in the indistinguishability of forgeries and signatures and in formu-
lating security definitions that account for an adversary who has
access to a polynomial time forgery algorithm.

Epochal Signatures. Our work is closely related to the prior work
on epochal signatures [24]. At a very high level, epochal signatures
aim to achieve deniability in a manner similar to ours - by leaking a
constrained key. In epochal signatures, (real) time is partitioned into
discrete epochs with a key update mechanism at the start of every
epoch. Any signature generated during epoch i additionally include
the keys for prior epochs, allowing for forgery of signatures of any
epoch < i (but not epoch i).% The constructed epochal signature
in [24] leaks only a single key with the property that from a key
of epoch i, k;, one can retrieve the key of epoch i — j, k;—; with j

®In their work, they consider an additional deniability parameter V such that signatures
for epoch i include keys for epochs i — V and earlier allowing for V' epochs where the
signature is valid. But for the purposes of this discussion we describe it in the above
simplified manner.
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applications of a “key retrieval” function, but security requires that
it is impossible to retrieve keys for epochs > i from k;.

In the following, we describe some key differences between the
two works.

Bounded vs Unbounded Use. Unlike our work, the system proposed
in [24] is limited to be bounded use. The term bounded here means
polynomially-bounded. To be specific, the number of epochs that
their system can support is bounded ahead of time by some polyno-
mial in the security parameter. This is an outcome of the run-time
of their system setup, which is linear in the number of epochs.

In practice, the granularity of each epoch and the number of
epochs must be fixed before the system is initialized, and once the
total number of epochs is surpassed, the entire system needs to be
reset from scratch. If a system must be reset too often, and resetting
is costly (i.e. involves running an expensive key generation algo-
rithm), it may limit the usability of the system. The broad question
of bounded vs unbounded use is not new and has been studied in
various contexts in cryptography such as bounded vs unbounded
query chosen-ciphertext secure encryption [14], depth-bounded vs
depth-unbounded hierarchical identity-based encryption [27] and
homomorphic encryption [19], bounded-collusion vs unbounded
collusion in functional encryption [22, 37], and more. In all of these
cases, there are significant challenges and overheads (in terms of
assumptions, efficiency, etc) in going from bounded system to an
unbounded one. As such, we view our construction to have a sig-
nificant asymptotic improvement over [24] that may translate to
concrete practical costs for some large parameter sets.

Need for Clock Synchronization. As discussed earlier, the unforge-

ability notion in [24] requires the participants to have perfectly
synchronized clocks. We now demonstrate that if such a require-
ment is not met, then the consequences can be catastrophic and
result in a compromise of security for all future epochs. Specifi-
cally, we construct a secure epochal signature scheme where the
unforgeability property can be broken when the clocks are slightly
out of sync. We also show that the same scheme — translated to
the setting of time-deniable signatures — is not secure as per our
definition, thus demonstrating that the latter is a strictly stronger
notion. In the following, we give an over-simplified presentation of
our counter-example to convey the general idea. The full counter-
example is more involved (due to technical reasons) and is presented
in Appendix K.1.

Intuitively, we exploit the restricted signing oracle in the un-
forgeability definition of epochal signatures which prevents an
adversary from receiving signatures in any epoch e outside of a
fixed real time window of size At. Our epochal signature scheme
makes use of a special trigger message mj, which differs per epoch.
If the adversary queries for a signature on message m} in epoch
e, then they receive some “secret information” from the signing
oracle which can be used to recover the signing key. If the message
space is large enough and m}, is chosen uniformly at random, this
modification would not make our scheme insecure, as an adversary
would only have a negligible chance of guessing m,. We therefore
modify the signing oracle so that, in addition to handing out sig-
natures on messages m for epoch e, it time-lock puzzle encrypts
my, with difficulty parameter A; where At < At < At +¢. The
difficulty parameter of the time-lock puzzle ensures that the puzzle
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cannot be decrypted within the epoch that it is generated, but can
be decrypted just after the epoch concludes. Thus, if there is a clock
synchronization issue where the challenger’s (the entity generat-
ing the signatures) clock is slightly slower, then an adversary can
decrypt to obtain m} and query the signing oracle on mj to obtain
the “secret information”. In our actual counter-example, this secret
information cannot directly be equal to the secret key because the
ES scheme must be perfectly deniable even to someone that holds
the original signing key. To deal with this, we instead encrypt the
signing key with a one time pad that is 2 out of 2 additively secret
shared. Querying on different trigger messages reveals different
shares of the key. Further details can be found in Appendix K.1.

To argue that this scheme is a secure epochal signature scheme
when the clocks are synchronized, we note that in an epochal
signature scheme, at the start of an epoch e + 1 two things happen:
(i) key evolution procedure is applied to the secret signing key
to generate the signing key for the next epoch; and (ii) public
information pinfo, is broadcast. Here, pinfo, allows anyone to
produce signatures for epochs < e without the signing key such
that they are indistinguishable from signatures produced by the
real signing key (akin to our definition of deniability). In the above
scheme, while secret key material is used to key the signing key,
this is not revealed as a part of pinfo, and does not need to be to
create indistinguishable signatures (every field of the signature will
be simulatable). Thus, simply having pinfo, will not allow recovery
of sk.

We now argue that the above scheme is not a secure time-
deniable scheme. Briefly, this is due to the pre-processing phase
we allow during the unforeability definition. In this phase, the
adversary can query the same time stamp multiple times (here
roughly the time-stamps correspond to an epoch), and therefore
can perform the attack described above by decrypting the time-lock
puzzles, making the relevant queries, and using the results to obtain
the signing key. The key is then passed on to the “online adversary”
who uses it to produce a forged signature. We remark that, again,
the above description is oversimplified and the full counter-example
is presented in K.1.

We briefly summarize some of the different properties of pro-
posed constructions for expiring signature schemes in Table 1.

4 PRELIMINARIES

We consider the depth depth(C) of a circuit C to be defined as the
longest path in the circuit from input wires to output wire. The size
of a circuit size(C) corresponds to the number of gates.

Sequential time. In this work sequential time refers to the non-
parallelizable time it would take any circuit to compute a particular
function. A function f has sequential time d or takes d sequen-
tial steps if for all circuits C that correctly compute f the smallest
circuits C have depth(C) = d. This notion attempts to capture in-
herent limitations in computing a function that cannot be overcome
by access to more cores or processors.

Time-lock Puzzles. The concept of a time lock puzzle or time lock
encryption was first introduced by Rivest, Shamir, and Wagner [36].
We now briefly give a formal description of a time lock puzzle.

Definition 4.1. A puzzle TimeLock is a tuple of algorithms Gen, Sol
where the signature of the algorithms is defined as below.
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ES [24] Short-Lived Sigs [3] KeyForge B [40] Us
Forging Assumptions None RB Publish Keys None
Max number epochs Bounded Unbounded Unbounded Unbounded
Forgers all derive same key  Yes Yes Yes No
Building Blocks OWF + TLP tVDF + RB* BDH BDH + TLP

Table 1: Comparison of a subset of existing constructions that provide a notion of deniability for signatures. tVDF stands for a

trapdoor VDF, while RB is a randomness beacon.

Gen(14, A, s) — Z: On input a time/difficulty parameter A and a
solution s € {0, 1}’1, output a puzzle Z

Sol(A,Z) — s: This is a deterministic algorithm that when given a
puzzle Z and the difficulty parameter A produces a solution
s.

Correctness. Correctness requires that for all solutions s € {0, 14
and difficulty parameters A the following holds:

Pr|Z « Gen(lA, A,s) s — SoI(A,Z)] =1

Efficiency. 3 a polynomial p s.t. VA, A € N, Sol(A, -) runs in time
A-p(d)

Security. We consider a time lock puzzle to be a-gap secure if V
functions T(A) > a(A) and distinguishers A = {A } en of size

size(Ay) € poly(A) and depth depth(A)) < I

—5+, 3 a negligible
function p s.t.YA € N, Vsq, s1 € {0, 1}’1,

a()’

| Pr [z — Gen(11,T(A), 50) : A (Z) = 1]

_Pr [z — Gen(1, T(1),51) : AL(Z) = 1] | < ()

This is a variation of the time lock puzzle definition of [15],
where we define security to hold for adversaries of polynomial size
instead of super polynomial.

4.1 Hierarchical Identity Based Encryption

We recall the notion of Hierarchical Identity Based Encryption
(HIBE). A HIBE scheme has the following five algorithms:

Setup(11) — (msk, pk): The setup algorithm generates the master
secret key and public parameters.

KeyGen(msk,I) — sk; Generates a key for the identity I using
the master secret key msk.
Delegate(pk, sky, I') — sky||p : Takes a secret key of some iden-
tity I and generates a secret key for the identity I||I’.
Encrypt(pk, m,I) — ct The encryption algorithm takes the public
key, a message, and an identity I and outputs the correspond-
ing ciphertext.

Decrypt(skp,ct) — m/L: The decryption algorithm takes a secret
key and a message and outputs the message if the secret key
hierarchy level allows decryption of the ciphertext.

Remark. Throughout this paper, we will make use of HIBE schemes
where Delegate can take in a child identity I’ that is the empty
string. In such schemes, sk; < Delegate(pk, sky, nil) is a
re-randomization of the key skj for identity I. We note that many
HIBE schemes can be modified to have this property [20, 26, 27].
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4.1.1  Security. The notion of security we consider for HIBE is the
adaptive variant defined in works by Lewko and Waters [27, 29].
For a full description of the security game see Appendix A.

4.1.2  Key-indistinguishability. We additionally require that all
polynomial-time adversaries have at most a negligible advantage in
distinguishing between keys generated via the KeyGen algorithm
and keys generated via the Delegate algorithm even when given
access to the master secret key msk. We define this property using
the following HIBE key-indistinguishability game Expng.

The Setup phase is similar to the HIBE security game, except the
adversary also gets the master secret key msk. Similarly, the
set S of keys queried and the corresponding query identifier

is set to be empty. A bit & {0, 1} is sampled uniformly.
Query phase. In this phase the adversary is allowed to adaptively
query a key oracle QK (-) and a challenge oracle Ocy, (-, -, *)
QK (-) takes as input an identity I, computes
sk; < KeyGen(msk,I), selects an identifier id and adds
(id, I, sky) to the set S and responds with (id, skr).
Ocn(+, -, -) takes as input a challenge identifier id, and a
pair of identities (Io, I1) such that I is a parent identity of
I. Where parent identity implies that on the hierarchical
identity tree (Figure 1) where the root is msk, Iy is an
intermediate node on the shortest path from I; to the root.
It checks for id in set S and checks that id corresponds
to a key query on Iy. If no such id is found, the output is
L. Otherwise, compute skg < KeyGen(msk, I1), sk; «—
Delegate(pk, skj,, I1) and respond with skg.
Guess. The adversary outputs its guess ' for § and wins if 8’ = §.

The advantage of the adversary A is defined as Adv.4(11) =
Pr(f’ =] - 3.

Definition 4.2 (Key-Indistinguishability for HIBE). A HIBE scheme
is delegated key indistinguishable if V poly size adversaries A =

{A)})1en their advantage Adv # (1) in the ExmeDE game is neg-
ligible.

