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ABSTRACT

Current security mechanisms in mobile devices such as PINs, passwords, patterned passwords, and bio-
metrics are one-time entry-point authentication and vulnerable to attacks. Furthermore, advanced mech-
anisms like Multi-Factor Authentication (MFA) introduce friction in the user experience. In contrast, be-
havioral biometrics rely on user interaction with computing devices to authenticate a user and thus, can
be continuous, non-intrusive, and cost-effective, representing a promising direction that complements ex-
isting authentication techniques. This survey focuses on stationary/non-walking (sitting, standing) mobile
behavioral biometrics through motion events like acceleration, gyroscope, magnetometer, and orienta-
tion (rotation) with the optional support of other non-motion, sporadic modalities such as swipes and
keystrokes. The focus on stationary behaviors can be justified because such behaviors represent the ma-
jor way a user interacts with mobile devices. To help readers understand the broad landscape of user
activities/behaviors, we categorize the state of the art into natural and designed behaviors and describe
the underpinning of behavioral biometrics in cognitive psychology. Furthermore, we categorize the sur-
veyed studies into three groups based on the fusion of motion modalities and characterize each study
along dimensions such as task, datasets, modality, algorithms, and performance. Based on our survey, we

identify several future directions of research.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Mobile devices are widely used for daily activities such as
transmission of sensitive information, messaging, online banking,
fitness tracking, and online shopping, among others. Confidential
user data is often protected through one-time entry-point secu-
rity mechanisms like PINs, passwords, patterned passwords, and
biometrics (face, iris, fingerprint). Such security mechanisms are
either knowledge-based static passwords (PINs, passwords, pat-
terned passwords) (Aravindhan and Karthiga, 2013) or static bio-
metrics (iris, fingerprint, face) (Behavioral biometrics vs static bio-
metrics: Dynamic fraud detection explained, 2022; Li et al., 2020a;
Ryu et al., 2021), both of which are vulnerable to attacks. On the
other hand, the more advanced Multi-Factor Authentication (MFA)
requires the user to provide additional factors such as one-time
passwords (OTP) and thus introduces friction to the user experi-
ence.

Behavioral  biometrics in addition to being dy-
namic (Behavioral biometrics vs static biometrics: Dynamic fraud
detection explained, 2022; Fantana et al., 2015) is also frictionless
as it passively authenticates users to secure their mobile devices.

* Corresponding author.
E-mail address: ray@clarkson.edu (A. Ray-Dowling).

https://doi.org/10.1016/j.cose.2023.103184
0167-4048/© 2023 Elsevier Ltd. All rights reserved.

There are multiple in-built mobile sensors (touch, keypress, mo-
tion, light, camera, proximity, temperature, and elevation) that
log the user’s behavioral biometrics data which can be used to
authenticate the legitimate user of the device. This cost-effective
security mechanism can continuously authenticate users if the
data is non-sporadic in nature. Among the phone sensors, touch
event (swipe, tap, pinch, zoom), keypress, and proximity log
sporadic data which if unavailable at an instant cannot be utilized
for authentication. However, the motion sensors (accelerometer,
gyroscope, magnetometer, and rotation/orientation) can log data
whenever the phone is in operation and are therefore non-sporadic
in nature which will support continuous authentication even when
the sporadic modalities (keypress, swipes) are unavailable.

In this survey, we explore the strengths and challenges of
motion events (accelerometer, gyroscope, magnetometer, orien-
tation) based continuous authentication on mobile devices. We
focus on studies where the users’ motion is captured in their
stationary/non-walking (sitting/standing) states. This focus on sta-
tionary behaviors can be justified because such behaviors rep-
resent the major way a user interacts with mobile devices. Ad-
ditionally, stationary behaviors are important because modern
knowledge workers spend a significant amount of time working
with mobile devices in stationary states (Barkley and Lepp, 2016;
Zagalaz-Sanchez et al., 2019). Barkley and Lepp (2016) (Barkley and
Lepp, 2016) show that 87% users in their study are seated while
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interacting with their phones and that only 5.9% of the users who
use their phones frequently interact with their cell phones in non-
stationary states. Zagalaz-Sanchez et al. (2019) review studies that
show how excessive mobile phone usage in modern days is lead-
ing to reduced physical activity. These studies show the prefer-
ence of users to maintain stationary states over non-stationary
while interacting with mobiles. Furthermore, in many cases, the
magnitudes of the sensor events and their variations with time
are lower compared to when users are walking/moving which af-
fects the performance (Alobaidi et al., 2022; Ehatisham-ul Haq
et al., 2018) therefore making the stationary scenario more chal-
lenging. Thus the stationary scenario deserves further attention.
Through our survey of the studies involving stationary behaviors,
we observe that even with minimal motion during sitting and
standing the users can be authenticated with comparable high
performances to that of walking-based postures. The study by
Ray et al. (2021) has observed gyroscope data of lower magni-
tudes (< 0.05 radian/second) produce worse results for which they
consider gyroscope data beyond 0.05 radian/second. In the dataset
papers (Ehatisham-ul Haq et al., 2018; Kumar et al., 2018; Sitova
et al., 2015) where the same experimental setup is maintained be-
tween stationary and non-stationary data we observe a drop in
performance in the case of stationary data. These studies overcome
this challenge by several techniques which include fine-tuning the
normalization technique of the data (Kumar et al., 2018), perform-
ing experiments with many algorithms (Ehatisham-ul Haq et al.,
2018; Kumar et al.,, 2018), performing fusion of modalities (Ray
et al., 2021; Sitova et al., 2015), and choosing deep network algo-
rithms over traditional machine learning when the latter underper-
forms (Amini et al., 2018). However, we believe that in the future
more research needs to be performed focusing on better overcom-
ing this challenge.

We identify the following unique characteristics of stationary
user behavior:

1. Behaviors/Tasks performed when users are either sitting or
standing (including relaxed and non-relaxed postures).

2. Stationary behaviors broadly include fore limb movements
ranging from hand micro-movements during moving phones,
tapping, typing, and swiping to wide angular motion of arms
during hand waving, sweeping, and moving arms around elbow
holding phones.

3. A stationary posture must involve minimal hip muscle move-
ments.

4, Stationary user postures must not include flexing of hind limb
muscles due to walking and running. Flexing of hind limb
muscles during stationary behaviors must be limited to fidget-
ing/twitching and/or flexing during a change of posture (e.g.
changing of posture to cross-legged sitting or the other way).

In the case of stationary behaviors, users are either sitting or
standing and interacting with the mobile device during which even
the smallest magnitude of hand micro-movements can be logged
by the motion sensors. Users interacting with mobile devices in
hand tend to achieve stability and precision. As a result, the users
develop a postural preference. Additionally, the user’s hand size,
grip strength, and age constitute the physiological traits. Both pos-
tural preference and physiological traits are believed to contribute
to the uniqueness of user behaviors (Ray et al., 2021; Ray-Dowling
et al., 2022; Sitova et al., 2015). Thus the highly available motion
sensor data can be analyzed for continuous authentication to se-
cure mobile devices. Stationary behavior on mobiles through mo-
tion event-based biometric systems complements the existing se-
curity mechanisms in mobile devices and provides additional pro-
tection post the entry-point security checking.

As shown in Fig. 5, in this survey we have categorized the be-
haviors/activities of stationary users across the studies into natu-
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ral (e.g., routine usage, postures with phones, novel behavior, and
context limited) and designed (e.g., in-air signatures, pattern trac-
ing, and tapping in predefined screen locations, among others). The
natural behaviors are non-intrusive, more available than designed,
and thus have the advantage of enabling more frequent authenti-
cations. Furthermore, the categorization provides a quick overview
of all the relevant application scenarios to future researchers. This
categorization is also useful since user behavior affects the authen-
tication performance in a biometric system (Eglitis et al., 2020;
Sitova et al., 2015).

In our survey, we identify studies (for example Belman et al.,
2019; Ehatisham-ul Haq et al., 2018; Kumar et al., 2018; Sitova
et al.,, 2015) which present datasets with both stationary and non-
stationary behaviors. For the completeness of their survey and to
explain the entire user activities we acknowledge the presence of
the non-stationary behaviors and group them under the postures
with phones context of the natural behaviors category. All such
dataset papers have non-stationary behaviors along with substan-
tial stationary behaviors. However, none of the surveyed studies
consists of purely walking-gait-based behaviors.

In this survey, we observe the underpinning of behavioral bio-
metrics by cognitive psychology since the features derived from
behavioral biometrics are sequences of motor actions. Irrespective
of the skill level that a user possesses (novice, intermediate, and
expert), they perform a wide range of behaviors on mobile devices.
Such user behaviors are influenced by the general psychology or
willingness of the users which in turn affects performances. We
explore the stability that a user tends to achieve over time to get
accustomed to the mobile interface which is believed to have an
effect on authentication performance.

Recent surveys (Abuhamad et al, 2020b; Alsaadi, 2021;
Alzubaidi and Kalita, 2016; Eglitis et al., 2020; Mahfouz et al., 2017,
Stylios et al., 2021; Stylios et al., 2016; Teh et al., 2016) on behav-
ioral biometrics group studies by the wide variety of modalities
involved (keypress, touch, gait, and others). In contrast, our survey
focuses on stationary behaviors on mobile devices through motion
events. Given that stationary postures are the major way a user
interacts with a mobile phone, it is important to focus on station-
ary user behaviors on mobiles. Moreover, unlike other surveys, we
highlight only stationary behaviors through motion events because
the motion sensor readings are non-sporadic and become the only
means of user authentication when no other sporadic modalities
(keypress, swipes, taps) are available.

The state of the art on motion event-based authentication sys-
tem often fuses the motion data with other sporadic modalities
like keypress, swipe, tap, and elevation. Fusing motion events with
other modalities when available can improve the performance of
the authentication (Abuhamad et al., 2020b; Roy et al., 2015; Shen
et al., 2017; Stylios et al., 2021; Teh et al., 2016). In many cases,
only the motion sensors (accelerometer, gyroscope, magnetome-
ter, and orientation) are fused to enhance the overall authentica-
tion performance (Shen et al., 2017; Sitova et al,, 2015). Given the
above, we have categorized the reviewed state of the art into three
categories by focusing on motion events, as follows:

(i) stationary behavior on mobiles through only motion sensors
(presence of at least two motion sensors)
(ii) stationary behavior on mobiles through at least two motion
events fused with non-motion sporadic modalities
(iii) stationary behavior on mobiles through only one motion event
which may or may not be fused with non-motion sporadic
modalities

Across the three categories above, our survey further highlights
each reviewed study along the following dimensions - the datasets
used, number of data providers, user behavior, duration of de-
vice usage, modalities, sampling rate of motion events, algorithms
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Fig. 1. Comparison of the recent surveys and ours.

evaluated, fusion type, and performance measurement. We further
project the behavior dimension of each study to the following at-
tributes/aspects, namely, walking versus non-walking-based tasks
to create special datasets, tasks, and hand actions. See Fig. 1 and
Section 5. We also elaborately discuss notable feature extraction
methods performed by certain studies.

Therefore, this survey has made the following contributions:

1. Focuses on stationary mobile behavioral biometrics where the
motion events may also optionally be fused with other non-
motion modalities. No prior survey has focused on only station-
ary behavior on mobiles through motion events which need at-
tention given that stationary behaviors represent the major way
of user interaction with mobile devices. See Section 2.

2. User behavior categorization across the state of the art studies
into natural and designed behaviors. No prior survey has cat-
egorized user behaviors. The natural behaviors which are the
most common behavioral type among users (compared to de-
signed) are further divided into four levels of contexts, namely,
postures and phone locations, routine usage, context limited,
and novel behaviors. See Sections 4.1 and 4.2.

3. Observing the effects of behavioral types on performance to
analyze the usability in real-life implementation of behavioral
biometrics-based mobile authentication. See Section 4.3.

4, Describing the underpinning of behavioral biometrics in cogni-
tive psychology and the possible effects of general human psy-
chology on the performance of an authentication system. See
Section 4.

5. Grouping the state of the art on stationary user behaviors into
three categories based on the usage of the motion modalities
and others for authentication. See Section 5.

6. Reviewing each study from the three categories along dimen-
sions such as tasks, number of users, datasets, modality, sam-
pling rate, algorithms, and performance along with additional
behavioral attributes (walking versus non-walking behaviors,
tasks, and hand actions). See Sections 2, 4.4, and 5.

The rest of the paper is arranged as follows - Section 2 in-
troduces our proposed conceptual framework and explains the
selection criteria of the reviewed studies and the methodology

based on the conceptual framework to search the state of the
art. It also compares and contrasts our survey with existing ones.
Section 3 describes the background of the surveyed mobile secu-
rity system with involved motion event sensors and the authen-
tication pipeline utilized across the studies. The section also es-
tablishes stationary mobile behavioral biometrics as an authentica-
tion modality. Section 4 is a detailed elaboration of our conceptual
framework and description of the categorization of user behaviors
under natural and designed types and linking each behavior across
the studies under such category. It also describes the attributes or
properties exhibited by each study. Section 5 contains the survey
of the state of the art and links each with the proposed framework
described in the sections before. Section 6 discusses the future di-
rections of this research domain towards its application in real-life
as a mobile security system. Lastly, Section 7 concludes our survey.

2. Conceptual framework, survey methodology, and existing
surveys

This section describes the core conceptual framework of our
survey in brief based on which and other factors we list the crite-
ria for choosing studies that we review for our survey in stationary
mobile behavioral biometrics through motion events. It also dis-
cusses the methodology of searching state of the art to frame our
survey following the criteria. Thereafter, in this section, we com-
pare and contrast the existing surveys with ours and demonstrate
that no other surveys have proposed similar ideas to ours.