The key indistinguishability property can be easily satisfied by
many existing HIBE schemes, provided the sub-key components
from earlier levels of the HIBE can be re-randomized. Randomiza-
tion techniques like these have been used to construct anonymous
HIBEs in the past [39]. In Appendix G, we show that the prime
order variant of the Lewko-Waters HIBE scheme [26] satisfies this

property.
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5 TIME-DENIABLE SIGNATURES: DEFINITION

A time-deniable signature scheme
DS = (KeyGen, Sign, Verify, AltSign) is a tuple of possibly proba-
bilistic polynomial-time algorithms:

KeyGen(l’l, T =T(4)) — (vk,sk): On input the security param-
eter 1* and a difficulty parameter for AltSign called T, this
randomized algorithm outputs the verification key vk and
the signing key sk.

Sign(sk, m,t) — o: On input a message m and the signing key sk,
this randomized algorithm outputs a signature ¢ on m for
timestamp ¢.

Verify(vk, o,m,t) — {0,1}: On input a signature o, a message
m, verification key vk and timestamp t, this deterministic
algorithm outputs a bit.

AltSign (vk, (m*, t*,6*), m,t) — o: On input a valid message and
signature pair (m*, o) for timestamp t*, this randomized
algorithm outputs a signature o on message m for timestamp
t.

Definition 5.1 (Efficiency). The algorithms KeyGen, Sign, Verify
must run in time poly in the size of the input. For AltSign it is
required that there exist a positive polynomial g such that VT =
T(A),VA € N, AltSign is computable in time q(A) - T where T is the
difficulty parameter provided to KeyGen.

Definition 5.2 (Correctness). A time-deniable signature scheme
for a message space M satisfies the correctness property if it satis-
fies the following two conditions:

(1) Ym € M, (vk,sk) « KeyGen(l’l), o « Sign(sk,m,t), it

holds that Verify(vk, o, m, t) = 1.
(2) Let AltSignk(Uk, (mo, to, 00), {(mj, tj)} je[k]) be shorthand
for the following recursively defined function:
AltSign’ (vk, (mo, to, 00). {(mj. t/)} je[i]) =
AltSign(vk, (mj-1, ti-1, AltSigni_l (vk, (my, to, 00),
{(mj,tj)}je(io1)), mis ti)
where AltSign® (vk, (mo, to, 09), {}) = 09. In words, AItSignk
is a signature obtained by applying AltSign k times to a
provided signature oy on the message my, to. Then we have
the following additional correctness property:

Vk € N, for all sets of ordered tuples {(mj,tj)} (x|, and
Vmy, to that satisfy ;1 > t; where j € [k]:
(vk, sk) « KeyGen(lA, T);
oo < Sign(sk, mo, tp);
Pr| o« AltSignk(vk, (mo, to, 00),
{(mj, t)}jerx)) :
Verify (vk, o, my, t) = 1

=1

@

Remark. Property 2 assumes that signatures and “forged” signa-
tures used as input to the AltSign algorithm are computed honestly.
One can also consider a stronger notion of correctness, where the
correctness of AltSign holds even on input signatures (and “forged”
signatures) that may not be honestly computed, but nevertheless
can be validated by the Verify algorithm. We refer to this as robust
correctness.

In this work, we focus on the simpler notion and leave the dis-
covery of schemes that satisfy robust correctness to future work.
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5.1 Security Property: (¢, T)-Unforgeability

Our unforgeability notion requires that signatures should remain
unforgeable within a restricted time window. We capture this via a
security game below:

Setup. The challenger generates (vk, sk) « KeyGen(lA, T) and
gives the verification key vk to the adversary.

Phase 1. The adversary is a tuple of two algorithms, Ay and A;.
In this phase, Ay is allowed to adaptively query a signing
oracle Osjg, which is defined as follows. On input a message
m and a timestamp ¢, the signing oracle OSign (sk, -, -) returns
the signature o « Sign(sk, m, t).

Transfer. The adversary Ay gives an advice string z to adversary
A

Phase 2. The adversary A; has to respond to the challenger with
a forgery while also being allowed to adaptively query the
oracle Os;gn.

Forgery. The adversary A = (Ag, A1) wins if in the end A;
can produce a valid forgery (m*, t*, ¢*) under the following
constraints:

(1) Vi, t* > t; for queries (m;, t;) made by Ay

(2) Vi, (mj, t;) # (m*,t*) where (m;, t;) are queries made to

OSign by A;

An adversary A = (Ap, A1) is considered an e-admissible
adversary if it satisfies the above conditions and 3T (1) where
VA € N,e(d) < T(A), depth(A;) < % and size(A) €
poly(A). Note that the depth of Ay is allowed to be polyno-
mial in the security parameter whereas the depth of A; is
more strictly bounded.

Definition 5.3 (e, T)-Unforgeability). A time-deniable signature
scheme satisfies the e-Unforgeability property if V e-admissible
polysize adversaries A = {A }1en
={(Ap 0, Axr1)}ren YT (A) satisfying the e-admissability require-
ment for A, there exist a negligible function y(+) such that for all
AeN:

(vk, sk) — KeyGen(1%,T(1)),

(2) = Ay Fien 5 (o),

(m*, t,0%) e Ay w5k (2) -
Verify (vk, m*, t*,0%) = 1

Pr spd) )

5.2 Deniability

Deniability in our scheme comes from the fact that after T sequen-
tial time steps, anyone can forge a valid signature under the veri-
fication key of the original signer. Consequently, a time-deniable
signature scheme should ensure the indistinguishability of signa-
tures generated via the Sign and the AltSign algorithms. Otherwise,
the original signer could not deny that it signed a message at a
particular time. We present below a security game to capture this
idea. Our notion would be meaningful even if the adversary did not
have access to the signing key, but we give them it as well in order
to capture more powerful attackers.

We now define the security game Exp!NP:

DS °
Setup. The challenger generates (vk, sk) « KeyGen(lA, T) and
gives both the verification key vk and the signing key sk to
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the adversary (A. They also initialize an empty table 7~ and

sample f & {0,1}.

Query Phase. In this phase, the adversary is allowed to adaptively
query a signing oracle Osjgn (sk, -, -) and a challenge oracle
Och (- )-

Osign (sk, -, ) takes as input a message m and a timestamp
t to produce o « Sign(sk, m, t). It randomly chooses a
new identifier id (not equal to any previously defined
identifiers), records (id, m, t, o) in 7, and returns (id, o)

Och(+, -, -) takes as input a tuple of identifier, challenge mes-
sage, and time-stamp (id, m, t). It checks 7 for id. If it is not
present the output is L. Let m’, ¢/, o’ be the values associ-
ated with id. If t > ¢’ the output is also 1. Compute ¢° «
Sign(sk,m,t) and ! « AltSign(vk, (m’,t’,c’), m, t). Fi-
nally, it responds with o#.

Guess. The adversary outputs its guess ' for . The advantage of
the adversary A is defined as AdVﬂ(lA) =Pr[p =p] - %
The adversary A wins if §’ = f.

Definition 5.4 (Deniability). A signature scheme is considered
to possess the deniability property if V poly size adversaries A =
{f;l 1,1} e their advantage Adv 4 (14) in the Exp:)NSD game is negli-
gible.

k-hop Deniability: We refer to the definition defined above as
1-hop deniability. It is reasonable to ask if indistinguishability still
holds when comparing the output of Sign with applying the AltSign
algorithm k times instead of just once. Intuitively, this notion could
be stronger and offer more deniability via a larger pool of indistin-
guishable forgeries.

A formal definition of the k-hop indistinguishability game Explg’soP
is given below:

Setup. This is the same as the (1-hop) key-indistinguishability
game Expg\‘SD.

Query Phase. The adversary A has access to two oracles
Osign(sk, -, ) and Ocy(+, ). Osign is the same oracle as
given in ExpB\JSD.

Och(+ -, +) takes as input a challenge identifier id, one

ordered set of messages and time-stamp tuples

{(mi, ti)}ie[k-1], and a message, time-stamp pair m”, t*.
It checks that there exists a row in 7~ with (id, -, -, -). Let
my, to, og be the values associated with that row. It ensures
that Vi € [k — 1],ti—1 > t;, and #_; > t*. If any of these
does not hold, the output is L. Compute:

6° — Sign(sk, m*, t*)

ol AltSignk(vk, (mo, to, 00), {(m1,t1), ...,
(M1, te—1), (m*,t%)}) &P is returned as the output.

Guess. This is again the same as the Expg\‘SD game.

Definition 5.5 (k-hop Deniability). A signature scheme achieves
k-hop deniability property if V poly size adversaries A = {A }1en
their advantage in the Expll()hs(Jp game is negligible.

THEOREM 5.6. Any time-deniable signature scheme satisfying the

deniability property as defined in definition 5.4, also satisfies the k-hop
deniability property as defined in definition 5.5.

For a proof of Theorem 5.6 see Appendix F.1.
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6 DELEGATABLE FUNCTIONAL SIGNATURES

In this section, we define and construct delegatable functional sig-
natures and define an additional key indistinguishability property
for this primitive.

Functional Signatures. We start by recalling the notion of Func-
tional Signatures as defined by Boyle, Goldwasser, and Ivan[10].

Definition 6.1. A functional signature scheme FS = (Setup,
KeyGen, Sign, Verify) is a tuple of potentially probabilistic, polyno-
mial time algorithms of the following form:

Setup(11) — mok, msk: On input the security parameter, this
algorithm returns the master verification key mok and the
master signing key msk.

KeyGen(msk, f) — sky: On input the master signing key msk
and a function f, this algorithm outputs a function-specific
signing key sk

Sign(sk g, f,m) — (f(m), 0): On input a function-specific signing
key, a function f and a message m, this algorithm outputs
f(m) and a signature o.

Verify(mok, f (m), 0) — {0, 1}: On input a master verification key
muk, a function f() evaluated on message m and a signature,
it outputs a bit.

Correctness and Security. Security for a functional signature
scheme is the traditional notion of unforgeability where the adver-
sary is given access to the verification key vk. For completeness,
correctness and the full security definition is included in Appendix
B

6.1 Key Delegation

In order to create signing keys even without the master signing
key, we define an additional PPT algorithm called Delegate. This
algorithm takes as input a function f, a corresponding secret key
skr, and a restriction of f, f’. The output is a secret key skg or L.
We say that a function f” is a restriction of another function f if
the following is true: let f : X — Y U {L}, then f’ has the same
domain and codomain as f and Vx € X either f'(x) = f(x) or
f’(x) = L. This captures the ability to create a signing key that can
sign some subset of the same messages as the original key.

FS.Delegate(mok, f, skr, f') — sk, L: given the verification key
muok, a function f, a signing key sk¢, and another function
f" output sk if f” is a restriction of f else L.

For a delegatable functional signature scheme, the following
additional correctness property must hold for all functions f :
X — Y U {1} supported by FS, for all restrictions f’ of f, and
Vm € X where f’(m) # L:

(mok, msk) « FS.Setup(lA);

skg — FS.KeyGen(msk, f);

skf/ « FS.Delegate(mok, f, skf, JiOE
o — FS.Sign(skf/,f’, m) :
FS.Verify (mok, f'(m), o) = 1

Pr =1 4)

The relevance of the delegation property will be demonstrated
in our construction. Furthermore, our construction will require yet
another property of these delegatable functional signatures.
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Key Indistinguishability. We would like it to be the case that
keys generated via KeyGen and Delegate appear the same to any
adversary, even if they have access to the master signing key msk
and can make adaptive queries. To capture this notion we define the
key-indistinguishability game Exp'F’\SJD for delegatable functional
signatures.