2.1. Proposed conceptual framework

In Fig. 1, we present the taxonomy of the surveys on behav-
ioral biometrics and highlight our uniqueness from others. Our sur-
vey focuses on an in-depth review of stationary behaviors on mo-
biles through motion events/sensors, unlike other surveys which
perform a wide review of studies under different modalities. We
observe that user behaviors/activities affect authentication perfor-
mance for which we categorize user behaviors across the studies
into natural and designed to analyze the effects of the type on
performance. The core concept of our survey lies in the catego-
rization of stationary behaviors in mobiles where we define nat-
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ural behaviors as routine/daily activities on phones and designed
behaviors as the type which are defined by an experimenter for
special research purposes (Fig. 5). So far, no other surveys have
categorized user behaviors. Furthermore, as shown in Fig. 1, nat-
ural and designed behaviors are assigned to the attributes of walk-
ing versus non-walking tasks to create special datasets, tasks, and
hand actions. Depending on the usage of motion event modalities
and their fusion with other sporadic modalities, we categorize the
reviewed studies into three groups (see Fig. 1) and analyze each
based on dataset, modalities, number of users, duration of phone
usage, algorithms, and performance. The above concept is elabo-
rately explained by applying it to each of the surveyed studies in
Sections 4 and 5.

2.2. Survey methodology

Based on the core conceptual framework we set the criteria for
the selection of the state of the art as follows:

1. The state of the art must be about mobile behavioral biomet-
rics.

2. The state of the art must involve stationary (sitting and stand-
ing) user behaviors. Some studies may involve both stationary
and non-stationary (gait-based) user behaviors but they must
have substantial stationary user behaviors.

3. The stationary user behaviors must be measured utilizing em-
bedded motion event sensors (acceleration, gyroscope, magne-
tometer, and orientation) to capture a user’s stationary hand
micro-movements. However, we encourage the fusion of other
simultaneously available non-motion modalities with the mo-
tion events.

4, We review the novel state of the art works that are pub-
lished in the following publication venues, namely, Elsevier,
IEEE, ACM, and Springer. We have also identified a few notable
studies from arXiv. We also review studies that show the po-
tential to include a variety in the range of stationary user be-
haviors.

5. The existing surveys mostly cover the state of the art on mo-
bile behavioral biometrics up to till 2015. Hence, we decide to
review the more recent works (2015 to present) involving sta-
tionary behaviors. However, we also include a few studies from
the timeline ranging from 2006 to the present to observe the
shift of using natural behaviors over designed with time.

Our methodology of surveying the state of the art includes two
methods. First, we search Google Scholar and Research Gate with
the following four phrases “continuous authentication on mobile be-
havioral biometrics”; “motion events based continuous authentica-
tion”; “acceleration based continuous authentication”; and “gyroscope
based continuous authentication”. Among the four, the first phrase is
the most effective. Second, we utilize the “snowballing” method to
identify more state of the art from the list of references of a study
that we have already reviewed.

Depending on the usage of modalities, we identify and review
59 relevant papers by grouping them under three categories. Ad-
ditionally, we also review the 8 most recent surveys on mobile
behavioral biometrics to support our understanding of the state
of the art. Given that we categorize the user behaviors/activities
across the 59 studies, we study the effect of users’ cognitive psy-
chology to interact with the interface for which we analyze 6 stud-
ies related to cognitive psychology.

2.3. Other surveys of mobile behavioral biometrics

In this section, we compare other surveys on mobile behavioral
biometrics with ours.
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The survey by Alzubaidi and Kalita (2016), has grouped stud-
ies under seven mobile behavioral biometric modalities (keypress,
touch, gait, hand waving, signature, voice, and general profiling).
The motivation of this survey is to review the state of the art that
can provide additional security mechanisms to overcome active at-
tacks like shoulder surfing. The authors survey papers based on the
following key points, namely, the amount of data used in authenti-
cation, the types of classifiers utilized, and the authentication per-
formances.

In the survey by Stylios et al. (2016), the authors have grouped
continuous authentication studies on mobile devices under walk-
ing gait, touch gestures, input methods, location familiarity, power
modalities, and their fusion. The key points of surveying each
study are the context of the problem, methods/algorithms, num-
ber of participants, and citation count.

Reviewing touch and keypress dynamics-based behavioral bio-
metrics studies, Teh et al. (2016) point out the characteristics of
an ideal authentication platform based on customizability, flexibil-
ity, cost, and market share factors. It explains the degree of con-
trol that can be adapted during the data acquisition and device se-
lection process. Additionally, it discusses the type of input string
that is ideal for touch-based authentication (free, fixed, semi-fixed,
or any touch gestures). The survey discusses the scenario of cross-
session-based data acquisition methods which should focus on be-
havioral adaptation due to cognitive factors, psychological factors,
physiological factors, and environmental factors that may affect the
authentication performance over time. It also surveys studies that
perform fusion of touch-based modalities with motion sensors (ac-
celeration and gyroscope) logged simultaneously.

Mahfouz et al. (2017), group the reviewed state of the art based
on gesture, keypress, general profiling, gait, and fusion-based au-
thentication. The authors classify two types of attack scenarios that
commonly challenge the traditional security mechanisms of mo-
bile devices, namely insider attacks (from close circles like family
and friends) and stranger attacks (from unknown impostors). The
main characteristics that a continuous authentication system must
possess are continuity- where a smartphone is verifying the user
in a continuous manner; periodic re-authentication mechanism-
re-authenticating the genuine users; and transparency- unobtru-
sive continuous authentication. The state of the art are reviewed
based on data collection, feature extraction, classification models,
and performance. The survey points out the limitations of an au-
thentication system, which are, noisy data, non-universality, intra-
class variations, and lack of uniqueness.

A recent survey by Abuhamad et al. (2020b) groups around
140 studies under gait, motion, keystroke, touch, voice modali-
ties, and combination (fusion) of modalities. It classifies the enroll-
ment phase of an authentication system into template and model-
based. In template-based, users submit multiple samples to es-
tablish templates for the future. Physiological biometrics mostly
follow template-based enrollment methods. On the other hand,
model-based enrollment trains a Machine Learning model for user
authentication where the model decides whether the data be-
longs to the genuine user. Behavioral biometric-based authentica-
tion mostly relies on model-based enrollments where the quality
of the features plays an important role. The studies are reviewed
under the following key points: user activities, modalities, classi-
fiers used, number of users, performance, authentication time, and
the mobile device used.

Eglitis et al. (2020), in their survey discuss the effect of discrete
adaptive learning on authentication and therefore relate learning
to the overall psychology of the users while getting adapted to
the data acquisition interface. They review around 40 works under
accelerometer, gyroscope, geomagnetic field, location, magnetome-
ter, phone status, proximity sensor, and touch sensor modalities.
The review dimensions for each study are citation count, device
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operating system, data and software availability, modalities used,
data collection conditions, user activities during data collection,
sessions, the time between sessions, use of multiple datasets, and
attack scenarios.

In a recent short survey, Alsaadi (2021) review studies under
voice, gait, keystroke dynamics, and signature modalities. The di-
mensions of reviewing each study are general problem description,
advantages, disadvantages, and applications.

Stylios et al. (2021), is an updated survey on mobile behav-
ioral biometrics that groups reviewed works under touch gestures,
keystroke dynamics, hand waving, and power consumption modal-
ities. The survey states the advantages of behavioral biometrics-
based continuous authentication as cost-effective, improving sys-
tems and the socio-political pressure, and user-friendly. The survey
includes the following dimensions to review each study, analysis of
data collection methodologies, different feature extraction meth-
ods, possible attack vectors of behavioral biometrics, challenges,
and future trends. The survey categorizes different attack mecha-
nisms (passive attack and active attack) and points out the kind of
attack that is common per reviewed modality.

In our survey, the reviewed state of the art capture user’s hand
micro-movements while they are in their stationary states and in-
teracting with a mobile device. The state of the art therefore must
utilize motion sensors (accelerometer, gyroscope, magnetometer,
and orientation) to log the micro-movements exhibited by the
user. It is hypothesized that the user’s hand micro-movements dur-
ing stationary behaviors along with their other physiological traits
(arm sweep, muscular flexing, grip strength, and hand size) are
unique among individuals and can be utilized to authenticate the
legitimate user of the mobile device. Additionally, the hand micro-
movements are impacted by the user’s task/activity/behavior, for
which we categorize user behaviors into natural and designed
(Section 4).

3. Background

As background, this section aims to present stationary mobile
behavioral biometrics through motion events as an acceptable and
usable authentication modality. It describes the three major mo-
tion sensors that measure the hand micro-movements of static
users, the building blocks of a typical authentication pipeline based
on authenticating stationary users through micro-movements, and
the characteristics and application-scenarios of non-walking mo-
bile behavioral biometrics.

3.1. Motion sensors in smartphones

A biometric system measures one or more physical (face, iris,
hand geometry, fingerprint, and others) or behavioral characteris-
tics (micro-movements, typing, swiping, gait, and others) informa-
tion of an individual to determine or verify their identity. These
characteristics are referred to by different terms such as traits, in-
dicators, identifiers, or modalities (Jain et al., 2011). This section de-
scribes the three most commonly used motion sensor modalities
for user authentication on mobile devices, namely, accelerometer,
gyroscope, and magnetometer. The reviewed state of the art stud-
ies have measured stationary/non-walking behaviors in mobile uti-
lizing these three most common motion sensors. Other motion
sensors on Android devices like step counters and step detectors
are out of the scope of our discussion. Figure 2 shows the graph-
ical readings of acceleration, gyroscope, and magnetometer (geo-
magnetic field) sensors from the Sensors app (from the Google Play
store) on a Samsung Galaxy S22 Android phone. The Sensors app
runs in the background when a subject is sitting and typing. The
app displays the readings of the phone’s sensors on the application
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interface. The magnitudes of each sensor are low since the subject
is in a sitting state.

3.1.1. Accelerometer

Acceleration is the change of speed of an object in three di-
mensions. An accelerometer is designed to measure static and dy-
namic accelerations (Carlson et al., 2015). Static acceleration is the
constant force acting on a body, like gravity (acceleration due to
gravity is constant at 9.8 m/s). Dynamic acceleration forces are
non-uniform and caused by vibration or shock. In smartphones,
an accelerometer is used to measure the vibration or accelera-
tion of motion of the device. The force caused by vibration or
acceleration triggers the sensor material to produce an electrical
charge which is proportional to the force exerted on it. The de-
vice mass is constant. The charge is also proportional to the ac-
celeration produced due to exerted force and so we have force =
acceleration x device_mass (How to measure acceleration, 2022; Liu,
2013).

3.1.2. Gyroscope

Gyroscope is used to measure orientation, based on angu-
lar momentum which is the rotational analog of linear momen-
tum (linear_momentum = mass * velocity). The gyroscope returns
the value of angular velocity which indicates how fast the device
rotates around its axes (Liu, 2013).

Applications of a phone’s gyroscope include motion sensing GUI
(Graphical User Interface) which enables users to hover, shake, se-
lect, and perform other interactions; answer phone by shaking the
device; stabilizing image quality by preventing trembling; GPS nav-
igation; and other motion sensing gaming activities (How does a
gyroscope sensor work in your smartphone, 2022).

3.1.3. Magnetometer

A magnetometer measures the strength and direction of the
magnetic field. It requires an absolute direction (the direction that
obeys the earth’s coordinate system). For acquiring error-free mag-
netometer readings, we need to get rid of the offsets from each
axis.

X_of fset = [max(Mx) + min(Mx)]/2

Y_of fset = [max(My) + min(My)|/2

Z_of fset = [max(Mz) + min(Mz)]/2 where Mx, My, and Mz are
magnetometer readings along the x, y, and z axes respectively.

Mx' = Mx — X_of fset

My’ =My —Y_of fset

Mz =Mz —Z_of fset where Mx’, My’, and Mz are the new
magnetometer readings along the x, y, and z axes respectively after
subtracting the offsets (Liu, 2013).

Magnetometers in smartphones are used as an e-compass that
measures the magnetic fields generally greater than 1 nT (nan-
oTesla). The magnetometer sensor in smartphones creates a minia-
ture Hall-effect that detects the Earth’s magnetic field along the
three axes X, y, and z. It works on the principle that a voltage can
be detected across a thin metallic element when placed in a strong
magnetic field perpendicular to the element’s plane (surface) as
shown in Fig. 3. The detected voltage is called Hall voltage (V_hall).
The Hall voltage is directly proportional to the strength and polar-
ity of the magnetic field perpendicular to the surface. The sensed
voltage is converted to a digital signal representing the magnetic
field intensity. The output Hall voltage is:

V_hall = R, « [(I/t) = B] where Ry, is the Hall Effect co-efficient, |
is the current flow through the surface in Ampere (amp), ¢t is the
surface thickness in millimeter (mm), and B is the magnetic field
in Tesla (Cai et al., 2012; hall-effect, 2022; What is magnetometer
sensor, 2022).

In addition to accelerometer, gyroscope, and magnetometer
there are other position sensors in modern smartphones, namely,
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Gyroscope
X: -0.03482 rad/s
Y: +0.06170 rad/s
Z: +0.02115 rad/s

2. Accelerometer

X: +0.18843 m/s?
Y. +6.58684 m/s?
Z: +7.33460 m/s?

Details Details
Name: LSM6DS0 Accelerometer
Power consumption: 0.17 mA
Vendor: STMicro

Version: 15933

Vendor: STMicro
Version: 15933

. WVMWMW ® fas]

Name: LSM6DSO0 Gyroscope
Power consumption: 0.55 mA

w Geomagnetic Field

X: +15.31875puT
Y: -10.01250 uT
Z: -34.44375uT

Details

Name: AK09918 Magnetometer
Power consumption: 1.1 mA
Vendor: akm

Version: 146972

(a)

(c)

Fig. 2. (a) Acceleration, (b) Gyroscope, and (c) Magnetometer sensor readings from the Sensors app on a Samsung Galaxy S22 Android phone while the user is sitting and

typing.

[ =

Fig. 3. The Hall Effect principle works by detecting a voltage across a metallic sur-
face (the Hall voltage) in response to a magnetic field that's perpendicular to the
metallic surface (Cai et al., 2012).

rotation or orientation sensors which can additionally complement
user authentication.

3.2. Building blocks of behavioral biometrics-based authentication
system

This section presents the general building blocks of the authen-
tication pipeline of the reviewed studies on stationary mobile be-
havioral biometrics. A behavioral biometrics-based authentication
system generally has the following subsystems, namely, collection,
transmission, storage, processing, classifier, and decision. Each sub-
system comprises processes. A behavioral biometric-based authen-
tication system has enrollment and authentication phases in both
of which the processing and classifier subsystems are present. See
Fig. 4. The reviewed state of the art studies include such building
blocks or its subset. The subsystems together with their processes
are described as follows:

e Collection - is the data collection subsystem in which a biomet-
ric pattern is presented to a sensor. The processes of the col-
lection subsystem include biometric pattern, presentation, and
sensor (Jain et al., 1999).

Transmission - is the subsystem that is generally present follow-
ing the collection subsystem. Here, the biometric pattern/signal
can be compressed for storage purposes. The signal can be ex-
panded for further processing of the data in the next stages.
The processes of this subsystem include compression, transmis-
sion, and expansion (Jain et al., 1999).

o Storage - is the subsystem to store raw signals from the trans-
mission phase (Jain et al., 1999).

Processing - this subsystem is present in both enrollment and
authentication phases to process the raw signals to be used as
training and testing samples respectively. The testing samples

are future examples that are validated through the pre-trained

model. The subsystem includes processes like data cleaning

(pre-processing and quality control), feature extraction, and fea-

ture selection (optional).

Classifier - The classifier subsystem is present in the enrollment

phase for training the model/classifier with the training sam-

ples. It is also used in the authentication phase to verify the

test samples against the pre-trained model.

o Decision - is the last subsystem of the authentication system.
Here a decision over the test sample is made of whether or not
the sample is accepted as a genuine or rejected as an impostor.

3.3. Characteristics and application-scenarios of stationary mobile
behavioral biometrics

In this section, we explore stationary mobile behavioral biomet-
rics through motion events as a biometric modality for user au-
thentication.

Any physiological or behavioral biometrics should possess the
following desirable characteristics: i) universality - every user pos-
sessing the measurable trait; ii) uniqueness - the trait must be
unique in every individual; iii) permanence - the trait should be
invariant with time; iv) collectibility - the trait can be measured
quantitatively; v) performance - the trait should achieve an accept-
able identification accuracy; vi) acceptability - user acceptance of
the biometric system based on the trait; vii) circumvention - how
easily the biometric system based on the trait can be compro-
mised (Jain et al., 1999; 2011; Ross et al.,, 2006). Several state of
the art on stationary behavior on mobiles show that the modality
has universality, uniqueness, collectibility, performance, acceptabil-
ity, and endurance against spoof attacks (cannot be circumvented).
However, no single biometrics is expected to possess all the char-
acteristics.

Any biometric system design is application dependent. The ap-
plications of stationary behavior-based authentication systems on
mobiles can be classified based on the following issues:

i) Cooperative versus non-cooperative users: this issue refers to
the user behavior while interacting with the biometric system. The
motive of a non-cooperative user generally lies in attempting to
hide their identity (Jain et al., 1999; 2011). Stationary behavior on
mobiles through motion events-based authentication system does
not have this issue as there is passive data logging. Genuine users
will allow the sensors to log their data in their own interest in
securing their devices. On the other hand, any non-legitimate user
will be locked out of the device by the authentication system. For
recognition systems that are based on face, fingerprint, and hand
geometry, a lot depends on the cooperation of the user.
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Fig. 4. General Building blocks of behavioral biometrics-based authentication system utilized by the reviewed studies (Abuhamad et al., 2020b; Jain et al., 1999).
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Fig. 5. Subcategories of different user behaviors within natural and designed behavior sets.

ii) Overt versus covert deployments: indicate whether the users
are aware that they are being authenticated (overt) or otherwise
(covert) (Jain et al., 1999; 2011). Motion through a stationary mo-
bile behavior-based authentication system is covert as the users do
not have to perform any additional task to authenticate themselves
and therefore the data logging is passive. An example of an overt
biometric system is fingerprint-based recognition in general.

iii) Habituated versus non-habituated users: Habituated users are
those who are accustomed to the biometric system due to frequent
interaction. Non-habituated users on the other hand are new to
the system (Jain et al., 1999; 2011). Stationary behavior-based au-
thentication systems on mobiles are expected to remain unaffected
with users having various skill levels since the motion data gets
passively logged while users are interacting on their devices. Addi-
tionally, the familiarity of users with the system positively affects

the recognition/authentication accuracy (Jain et al., 2011). More in-
sight into this is provided in Section 4.

iv) Attended versus unattended operations: Attended operation
refers to observed, guided, or supervised data acquisition (Jain
et al., 1999; 2011). An example of an attended operation is a face
and fingerprint-based biometric system used to issue identity doc-
uments. On the other hand, passive data logging through mobile
sensors is unattended.

v) Controlled versus uncontrolled operations: Under controlled
operation, environmental conditions like temperature, crowd, light-
ing, and others can be moderated. On the other hand, data acqui-
sition in outdoor environments is classified as uncontrolled (Jain
et al,, 1999; 2011). Stationary behavior on mobiles through motion
events can be logged in both controlled and uncontrolled environ-
ments.
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vii) Open versus closed systems: When a user’s biometric tem-
plate can be used as an authenticator in multiple applications it is
known as open system. For example, a user’s fingerprint may be
used for entering a secured building, logging into a workstation,
banking, and others (Jain et al., 1999; 2011). On the other hand,
the dynamic time-dependent data of motion events-based authen-
tication system cannot be used as an authenticator across several
applications or devices and is therefore a closed system. Open sys-
tems can be more prone to spoof attacks.

4. Categorizing user behaviors

An authentication system can expect users with different skill
levels of interacting with the authentication interface, which are
- novice, intermediate, and expert (Haasnoot et al., 2018). Irre-
spective of the skill level, users perform a wide range of activ-
ities/behaviors while interacting with an authentication interface
installed to secure a mobile device. Such user activities or behav-
iors can be categorized as natural and designed behaviors.

Natural User Behavior - It is a type of common behavior when
a passive authentication is performed to authenticate the user as a
legitimate owner of the device where a user is not constrained to
perform any active/designed special tasks. Behaviors like routine
phone usage, browsing, typing, form filling, and swiping fall un-
der this category. Therefore, no user training is required before the
data acquisition process. The only factor that can affect the authen-
tication is the experience/skill level of the user to interact with a
mobile device.

Designed User Behavior - It is the type of user behavior where
an active (a designed) special task is required to be performed to
log data that will be used for authentication. In many cases, when
an authentication dataset is built, researchers may require user be-
havioral patterns for a certain task (Carroll and Rosson, 1987) for
which they include designed behaviors. Examples of designed user
behavior are hand waving/arm sweeping, pattern tracing through
guided behavior, phone shaking around the elbow, typing pre-
scribed texts, and others. Many data acquisition processes require
users to perform an active attack scenario. Here, a user acts as an
impostor and tries to mimic a genuine user by watching them per-
form a designed task in a video. This too falls under the designed
user behavior category to test the robustness of the authentication
system through the collected data. The designed user behavior re-
quires training/practice for users to get accustomed to the process.

Through our research, we observe that behavioral biometrics in-
volve user tasks/ behaviors that are either performed as per the
user’s own will without any training or performed when a dataset
is collected by an experimenter who is providing special instruc-
tions/training. Thus we broadly classify behaviors/tasks into natu-
ral and designed.

The concept of cognitive psychology lies in the mental pro-
cessing of attention, language use, memory, perception, prob-
lem solving, creativity, and reasoning as a sequence of informa-
tion (Cognitive psychology, 2022). On the other hand, the features
derived from behavioral biometrics (behaviorism in individuals)
are sequences of motor actions. Thus, behavioral biometrics is un-
derpinned by the founding idea of cognitive psychology. Hence, un-
derstanding the behavior of users and their adaptability to an in-
terface through a learning process is important.

For both natural and designed behaviors performed, the key
factor is the general psychology or degree of willingness of the
user. Irrespective of the level of skill and perception, a user tends
to develop a learning or an adaptability curve to interact with the
authentication interface. The perception of using an embedded bio-
metric system varies across users. Cooperative users have the gen-
eral psychology to follow the process of authentication and de-
velop individually unique behaviors that are difficult for imposters
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to emulate. In many cases, an impostor can exhibit haphazard psy-
chology and has the motive to bypass the security mechanism.
However, there are enough cooperative and stable users available
to utilize the advantages of an authentication system. Therefore, a
user’s cognitive psychology and adaptability affect their interactive
behavior which in turn affects the authentication performance. We
observe the effects of natural and designed behaviors in authenti-
cation performance to further refine our justification of behavior
categorization (Section 4.3). We explore whether both types ex-
hibit acceptable authentication performance given in the real-life
implementation both of them can be utilized for user authentica-
tion. Additionally, we expect natural behaviors to show good per-
formance since that is exhibited the most by the users during de-
vice interactions.

There is an effect of practice (to get accustomed to the task) on
the authentication performance (Anderson, 1982; Ericsson et al.,
1993; Haasnoot et al., 2018). In Psychology, the Power Law of
Practice states that learning does not occur at a constant rate.
When learning a new task, the speed of performance improve-
ment in an individual declines. See Fig. 6(b). In behavioral biomet-
rics, the adaptability (the steady state in the curve in Fig. 6(b))
to perform tasks like typing, and swiping while holding devices
is believed to reach faster compared to learning any other skill-
ful tasks (e.g. a designed behavior). The natural behaviors are non-
intrusive and users are more accustomed to them than designed
behaviors. Cognitive Science recognizes that users tend to develop
consistency while performing natural behaviors faster than de-
signed (Carroll and Rosson, 1987). Figure 6(a) shows the Speed Ac-
curacy Trade-off (SATF) curves for novice, intermediate, and expert
users. The SATF shows a complex relationship between the speed
of learning and the accuracy of a system’s performance. It shows
that a fast learner does not necessarily produce high authentication
accuracy and a slow learner does not necessarily show low authen-
tication accuracy. In motor skill learning (like in behavioral biomet-
rics), skill improvements are defined as the changes in the location
and shape of a Speed-Accuracy Trade-off Function. See Fig. 6(a).
Such variations in performance can affect authentication in a bio-
metric system.

4.1. Natural behaviors across the state of the art

In the case of passive/natural tasks, it requires an individual to
process a sequence of motor events. Sequences of motor events
can be classified into - (i) motor adaptation which is a form of re-
learning with gradual improvements in performance and (ii) motor
sequence learning that involves the acquisition of skill to produce
a sequence of movements with limited effort (Anderson, 1982). In
Fig. 5, the set of natural behaviors shows the identified user be-
haviors from the reviewed studies that fall in this group.

Each study involving different natural behaviors has been iden-
tified under the appropriate subcategories or levels of context.
Looking at the wide range of user behaviors performed naturally
we coin four levels of context. However, with fewer designed be-
haviors such sub-categorization is not meaningful. There are four
major frames of reference within natural behavior. The broadest
frame of reference is when a user is in different postures (e.g.,
sitting, standing, walking, running, climbing stairs) and keeps the
phone in different body locations (e.g., pockets, waist, hands, up-
per arms). Under this context, users can perform a wide range
of natural behaviors. The next frame of reference is routine us-
age followed by context limited natural behaviors (typing, swip-
ing, browsing, and others). Routine usage is daily activities on the
device whereas context limited focuses on a specific natural task.
The narrowest frame of reference is performing novel behaviors for
a small interval of time. See Fig. 7. Among the levels of context,
novel behaviors, routine usage, and context limited include station-
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Fig. 7. Four levels of context under natural behaviors. The contexts of novel behav-
iors, routine usage, and context limited include stationary behavior whereas pos-
tures with phone include both stationary and walking behaviors.

ary behaviors. On the other hand, the broadest context, postures
with phone, consists of identified studies that include walking be-
haviors (in addition to stationary behaviors). However, our focus is
mainly on studies that involve stationary behaviors.

Postures with phone: Studies that include different pos-
tures and phone locations beyond stationary user postures
fall under this broadest frame of reference. In the study by
Belman et al. (2019) the users walk and climb up and down the
stairs with the phone in their pocket. The study by Ehatisham-
ul Haq et al. (2018) authenticates users when they are walk-
ing, sitting, standing, running, walking up and down stairs with
the phone in one of the five different body locations (upper
arm/wrist/waist/right pocket/left pocket). User authentication has
been performed taking every combination of the user’s posture
and phone location. In the study by Kumar et al. (2018), the users
are walking while wearing a smartwatch and while having a phone
in their pocket, through which the movements are measured us-
ing motion events. Apart from these, there is the study by Sitova
et al. (2015) which involves walking posture in addition to sit-
ting. Figure 5 shows the different natural behaviors under the
level/subset of postures with phones exhibited across the above
studies.