Setup The challenger runs (mok, msk) « Setup(l’l) and gives
both the master verification key mok and the master signing
key msk to the adversary. Let 7 be a table kept by the chal-
lenger, initialized to be empty. The challenger also samples

B & {0, 1} and keeps this value to itself.
Query Phase In this phase, the adversary gets to query two dif-
ferent oracles.

(1) Key creation oracle Okey (), which can be queried on some
specific function f. On input a function f, the key creation
oracle checks 7~ for keys on function f. Let i be the largest
value associated with a row containing f. Run skf «
FS.KeyGen(msk, f) and record (i+1, f, sk¢) in 7. Output
(i+1, Skf).

Challenge oracle Ocy,(+, -, -) where the first input is an
identifier i and the subsequent inputs are functions f; ,fi
and fj is a restriction of fy. The challenger checks 7~ for a
row (i, fo, -) that has secret key skf,. If no such key exists,
the output is L. Otherwise, the oracle computes skyp =
FS.Delegate(muk, fo, skﬁ],fl), sk1 = FS.KeyGen(msk, f1)
and returns skpg.
Guess The adversary outputs its guess ' for § and wins if f* = j.
The advantage of the adversary A is defined as Adv 7 (1})

Pr[[8" = 1 - 1]].

Definition 6.2 (Key-Indistinguishability for Delegatable FS). A del-
egatable functional signatures scheme is considered
key-indistinguishable if V poly size adversaries A = {A } 1 en their
advantage Adv 7 (1%) in the Exp'FNSD game is negligible.

6.2 Construction for Prefix Functions

We now describe how to create delegatable functional signatures
for prefixing functions from hierarchical identity-based encryption.
We will be concerned with signatures on functions of the form
fr: {0, 1} x{0,1}™ — {0, 1}**™ that concatenate their arguments.
More formally, we consider functions

t<T
otherwise

t||m

fr(t,m) ={ ! 5)
For the sake of readability, in the following construction we abuse
notation and write T in place of fr i.e. FS.Delegate(muk, f, skfy, fy)
is replaced with FS.Delegate(muk, y, sky, y"). We also define the no-
tion of stack trace which will be useful in the formal description of
the protocol.

Definition 6.3. The stack trace of T, Trace(r, T) is defined as the
set of nodes on the stack when executing a depth-first search to
find the leaf node T + 1 in a binary tree with some root r.

The stack trace can be found efficiently, and as described in the
technical overview gives us the set of the < ¢ identity key nodes
required to derive all keys corresponding to timestamps up to T.
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We now give a description of how to build the delegatable FS
for the function f described previously. Given a HIBE scheme, we
consider identities I of the form {0, 1}'" for m < [. These identities
can be described by a binary tree of depth [ that has 2! leaves where
every HIBE identity is either an interior node or a leaf. The identity
corresponding to a given node n is defined by the path path, from
the root to n: ie. let po...pm—1,pm = n be the nodes along the
path to n (including n) then the identity is b; ... by, where b; is 0
if p; is the left child of p;—; and 1 otherwise. Signing a message m
for time ¢ will correspond to extracting a key for the identity ¢||m
from the leaf node ¢. To generate a prefix key for fr where T < 2!,
for every node p; in patht besides T itself, we extract a signing
key for the left child of p;. These keys, along with an extracted
key for T itself, make up the functional key. For correctness, we
note that to sign for any time M < T we can derive the leaf node
M if we have a key for an ancestor of M in the tree, and for every
M < T it has an ancestor that is a left child of some node p; along
patht. Delegation works for a similar reason. We note that for the
purposes of key indistinguishability if the intersection of pathr
and pathps contains some node n, the key associated with n’s left
child from patht must be re-randomized in fjs. Verification of a
message m simply checks the included HIBE key for the identity
t||m by attempting to encrypt and decrypt a random message, as is
suggested in [7].

The construction is presented in pseudocode in Figure 2.

THEOREM 6.4. If HIBE is adaptively secure then the functional
signature scheme for prefix functions constructed in Figure 2 is un-
forgeable.

For a proof of Theorem 6.4 see Appendix E.

THEOREM 6.5. IfHIBE is key-indistinguishable then the scheme
in Figure 2 satisfies the functional signatures key-indistinguishability

property.
For a proof of Theorem 6.5 see Appendix E.2.

7 CONSTRUCTION OF TIME-DENIABLE
SIGNATURES

This section describes our construction of time-deniable signa-
tures from key indistinguishable, delegatable FS for prefix func-
tions and time lock encryption. To sign a message at timestamp
t, we first use the master signing key to construct a signing key
for the function f;. This key is then used to sign the message and
is time-lock encrypted to produce a ciphertext that is sent along
with the signature. The alternate signing algorithm decrypts the
ciphertext, uses the delegate algorithm to produce an appropriate
signing key for fp with ¢’ < ¢, and then signs the message and
time-lock encrypts the signing key. For the security of the scheme
to hold, the parameter for the time-lock puzzle A cannot be pre-
cisely the same as T. The intuitive reason behind the difference
is that forging involves not just breaking the time lock but also
executing other algorithms. Let |A.B| denote the depth of the cir-
cuit that computes algorithm B of cryptographic primitive A and
z(A) = |FS.Verify|+2+1+|FS.Sign|+|FS.KeyGen|+|TimeLock.Gen|.
Our construction is described in Figure 3 and uses z(1) to define A.
For proofs of unforgeability and deniability see Appendix D.
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Setup(11) :
(msk’, pk) « HIBE.Setup(1%)
return pk, (pk, msk’)

KeyGen(msk = (pk, msk’),T) :

listSkT =]

trace « Trace(msk, T)

for node € trace :
sknode  HIBE.KeyGen(msk’, node)
add (listsk,, Sknode)

return pk, listsz,.

Sign(skr, T, (t,m)) :
if¢t >T:
return L
ty ...ty < parse(t)
pk, listsg, < parse(skr)
sk, j « findPrefix(listsg., t)
sk¢||m < HIBE.Delegate(pk, sky, tji1 ... 2¢||m)
return ¢||m, sky||m

Delegate(muk = pk, T, skr = (pk’, lists,.), T') :

ifT" > T:

for node € trace :
sknode < HIBE.Delegate(pk, sk, node)
add(liStskT/ 5 Sknode)

return pk, listg kg

Verify (muvk = pk, m*, o = sky||,) :

return L
T ... T, « parse(T’)
sk, j « findPrefix(listsg., T")
liStSkT/ =[]
fori€o,...
sk; < HIBE.Delegate(pk, listsx [i], nil)
add(listsk;_,ski)
trace « Trace(T] ... T]’., 1))

NESE

msg «— {0,1}"
¢ < HIBE.Encrypt(pk, msg, sky||m)
return HIBE.Decrypt(sk||m,c) = msg and t||m = m*

Figure 2: The function fr for each input message m is defined as fr(t, m) = parse(t)||m if t < T or L.findPrefix(list, id) takes in a
list of HIBE secret keys called list and an identity string id. It returns a secret key sk and an index j so that sk is a secret key
for a length j prefix of id. Any bit string beginning with t;,; where j = ¢ is the empty string. The function Trace(root, leaf) is

specified in definition 6.3.

KeyGen(l’l, T):

AltSign(vk, (m*, t*,0%),m, t) :

Verify (vk, o, m, t) :

(mok, msk) « FS.Setup(1%)
return ((mok, T, A), (msk, T, 1)) c*,s* = parse(c™)
Sign(sk = (msk,T,A),m,¢t) :
sk; < FS.KeyGen(msk, f)
v, s « FS.Sign(sky, f;, (t,m))
¢ « TimeLock.Gen (1%,

T -z(A),sks)

return (c, s)

return (c, s)

mok, T, A = parse(vk)

sky+ = TimeLock.Sol(c*)

sk < FS.Delegate(muok, f;', sk}, f7)
v, s < FS.Sign(sky, fz, (¢, m))

¢ « TimeLock.Gen(14, T - z(1), sk;)

¢, s = parse(o)
return FS.Verify (vk, t||m, s)

Figure 3: A construction for a time-deniable signature scheme DS from a key-indistinguishable, delegatable, functional signature
scheme FS and a time lock puzzle TimeLock. The function f; for each input message m and time 7 is defined as f;(f, m) = parse()||m
if f < t, else L. The polynomial z(1) is a multiplicative factor for the difficulty parameter of the time lock puzzle and is described

in the text.

8 SYSTEM INTEGRATION

We now give a high-level description of a system that could utilize
time-deniable signatures: electronic mail. We first define the two
main actors in any signature scheme.

Signer: The signer is a party that publishes messages that can
later be authenticated. In the setting of email, this is usually
a domain owner that sets up a DKIM record to sign outgoing
mail e.g. Google. Instead of using a regular signature scheme,
they would run the TDS.Sign algorithm using the mail as the

89

message the timestamp they are signing the message at, and
a signing key sk produced by the TDS.KeyGen algorithm.
Verifier: The verifier is a party receiving the message and looking
to verify its authenticity. In our setting, this would be a mail
server accepting inbound mail and attempting to verify that
the message is from the claimed domain. Using DNS, the
mail server pulls the relevant key for verification. In this
case, the key is a TDS verification key, and this key is used to
run the TDS.Verify algorithm. The server would also check
when the message was signed and the time parameter A to
determine if the message is too stale to check for authenticity.



Proceedings on Privacy Enhancing Technologies 2023(3)

Based on this they would decide whether to forward mail to
users or not.

Note that the algorithm TDS.AltSign never needs to be run by
any party. Just the existence of the algorithm itself is enough to cast
doubt on any message sent longer ago than now() — A.

We now consider two different adversaries which are common
in such a setting.

Forger: The forger is a party who sees multiple messages and
attempts to construct one that verifies without having access
to a signing key. In our setting, a forger gets to see old keys
which would allow them to sign messages "from the past”,
but these messages have already expired authenticity and
cannot be verified. Therefore, we consider forgers who are
trying to sign messages for the current signing window or
into the future. In the email setting, this could be a small-
scale adversary such as a random hacker spear-phishing
someone, or a more well-equipped adversary like a nation-
state-funded attacker.

Detective: The detective is a party tries to discover whether or
not some message from the past was sent by the signer or
a different party. The message is guaranteed to have been
sufficiently far in the past that A has already passed. In the
email scenario, this is equivalent to a reporter who discovers
emails - perhaps through a leak - and tries to verify whether
they came from the claimed domain. The detective is not a
one-shot adversary and may get access to multiple signed
messages over time.

We now make some remarks on the forger and detective. Both
detective and forger may induce the signer to sign messages of
their choosing. The forger may do some pre-computation work
before attempting to attack a scheme, but once the forger decides
to attack they must find a validating signature before the time
window expires. The detective is a long-lived adversary who may
even recover the entire signing key in the future. Even in this
scenario, it should not be possible for the detective to distinguish a
true signature from a forged one. Our one requirement is that they
cannot see the message before its time period has expired, or gain
access to a proof that the message existed starting at some time
period. This problem appears to be inherent for all schemes aiming
to achieve similar properties to time-deniability.

9 IMPLEMENTATION AND EVALUATION

Implementation. To demonstrate the efficiency of our scheme, we
implemented it in python. For our time lock puzzle, we modified an
existing, open-source implementation of an RSW time-lock puzzle
[25]. Our timestamp supports 216 different values which is approxi-
mately equivalent to what is supported by [40]. This is reasonable
given at least some motivating applications (i.e. email), where fre-
quent key rotation is done for domains and coarse granularity may
be acceptable.