Routine usage: The studies under routine usage (Abuhamad
et al., 2020a; Centeno et al., 2017; Deb et al., 2019; Lee and Lee,
2015; Neverova et al., 2016; Roy et al,, 2015; Shen et al., 2017;
2022) have asked users to use the device for a long time span
ranging from hours to weeks and perform daily activities. The
main purpose of these studies has been collecting large samples
of data when users are performing daily tasks. The routine usage
behavior in the study by Roy et al. (2015) includes activities like
reading Wikipedia articles and answering Qualtrix questions. In
Abuhamad et al. (2020a), the users perform a wide range of activi-
ties which include screen touch and taps, web browsing, document

and email reading, making calls, chatting, and browsing pictures
among others. In a different study by Acien et al. (2019) users use
GPS, WiFi, and different phone applications like Whatsapp, Face-
book, YouTube, and others. Here, users are profiled utilizing infor-
mation from keystrokes, touch, acceleration, gyroscope, app usage,
WiFi, and GPS usage. In Lee and Lee (2017), users perform four
routine behaviors which are- using a smartphone while standing,
sitting, or moving; when stationary on the table; and in a moving
vehicle. The user behavior of read/write/map navigation belongs to
routine usage. However, all of these natural activities together are
the data collection format of HMOG data by Sitova et al. (2015).
Thereafter, other studies (Bhattarai and Siraj, 2018; Centeno et al.,
2017; Li et al., 2018; Li et al., 2020a; Li et al., 2021; Li et al., 2020b;
Shen et al., 2022; Volaka et al., 2019) have either utilized HMOG
or followed the same data collection method to create a special
dataset. Motion events are logged while users perform the above
routine phone usage. Figure 5 shows the different natural behav-
iors under the level/subset of routine usage exhibited across the
above studies.

Context limited: Other natural behaviors like typing, typing pass-
words, browsing, swiping, game playing, and phone pick-up fall
within the context limited frame of reference. There are stud-
ies (Belman et al., 2019; Centeno et al., 2017; Crawford and Ah-
madzadeh, 2017; Kim and Kang, 2020; Kumar et al., 2018; Li et al.,
2020a; Ray et al, 2021; Ray-Dowling et al., 2022; Sitova et al.,
2015; Volaka et al., 2019) that involve the specific task of typ-
ing. Out of these works, the study by Kim and Kang (2020) in-
volves typing in both Korean and English languages. In the study
by Stragapede et al. (2022a), users answer questions and type free
texts through which keypress and other sensor data are logged.
Works by Owusu et al. (2012), Giuffrida et al. (2014), Cai and
Chen (2012), Stanciu et al. (2016), and Buriro et al. (2021) in-
volve authentication through motion events when users are
typing PINs/passwords. Studies by Jain and Kanhangad (2015),
Belman et al. (2019), Sitova et al. (2015), Stragapede et al. (2022a),
Stragapede et al. (2022b), and Ray et al. (2021) have logged
substantial swipes along with motion event data. In the study
by Belman et al. (2019) there is a large number of horizon-
tal and vertical swipes. The study by Sitova et al. (2015) logs
swipes during the reading and writing activities that users per-
form across sessions. In Ray et al. (2021) swipes during the
form filling process are logged in addition to other modalities.
In Jain and Kanhangad (2015) the data includes left to right,
right to left, and up and down swipes. In one among 8 differ-
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ent tasks in Stragapede et al. (2022a), users read a document
that involves logging vertical swipes along with motion events. It
also includes gallery swiping which has logged horizontal swipes
and simultaneous motion events. Lin et al. (2012) include up-
down flicks/swipes and left-right flicks on the phone’s screen.
There are wide ranges of applications that are browsed across
the studies. The users in Amini et al. (2018) browse the Target
shopping app. Users in Incel et al. (2021), Basar et al. (2019),
and Stragapede et al. (2022a) browse a banking app and
perform standard online banking activities. In the study by
Murmuria et al. (2015) users browse Chrome and Facebook. In
Kumar et al. (2016b) users sit and perform web browsing. Other
context limited behaviors include game playing as performed by
the users in Li et al. (2020a) and Papamichail et al. (2019). One
of the most common context limited tasks is phone pickup. Stud-
ies by Feng et al. (2013), Carlson et al. (2015), Kunnathu (2015),
Stragapede et al. (2022a), and Buriro et al. (2015) have authenti-
cated users through the phone pickup trajectory. The behavior of
flicking to unlock phones by users in Nohara and Uda (2016) is
another example of a specific task for user authentication. On the
other hand, Stragapede et al. (2022a) perform unlocking of de-
vices using patterned passwords. Stragapede et al. (2022a) also
include signature tasks on the device’s screen as a context lim-
ited natural behavior. Shen et al. (2016) involve inputting taps on
the phone’s screen. Another such context limited user behavior
is form filling for registration purposes as performed by users in
Ray et al. (2021). During all the above tasks the studies capture
motion events. Figure 5 shows the different natural behaviors un-
der the level/subset of context limited exhibited across the above
studies.

Novel behaviors: We have identified two novel natural behaviors
performed by three studies. The studies by Buriro et al. (2017) and
Gupta et al. (2022) have authenticated users through motion
events for n seconds after being notified with a broadcast event
that gets triggered when suspicious activity is detected. In the
study by Ray et al. (2021) users are authenticated through mo-
tion events during a few seconds of using the fingerprint hardware.
This is to prevent sensitive applications like online banking that
are sometimes locked through the user’s fingerprint which can be
spoofed easily once an impostor manages to bypass the entry-point
authentication. Figure 5 shows the different natural behaviors un-
der the level/subset of novel behaviors exhibited across the above
studies.

4.2. Designed behaviors across the state of the art

For designed behaviors, training leads to the acquisition of cog-
nitive skills which has two phases - (i) declarative stage in which
information about the skill domain is interpreted and (ii) proce-
dural stage in which domain knowledge is applied for performing
the skill (Abrahamse et al., 2013). Figure 5 shows the user activi-
ties/behaviors grouped under the set of designed behavior.

In the study by Ray et al. (2021) users trace basic shapes
like triangle, square, hexagon, octagon, pentagram, and hexagram.
Users trace the patterns through a guided outline and are au-
thenticated through the strokes obtained from the tracing. In
Stragapede et al. (2022b), users draw the figure '8’ on screen.

Although typing in general is a natural behavior, typing pre-
scribed texts is designed. In the study by Ray et al. (2021), users
have to type a declaration statement which is "I declare that
everything I type is truthful”. One of the tasks in the study of
Belman et al. (2019) includes typing two static texts which are "this
is a test to see if the words that i type are unique to me. there are
two sentences in this data sample” and "second session will have dif-
ferent set of lines. carefully selected not to overlap with the first col-
lection phase”. Similarly, in the study by Gascon et al. (2014) users

10
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type the pangram "The quick brown fox jumps over the lazy dog”.
Owusu et al. (2012) also involves typing of prescribed pangrams.
Users in Stragapede et al. (2022b) perform the tasks of typing a
prescribed text in Spanish, which is, "En un lugar de la Mancha,
de cuyo nombre no quiero acordarme”. In all these studies, motion
events are captured while users type the prescribed texts.

In the study by Stragapede et al. (2022a), one of the user behav-
iors includes a designed behavior of tapping on predetermined lo-
cations of the device’s screen as fast as possible. Although tapping
behavior itself is a natural behavior, the factor of predetermined
locations makes the behavior designed.

The study by Yang et al. (2015) has collected motion event data
for authentication while users are performing the designed behav-
ior of hand gestures wearing a smartwatch.

Multiple studies have collected motion event data through
the designed behavior of hand waving/arm sweeping. The study
by Kratz et al. (2013) has trained users to perform six dif-
ferent hand waving gestures as shown in Fig. 9. Similarly,
Okumura et al. (2006) have collected user’s hand waving data
while users have swept their hands vertically along the y-
axis. In-air signatures are performed by users in the studies
of Casanova et al. (2010) and Laghari et al. (2016). Addition-
ally, Casanova et al. (2010) also performs drawing of concate-
nated shapes by holding phones in the air. Other similar studies
that perform hand waving/arm sweeping are Hong et al. (2015),
Yang et al. (2014), and Fantana et al. (2015).

There is a designed behavior  performed by
Zhu et al. (2017) where users shake the handheld phone uti-
lizing their elbow as the fulcrum as shown in Fig. 10. Hand
waving is different from phone shaking around the elbow since
in the former case the elbow is not always used as the fulcrum.
However, here their elbows are fixed. Additionally, there are only
four gestures that users perform under this behavior by always
making sure that the shaking happens about the elbow.

We can therefore understand that for most natural behav-
iors the stability in learning skills to get accustomed to the in-
terface will reach faster (see Fig. 6(b) where the curve plateaus
for expert users) than most designed behaviors. To deploy sta-
tionary mobile behavioral biometric systems in real life, our
research community has performed their studies with mostly
natural behaviors. In Fig. 8 we can see a gradual shift to-
ward research using natural user behavior over time. After
2015 the utilization of designed behaviors to authenticate users
based on motion events has narrowed down. However, in the
studies like Belman et al. (2019), Stragapede et al. (2022a),
Stragapede et al. (2022b), and Ray et al. (2021) there is the utiliza-
tion of both natural and designed behaviors where the number of
designed behaviors are less. On the other hand, towards the middle
of the timeline (around 2015), there are several studies that started
exploring natural behaviors. The plot in Fig. 8 shows a preference
for natural behaviors over designed ones since the utilization of
natural behaviors can estimate the robustness of the authentica-
tion system when deployed in real life. Additionally, natural behav-
iors are to be expected more in a real-life scenario, than designed.
Therefore, the gradual shift in the usage of natural behaviors is jus-
tified.

4.3. Effects of behavior type on authentication

In case of the natural behaviors, users are free to follow accus-
tomed strategies. On the other hand, while performing designed
behaviors users are constrained to perform artificial tasks. Cogni-
tive Science recognizes that users tend to develop consistency in
performing natural behaviors which is not the same in the case of
designed or artificial tasks (Carroll and Rosson, 1987).
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Fig. 8. Research timeline to show a gradual shift toward natural behaviors.
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Fig. 9. Hand waving or arm sweeping in Kratz et al. (2013).
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Fig. 10. Phone shaking around the elbow in Zhu et al. (2017).

Figure 11 shows the performances across the reviewed stud-
ies which utilize natural behaviors for user authentication. We plot
bar graphs for each performance metric. The performance metrics
utilized by the studies are EER (Fig. 11(a)), Accuracy (Fig. 11(b)),
TAR (Fig. 11(c)), AUC (Fig. 11(d)), and HTER (Fig. 11(e)). We observe
from each bar graph that the user authentication performance uti-
lizing natural behaviors for most studies is more than acceptable.

On the other hand, Fig. 12 shows the performances across the
reviewed studies which utilize designed behaviors for user authen-
tication. We present bar graphs for each performance metric uti-
lized by the studies which are EER (Fig. 12(a)) and FPR (Fig. 12(b)).
However, there are lesser samples of designed behavior perfor-
mances compared to natural which explains the shift in utilizing
natural behaviors more than designed as the research timeline has

1

progressed (Fig. 8). Even among the few identified designed behav-
iors, the user authentication performances are acceptable.

In real-life experience, user authentication should primarily de-
pend on natural behaviors since those are easily available through
user inputs. However, as a security mechanism, there can be de-
signed behaviors incorporated in the real-life implementation of
user authentication on mobiles, e.g. pattern tracing of geomet-
rical shapes for unlocking interfaces. The authentication perfor-
mances across studies utilizing natural and designed behaviors are
observed to be acceptable. However, the difference between the
natural and designed behaviors strongly exists due to their vari-
ations in nature and the reaching of user stability (Carroll and
Rosson, 1987) as explained by cognitive psychology. From a clas-
sifier’s capability, for either natural or designed, the training and
testing samples belong to the same group (either natural or de-
signed), which makes the performances more than acceptable in
both cases. Attaining faster stability among users while perform-
ing natural than designed behaviors hypothesizes better authen-
tication performance of natural behaviors. But the classifiers are
observed to overcome the noise or haphazardness due to unfamil-
iarity among users to perform designed behaviors which explains
the comparable performances of both natural and designed.

Therefore, we need to acknowledge the difference in nature be-
tween natural and designed behaviors and the differences as ex-
plained by cognitive science which will be helpful before real-
life deployment of user authentication utilizing any behavior type.
Alongside, we need to understand a classifier’s capability to over-
come haphazard traits in designed behaviors and therefore per-
form equivalent to natural. This further ensures that the future
real-life implementation of user authentication can depend both
on natural and designed behaviors. However, it is expected to rely
more on natural, as is the trend, due to its large availability and
usage familiarity among mobile consumers.

4.4. Additional attributes/aspects of behaviors

In addition to the user behavior categorization, we also charac-
terize each behavior from the reviewed studies under the following
attributes/aspects:

o Attribute 1: walking versus non-walking
o Attribute 2: tasks
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Fig. 11. Performances across studies utilizing natural behaviors: (a) Equal Error Rate (EER); (b) Accuracy; (c) True Acceptance Rate (TAR); (d) Area Under the Curve (AUC);

and (e) Half Total Error Rate (HTER).

o Attribute 3: hand actions

There are studies (Belman et al., 2019; Ehatisham-ul Haq et al.,
2018; Kumar et al., 2018; Sitova et al., 2015) that involve a wide
range of postures with the handheld phone to create special
datasets with multiple modalities. In other cases, researchers hand
over the data collection device/phone to volunteers for several
days to log multi-modality data while users perform routine ac-
tivities. Such behaviors hold the first attribute of walking versus
non-walking-based tasks to create special datasets. On the other
hand, there are studies (Okumura et al., 2006; Ray et al., 2021;
Stragapede et al., 2022a) that collect data through assigning tasks
to users, such as browsing, form filling, waving, and phone pickup,
among others. Therefore, they are assigned to the second attribute.
Lastly, typing, swiping, tapping, and hand motion, among oth-
ers (Frank et al.,, 2012; Gupta et al., 2022; Ray et al,, 2021; Stra-
gapede et al., 2022a) are fine-grained characteristics of the tasks
attribute and form the third attribute of hand actions. The taxon-
omy of surveys in Fig. 1 lists the attributes projected in addition
to the behavior categorization into natural versus designed. These

12

attributes will be assigned to the behaviors of each reviewed study
in Section 5.