Construction of FS. To instantiate our functional signature scheme,
we need a HIBE that is both key-indistinguishable and adaptively
secure. We consider two different HIBE schemes: one a variant of
the Unbounded HIBE from Lewko and Waters [28] due to Lewko
[26, 28], the other a HIBE from Chen et al. [13]. Both schemes
are adaptively secure and have tight reductions. We prove they
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satisfy the key-indistinguishability property of Section 4.1.2 in Ap-
pendix G.1. For Lewko’s scheme, we tweaked an existing python
implementation [33] and instantiated using the curve SS512. For
the scheme of Chen et al, we modify an existing IBE implementa-
tion from the same paper in the Charm library [2] and instantiate
with BN254. Different curves are necessary since Lewko’s construc-
tion only works with symmetric pairings whereas Chen et al use
asymmetric ones. We hereafter call these constructions L—SS512
and CLLWW—-BN254. The curve SS512 natively offers ~ 80 bits of
security while BN254 offers ~ 110 bits.

Setting Parameters. There are two main concerns that come with
implementing time-based crypto assumptions: one is capturing the
speed-up offered by parallelism, the other is accurately estimat-
ing the fastest real-world time to do the computational task the
assumption is based on. On the first point, to the best of our knowl-
edge, there are no known improvements from bounded parallelism
against the RSW assumption. For the second, recent results [32, 44]
suggest that an FPGA implementation can achieve ~ 22* squarings
per second and an ASIC = 2% squares per second. For our imple-
mentation below, we benchmarked the cost of computing squares
modulo a 2048-bit composite on our machine. This corresponded
to roughly 5,883,206 squares per second which is a factor of 4 less
than the FPGA cost reported above.

Experimental Evaluation. Experiments were done on an Intel
Xeon E5 with 500GB of memory, running Ubuntu. Our implemen-
tation uses neither multi-threading or multiprocessing. Estimates
were obtained by running each algorithm 500 times and taking the
median. For the rest of this section, let N denote the arity of the
tree and d be the depth. The timestamp value in our experiments
is chosen uniformly at random per each run, as signing time and
signature size differ significantly depending on the value of ¢.

We begin the analysis by examining the effect of varying N. It
is an important parameter for our scheme because N and d must
satisfy N¢ > 21 and together determine the efficiency of signing
and verifying. To be explicit, signing consists of extracting at most
d - (N — 1) keys from the HIBE tree where each key is O(d) group
elements long and requires O(d) work to generate. Thus O(Nd?)
work must be done in signing where d = [log (2'°)]. This quan-
tity is minimized when N is close to 7 meaning that signing time
and signature size are optimal when N = 7 as can be seen in Figure
4 and Appendix H respectively. Although we do not depict it, larger
values of N always result in a decrease in verification time since
verification depends only on d. Our microbenchmarks are presented
in Table 2 for N = 7. The superiority of the signing algorithm in
CLLWW-BN254 to L—SS512 can be attributed to the use of asym-
metric over symmetric pairings and because in L-SS512 each level
of the HIBE adds ten group elements to the HIBE key whereas in
CLLWW-BN254 it only adds four. Because signing mostly consists
of creating these keys, it heavily impacts performance and the size
of the signature itself.

10 CONCLUSION

In this work we introduced a new notion of deniable signatures that
provides strong unforgeability and deniability guarantees without
requiring the signer to periodically publish secret key material.
We show how to realize our primitive using time lock puzzles
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Scheme KeyGen(ms) | Verify(ms)
L—-SS512 360 200
CLLWW-BN254 | 433 619
Scheme Sign(ms) Sig. Size (B)
L—-SS512 2695 417090
CLLWW-BN254 | 542 77424

Table 2: Microbenchmarks for the scheme of Figure 3 with
N =7,d = 6 and using L-55512 and CLLWW-BN254.

Signing Time

—

L-55512
CLLWW-BN254

16 4

14 4

124

10 4

g
o
E 84
[
6
a4
5
o4
T T T T T
2 7 16 41 256
N-ary

Figure 4: The signing time for a TDS using L-SS512 and
CLLWW-BN254, varying values of N

and a HIBE scheme that satisfies a special key-indistinguishability
property. Important directions for future work include construct-
ing time-deniable signatures from a different set of assumptions
(non-HIBE based) and building constructions that satisfy robust
correctness.
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A HIBE SECURITY

We consider HIBE security similarly to the work of Lewko and
Waters[27, 29] using the following security game played by a chal-
lenger and an adversary.

- Setup The challenger runs (pk, msk) « Setup(1}) and
gives the public parameters pk to the adversary. Let set S
be the set of private keys that the challenger creates. At the
beginning, S = 0.

- Phase 11In this phase, the adversary gets to make three types
of queries.

(1) Create queries QC(I), which are made on some specific
identity I. The challenger adds the keys for this identity to
the set S. Note that the adversary does not get these keys.

(2) Delegate queries QD (I), which are made on some identity
I such that the corresponding keys are in the set S. The
challenger adds the keys corresponding to the delegated
identity I’ and adds them to the set S.
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(3) Reveal queries QR(I), which are also made on some iden-
tity I such that the corresponding keys are in the set S. In
response, the challenger gives the corresponding keys to
the adversary and removes them from the set S.

— Challenge The adversary gives the challenger messages myg
and my and a challenge identity I*. The challenger responds
with a random f € {0,1} and encrypts mg under I* and
sends the ciphertext to the adversary.

— Phase 2 The adversary gets to query the challenger similar
to Phase 1.

- Guess The adversary outputs its guess ' for  and wins if
the following conditions are satisfied:

W p =5

(2) The challenge identity I* should satisfy the property that
no revealed keys, in either of the query phases, belong
to an identity that was a parent of I* and the I*’s keys
shouldn’t have been revealed.

The advantage of the adversary A is defined as Adv.4(14) =
Pr[f’ = fl - 5.

Definition A.1 (Adaptive security for HIBE). A HIBE scheme is
adaptively-secure if V poly size adversaries A = {A}} ey their
advantage Adv # (11) in the HIBE security game defined above is
negligible.

B FUNCTIONAL SIGNATURES

Correctness. Correctness requires that any signature output from
the Sign algorithm on a valid functional key and a message veri-
fies correctly. More formally, for all supported functions f, for all
messages m,

mok, msk «— Setup(l’l);
Pr| skg < KeyGen(msk, f); : Verify(mok, m*,o)=1|=1
m*, o «— Sign(skf,f, m)

Security. For completeness, the unforgeability security game
E}(I>|l:JS’\'F between a challenger and adversary A for functional sig-
natures is provided below.

Setup. The challenger generates (mok, msk) «— Setup(1*). They
also initialize an empty table 7. mok is given to adversary
A.
Query Phase. In this phase A gets access to a key oracle (jKey
and a signing oracle (jSign.
(1) OKey(msk, -, -) takes as input function description f and
an identifier i. The challenger checks if there is a row in 7
corresponding to (i, f, -). If such a row exists then return
the corresponding secret key sk}. Otherwise generate
skp — KeyGen(msk, f), record (i, f, sky) in 7" and return
sk f
OSign(msk, -,-,-) takes as input a function description f,
an identifier i, and a message m. If a row in 7~ corre-
sponds to (i, f,-) then use the secret key sks specified
in that row. Otherwise, generate sk¢ « KeyGen(msk, f)
and record (i, f,sky) in 7. Let f(m), o be the output of
Sign(sky, f,m). Return o to A.
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Challenge Phase. The adversary A must return m*, o* to the
challenger. An adversary is considered to be admissable if
that the following conditions are satisfied:

(1) V values (m;, o;) returned by éSigns m; # m*
(2) there is no key sky queried from éKey such that 3m where
f(m)=m*
A functional signature scheme is said to be secure if for all
admissable poly-size adversaries A = {A} } ) there exists
a negligible function p(A) such that

mok, msk «— KeyGen(lA);

Pr m*,o_* — ﬂfKey(mSks'y'>’(jSign(m3k»':‘
: Verify (mok, m*,o*) = 1

C ON THE NECESSITY OF TIME-LOCK
PUZZLES

Our construction of time-deniable signatures makes uses of time-
lock puzzles to achieve short-term unforgeability. We show that the
use of such a primitive is to an extent inherent. Namely, assuming
extractable witness encryption [18, 21], we show that time-deniable
signatures imply time-lock puzzles.

We demonstrate this implication in Appendix I. We remark that
while extractable witness encryption is a strong tool, it alone is not
known to imply time-lock puzzles.”

) (mok); | < p(A)

D PROOFS FOR TIME DENIABLE SIGNATURES

THEOREM D.1. The time-deniable signature scheme presented in
figure 3 is unforgeable.

In the discussion that follows, let the output of a hybrid game
H be the output of the challenger. We prove the theorem state-
ment using a hybrid argument where Hj represents the original
(e, T)-unforgeability game. Where details are omitted in the hybrid
description of H;, it is assumed they are the same as in H;_1.

Hy = Let q(A) = size(Aj ;). Challenger samples r i [q(VH] U
{0}. If the number of queries made to Os;gpn by A} 1 is not r, output
1.

CramM 1. Adv\(;[f1 1) = mAd"g{] %)

Note that the win condition is checked whenever the challenger
“correctly guesses" how many queries will be made by the adversary
in the second phase. Let m be the number of queries made by A} ;,
where 0 < m < q(A). This must hold since the adversary cannot
make more queries than its size dictates. Therefore,

Advg1 () =Pr(r=m|r & {o,. --,Q(A)})Ad";fo(’u

It should be clear the first quantity is —— and the claim is thus

q(A)+1
true.
Consider the following sequence of hybrids where 2 < i < m+1
H; =On the (i—1)*" query to Osign by A, 1, challenger replaces
¢ = TimeLock.Gen(T, sk;) with TimeLock.Gen(T,0) .

Cram 2. 38, a € — TimeLock adversary, such that |Adv;i 1) -
Advgi—l (}.)| < AdngimeLock(A)

"When supplemented with a computational reference clock, it is known to imply time
lock puzzles [30].
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WLOG, assume Advg" > Adv;’("‘1
distinguisher D between H;_; and H;, where output of D being 0

denotes H;_1 and 1 denotes H;.
Description of D on input b from H;_y or H;:

. First consider the following

e Ifb=1outputd’ =1
e If b =0, output b’ = 0.

Notice that D’s advantage in distinguishing is dependent on
Adv;{" - Adv;{i’l (1) and that the depth of D is 2. We will now
use D and A) to construct an adversary B’.

Description of € — TimeLock adversary 8’:

e Honestly run the FS.Setup algorithm and answer all queries
from Ay o honestly

e For the jt" query from Apq:
- ifj <i-1,c < TimeLock.Gen(1%4, T, 0)
—ifj>i-1,¢c« TimeLock.Gen(lA, T, sktj)
- if j = i—1, compute sk, , « FS.KeyGen(msk, f;, ,), send

the challenger (sk,_,,0), and receive z. Set ¢ = z.

e From A, get output b and give b to D. Get b’ from D. Output

b’ to the challenger.

Define (81, B2) = B’ where B; represents B8’ up until query
i — 1 is made and B is all that follows. Let the output of B; be z
and hard-code it into B, to get B.