5. Survey of stationary mobile behavioral biometrics

Our survey groups studies in stationary mobile behavioral bio-
metrics into three categories. We highlight each reviewed study
along the following dimensions - the datasets used, number of
data providers, user behavior, duration of device usage, modalities,
sampling rate of motion events, algorithms evaluated, fusion type,
and performance measurement.

Our survey focuses on studies that involve motion events. Based
on the number of motion event modalities and whether fusion is
involved, three categories of stationary mobile behavior are defined
as follows:

1. presence of at least two motion sensors but without fusion
with non-motion sporadic modalities

at least two motion events fused with non-motion sporadic
modalities

2.
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Fig. 12. Performances across studies utilizing designed behaviors: (a) Equal Error Rate (EER) and (b) False Positive Rate (FPR).

3. only one motion event which may or may not be fused non-
motion sporadic modalities

The above grouping is motivated by observed advantages and
disadvantages unique to each of the studies. We list them along
with the performance trend of each group which will help readers
to observe each category as a whole and understand their distinc-
tiveness from one another.

The first group of works includes studies that involve measuring
motion through two or more motion sensor modalities (accelera-
tion, gyroscope, magnetometer, and rotation) only. No other non-
motion modalities data are included. These studies focus solely on
the measurement of phone’s motion about the reference frame of
inertia due to the user’s behavior/activity on the device. The other
sporadic modalities (keypress, touch, location, and gravity) are con-
sidered stronger compared to the motion sensor modalities. Thus,
excluding them makes the first group of studies more challeng-
ing than the others. However, there are studies that involve ac-
tivities like typing, swiping, and touch events but these sporadic
sensor data are not utilized for authentication under this category.
In these cases, users are authenticated through the motion events
logged while a user is performing such activities of typing, swip-
ing, and others.

Advantages:

o Systems falling under this group do not have to depend on the
occasional presence of sporadic modalities.

« The motion events are always available whenever the phone is
in use which serves the core purpose of continuous authentica-
tion.

Disadvantages:

« System’s authentication depends on at least two motion events
where each may have a very high sampling rate (Buriro et al.,
2015; Zhu et al., 2017). This has the potential to challenge the
mobile’s battery consumption.

Systems processing such highly sampled data may pose chal-
lenges to the computational cost.

Performance and Overall Trends:

In this study we identify the use of two algorithms in most
cases which are SVM and neural networks (Table 1) which jus-
tifies handling the higher sampled data or the same with more
feature dimensions.

e We find a few studies with high performances even with
smaller sampling rates (Feng et al., 2013; Ehatisham-ul Haq
et al., 2018; Kumar et al., 2018; Ray et al., 2021). However, our
research community is encouraged to perform benchmarking
for further assurance.

The second group of studies includes works that involve exper-
iments with two or more motion sensor modalities fused or com-
bined with other sporadic non-motion sensor modalities. The spo-
radic modalities usually log the user behaviors like typing, swip-
ing, zooming in/out, and others in an input format. These are spo-
radic because their logging depends on human behavior. One can-
not expect the behavior of typing or swiping to occur constantly.
These are comparatively stronger modalities than the motion sen-
sor modalities. The fusion/combination of these sporadic modal-
ities (when available) with motion sensor modalities strengthens
the authentication performance.

Advantages:

e Motion events occur simultaneously with stronger sporadic
events which enhance performances as demonstrated in Sitova
et al. (2015), Deb et al. (2019), Incel et al. (2021).

Due to occasional occurrences the sampling rates of the motion
events will be under control to not challenge the battery con-
sumption and computational cost.

Disadvantages:

System’s performance depending on the sporadic modalities
fails to serve the purpose of continuous authentication.

Cases, where the system’s algorithm is not competent enough,
will fail to produce satisfactory performance with multiple
modalities.

Performance and Overall Trends:

We observe the usage of a wide range of algorithms.

Here we observe a range of performances with low satisfactory
results as in Cherifi et al. (2021), Gascon et al. (2014) to high
performances as in Abuhamad et al. (2020a), Roy et al. (2015),
Incel et al. (2021) among others. Further benchmarking will en-
sure the performance range of fusion of motion events with
other sporadic modalities.

The third group of studies involves works that measure user be-
havior through only one motion event (Kim and Kang, 2020; Ku-
mar et al., 2016b; Yang et al., 2014). The single motion event may
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Table 1

Comparative literature review: Fusion of at least two motion events for measuring stationary behaviors on mobile. Abbreviations - ACC: Accuracy, AB: AdaBoost,
AUC:Area Under the Curve, BN:Bayes Network, DT: Decision Trees, DTW: Dynamic Time Warping, EE: Elliptic Envelope, EER: Equal Error Rate, FAR: False Acceptance Rate,
FRR: False Rejection Rate, GCU: Glasgow Caledonian University dataset, GBC: Gradient Boosting Classifier, HTER: Half Total Error Rate, HMOG:Hand Movement, Orientation,
and Grasp, IF: Isolation Forest, kNN: k Nearest Neighbor, KRR: Kernel Ridge Regression, LDA: Linear Discriminant Analysis, LinReg: Linear Regression, LOF: Local Outliers
Factor, LReg: Logistic Regression, LSTM: Long Short-Term Memory, MLP: Multilayer Perceptron, NB: Naive Bayes, PABG: Phone Acceleration-based Gait Biometric, RF: Random
Forest, RNN: Recurrent Neural Network, StatM: Statistic Method, SVDD: Support Vector Data Description, SVM: Support Vector Machine, SPMP: Swiping and Phone Movement
Patterns, TRM: Trajectory Reconstruction Method, WABG: (Smart)watch Acceleration-based Gait, WRBG: (Smart)watch Rotation-based Gait.

Best

Study & Dataset #User Behavior Duration Modality Sampling (Hz) Algorithm Fusion performance

Li et al. (2020a), own, 100, 82 read, write, navigate; 24 Sess. (~60 Accel, Gyro 100, 10 SVM sensor (data)  5.14%, EER

Brain- game playing hr), -

Run (Papamichail et al.,

2019)

Kumar et al. (2018), 18, 40, typing in sitting, gait - Accel, Gyro 46, 25, - SVM, LOF, IF, EE, AB, score, decision 94.22%, AUC

PABG (Kumar et al., 28 NB, kNN, LDA, LReg,

2015), MLP, RF

WABG (Kumar et al.,

2016a),

WRBG (Kumar et al.,

2016a),

SPMP (Kumar et al.,

2016b)

Ray et al. (2021), own 49 Form filling in siting, 2 Sess. (intra, Accel, Gyro 2 SVM score 2.4%, EER
typing prescribed inter) (weighted, LR) (intra); 6.9%,
texts, motion during EER (inter)
fingerprint scanning,
pattern tracing
through guided
behavior

Li et al. (2018), own 100 read, write, navigate 6 hr Accel,Gyro 100 SVM feature 4.66%,EER

Amini et al. (2018), 47 browsing shopping 10-13 min Accel, Gyro 100 LSTM, SVM, RF, LReg, sensor 96.7%, ACC

own app in sitting GBC

Ehatisham-ul Haq 10 walking, sitting, 90 min Accel, Gyro, 50 SVM, DT, kNN feature 100%, ACC

et al. (2018), own standing, running, Magneto
walking up and down
stairs placing phone in
different locations of
user’s body

Lee and Lee (2017), 35 routine usage 2 weeks Accel, Gyro 50 KRR, SVM, LinReg, NB feature 98.1%, ACC

own

Fantana et al. (2015), - hand waving/arm 5 Sess. Accel, Gyro 200 DTW - 0.02% FAR, 10%

own sweeping holding FRR, 3% EER
phone

Lee and Lee (2015), 4,4 routine usage 5 days, 3 Accel, Rotate, 5, - SVM sensor 95%, ACC

own, weeks Magneto

GCU (Kayacik et al.,

2014)

Zhu et al. (2017), own 20 phone shaking around 2 Sess. Accel, Gyro 200 SVM sensor 1.2%, EER
elbow in sitting and
standing

Feng et al. (2013), own 31 phone pick up 3 Sess. Accel, Gyro, 25 StatM, TRM feature 6.13%, EER

Magneto

Neverova et al. (2016), 1500 routine usage several days Accel, Gyro - RNN feature 18.17%, EER

own

Carlson et al. (2015), 10 phone pickup 1 Sess. Accel, Gyro 68.7 MLP feature 88%, ACC

own

Buriro et al. (2015), 26 phone pickup 1 Sess. Accel, Gyro, 150, 190, - BN, RF, SVM score 7.33%, HTER

own Rotate

Kunnathu (2015), own 7 phone pickup 1 Sess. Accel, Gyro 25 MLP feature 91.43%, ACC

Kratz et al. (2013), 15 hand waving/arm 1 Sess. Accel, Gyro 80 Protractor3D, DTW, feature 95%, F1 score

own sweeping holding LReg
phone

Yang et al. (2015), own 30 hand gestures wearing 2 Sess. Accel, Gyro 100 DTW, histogram feature 2.6%, EER
smartwatch

Li et al. (2020b), own 50 read, write, navigate 24 Sess Accel, Gyro, 100 SVDD feature 1.47%, HTER

Magneto

Li et al. (2021), own 100 read, write, navigate 24 Sess. Accel, Gyro 100 SVM (0CC) feature 1%, EER

Bhattarai and 100 read, write, navigate 24 Sess. Accel, Gyro 100 SVM (0CC), fuzzy SVM feature 3.7%, EER

Siraj (2018), (0cC)

HMOG (Sitova et al.,

2015)

14
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or may not be fused with other sporadic modalities. For example,
the study by Kumar et al. (2016b) has acceleration as the only mo-
tion sensor modality and two sporadic modalities - keypress and
swipe. This work is based on authenticating users while they per-
form the two most common activities which are typing and swip-
ing during which the phone motion gets captured through acceler-
ation. The common single motion sensor modality is acceleration
which is used by most of the studies under this group. Among all
the motion sensors, acceleration is considered to be the most use-
ful modality as it includes inertial force (force which is caused due
to the momentum of the mass/phone). The only reason for which
the phone’s mass is subjected to momentum is the user activity on
the device and therefore it becomes an important motion sensor
modality. However, considering only one motion sensor modality
for authentication can be challenging.
Advantages:

e Due to the presence of only one motion modality the bat-
tery consumption and computational cost are not potential con-
cerns.

Disadvantages:

e Due to the presence of only one single modality system relia-
bility can be challenging.

Performance and Overall Trends:

« We observe the utilization of a wide variety of algorithms even
in this small group of studies.

* In most cases the performances are satisfactory (Centeno et al.,
2017; Crawford and Ahmadzadeh, 2017; Kim and Kang, 2020;
Kumar et al., 2016b; Laghari et al., 2016). Future benchmarking
is required to be conclusive.

5.1. Fusion of two or more motion modalities

Table 1 lists the state of the art under this category.

In the study by Li et al. (2020a) two motion events (acceleration
and gyroscope) are logged with the goal of capturing arm move-
ment and fine-grained motion. Two datasets are utilized in this
study, of which their own collected dataset consists of 100 users
who perform reading, writing, and map navigation activities over
24 sessions. There is the use of the BrainRun (Papamichail et al.,
2019) public dataset as the second dataset from which 82 ran-
dom users’ data is utilized for evaluation. The users in the pub-
lic dataset perform a game-playing activity that can be classified
under the natural behavioral trait. The user activities from their
own and public datasets belong to the subset of routine phone
usage and context limited respectively under natural behaviors.
Based on such categorization, the user behavior of routine usage
and gaming possess the attribute of walking versus non-walking-
based tasks to create special datasets and tasks respectively (See
Fig. 1). The platform, Scanet, evaluates the logged data which con-
sists of two-stream CNN (Convolutional Neural Network) as fea-
ture extractors so that both time and frequency domain features
are learned. Thereafter, PCA (Principal Component Analysis) is uti-
lized to select the top 25 features with high discriminability after
which classification is performed utilizing a one-class SVM (Sup-
port Vector Machine). During training the SVM, they perform 10-
fold cross-validation. Investigating the combination of acceleration
and gyroscope using one-class SVM, they achieve an average EER
(Equal Error Rate) of 5.14% on their own and the BrainRun dataset.

Kumar et al. (2018) compare the performances of several one-
class classifiers (OCC) with binary classifiers (BC) utilizing four
small datasets (number of users in each set < 50). However, the
user activity of the four datasets involves both non-gait and gait-
based activities under natural behavior (web browsing, typing,
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swiping, walking, and walking while wearing a wristwatch as a
wearable sensor device). The user behaviors of the four datasets
include walking back and forth for 200 m with a phone in trouser
pocket (PABG dataset Kumar et al., 2015), wearing a smartwatch
and walking (WABG and WRBG datasets Kumar et al., 2016a), and
browsing (SPMP dataset Kumar et al., 2016b). These are natural be-
haviors where the first two possess the attribute of walking versus
non-walking-based tasks to create special datasets and the third
behavior of browsing possesses the attribute of tasks. Acceleration
and/or gyroscope are the motion events that are utilized across all
four datasets to log user behaviors. Among experiments performed
on individual OCC, BC, and fusion of multiple OCCs, the kNN (k-
Nearest Neighbor) BC produces the best result of 94.22% Area Un-
der the Curve (AUC).

In Ray et al. (2021), utilizing acceleration and gyroscope, con-
tinuous authentication is performed on mobile devices collecting
a dataset of 49 seated users. The user behavior includes an An-
droid registration form filling which is categorized under natural
behavior type given it is a real-life scenario or a common prac-
tice of mobile users to sit and fill out online registration forms to
open an account or a portal for utilizing banking, e-commerce, and
other online services. The form filling in sitting behavior is pro-
jected into tasks attribute. The data collection also includes typ-
ing a prescribed text (a designed behavior with the attribute of
hand actions), followed by capturing motion events when users
are using the phone’s fingerprint scanner (a natural behavior with
the tasks attribute), and then tracing geometrical patterns through
guided outline (a designed behavior projected into tasks attribute).
Fusing the two modalities at weighted score level and likelihood
ratio-based score level, the best EERs of 2.4% and 6.9% are achieved
for intra- and inter-session experiments respectively. Between the
two score fusion techniques, the likelihood ratio-based score fusion
performs the best in both intra-session and inter-session (with the
effect of concept drift) experiments.

Another study by Li et al. (2018) with 100 users’ data utilizes
only acceleration and gyroscope to capture the fine-grained mo-
tion of users’ hand movements. Users perform routine phone usage
as a natural behavior for around 6 h. The routine usage behavior
possesses the attribute of walking versus non-walking-based tasks
to create special datasets. The authentication platform, SensorAuth,
consists of a feature extraction module that extracts both the time
domain (mean, median, standard deviation, maximum, minimum,
range, kurtosis, skewness, 25%, 50%, and 75% quantiles) and fre-
quency domain (energy, entropy, peakl, peak2f, and peak2) fea-
tures. The raw data in this study undergo data augmentation to
prevent overfitting and improve the classifier’s generalizability. Uti-
lizing the SVM classifier, they obtain the best EER of 4.66%.

In the study by Amini et al. (2018) a Deep Learning-based re-
authentication platform, DeepAuth, is utilized through RNN (LSTM)
models. The data is collected from 47 volunteers using accelerom-
eter and gyroscope sensors. The user behavior includes sitting and
browsing the Target shopping app for 10-13 min while another
app logs the sensor data running in the background. It is a context
limited natural behavior as in real-life scenarios it is a common
task for mobile users. The user behavior of browsing is projected
into tasks attribute as shown in Fig. 1. The platform architecture
is to re-authenticate genuine users but lock out impostors unless
they can pass other security mechanisms like providing passwords.
The data is first pre-processed by downsampling from 100 Hz to
50 Hz. Then it is windowed or segmented with window sizes of
20, 40, 100, 200, and 500. It is observed that the window size of
100 performs the best. The time domain features of the sensors are
converted to the frequency domain using Fast Fourier Transform.
Data is split into training-validation-testing sets in percentages of
70%-15%-15%. In the next stage, the data is passed to the LSTM
(Long Short-Term Memory) network which outputs a series of fea-
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ture vectors. The very last output is fed to a fully connected out-
put layer and then to a sigmoid activation function from which the
positive/negative result is obtained. The LSTM produces the best
result of 96.7% accuracy based on 20 s of data.

Ehatisham-ul Haq et al. (2018) perform six user behaviors,
namely walking, sitting, standing, running, walking upstairs, and
walking downstairs for a duration of 90 min when the sensor de-
vice is kept in 5 locations of a user’s body (left, right jeans pocket,
waist, upper arm, and wrist). These user behaviors are natural be-
haviors under the subset of postures with phone. The user be-
haviors are projected into the attribute of walking versus non-
walking-based tasks to create special datasets. The classifiers uti-
lized for the user authentication are SVM, Decision Trees, and kNN
(k-Nearest Neighbors) of which SVM performs the best. They au-
thenticate users through acceleration, gyroscope, and magnetome-
ter sensors achieving 100% accuracy from walking and running be-
haviors.

The work by Lee and Lee (2017) focuses on unobtrusive user
authentication. The authentication system SmarterYou combines
users’ information recorded in the smartphone and wearable de-
vice. The work also includes the calculation of energy consumption
of the device as the system needs to be continuously retrained.
The authors assume that each smartwatch is associated with one
owner who does not share their smartphone or smartwatch and
that the communication between the two devices is secure. The
smartwatch monitors the user’s raw sensor data and sends this in-
formation to the smartphone via Bluetooth. The sampling rate for
collecting the data from both devices is 50 Hz. The authors choose
accelerometer and gyroscope sensor data because the accelerome-
ter records motion patterns and the gyroscope records fine-grained
motions of users such as how one holds a smartphone. They have
segmented the raw data into sliding windows. The features de-
rived from the two modalities are mean, variance, maximum, min-
imum, range, peak, peakf, peak2, and peak2f of the sensor stream.
Accelerometer and gyroscope data from both devices are fused at
the feature level. It is observed that the data from the smartwatch
fused with the phone’s data enhances the performance. Users per-
form four routine behaviors- using smartphone while standing or
sitting, while moving, while it is stationary on the table, and in
a moving vehicle. All of these are of the natural behavior type.
These routine phone usage behaviors possess the attribute of walk-
ing versus non-walking-based tasks to create special datasets. They
have classified the data using Kernel Ridge Regression (KRR), SVM,
Linear Regression, and Naive Bayes. Out of these, KRR performs the
best with an accuracy of 98.1%.

The study by Lee and Lee (2015) involves their own dataset and
the GCU (Glasgow Caladonian University) dataset (Kayacik et al.,
2014). The users in their dataset perform routine phone usage (nat-
ural behavior) for several days, which is captured using three mo-
tion sensors - accelerometer, magnetometer, and rotation (orien-
tation). The user behavior is projected into the attribute of walk-
ing versus non-walking-based tasks to create special datasets. They
utilize 10-fold cross-validation during classification. Fusing the data
at sensor level and utilizing SVM as the classifier they obtain the
best result of 95% accuracy.

The study by Neverova et al. (2016) is performed on a large
dataset of 1500 users. Users perform routine phone usage for sev-
eral months which is a natural behavior. The user behavior is pro-
jected into the attribute of walking versus non-walking-based tasks
to create special datasets. Both acceleration and gyroscope data are
used for authentication. RNN-based deep neural network is used
in this study. They propose a Dense Convolutional Clockwork RNN
model. They pre-process the data by normalizing and making a 14-
tuple data vector (accel x, accel y, accel z, accel magnitude, gyro X,
gyro y, gyro z, gyro magnitude, angles made by accel and gyro in
the phone’s coordinate system per axis). They perform authenti-
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cation experiments with their proposed RNN-based network and
other neural networks. Data from all 1500 users is collected using
587 phones. Data from 150 phones are used for validation and an-
other 150 phones are used for testing. An EER of 18.17% is obtained
as the best.

In the study by Fantana et al. (2015), a designed behavior of
hand waving holding a phone is performed across five sessions.
The user behavior possesses the tasks attribute as shown in Fig. 1.
Two modalities namely, acceleration and gyroscope are utilized
to log the user behavior. Each movement/gesture is recorded for
3 s and is referred to as a snippet. To test the reliability of the
authentication method they perform another designed behavioral
task to create an attack scenario. They utilize genuine user’s video-
recorded attempts to reproduce the movement by skilled forgers.
The recorded video is shown to the forgers and they are asked to
repeat the movement to the best of their ability. Both zero-effort
and skilled forgeries are performed. In the data processing stage,
the 3-second data per movement is reduced to 500 ms data where
the actual gesture is present. Several experiments are performed to
evaluate authentication performance utilizing DTW (Dynamic Time
Warping) classifier. The best performance obtained in this study is
an EER of 3%.

The study by Carlson et al. (2015) involves a special behavior
of taking out a phone from pocket to ear, holding it to ear, and
putting it back to the pocket. This is a natural behavior because in
real life this activity is common in practice. The behavior falls un-
der the attribute of tasks as shown in Fig. 1. The number of partic-
ipants involved in this study is 10 from different age groups. Each
user repeats the behavioral pattern for 5 times. Both accelerometer
and gyroscope motion events are utilized to log users’ hand move-
ments. Utilizing MLP (Multi-Layer Perceptron) as the classifier, they
observe the best performance of 88% accuracy.

A similar study by Kunnathu (2015) utilizes their own dataset
of 7 users. Here also the same natural behavioral patterns (falling
under the attribute of tasks) of taking out a phone from pocket to
ear, holding it to ear, and putting it back in pocket are performed
during data collection. Both accelerometer and gyroscope motion
events are utilized to log users’ hand movements. Utilizing MLP as
the classifier, they obtain a CCI (Correctly Classified Instances or
Accuracy) of 91.43%.

In another similar study by Buriro et al. (2015) users perform
the behavior of slide swiping while unlocking a phone, then put
the phone to ear, and speak over the phone while sitting and walk-
ing. It is classified under natural behavior with the attribute of
tasks. Acceleration, gyroscope, and rotation are logged when users
put the phone to their ears after unlocking. They achieve a Half To-
tal Error Rate (HTER) of 7.33% as the best using Bayesian Network
among other classifiers.

Feng et al. (2013) is a similar work that involves the natural
behavior of phone pick-up through accelerometer, gyroscope, and
magnetometer modalities. This work achieves an EER of 6.13% as
the best performance.

The work by Kratz et al. (2013) involves the user behavior of
arm sweep action holding the device in hand. The sweep actions
or gestures include left to right, circular, left to right arc, infinity,
triangle, and rotation which are designed behaviors. The user be-
havior also possesses the tasks attribute. The modalities that log
the user’s arm sweeps are acceleration and gyroscope. The classi-
fiers used in this study are Protractor3D, DTW and Logistic Regres-
sion. They observe the best performance of 95% F1 score.

The work by Yang et al. (2015) involves the behavior of hand
waving while wearing a smartwatch. This is a designed behavior
since the wave motions are random. It has the attribute of tasks.
The gesture is logged through acceleration and gyroscope motion
event modalities. They achieve an EER of 2.6% as their best perfor-
mance.
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The work by Zhu et al. (2017) involves a designed user behav-
ior of phone shaking around the elbow in sitting and standing.
Such designed user behavior is projected into the attribute of tasks.
Shake refers to a to-and-fro movement with one hand holding a
smartphone and swinging the x- and y-axis coordinate plane of
the phone around the elbow in the air. The authors divide contin-
uous shakes into segments and extract two behavioral patterns of
motion velocity and angular speed and one physiological pattern of
shaking radius based on shaking segments. The user’s phone shak-
ing gesture is logged using accelerometer and gyroscope. Utilizing
SVM as the classifier they achieve the best performance of 1.2%
EER.

The study by Li et al. (2020b) implements a sensor-based con-
tinuous mobile authentication system, FusionAuth where acceler-
ation, gyroscope, and magnetometer motion sensors are utilized.
They utilize data from 50 users who participated in 24 sessions
performing the natural behavior of read, write, and map navi-
gate. Such behavior possesses the attribute of walking versus non-
walking-based tasks to create special datasets. The raw sensor
data is segmented into time windows from which statistical and
frequency features are extracted. The work extracts 11 statistical
features (mean, median, maximum, minimum, standard deviation,
range, 25%, 50%, and 75% quartiles, kurtosis, and skewness) and 5
frequency features (energy, entropy, HP1, FHP2, and HP2). HP1 is
the amplitude of the first highest peak in one-axis reading in a
time window, FHP2 is the frequency of the second highest peak,
and HP2 is the amplitude of the second highest peak. Therefore,
144 features (3 sensors*3 axes*16 features) are extracted. They per-
form both serial and parallel feature level fusion where the feature
dimension of a sample is 144 and 48 respectively. They utilize the
Conditional Mutual Information Maximization (CMIM) method for
feature selection per user. Utilizing one-class Support Vector Do-
main Description (SVDD) classifiers, they obtain the mean HTERs
of 1.47% and 1.79% with serial and parallel feature fusion respec-
tively.

The study by Li et al. (2021) proposes DeFFusion (Deep Fea-
ture Fusion) CNN-based continuous authentication system. They
collect a dataset of 100 users who perform read, write, and map
navigation for 24 sessions which is a natural behavior under the
subset of routine usage. It possesses the attribute of walking ver-
sus non-walking-based tasks to create special datasets. The mo-
tion event modalities utilized are acceleration and gyroscope that
are fused at feature level. From each acceleration and gyroscope,
they process time and frequency domain data and feed it to CNN
to extract CNN-based features. Then feature selection happens us-
ing factor analysis. These resultant fused feature vectors are input
to the one-class SVM classifier for authentication. The CNN archi-
tecture utilizes multi-stream feature extraction and spatial down-
sampling followed by two fully connected layers. The best result
of 1% median EER is obtained with a time window size of 5 s.
To observe the effectiveness of CNN-based features they compare
the performance of the DeFFusion architecture to statistical fea-
tures extracted from the data (mean, standard deviation, maxi-
mum, minimum, range, kurtosis, skewness, 25%, 50%, 75% quar-
tiles, energy, entropy, P1 (amplitude of the first highest peak of
one-axis readings), P2F (frequency of the second highest peak of
one-axis readings), and P2 (amplitude of the second highest peak
of one-axis readings)) and input to traditional machine learning al-
gorithms, namely, one-class SVM, kNN, random forest, and decision
trees. In such comparison also DeFfusion performed the best with
an EER of 1%.

Bhattarai and Siraj (2018) utilize the acceleration and gyroscope
data from HMOG dataset (Sitova et al., 2015). They extract HMOG
resistance features on acceleration and gyroscope and perform fea-
ture selections utilizing filter-based and wrapper-based methods.
The data is fused at feature level. They split the data into train-
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ing and testing in the ratio of 80:20. They utilize both one-class
SVM and one-class fuzzy SVM (membership values between 0 and
1 are assigned to each sample to denote the degree of belonging-
ness to the class). The best EER of 3.7% is obtained utilizing fuzzy
OCC-SVM utilizing the HMOG sitting data.

5.2. Fusion of two or more motion event modalities with other
sporadic modalities

Table 2 lists the state of the art under this category.

Abuhamad et al. (2020a) evaluate their authentication plat-
form AUToSen on their own dataset of 84 volunteers. The data is
logged through motion sensors accelerometer, gyroscope, and mag-
netometer which are fused with the elevation sensor which is a
non-motion sensor modality. They also log other sporadic modal-
ities like touch and tap data from the touch sensor. Users per-
form routine phone usage for five days which is a natural behav-
ior. Such user behavior can be projected into the attribute of walk-
ing versus non-walking-based tasks to create special datasets. They
utilize LSTM models for classification. They perform four groups
of experiments, namely, 5-sensor data (touch, acceleration, gyro-
scope, magnetometer, and elevation); 4-sensor data (acceleration,
gyroscope, magnetometer, and elevation); 3-sensor data (acceler-
ation, gyroscope, and magnetometer); and 2-sensor data (acceler-
ation and gyroscope). Combining the modalities at sensor (data)
level, they achieve the best performance of 0.09% EER with the 3-
sensor modality set up.