Analysis of adversary B:

Let |A.B| denote the depth bound on the algorithm B for primitive
A. The depth bound for 8B is represented below

depth(8B) < depth(A1)+m- (|FS.KeyGen|+ |TimeLock.Gen| +
t(A)

e()
+m- (|FS.KeyGen| + |TimeL0ck.Gen|+|FS.Sign|) +|FS.Verify|+2

|F5.Sign|) + |FS.Verify| + 2 <

< €(A) (|FS.Verify|+2) | t(A)[1+|FS.KeyGen|+|TimeLock.Gen|+|FS.Sign|]

+ <
= e(A e(d) =
t(Mz(H)

e(A)

Assuming the e-gap security of the TimeLock and because A =
/(1) = t(A) - z(4) in our construction, B is appropriately bounded.
Pr(8B succeeds) = % Pr(8B succeeds | f = 0)+ % Pr(8B succeeds |
p=1)= % Pr(D outputs 0 when given H;_1)+
% Pr(D outputs 1 when given Hj)
= Pr(D correctly distinguishes H;_1 and H;)
B’s probability of success entirely depends on D’s and thus B’s
advantage is the same as D’s. The claim thus follows.

Cram 3. 3C, an adversary against the unforgeability of the FS
scheme, s.t. Adv;j{erl V< Advés(/l)

We now argue that the advantage of any adversary in Hp,41 can
be translated into equivalent advantage against the unforgeability
scheme.

Description of C:

e Receive mok from the FS challenger.
e On queries m, t to Os;jgn ()

- if phase one, query OKey (f2,1) and receive sk, where i €
N is next available counter. Compute o «—
FS.Sign(skﬁ,ﬁ, (t,m)), ¢ « TimeLock.Gen(l’l, T, skﬁ),
Return (c, o) to Ay o
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- if phase two, query OSign (ft, i, (t,m)) with i € N be-
ing the next highest counter to get m*, 0. Compute ¢ «
TimeLock.Gen(1%4, T, 0) and return (c, o) to Arq

o If A, returns forgery m, t,0 = (c,s) return (¢||m,s) to the

FS challenger.

Analysis. We now show that if A is successful, then C must be
as well. Say A returns a forgery m*, t*, ¢* = (¢, s). In order for A
to be admissable, it must be true that A never received a signature
with t > t* during the first phase and during the second phase there
was never a query for (m*, t*) specifically. The first point implies
C never queries for a secret key for a function f; where t > t*
so s is a valid signature to give back to the functional challenger.
The second point means that A is not giving C a signature that C
asked for from the FS challenger with some mauled ¢’ where ¢’ is
an incorrectly structured puzzle or does not hide the right secret
key. Therefore if A returns a valid forgery, then C returns a valid
forgery and the claim follows.

THEOREM D.2. If the underlying delegatable functional signature
scheme is key-indistinguishable then the constructed time-deniable
signatures scheme satisfies the deniability property.

We prove this by showing how to use an adversary A who
wins the time-deniable signatures EXPIDNSD game to construct an
adversary 8 which wins the delegatable functional signatures key-
indistinguishability game Exp::'\S‘D.

e B receives the master verification key and master signing
key (muk, msk) from its challenger and forwards it as is to
A.

e In the query phase, whenever A makes an Osign(sk, -, -)
query on message m and timestamp ¢, 8 performs the fol-
lowing operations:

— Query the FS key oracle (jKey(msk, -,-) on t to get back
(id, skt ). Add the response to its internal table of responses.
Otherwise, return L.

— Use the received key to create v, s <
FS.Sign(fz, sks, t,m) and ¢ « TimeLock.Gen(A, sk;).

— Let ops = (¢, ofs). Send (id, opg) to A. This simulates the
functionality of Ogjgn (sk, t, m) which outputs an identifier
and o « DS.Sign(sk, m, t).

o In the query phase, whenever A makes a query to the DS
challenge oracle Ocy, (-, -, -) on some tuple (id’, m’, "), B per-
forms the following operations:

— Query the FS challenge oracle on (id’, t,t’) if id” corre-
sponds to a query on time ¢ in its table and ¢’ < ¢.

- Using the received key sky, compute v’, o7 ¢ <
FS.Sign(fy, sk, t,m) and ¢’ « TimeLock.Gen(A, sky).

- Send o) = (¢’, 0f) to A. This simulates the DS.Sign()
algorithm when the challenger’s sampled bit f is 0 as the
key used for FS.Sign() is a freshly generated key. When
P = 1, the key used for FS.Sign() is a delegated key, which
simulates the DS.AltSign() algorithm.

e At the end, A outputs its guess f’ for f, B forwards this
without change to its challenger. The advantage of 8B in

winning the Exp'F'\S'D game is same as the advantage of A in

winning the Exp:)NSD game as all the responses to A’s queries

are simulated correctly by 8.
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E PROOFS FOR DELEGATABLE FUNCTIONAL
SIGNATURES

THeoRrEM E.1. IfHIBE is adaptively secure then the functional
signature scheme for prefix functions constructed in Figure 2 is un-
forgeable.

We prove this by showing how to use an adversary A who
succeeds with non-negligible advantage in ExplFJSNF to construct an
adversary 8 which succeeds with non-negligible advantage in the
HIBE unforgeability game.

Description of 8

o In the setup phase, initialize empty table 7~ and receive pk

from HIBE challenger and forward it to A.

e When A queries (f;, i) to OKey check if row with i in 7.

— If it exists, return the list of keys sk; to A.

- Otherwise, use the algorithm FS.KeyGen algorithm in Fig-
ure 2 replacing HIBE.KeyGen(msk, node;q) with QC (id)
and QR(id). Let listy, be the resulting list of keys. Record
(i, t,listgg,) in 7. Send pk, listgy to A.

e When A queries (f;,i,m) to OSign first parse m as f||m. If

t > t output L. Check if there is row in 7~ with identifier i

— If there is, let listg, be the list of keys associated with
that row. Let sk be the key in lists, associated with
an identity that is the prefix of f. Compute skz| <
HIBE.Delegate(pk, sky, suffix(¢/, f||rn) where suffix omits
the prefix t' from ||/ Return skz|

— Otherwise, use the algorithm FS.KeyGen in Figure 2 re-
placing HIBE.KeyGen(msk, node;q) with QC(id). Finally
query QD (f||m) and do a subsequent reveal query QR (£||rn)
to get skg||,. Return sk to A.

e When A outputs its forgery (m*, o) parses m* as t||m and

o* as sk*.

— Sample a message msg and check that
Decrypt(sk*, HIBE.Encrypt(pk, t||m, msg)) = msg. If this
does not hold or if 3a row (i, t’, li“;kt) in7 wheret < t’

output g’ <i {0,1}

— Otherwise randomly sample messages mg and mj. Let
I* = t|jm. Send to challenger (mg, m1,I*) and receive ct.
Compute m” « HIBE.Decrypt(sky+, ct). If m = mq, output
0. If m = my, output 1. If the response is neither, output

g & 0,1y,

Analysis

In order to be an admissable adversary, A must return a signature
o* and an m* that verify where they do not hold a functional key
that has m* in its range. The keys that have m* in their range are
of the form fr where T > t. In other words, these functional keys
are those that contain some HIBE secret keys that are prefixes of
the identity ¢ and no other functional key has such prefix HIBE
keys by the design of the construction. Therefore if A is admissible,
m* = t||m will be a valid identity to challenge on.

If A is successful, then ¢* passed verification meaning for a
random message it acted as a secret key for the identity ¢||m. This
implies with high confidence that it is in fact the secret key for
this identity. Decrypting with the secret key for identity t||m the
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ciphertext ct will be successful with overwhelming probability and
therefore most of the time when A succeeds B succeeds as well.

In any other circumstance, when A is either not admissible or
does not return a valid forgery, B catches this and responds with a
uniform bit. Thus the theorem statement follows.

THEOREM E.2. IfHIBE is key-indistinguishable then the scheme
in Figure 2 satisfies the functional signatures key-indistinguishability

property.

We prove this by showing how to use an adversary A who
wins the delegatable functional signatures key-indistinguishability

game Exp'F'\S‘D to construct an adversary 8 which wins the HIBE

IND
HIBE®

e B receives the keys (pk, msk) from its challenger and for-
wards it as is to A.

o After this, in the query phase, when A makes a 0Key(')
query for time ¢, adversary B computes trace «—
Trace(root, t) where root is the position of msk in the HIBE
hierarchy tree. This gives B the list of nodes on which it
queries the key oracle QK(-). Each of the QK(-) query re-
sponse has an identifier id along with the key for a node
sknode- B maintains a table with entries of the form
(&,id’", {(id, skpode) }nodectrace) Where id’ represents the
counter value corresponding to this particular query from

A. B sends

key-indistinguishability game Exp

(id’, sk = {Sknode}nodeetrace)

to A. This is the response A expects as B simulates the

FS.KeyGen(msk, t) algorithm with its queries to the HIBE

key oracle.

e When A makes a FS challenge oracle Ocy (-, -, -) query with
a tuple of the form (i, ty, t1), B performs the following oper-
ations:

— Check that ty > t; and there is a row starting with (i, )
in its table, otherwise return L. This guarantees that on
the shortest paths from the leaf node #; to the root in the
HIBE hierarchy tree (Figure 1), there exists an element j
such that its corresponding HIBE key is present in the set
sky, representing the FS key for t,.

- Compute sk, j « findPrefix(sk, t1) and
trace’ «— Trace(té, t1) which is the trace of leaf node #; in

atree where the root is té, the first j bits of ¢y. Rerandomize
the key sk by computing sk’ < HIBE.Delegate(pk,
sk, nil), similarly rerandomize all the keys in set sk, upto
the j’th position.

— Query the HIBE challenge oracle Ocy,(+,-,-) on tuples
(idj, té, node) for all node € trace’ where id; corresponds

to the QK(-) response on t(J)A B finds id; in its table, in
the row corresponding to t.

— Compile all the rerandomized keys and the keys received
from the key oracle into set sk;,. Send sk;, to A. This is
the response A expect as B simulates either FS.KeyGen()
or FS.Delegate() depending on the challenger’s sampled
bit S.

o At the end, A outputs its guess f’ for f, B forwards this
without change to the challenger. The advantage of B in
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IND
HIBE
winning the Exp ::NSD game as all the responses to A’s queries

are simulated correctly by 8.

winning the Exp game is same as the advantage of A in

F PROOF OF K-HOP DENIABILITY

THEOREM F.1. Any time-deniable signature scheme satisfying the
deniability property as defined in definition 5.4, also satisfies the k-hop
deniability property as defined in definition 5.5.

We prove this by a hybrid argument, starting with the security
game where the challenger chooses f = 1 and ending with one
where they choose f# = 0. Because the advantage of A will change
negligibly between hybrids, we will be able to say that the difference
between the output of the adversary when f = 0 and f = 1 is negl.
which is equivalent to adversarial advantage being negl. within a
factor of 2. Where details are omitted in a description of hybrid H;
it is assumed they are the same as H;_1.

Let Hy be the k-hop security game with § = 1 and consider the
sequence of hybrids Hj ... Hj._; that are defined as follows:

H; = Set f = 1. Generate o as

AltSign® =i (vk, (mi, ti, 07), { (Mis1, tiz1)s ., (M5 1)) (6)

where 0; « Sign(sk, m;, t;).
In the discussion that follows, let Advg" (1) be the advantage of

A when it plays the modified game H; and let Advlg”’w"’1 A, A)
denote the advantage of a distinguisher D in distinguishing A’s
advantage in H; and H;_;

Cram 4. Vi € [k], |Adv;f;-1(z) - Adv;’;(m < negl(1)

Suppose this is not true. Then 3 a distinguisher D, s.t.
Adv’g"’wH (A, Ay = p(A) and p(A) is non-negligible. We now
use D and the adversary A to construct an adversary 8 that has
non-negligible advantage in Expg\JSD.