Roy et al. (2015) implement an HMM (Hidden Markov Model)-
based multi-sensor system, which is evaluated on their own
dataset of 42 volunteers. The user activities include routine usage
of reading Wikipedia articles and filling out a questionnaire which
are natural behaviors. The user behaviors possess the attribute
of walking versus non-walking tasks to create special datasets.
Through these user tasks, they log modalities like swipe, tap, ac-
celeration, and gyroscope. Here acceleration and gyroscope are the
motion event modalities whereas swipe and tap are the sporadic
touch modalities. Utilizing a single swipe observation and its cor-
responding motion events, they achieve an EER of 13.29% which
improves to 0% when 19 consecutive swipes (and the simultane-
ous motion events) are combined. A similar pattern is observed in
the case of taps where the EER improves from 16.55% to 1% when
17 consecutive taps are consolidated.

Incel et al. (2021) investigate authentication performance over
15 sessions when 45 users interact with smartphones in hand
(browsing banking apps) while sitting and standing and in sitting
when the device is on the table. Such user behavior is a natural be-
havior under context limited subset. The behavior of browsing dur-
ing data collection projects itself into the tasks attribute as shown
in Fig. 1. They utilize acceleration, gyroscope, and magnetometer as
motion event modalities and scroll event as a sporadic non-motion
modality. Utilizing binary classifier they achieve the best perfor-
mance of 3.5% EER.

The work by Shen et al. (2017) involves their own dataset col-
lected from 102 users. The motion events used to authenticate a
user are acceleration, rotation/orientation, gyroscope, and magne-
tometer. The volunteers in this study have input touch gestures
on the smartphone during which the motion sensor data are col-
lected. The authors observe that more than 98% of touch interac-
tion comprises touch-tapping and single-touch sliding actions and
hypothesize that different users would generate different levels of
posture and motion which exhibits uniqueness among users. The
users in this study have undergone three behavioral scenarios for
contributing data which are- hand-hold (holding smartphones and
performing touch actions while sitting and standing), table-hold
(smartphones are placed on a desktop and subjects perform touch
actions using a single hand), and hand-hold walk (subjects hold
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Table 2

Comparative literature review: Fusion of at least two motion events with other sporadic modalities captured during stationary behaviors on mobiles. Abbreviations
- ACC: Accuracy, AUC: Area Under the Curve, BN:Bayes Network, BB-MAS:Behavioural Biometrics Multi-device and multi-Activity data from Same users, DT: Decision Trees,
DeSVDD: Deep Support Vector Data Description, DTW: Dynamic Time Warping, EL: Ensemble Learning, EER: Equal Error Rate, ED: Euclidean Distance, END: Euclidean
Normed Distance, FAR: False Acceptance Rate, HTER: Half Total Error Rate, HMOG:Hand Movement, Orientation, and Grasp, HMM: Hidden Markov Model, HuMIdb: Human
Mobile Interaction database, IF: Isolation Forest, KNN: k Nearest Neighbor, LOF: Local Outliers Factor, LSTM: Long Short-Term Memory, ManD: Manhattan Distance, ManSD:
Manhattan Scaled Distance, MCD: Minimum Covariance Determinant, MHD: Modified Hausdorff Distance, MLP: Multilayer Perceptron, NB: Naive Bayes, NN: Neural Network,
RF: Random Forest, SE: Scaled Euclidean, SM: Scaled Manhattan, SOM: Self Organizing Maps, SVM: Support Vector Machine, TCM: Transductive Classification Machine, TAR:
True Acceptance Rate, UMDAA-02: University of Maryland Active Authentication Dataset 02.

Sampling Best
Study & Dataset #User Behavior Duration Modality (Hz) Algorithm Fusion performance
Abuhamad et al. (2020a), 84 routine usage 5 days Accel, Gyro, Magneto, 64 LSTM sensor (data) 0.09%,EER
own Elevation, Touch
Roy et al. (2015), own 42 routine usage 1 Sess. Accel, Gyro, Swipe, Tap - HMM feature 0%, EER
Shen et al. (2017), own 102 routine usage 3 rounds Accel, Gyro, Magneto, - HMM, SVM, feature 4,74%, EER
Rotate, Touch NN
Incel et al. (2021), own 45 browsing banking app 15 Sess. (22.5  Accel, Gyro, Magneto, 100 SVM, kNN, Feature 3.5%, EER
in sitting and standing min) Scroll MLP, DT, RF,
NB, EL
Deb et al. (2019), own 37 routine usage 15 days Accel, Linear Accel, 1 LSTM score 99.98%, TAR at
Gyro, Magneto, Rotate, 0.1% FAR
Key, GPS, Gravity
Stragapede et al. 81 pattern unlock, 4 Sess. Accel, Linear Accel, 200 LSTM score 87.2% AUC
(2022a), BehavePassDB texting, reading, Gyro, Magneto,
(own) gallery swiping, Gravity, Key, Tap,
signature, critical app, Swipe, GPS, temp,
phone pickup, tapping proximity, light,
in predetermined humidity, pressure,
locations WiFi, BT, battery
Gascon et al. (2014), 315 typing prescribed texts 1 Sess. Accel, Gyro, Rotate, - SVM feature 80%, AUC
own Key
Cai and Chen (2012), 21 typing PINs - Accel, Gyro, Key - SVM, DTW - 55%, ACC
own
Papamichail et al. 2218 game playing - Accel, Gyro, Magneto, 10 - - -
(2019), BrainRun (own) Swipe, Tap
Volaka et al. (2019), 100 read, write, navigate 24 Sess. (~60  Accel, Gyro, Swipe 100 LSTM Feature 15%, EER
HMOG (Sitova et al., hr)
2015)
Belman et al. (2019), 117 multiple activities 1 Sess. (1.8 hr) Accel, Gyro, Swipe, 100 - - -
BB-MAS (own) Key, Mouse
Sitova et al. (2015), 100 read, write, navigate 24 Sess. (~60  Accel, Gyro, Magneto, 100 SM, SE, SVM score 7.16%, EER
HMOG (own) hr) Swipe, Tap, Key, Pinch
Murmuria et al. (2015), 73 browsing Google 2 Sess. (each Accel, Gyro, Touch, - TCM feature 6.1%, EER
own chrome and Facebook 45 min) Key, Zoom, Pinch,
Power
Stanciu et al. (2016), 20 typing passwords 1 Sess. Accel, Gyro, Key 17 kNN, ED, ManD feature 0.08%, EER
own
Nohara and Uda (2016), - flicking to unlock 1 Sess. Accel, Gyro, Flick - SOM feature -
own phone
Jain and Kanhangad 104, 30  swiping 1 Sess. Accel, Rotate, Swipe, - DTW, MHD score 0.03%, EER
(2015), own, own Tap, Zoom
Acien et al. (2019), 48 WiFi, GPS, and app 10 days Accel, Gyro, Touch, - SVM score 97.1%, ACC
UMDAA-02 (Mahbub et usages Key, Wifi, GPS, app use
al., 2016)
Buriro et al. (2017), own 31 micro-hand 1 Sess. Accel, Gyro, Magneto, 5 BN, MLP, NN, feature 4% EER, 96%
movements through Gravity, HPF, LPF RF TAR
routine usage for 10
sec when notified with
broadcast event
Gupta et al. (2022), own 41 micro-hand 1 Sess. Accel, Gyro, Magneto, 1000 IF, SVM, LOF, decision, 1%, HTER
movements through Gravity, HPF, LPF MCD feature
routine usage for 5 sec
when notified with
broadcast event
Buriro et al. (2021), own 95 typing passwords in 3 Sess. Accel, Gyro, Rotate, - NB, NN, RF feature 91.79% TAR,
sitting, standing, and Magneto, Gravity, Key 0.04% FAR
walking
Ray-Dowling et al. 100, 115 typing in sitting 4 Sess., 25 min Accel, Gyro, Swipe 100, 100  SVM (OCC, BC) score (LR 0.2%, EER
(2022), HMOG (Sitova et Nandakumar
al., 2015), BB-MAS et al. (2007))
(Belman et al., 2019)
Basar et al. (2019), own 15 browsing banking app multiple days Accel, Gyro, Magneto, 5, 25, 100 - - -
Touch
Stragapede et al. 600 typing prescribed text, 5 Sess. Accel, Gyro, Magneto, 50 LSTM-RNN score 3.96%, EER
(2022b), HuMIdb (Acien swipe, drawing the Touch
et al., 2020) number 8, tap

(continued on next page)
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Study & Dataset #User Behavior Duration Modality Sampling  Algorithm Fusion Best

(Hz) performance
Shen et al. (2022), own, 100, 100 routine phone usage; 63 days, 24 Accel, Gyro, Magneto, -, 100 DeSVDD decision 0.088%, EER
HMOG (Sitova et al., read, write, navigate Sess. Rotate, Touch
2015)
Cherifi et al. (2021), own 7 reaching, grasping, and - Accel, Gyro, Gravity 50 HMM feature 19.2%, EER

manipulating objects
Shen et al. (2016), own 50 touch/tapping 2 weeks Accel, Gyro, Gravity, - SVM (0CC), feature 11.05%, EER
Tap kNN (0CC)

Giuffrida et al. (2014), 20 typing passwords 1 Sess. Accel, Gyro, Key 17 ED, END, feature 0.08%, EER
own ManD, ManSD

the smartphone and perform touch actions while walking). All of
these are natural user behavior types under routine phone usage.
The user behaviors possess the attribute of walking versus non-
walking-based tasks to create special datasets. For each touch ac-
tion that the user inputs, four sensor data are logged each of which
has 3 components along the X, y, and z axes. The authors propose
a statistical feature set with 16 features per sensor which are- en-
ergy, entropy, mean, minimum, maximum, range, variance, kurto-
sis, quantiles (from 30% to 80% with a step of 10%), cross mean
rate, and skewness. Therefore, there are 3*4*16 = 192 features per
touch input. The informativeness of the features is calculated for
each sensor behavior to determine how users’ identities differ with
respect to features. The authors applied Hidden Markov Model
(HMM) as the one-class classifier, SVM, and Neural Network (NN)
to classify the data. They combine multiple motion events (accel-
eration, gyroscope, magnetometer, and orientation) and a subset of
the four sensor events. However, the combination of all four mo-
tion sensor modalities produces the best EER of 4.74%.

In the study by Deb et al. (2019) multi-modal data from smart-
phone sensors is collected from 37 users. A passive authentication
of the users (unobtrusive monitoring of the user’s interaction with
the device) is performed. In total, 30 smartphone sensor modali-
ties are collected but for experiments, only 8 (keystroke dynam-
ics, GPS location, accelerometer, gyroscope, magnetometer, linear
accelerometer, gravity, and rotation) are used. Each user has con-
tributed data for over 15 days during which they perform rou-
tine phone usage (natural behavior type). This behavior possesses
the attribute of walking versus non-walking-based tasks to cre-
ate special datasets. Out of the 8 modalities, accelerometer, gyro-
scope, magnetometer, linear accelerometer, and rotation are mo-
tion events and the others are non-motion events. For each modal-
ity, they train a Siamese LSTM network to learn deep temporal fea-
tures. To remove the irregularity in data samples across sensors,
they segment the data by moving a window of fixed size. The orig-
inal data is in the time domain. So they transform the data to the
frequency domain using Fast Fourier Transform. Following this, the
pre-processed data is passed to the Siamese LSTM network. They
perform 5-fold cross-validation where each fold has 29 user data
for training and 8 user data for testing. Experiments are performed
on individual modalities but it is observed that the performance
is not satisfactory. Therefore, the fusion of 2, 3, 4, 5, 6, 7, and 8
modalities is performed at score level. They achieve the best TAR
(True Acceptance Rate) of 99.98% at FAR (False Acceptance Rate) of
0.1%.

In the recent study by Stragapede et al. (2022a), data from 15
phone sensors are logged while users perform 8 different tasks of
pattern unlock, typing, reading, gallery swiping, tapping on prede-
termined locations, signing, using a banking app, and performing
phone pickup trajectory. Out of these 8 behaviors, only tapping on
predetermined locations is a designed behavior and the rest are
natural behaviors. The behaviors of reading, using a banking app,
and performing phone pickup trajectory possess the attribute of

19

tasks, and the other behaviors of phone unlocking, typing, gallery
swiping, tapping on predetermined locations, and signing possess
the attribute of hand actions (see Fig. 1). The study collects a
novel dataset, named BehavePassDB from 81 users across 4 ses-
sions where each session is parted by a day. For pre-processing the
sensor data, they retain the readings along the X, y, and z-axis and
calculate and add their Fast Fourier Transforms (FFTs), first-order
derivatives, and second-order derivatives. For pre-processing the
touch event data, they retain the x and y coordinates of each touch
event and add their FFTs, first-order derivatives, and second-order
derivatives. They utilize LSTM RNN Deep Neural Networks to per-
form authentication using a single modality and fusion of modal-
ities. The fusion of the modalities at score level improves system
performance. They have fused 6 modalities where any one of the
touch events (keypress/swipe/tap) is fused with sensor events (ac-
celeration, linear acceleration, gyroscope, magnetometer, and grav-
ity). Hence, from all the tasks, they perform a total of 63 differ-
ent fusion experiments. They have performed two attack scenarios,
namely, skilled and random which involve the estimation of sys-
tem performance when different users’ data is logged from their
own devices and when different users log data on the same device,
respectively. Fusing keystrokes with sensor events they achieve the
best Area Under the Curve (AUC) of 87.2%.