Description of 8

e B receives vk from its challenger and sends it to A). It also
initializes an empty table 7.

o In the query phase, B responds to the sign queries from A
using the Os;gn oracle: it forwards (m, t) to Os;gy, receives
(id, o), and records (id, m, t, o) in 7. It then returns (id, o)
to Aj.

e In the query phase, let a challenge query to Ocy, from A
be id, {(mj, t/)} je[k-1), m", t".

— Check if 7 has an identifier id. If not output L.

- Ifi = 1,letid” = id. Otherwise query Osjgn on (m;—1, tji—1)
to get id’, 0. B makes a query to its challenge oracle with
id’, m;, t; and receives o;j.

- Compute ¢* « AItSignk_i(vk, (m;, ti, 0i),

{(mi+1, ti+1), - . - (m*, %) }) and send o™ to A

o Let b be the output of A). Send the result of the equality

check b ==1to D.If D returns z return z.

Analysis We now analyze $B’s success probability. In the discus-
sion that follows, let § be the bit chosen by the challenger in the
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Exp'D’\‘SD game.

1
Pr(8 outputs f) = 5 Pr(B outputs f | f = 0)+

%Pr(B outputs f | f=1)

1
=5 Pr(Pr(D outputs 1 in H;)+

1
5 Pr(D outputs 0 in H;_1)
Pr(D succeeds )

1 .
5+ AV TG Ay

1
S () =
Ex IND
Adv, Pos” — p(A)
This advantage is non-negligible because p is non-negligible.
However, on the other hand, the advantage must be negligible
because our scheme satisfies one-hop security. Thus no such distin-

guisher can exist and the claim follows.
Hii1=setf=0

Let X° be the distribution of the output of A in H and X! be
the distribution of the output of A in Hy.,1.

Cram 5. V n.u.p.p.t distinguishers D,
|Pr(D(x) = 1]x « X% — Pr(D(x) = 1|x « X!)| < negl(1)

In Hj. we have replaced AItSignk with
AltSignk =k (ok, (m*, t*,0),{}) = AltSign®(ok, (m*,t*,0),{}) = &
where o « Sign(sk, m*, t*). Therefore, Hy and Hj,; result in A
seeing the exact same distribution of input. This means the output
of A cannot depend on f and X° = X'. Thus the claim is trivially
true.

G LEWKO’S PRIME-ORDER HIBE SCHEME

This is a description of Lewko’s[26] prime order translation for an
unbounded HIBE scheme. This scheme performs some operations
over vectors of n-dimensional space, similar to Lewko’s work we
describe the scheme for n = 10.

Setup(ll) — (pk, msk): The setup algorithm takes as input the
security parameter 14. A bilinear group G of sufficiently
large prime order p is selected, where the bilinear map is
denoted by e : G X G — Gr. The random dual orthonormal
bases required for the scheme are also sampled as part of

o R - -
this algorithm (D, D*) «— Dual (ZZ) LetD = {di,...,dn}
and D* = {07*, e Jfl} It also chooses random exponents
ay,a0,0,0,y,& € Zp. The public parameters, which we de-
scribe as part of the public key are

pk={G.p.e(g.g) 4% e(g, 92 % g, . g% )
and the master secret key is

> - - - - - > -
msk = (G, p, a1, a2, 9%, g%, g¥%1, g5, g0%, g0 g% g5}
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KeyGen(msk, (ID1, .. ,IDj)) — skrp: The key generation algo-
rithm samples random values ri, ré ﬁ Zyp for each i € [j].

$ $
It also samples random values y; < Zp and w; < Z, for
i € [j] under the constraints that y; +y2 +---+y; = a; and
w1+ ws +--++wj; = az. For each i € [], it computes:

= — o . - =
K: = gyidf+wid2*+r{IDi9d;—r{9d2+réIDi0'd5*—r2’O'dg
=
The secret key is output as:

skip = {gyd;,ggdg,gedg,gedz,g"d;,g”d;,Kl, . ~,Kj}

Delegate(sk;p,IDj+1) — skip|ID;,,: The delegation algorithm
samples random values wi, wé i Zp for each i € [j+1].

It also samples random values y;, w] . Zp fori e [j+1]

. . ’ 12 ] ’
subject to the constraint that y] +- - - Yip = 0= Wit wi
Let ngT, gg‘fd;) gad;" gedZ,g"d;, g”d;, K1, ...,Kj denote the el-
ements of skrp. The delegated key SkID\IDjH is formed as
follows:

— | yd &d; 6d; 6d; _od: od:
5kYLHILy+1~—'{9y 1,g5%, g0%, g%4i, g% gods
K _gy'lydf+w{§d;+w%ID16'd;—w}9d;‘+w%IDlad;—wécrd;

- . oL . o
LK gy}ydf+w}§d;+wfID19d;‘ —w] 0d;+w)ID 0d;—w; od;
iVt il 1,104
9

_ ¥l g jtl i T J+l_ T
wy 0dy+w, IDjy0d;~w, od;

Encrypt(pk, M, ID) — ct: The encryption algorithm samples ran-
dom values ¢, t; for each i € [/], as well as random values

$
$1,82 «— ZP' It computes

- = - =
CO = Me(g, g)alsldydle(g’ g)azszdzdz
and
C: = gs131+s2072+t{073+IDitl"c74+t2"075+ID,-t:§Jb
1=

for each i € [j]. The ciphertext is ct := {Co,Cl, e Cj}
Decrypt(ct,sk;p) — M : The decryption algorithm computes

B:=| [e(CiKi)

I~

i=1
and computes the message as:

M=Cy/B

G.1 Proof of Key-Indistinguishability

THEOREM G.1. The prime order variant of Lewko’s scheme from
[26] satisfies the key-indistinguishability property.

The delegation algorithm (in Appendix G) in Lewko’s prime
order scheme [26] re-randomizes each exponent in a secret key.
Each group element (the ones which are unique for an identity) in
the key generated by KeyGen(), is of the form:

T +widi+ri1D,0d:—r 0d: +riID;0d ~ricd:
K; ;:gyi 1TWidytriD;0d;—r 0d tr,1Diods —ryod,
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Where the values y; ﬁ Zp and w; ﬁ Zp fori € [j+1] are under
the constraints that yy +yz+- - -+yj+1 = @ and wi+wa+- - +wji =
a.

Whereas, in the key generated by Delegate(), each group ele-
ment (the ones which are unique for an identity) is of the form:

Kl/ — Kl* . gy;yc?l*+w;§{§;+wfID195;—w{932+w;1D105;—m;0d—>g

Where K] is the i’th group element of the key of the identity,
which was used as an input for Delegate(). The following variables

are sampled uniformly at random, w!, a); i Zp for eachi € [j+1].

It also samples random values y;, w; ﬁ Zp for i € [j +1] subject
to the constraint that y] + - - - y}.H =0=wj+--- wj’.+1.

The key fact to note is that the exponent of g in K] the vari-
ables y7 +yyy, .. y}‘ + yy;., )/y;.Jrl are randomly distributed up to
the constraint that their sum is 1, and similarly wy + §w{, Wit
§w]’., Ew]’ +1 are randomly distributed up to the constraint that their
sum is ay. Also, ri + wi and ré + wé are uniformly random for each i.
The keys generated via KeyGen() are also sampled from the same
distributions with the exact same constraints. This gives us the fact
that the distribution of a secret key obtained through any sequence
of delegations is the same as the distribution of a secret key for the
same identity generated via KeyGen() making them statistically
indistinguishable. In fact, this is noted by Lewko in the description
of the scheme as well. Moreover, the fact that the adversary has the
master secret key msk, doesn’t give it any advantage because the
two keys generated only differ in the randomness used to gener-
ate them, having the msk doesn’t give the adversary any way to
distinguish between these two because they are statistically indis-

tinguishable. Therefore, the challenge key pairs (skg, sk;_g) for the

IND

HIBE key-indistinguishability game Expjzc

to any PPT adversary.

are indistinguishable

THEOREM G.2. The HIBE scheme from [13] satisfies the
key-indistinguishability property.

In a very similar manner to the key delegation algorithm in
Lewko’s prime order scheme, the delegation algorithm in the HIBE
scheme from [13] also performs re-randomization of each exponent
in a secret key. We give a brief description of the relevant algorithms
below, and refer readers to [13] for a detailed description of the
scheme:

e Setup (1’1,d) This algorithm takes in the security param-

eter A, a depth parameter d and generates a bilinear pair-
ing G := (q, G1, G2, GT, g1, g2, €) for sufficiently large prime
order q. The algorithm samples random dual orthonormal

=0,...,

puts the public parameters as

d d di; dy; d;
PP {Cgr. gy 61 o1 g1 }i=1 s0

d;, d;, 2 2d 2d
{gll' .9, } } € Gr x (Gf) X (G})™ x G; x (G3)
i=1,....d
&
and the master key MK := 913’0 € Gg.
e KeyGen (PP, MK, (idy, . .., idp)) This algorithm picks
- 70,51, ..,S¢ <R Zg and sets so :=s1 + -+ + 5. The

—sodj ,+d;
secret key is computed as SKiq, . id,) = {Ko =9, om0
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sid; i (idid; - d,)
Ki = 92

e KeyDel (PP, SK(id, ....id,)» (1], - - idz,)) This algorithm picks

7 ’ 7 ’ A - ’
FlseoosTpsSsee s Sp <R Zg and sets Sg =Syt sl,ll'gyl‘rle
~So%1,0

) = {K6 =Ko-g, oL

4
yeGx(Gy)

secret key is computed as SK(‘

idy,....id/
, s;d’{’i+r;(id;d’{'i—d;’i) s
K :=K;-g, } € G2 x (GY)
=10
Therefore, following the same argument as the proof of Theo-
rem G.1, the distribution of the secret key for a particular identity
generated via any sequence of delegations is the same as the distri-
bution of a secret key for the same identity generated via KeyGen().

Therefore, the challenge key pairs (skg, sk;_p) for the HIBE key-

IND

indistinguishability game Exp |-

adversary.

are indistinguishable to any PPT

H ANALYSIS OF SIGNATURE SIZE FOR
VARIOUS VALUES OF N

Size of Signature with Time Lock Puzzle

—8— L-SS512
CLLWW-BN254

4000

3000

2000 -

Size (KB)

1000 A

T T
2 7 16 41 256
N-ary

Figure 5: The signature size - including the encrypted func-
tional key in the time lock puzzle - for a time-deniable sig-
nature scheme using the Lewko HIBE with SS512 and the
CLLWW HIBE with BN254, varying values of N

I ON THE NECESSITY OF TIME-LOCK
ENCRYPTION

Our construction of time-deniable signatures makes uses of time-
lock puzzles to achieve short-term unforgeability. We show that the
use of such a primitive is to an extent inherent. Namely, assuming
extractable witness encryption [18, 21], we show that time-deniable
signatures imply time-lock puzzles.

We remark that while extractable witness encryption is a strong
tool, it alone is not known to imply time-lock puzzles.?

8When supplemented with a computational reference clock, it is known to imply time
lock puzzles [30].
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Time-Lock Encryption from Time-Deniable Signatures. To
construct a time-lock encryption scheme using deniable signa-
tures and extractable witness encryption, consider (vk,sk) «
DS.KeyGen(l’l, T(A)) and o « DS.Sign(sk, m,t). Witness encryp-
tion schemes allow encrypting a message m to an instance x of an
NP language and allows decryption using a valid witness w such
that (x,w) € R. For a detailed discussion on witness encryption
and extractable security we refer readers to the work [21] of Gold-
wasser et al. Now consider a witness encryption scheme which
encrypts to statements of the form x = (m, t, o, vk) for a relation
R where for witnesses of the forms w = (m*, t*, ¢%), (x,w) € Rif
DS.Verify(vk, o*, m*, t*) = 1. We also provide the intuition behind
why this scheme is secure. The time-lock encryption algorithms
proceed as follows

(1) TL.Encrypt(14, m, t + T): It outputs ¢t «— WE.Encrypt(1?
, X, m), where x = (m, t, o, vk).

(2) TL.Decrypt(ct, w): Since it takes time T to create ¢* from o,
after time T a valid witness is available to run the decryption
algorithm for WE with witness (m*, t*, 6*). Output m’ «
WE.Decrypt(ct, w).

The intuition behind the security argument is essentially that
no admissible adversary should be able to distinguish an encryp-
tion of my from an encryption of m; as this adversary is depth
bounded. Otherwise, such an adversary computes w € R, i.e, a
different signature ¢* on some message, timestamp pair (m*, t*)
by performing significantly less operations than the number of op-
erations required. This adversary is solving the time-lock puzzle in
sequential time less than T. Given such a distinguishing adversary
we can leverage the extractor for witness encryption to break the
unforgeability property for deniable signatures.

J ON THE NECESSITY OF SECURE
TIMESTAMPS

Recall that in our definition, the AltSign algorithm takes as input a
previously computed valid signature (or forgery). In particular, our
notion does not rely upon the use of cryptographic timestamps.

An alternative notion discussed in Section 2 is one where AltSign
does not require a previously computed signature as input; instead
it only uses a timestamp issued by an external server to create a
forgery. We argue that in the latter case, the timestamps issued by
the server must be cryptographic (and in particular, unpredictable
or unforgeable, depending on the implementation).

Suppose this is not the case. Then we can devise a simple attack
using the AltSign algorithm to break the unforgeability of the sig-
nature scheme. Consider a (non-uniform) adversary A = (Ao, A1)
that wants to generate a forged signature for any message m*, and
any time-stamp t*. Since we allow for arbitrary polynomial time
pre-processing in the unforegeability game, Ay runs AltSign on
input m* and g(t*) to compute a forged signature, where g(-) com-
putes the output of the time server for time ¢* (this also captures the
scenario that the time stamp is entirely ignored by Sign/AltSign).
Since there is no security property associated with the timestamps
issued by the server, g(+) is a function that can be computed effi-
ciently, so Ay is polynomial time.

Let o™ be the forged signature computed by Ay, who passes
it along to A; to output as its forgery. Since the above strategy
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works for any (m*,t*), and A; needs only a single computational
step (to output the forged signature received from Ay), this attack
constitutes a valid forgery of the time-deniable signature scheme.

K EPOCHAL SIGNATURES

We recall the unforgeability game and definitions from the work
[24] by Hiilsing and Weber. An epochal signature scheme ES has
the following four algorithms:

ES.KeyGen(l’l, At E, V) — (pk,sk): Takes as input a security-
parameter 14, an epoch-length At, the maximum number
of epochs E € poly(4) and the number of epochs V' < E for
which the signatures are valid and generates the long-term
key pair (pk, sk).

ES.Evolve(sk) — (pinfo,,sk’/L): Takes as input the long-term
secret key sk and returns the public epoch information pinfo,
and an updated secret key sk’ or L if sk has already been
evolved E times.

ES.Sign(ske, m) — o: Takes as input a secret key sk, and a mes-
sage m and outputs a signature o for the corresponding
epoch e.

ES.Verify(pk, e, 0, m) — b: Takes as input the public key pk, an
epoch e, a signature o and a message m and returns a bit b.

The unforgeability definition is defined with respect to the un-
forgeability game ExplEJSN F defined as follows:

Setup. The challenger runs (pk, sk) < KeyGen (1%, At, E, V) and
gives the public key pk to the adversary A. It sets ¢y to the
current time, sets e = 0 and initializes the set of queries
q =1[0,...,0], where the k’th entry in the set corresponds
to the set of queries asked in epoch k.

Query Phase. In this phase, the adversary gets to query two
different oracles.

(1) The key evolution oracle Ogygye(-) takes as input some
wall clock time t, checks that t > ty + e.At which indi-
cates that the current time is the e’th epoch. It computes
(pinfo,,ske) < Evolve(sk) if ¢ satisfies the above prop-
erties. At the end of an Ogygve (sk, -) query, the adversary
also gets access to the corresponding sign oracle for epoch
e, OSign (ske, ).

(2) The sign oracle Osjgn (ske, -, -) takes as input a secret key
ske, wall-clock time t and a message m. If t < ty + e.At,
it outputs a signature o « Sign(ske, m) on the message
and updates the corresponding epoch in the query set
gle] U {m}.

Forge. The adversary outputs its forgery (¢’, m’) and wins (game
outputs 1) if:

(1) For the corresponding epoch e’, there is no query corre-
sponding to this message (m’,e’) ¢ g[e’].

(2) Verify(pk,e’,o’,m’) outputs 1.

The advantage of the adversary A is defined as
Adv 7 (14, At) = Pr[ExpgSNF(M, ALEV) =1|.

Remark: To the best of our knowledge the authors do not define
the function now(). We assume that this is the current time value
and hence implies the existence of a wall clock.

Definition K.1 (Unforgeability of Epochal Signatures). An epochal
signature scheme X is unforgeable if there is no efficient adversary
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that has a non-negligible chance of winning the unforgeability

game ExpgsN F.

VA € PPT,A e N,E € poly(1),V € {1,...,E—1}:

Adv 7 (1%, At) < negl(1)

K.1 Faulty Epochal Signature Construction

Given a secure epochal signature construction X, we use it to con-
struct another secure epochal signature scheme ¥’ which has unde-
sirable properties as discussed in Section 3. However, due to certain
properties implicit in the definition of an epochal signature scheme,
the scheme we present as the counter example is fairly intricate. We
begin with an informal description of the counter example, which
suffices for a relaxed notion of epochal signatures. We build upon
this to present our final scheme ¥’ - we formally argue that 3 (i) is
a secure epochal signature scheme; and (ii) is not a time-deniable
signature scheme.

We first consider a counter example that satisfies a weaker but
still reasonable notion of deniability where the judge never gets
access to any secret key material. In this setting, our counter exam-
ple is fairly simple: each epoch e has a special trigger message m}
associated with it. If a signature ever needs to be made on mj, in
epoch e, then the signature contains the master secret key msk of
the scheme. Included with every signature is a time lock puzzle that
holds the special trigger message m};, where the difficulty parameter
on the puzzle is slightly more than At. It is straightforward to see
that this scheme is still secure under the ES unforgeability game:
the epoch e will always expire by the time the adversary could
attempt to use m}; by solving the time lock puzzle. However, in the
unforgeability game of time-deniable signatures, such a scheme is
trivially defeated by an adversary in the pre-processing phase since
the time lock puzzle can be solved during this phase.

The main problem with this counter-example is that the con-
struction does not satisfy perfect deniability. Perfect deniability
requires that one can simulate a single signature perfectly without
revealing whether or not the signature was a forgery. Specifically
in our counter example, we must ensure that one reply can never
give away msk. To accomplish this, we encrypt msk under a key
that is (2,2) secret shared. In order to recover the key, the adver-
sary must make two queries which is explicitly disallowed in the
deniability definition of epochal signatures. This ensures that only
one share of the key is ever recovered, and thus we can simulate
this share correctly without knowledge of msk. The final construc-
tion is presented in Figure 6. We would like to emphasize that this
counter example is meant to show weaknesses in the unforgeability
definition and that almost all of the complexity is added because of
the deniability definition.

THEOREM K.2. The epochal signature construction in figure 6 is
unforgeable under the security game of definition K. 1

ProoF. We prove this by a standard hybrid argument starting
with the real unforgeability game of Hy. For any hybrid H;, the
output of H; is considered to be the challenger’s output bit i.e. the
adversary’s success probability. This is related but not necessarily
equal to AdV;{i. Therefore, the statement H; ~ HH;,1 means that the
probability of A succeeding between two different hybrid games
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is negligible. For security, we want Advzx{0 (A) < negl(A) where
negl(A) is a negligible function in the security parameter A. Where
details are omitted from the description of hybrid H;, it is assumed
that they are the same as in H;—_1.

H : Guess the challenge epoch e* of A by uniformly choosing
an epoch in {1,..., E} where E is the maximum number of epochs.
If the guess is incorrect, the challenger’s output is 0.

Analysis:

‘ 1 q
AdvT (1) = = -AdvTP ()
]

Let ro, r1, r2, r3 be the ephemeral randomness used in an epoch
e. Consider the following hybrid,

Hs: If Je € {1,...e*} such that A queries the sign oracle on
messages ro or rq, the challenger outputs 0.

Let F be the event that on at least one epoch e € {1,...e*}, A
queries on one or both of rg and ry. If Pr[F] < negl(2), then H; ~

Hs.
Lemma K.3. Pr[F] < negl(})

We first provide a sequence of hybrids Wl.zj x wherei € {1,...,¢e"},
jeNke{0,1}.
7-{1‘2]‘ K Let ro, 1, 72,73 be the ephemeral randomness used in

epoch i. If j is not 0, on the j*" sign query of A the time lock puzzle
that normally holds ry instead encrypts another random value 7
where 7y # rp.

Note that H; = 7-(120 « for any k. For a given epoch i, we will be
concerned with the possibly infinite sequence of hybrids

(7—(50’0,?{30,1,7‘(51’0,711.2’1!1, ...) If this sequence is actually finite

with the last query of A in i being r(1), then ‘Hfr(/l)’l = 711.2“’0’0.
Cram 6. Vie {1,...e"},Vje{L,..., },7—(1.%]._1’1 x~ 7'(1.2’].’0

Suppose this is not true and there exists a distinguisher D with
non-negligible advantage that distinguishes between A’s success
probability in 7{3 11 and ‘Hz 0 that outputs 0 when it thinks A’s
success is from H; j—1,1 and 1 otherwise. Consider the following
TimeLock adversary 8 which uses A and D to break the security
of the TimeLock.

Description of TimeLock adversary B:

e Execute 3.KeyGen (1%, At, E, V) to get pk, sk. Give pk to A

e On queries in epochs e > i, respond as normal.

e For the j' query in i, sample m uniformly from R subject to
the constraint that m is not equal to rg. Send to the TimeLock
challenger (rg, m). Receive s. Construct o, C;lp’ sk, 7’ as nor-
mal and send to A the signature o, s, C;Ip, Cslr 7'

e Let b’ be the output of A. Send b = b’ to D. If D outputs b

respond with b.

Analysis:

The probability that 8 wins is equivalent to the probability
of D distinguishing correctly. Since D by assumption has non-
negligible advantage so does B, in contradiction to the security of
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KeyGen(lA, At,E, V) : Sign(sk,, m) :

pk, sk — ife==0:
%.KeyGen (1%, At, E, V)

return (pk, sk)

ske « parse(sk,)

return X.Sign(ske, m)

ske, 1o,
, Sl parse(sk.)
Evolve(sk,) : 1T Ts
fe——0: o — 3.Sign(ske, m)
ske « sk’ Csk — ske ® (r2 ®13)
e

. A
return 3. Evolve (ske) ¢;1p < TimelLock.Gen(1%, At +€,19)

c’ﬂP — TimeLock.Gen(l’l, At +€,1r1)
ske, 7o, - , if m==rg:
parse(sk,) ,
1, 72,73 rer

pinfoes, «— 3.Evolve(ske) el ffm -
ske+1 ' ¢ ren
ro,r1, 12,73 — R else:
return pinfoes1, (Ske+1, 70, 1, 12, 3) re—R
return o, ¢;1p, c’”p, Csks T/

Verify (pk, e, 0’, m) :
ife ==0:

oc—o
else:

’
Oy 5 5, <O

return X.Verify (pk, e, o, m)

Figure 6: Our counterexample ES construction X’ built from another secure epochal signature scheme 3. The domain of R is
{0, 1}’1 and Vi € {0,1,2,3},r; € R. € can be any value that is not 0, but we are especially interested in small e.

the TimeLock.

IND 2 *

Pr[F] = g() - - Advi?™ (1) + 2%

. % . 2 ~ 2 IND 2 A

Crama 7. Vi€ {L...e*}Vj e NHZ, \ ~ HE, _ q(/l)r(/l)Adv];;XpTL ) + VZ(A)

Proof sketch. The argument here is equivalent to the previous one,

. Expi® . . 1. g
except instead of B challenging on (rp, m) the challenge is (r1, m). By assumption Adv 5 (4) is negligible and 2r 1 clearly neg

O

In order to be a successful adversary, A must run in polynomial
time, which means that the number of queries that A can make
in any particular epoch is also bound by some polynomial. There-
fore, Vi the sequences (7—(50,0, 7-(50’1, ...) must also be bounded by
poly(4). Since e* < E € poly(4) is also polynomially bounded
by the security parameter and the last hybrid in sequence i — 1 is
actually the first hybrid in i, there is a negligible difference between
7’(12’0,0 and the last hybrid in the sequence beginning with 7—(3*’0!1.

The probability that (A asks for either appropriate trigger in any
of the epochs e = 1...e* can now be calculated by multiple union
bounds. For an epoch i the probability that A guesses either ry or
ry is ﬁ where M is the space of all possible messages that can

be signed. If M = {0, 1} the probability this happens in any epoch
before or at the challenge epoch is upper bounded by Zz'—ﬁ* which

is negligible. Let e* = r(A1) and q(A) be the maximum number of
queries A asks for in any epoch. Then we have

ligible therefore Pr[F] is as well. This completes our proof of the
lemma.

Recall that in H3 we know that A will not ask for a query on
the trigger message r* during the challenge epoch e* or any earlier
epoch. We can now argue security by reducing to the security of
the original epochal signature scheme ES’. Let 8 be an adversary
for the ES unforgeability game that is constructed from A in H3
as described below.

Description of ES adversary 8:

e Receive pk from the challenger and pass pk on to A

e For any evolve query asked by A before or during e*, make
the same query to the challenger. Receive pinfo.. Re-sample
new randomness ry, r1, 72, 3. Send pinfo. to A

e For any sign query m for epoch e < e*, make the same query
to the challenger and receive o. Forward o to A along with
correctly strutured values ¢, c;lp, Coer 7’

e When A gives forgery (m*, o*), parse out the first compo-
nent & and give the forgery (m*, &) to the challenger
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Analysis: It should be clear that in this case if A succeeds B
must as well since A never asks for a query on either rg or r; in
the relevant epochs before the forgery and 8 is merely making the
same queries to its challenger that A is. Therefore,

UNF
Expgg

P (A) < negl(A).

Adv?E(2) = Adv
Since the advantage of A in Hj is negligible, the construction is
unforgeable.

THEOREM K.4. The epochal signature construction in figure 6 is
deniable according to the definition of [24].

We first give a description of the simulator Sim for the denia-
bility game. It makes use of X.Sim which is the simulator for the
deniability of 3.

Sim(m, eg, pinfoeyte,) :
r—=R

Cilp < TimeLock.Gen(lA, At +e,r1)
csk — R
re—R
o« 2.Sim(m, eg, pinfoeyre,)
ifeg==0o0rey==1:

return o

return o, ¢, Csk» r’

In order to prove that our scheme is deniable we need the distribu-
tions of o, ¢, Cs. r” to be indistiguishable when generated via Sign
or Sim when the distinguisher has access to pk, skey+e,, pinfoe,+e; -

We can safely ignore ¢ because ¢ is conditionally independent
from the tuple (c;yp. csk, r’) given sk and it does not reveal infor-
mation on what it was derived from because of the deniability of
3. We can also restrict our analysis to e > 1, since whene =1, o is
the only component of the signature.

This can be simplified to us needing the following to hold for
all messages m, for all valid epochs ey # 0 and eg # 1, for all valid ey,
VV, and all key generation outputs (pk, sk) < KeyGen(lA, At E,V):

ro,r1, 72,13 < R,
(_, ske,) < Evolve® (sk),

. (4
(Piegters Skegre;) < Evolve®™ (ske, ), Ctlps Cpppp Csker T

Ctlp < TimeLock,Gen(ll, At +e€710), " pk, sk

eo+ep> Pleg+e;

C;lp — TimeLock.Gen(lA, At +¢€,r1)

cor — (r2 ®13) @ skey, v’ — R
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ro,r1 < R,
(Piey+e;s Skegre;) < Evolve®*el(sk) , )
Ctlps Cyppys Cskeo T

Crip < TimeLock.Gen(l’l, At +¢€,19), -
Pk, Sk80+€1)pi€0+91

’
ctlp

ek — R —R

— TimeLock.Gen(l’l, At +¢€,r1)

The asterisks on the left distribution for r” denote that the value
of r’ is mostly random, except when m = ry or m = ry. In that case,
r’ =rp or r’ = rs respectively.

Since V > 1, the updated key ske,+e, does not contain the ran-
domness used in epoch ey. However, both “trigger" messages, are
made available to the judge by breaking the time lock puzzles ¢y,
and Ct/‘lp' Luckily this, at most, gives the judge access to one of rp

or r3: the judge only gets to see the output of one signing query so
if the judge uses the message m = ro or m = ry it receives either ry
or r3 as r’. Recall that cg = (r2 @ r3) @ ske, whenever Sign is used.
Because the judge can only get access to at most one share, cg is
indistinguishable from a random element of R. This also means
that the random pad r’ is independent of cg to the perspective of
the judge, regardless of if it is supposed to be a share of the one
time pad or not. Therefore the joint distribution of (¢, cs1p, r’)
in the left-hand side of the equation is one where each value is
independent from the others, ¢y and r’ are uniform, and ct1p locks
a uniformly random value. This is precisely what the right hand
side is and thus completes our proof.

K.2 Time-Deniable Signatures as Epochal
Signatures

In this section we show any secure DS scheme can be generically
transformed into a secure ES scheme. At a high level, our con-
struction is a simple transformation where verification and signing
uses the time-deniable signature scheme and the evolve algorithm
keeps track of the current epoch. pinfo, contains a signature on a
dummy, sentinel message at the timestamp corresponding to epoch
e. Because of the different models of time considered by the two
primitives, we do a translation between wall-clock time and circuit
depth.We make the following assumption: for any circuit C that
terminates in wall-clock time ¢, the depth of C when it terminates is
dc - t where dc is a constant that depends on C. Let C be the set of
circuits for which some input x causes C to terminate before or at
wall-clock time ¢ and let d* = max dc. d* is needed to correctly set

the time parameter given to the time-deniable signature scheme’s
KeyGen algorithm. The construction appears in Figure 7.

TaEOREM K.5. The ES scheme presented in Figure 7 is unforgeable
if the time-deniable signature scheme DS is unforgeable.

We prove this by contradiction, supposing there exists an ad-
versary B who succeeds with non-negligible advantage in the ES
unforgeability game and then using that adversary to construct an
adversary A = (A, A1) for the DS unforgeability game. For the
ES unforgeability definition we assume that before the counter e is
given to the Verify algorithm it is appropriately advanced.

Description of A:
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KeyGen(lA, At,E, V) : Sign(ske, m) :

vk, sk « sk, e « parse(ske)
DS.KeyGen(l’l, €(A) -V - At - o « DS.Sign(sk,m,e)
d*) return o

return (ok, (sk,0))

Verify (pk, e, o, m) :
Evolve(sk’) : return DS.Verify (pk, o, m, e)
sk, e « parse(sk’)
e=e+1
o « DS.Sign(sk, 0, e)

return (o, (sk,e))

Figure 7: An ES construction from a time-deniable signature
scheme DS. ¢(A) is the admissibility parameter for the time-
deniable signature scheme. The sentinel message for pinfo
ism=0.

e Receive vk from the challenger. Give vk to 8. Initialize a
counter ctr = 0 and the wall clock time tj,;j; = now().

e On queries Ogyglve check if ' > tinir + (e + 1) At where ¢/
is the current wall clock time. If yes, set ctr = ctr + 1 and
query Osjgn on message 0 to receive o. Return o as pinfo.
Else do not advance the counter and output L.

e On queries Os;gn from B with message m, query the chal-
lenger’s OSign oracle with m and timestamp ctr. Return o to
B.

o If B returns signature ™ in epoch e* on message m*, then
A returns (m*, e*, 0*) as its forgery.

First, we argue that A is an admissible adversary in the time-
deniable signature unforgeability game. Let Ay denote the inter-
actions of A with B before epoch e* begins. Because for an ES
scheme, size(B) € poly(A) and since A is also doing poly(A) work
while interacting with B, we have that size(Ay) € poly(1). If we
let the output of A and B after this interaction be an advice string
z, we can then split off the rest of A and B’s interaction as Aj.
For B to be a successful adversary, they must be able to produce
m*, o* before wall clock time VAt has past since the start of epoch
e*. Then we have an upper bound on the circuit depth of 8 from
the start of e* until termination as d*VAt. Since A just forwards
queries between the challenger and B the overhead it adds is mini-
mal (on the order of the number of queries made by $B) and can be
ignored for the sake of this proof sketch. depth(A;) is therefore
d*At-V-e(A)

e(A)

We now argue that if 8 is successful in its forgery so is A. As
said earlier, in order for B to succeed it must produce a valid pair
(m*, 0) before the wall clock time bound where validity means
that DS.Verify succeeds given the current timestamp is e* and that
B has never asked for a signature on m* at time e*. The tuple
(m*, e*, o") is thus a valid forgery for A as well.

appropriately bounded as d*At - V <

THEOREM K.6. The ES scheme presented in Figure 7 is deniable if
the time-deniable signature scheme DS is deniable.

Suppose this is not true and there exists a judge J that succeeds
with non-negligible advantage in the ES deniability game. Then we
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will construct an adversary A that succeeds with non-negligible
advantage in the DS deniability game.
Description of A:

e Receive vk, sk from the challenger. Forward sk to 7.

e Uniformly sample a random message m. When 7 specifies
its challenge (m", eo, e1), query Osjg, With (m, eo +e1) and
receive (id, o).

e Query Ocyp, with id, m*, ey to get o*. Send o* to J. If T
responds with b send b to the challenger.

J expects to see one of two signatures. One creates the signature
by evolving sk ep times while the other evolves the key ey + e1
times and uses pinfoe,+e,. When the challenger’s bit b = 0, A
produces the output of ES.Sign in Figure 7 which is simply DS.Sign.
When b = 1, the output is produced by the simulator § in the
ES deniability game which is the equivalent to DS.AltSign in our
construction. Therefore, the distributions J sees are correct and if
J is successful in distinguishing then so is A.
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