The study by Gascon et al. (2014) involves 315 users who type
short prescribed sentences of 160 characters each. This is a de-
signed behavior as the texts are prescribed. The user behavior is
projected into the hand actions attribute as shown in Fig. 1. The
motion event modalities utilized in this study are accelerometer,
gyroscope, and rotation. The non-motion sporadic modality used is
keypress. The motion events corresponding to the keypress or oc-
curring during the keypress are included in the experiments while
the others are eliminated. The data is then normalized from which
88 features are extracted. Hence, there are 3*9*88 = 2376 features
in total. The classifier used in this study is Support Vector Machine.
The best performance achieved is an AUC of 80%.

Another similar study by Cai and Chen (2012) includes motion
events of accelerometer and gyroscope in combination with the
non-motion sporadic event, keypress. Here, 21 users need to type
random strings/PINs which is a natural behavior under the context
limited subset. The user behavior possesses the hand actions at-
tribute. The best performance obtained in this study is accuracy of
55%.

The public dataset BrainRun by Papamichail et al. (2019) in-
cludes 2218 volunteers who perform a natural behavior of game
playing. The motion events logged from the users are accelerom-
eter, gyroscope, and magnetometer and the non-motion event
modalities obtained are swipe and tap. No authentication experi-
ments are performed in this study.

Volaka et al. (2019) utilizes the HMOG public dataset (Sitova
et al., 2015) to evaluate their authentication platform. The data in-
volves reading, writing/typing, and map navigation in sitting and
walking which are natural behaviors. The behaviors possess the at-
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tribute of walking versus non-walking-based tasks to create special
datasets (See Fig. 1). The modalities they select from the HMOG
data are acceleration, gyroscope (motion events), and swipe (non-
motion sporadic event). A three-layer deep neural network is used
for binary classification (each user profile is made with all data
from the genuine user and randomly selected data from other
users as impostors). Data processing involves the application of the
min-max normalization technique. One network has 64 nodes in
each layer and the other has 128 nodes in each layer. The data
is batched as 8192*feature columns and is used as input to the
network that ran with 200 epochs. Data is split into training-
validation-testing. Four groups of experiments are performed with
data from only swipes, swipes combined with acceleration, swipes
combined with gyroscope, and a combination of swipe, accelera-
tion, and gyroscope. They obtain an EER of 15% as the best re-
sult with only swipes using the 128 nodes per layer setup. Another
best result of 88% accuracy is obtained when all the modalities are
fused and using 64 nodes per layer.

The public dataset, BB-MAS by Belman et al. (2019), has 117 re-
cruited volunteers who provide data on multiple interfaces (phone,
tablet, and desktop), while performing several activities (sitting,
walking, walking up and down staircase) which are falling un-
der natural behavior. These user behaviors possess the attribute of
walking versus non-walking-based tasks to create special datasets.
The user behaviors also include typing prescribed texts which is a
designed behavior. This behavior is projected into the attribute of
hand actions. See Fig. 1. While sitting and typing, the sequence of
activities that the users need to perform are typing two pieces of
static texts of approximately 112 characters each, followed by ten
questions whose answers must be of at least 50 characters each.
The layout of the questions makes users swipe vertically and hor-
izontally in between. Within one visit users need to finish the en-
tire task of logging data on multiple devices which takes around
2 h (110 min) in total. The motion events logged in this dataset
are acceleration and gyroscope. The non-motion sporadic modali-
ties logged in this dataset are swipe, keypress, and mouse events.
The authors report no experiments for user authentication with
BB-MAS.

The HMOG public dataset by Sitova et al. (2015) has recruited
100 participants. The data is collected on Android mobile phones.
There are 24 sessions in total involving several activities like read-
ing, writing, and map navigation which are natural behaviors.
The user behaviors possess the attribute of walking versus non-
walking-based tasks to create special datasets. Out of the 8 typ-
ing/writing sessions, the 4 sessions (3, 9, 15, 21) require users to
sit and type. In these four sessions, each user is asked to perform
three free text typing tasks where each answer is approximately
250 characters. Users visit for multiple days to finish the entire
task. The motion event modalities logged in this dataset are ac-
celeration, gyroscope, and magnetometer. The non-motion sporadic
modalities are swipe, tap, pinch, and keypress. They utilize SVM,
Scaled Euclidean, and Scaled Manhattan classifiers. The best result
obtained is an EER of 7.16%.

The study by Murmuria et al. (2015) involves 73 volunteers
to evaluate the system which continuously authenticates users on
mobile devices. The authors hypothesize that the behavior of users
is context specific. This means the user behavior changes from one
application under use to another. Thus, they have presented the
performance of the system while users browse two applications,
namely, Google Chrome and Facebook. They observe differences in
authentication performance between the usage of Facebook and
Chrome applications by taking five random baseline users and test-
ing users. When both the contexts or data while using both ap-
plications are fused an improvement in performance is noticed.
These browsing activities are natural behavior projected into tasks
attribute. The modalities used in this study are acceleration, gyro-
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scope (motion events), power consumption, touch, keypress, zoom,
swipe, and pinch (non-motion events). From the motion event, 14
features are extracted which include mean and standard devia-
tion along each axis and the resultant magnitude of all axes, for
both accelerometer and gyroscope readings. From the touch-based
modality, five features are extracted which are duration, end-to-
end distance, end-to-end direction, average pressure, and average
touch area. The classification algorithm used in this study is known
as Transduction Classification Machine (TCM). The train-test split
from each user data is 60% training and 40% testing. They obtain
the best EER of 6.1%.

Stanciu et al. (2016) have recruited 20 volunteers who type
passwords as a natural behavior. The behavior possesses the at-
tribute of hand actions. The modalities utilized in this study are
acceleration and gyroscope as motion events and keypress as the
non-motion sporadic event. The features extracted from acceler-
ation and gyroscope are root mean square, minimum and maxi-
mum, the number of local maxima and minima, mean delta, the
sum of positive, the sum of negative, mean, mean during keystroke
events, and standard deviation. Features extracted from the key-
press are hold time and inter-key press time. They utilize kNN, Eu-
clidean distance, and Manhattan distance as classifiers. They obtain
the best EER of 0.08%.

The work by Nohara and Uda (2016) requires users to flick and
unlock phones which is a natural behavior (under the subset of
context limited) through which they log accelerometer and gyro-
scope as motion events and flick as a non-motion sporadic touch
event. Thus this behavior possesses the hand action attribute. The
classifier utilized in this study is SOM (Self Organizing Maps)
which is a type of Artificial Neural Network. Several features are
extracted from the modalities which are - distance from touch to
release on X and Y-axes; moving distance per unit time on X and
Y-axes; time from touch to release; acceleration at touch on X, Y,
and Z axes; acceleration at release on X, Y, and Z axes; angular ve-
locity at touch on X, Y, and Z axes; and angular velocity at release
on X, Y, and Z axes.

Jain and Kanhangad (2015) perform a swipe-based study on
more than 100 users. Each user performs seven gestures - left to
right swipe (L2R), right to left swipe (R2L), scroll up (SU), scroll
down (SD), zoom in (ZI), zoom out (ZO), and single tap (ST). These
are natural behaviors. This user behavior is projected into the at-
tribute of hand actions as shown in Fig. 1. The motion event
modalities logged simultaneously with the touch events (swipe,
tap, and zoom) are acceleration and rotation. Features extracted
from the data are x, and y coordinates of every touch point, finger
area from non-motion events, acceleration along Xx/y/z axes, rota-
tion along x/y/z axes, point curvature, and swipe curvature. They
utilize two classifiers, namely, MHD (Modified Hausdorff Distance)
and DTW. MHD consistently outperforms DTW. They obtain the
best result of 0.03% EER.

The study by Acien et al. (2019) utilizes the UMDAA-02 (Univer-
sity of Maryland Active Authentication Dataset 02) (Mahbub et al.,
2016). In this dataset, users perform routine usage of phones which
is a natural behavior. Through this, they log motion event modali-
ties like acceleration, gyroscope, and non-motion events like touch,
keypress, WiFi, GPS, and app use (apps used by users are What-
sapp, Navigator, Youtube, and Facebook). The user behaviors are
projected into the attribute of walking versus non-walking-based
tasks to create special datasets. Features extracted from accelera-
tion and gyroscope include mean, median, maximum, minimum,
distance between maximum and minimum, and standard devia-
tion for each array of coordinates. The two other features are 1
and 99 percentiles and the distance between them. Extracted fea-
tures from keystrokes include hold time, press-press latency, and
press-release latency. The data is split into training (60%) and test-
ing (40%). Two scenarios are tested in this study, namely, one-time
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authentication (involving data from 1 session that is the time be-
tween unlocking and locking of the device) and active authentica-
tion (involving data from multiple sessions). Utilizing SVM as the
classifier they obtain the best performance of 97.1% accuracy.

Buriro et al. (2021) collected data from 95 volunteers, obtaining
11,400 samples in total. Users are recruited using Ubertesters. The
study is based on one-shot-cum-continuous authentication mecha-
nism where risk management is a novelty. If the risk score is more
than a predefined threshold then a user needs to re-authenticate.
User behavior includes entering a random PIN of 8 alphanumeric
characters while sitting, standing, and walking. This falls under
natural behavior. The duration of data collection is 3 h (1 h per
day). The user behavior is projected into the hand action attribute
as shown in (Fig. 1). Modalities collected are acceleration, gy-
roscope, magnetometer, rotation as motion event modalities and
gravity and keypress as non-motion modalities. The data is divided
into data streams from each of which four features are extracted,
namely, mean, standard deviation, skewness, and kurtosis. Finally,
30 keypress samples and 112 hand-movements features are used
to create a feature vector of size 142 (therefore they perform a
feature-level fusion). Classifiers used in this study are Naive Bayes,
Neural Network, and Random Forest. The Random Forest classifier
outperforms Neural Network. They achieve a TAR of 91.79% and a
corresponding FAR of 0.04% as the best result.

The work by Ray-Dowling et al. (2022) evaluates the perfor-
mance of user authentication based on acceleration, gyroscope,
and swipe data from two public mobile datasets, HMOG (Sitova
et al,, 2015) and BB-MAS (Belman et al., 2019) extracted with dif-
ferent feature sets to observe the variation in authentication per-
formance. The study only includes data when users are typing in
sitting (which is a natural behavior) and also projected into the
hand actions attribute. The study evaluates the performances of
both individual modalities and their fusion. From the swipe data,
Frank et al.’s (2012) Touchalytics (Frank et al., 2012) features are
extracted. But the work extracts three different feature sets (me-
dian, HMOG Sitova et al., 2015, and Shen et al., 2017’s) on the mo-
tion event data, among which the Shen’s features perform best.
Fusion of multiple modalities is performed using Nandakumar’s
likelihood (Nandakumar et al.,, 2007) ratio-based score fusion by
utilizing both one-class and binary SVMs. The best EERs (Equal
Error Rates) of fusing all three modalities when using the one-
class SVMs are 8.8% and 0.9% for HMOG and BB-MAS respectively.
On the other hand, the best EERs in the case of binary SVMs
are 1.5% and 0.2% respectively. Observing the better performances
of BB-MAS compared to HMOG in swipe-based experiments, the
study examines the difference in swipe trajectory between the two
datasets and finds that BB-MAS has longer swipes than HMOG
which would explain the performance difference in the experi-
ments.

The study by Buriro et al. (2017) involves the behavior of log-
ging micro-hand movements through phone usage for 10 s af-
ter the user is notified of a broadcast event. The broadcast re-
ceiver is triggered at the moment the user either enters their cre-
dentials or performs the slide-to-unlock gesture to unlock their
smartphone. This is natural user behavior and has the hand ac-
tions attribute. The authors consider the situation where an at-
tacker is already in possession of a smartphone. An attacker can
be an unknown person, e.g., traveling with a real user on a bus
or train and getting smartphone access (stranger attacks). Alterna-
tively, an attacker could be the victim’s friend, family member, or
co-worker attempting to access the smartphone (insider attacks).
Simple statistical features are extracted from the data, namely,
mean, mean absolute deviation, median, unbiased standard er-
ror of the mean, standard deviation, unbiased skewness, and kur-
tosis. With 10-fold cross-validation, they achieve the best EER
of 4%.
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A similar study is performed by Gupta et al. (2022) which eval-
uates their deauthentication platform, named as IDeAuth. The aim
is to minimize unauthorized access to security-sensitive applica-
tions and services running on users’ smartphones when unau-
thorized access or intrusions are detected. The deauthentication
mechanism automatically revokes the usage of the applications
when unauthorized access is detected. The scheme acquires the
hand movements data for 5 s using four built-in smartphone sen-
sors, i.e., accelerometer, gyroscope, magnetometer, and gravity sen-
sor, and two mathematically derived high-pass and low-pass sen-
sors. This is a natural behavior and is projected into the hand ac-
tions attribute as shown in Fig. 1. They have collected their own
dataset of 41 users. They consider a scenario in which the impostor
is already in possession of the user’s smartphone. There can be two
possibilities where either the smartphone has no authentication
mechanism or the impostor manages to bypass the existing single
entry-point authentication mechanism on it. The user’s micro-hand
movement data will be logged by the motion sensors for 5 s upon
receiving a notification for the broadcast events that trigger when
the user unlocks, adds, or removes a package on the smartphone.
Any unauthorized operation or intrusion detection will trigger the
default user account’s sign-off, and thus, access to all the applica-
tions and services linked with the default user account will be re-
voked. Four statistical features are extracted from the data, namely,
mean, standard deviation, skewness, and kurtosis. They obtain 1%
HTER (Half Total Error Rate) as the best performance.

The study by Basar et al. (2019) involves browsing a local bank-
ing app by 15 volunteers in sitting while the phone is on the table
and standing. Users check their bank account and credit card bal-
ance in the process. It is a natural user behavior with the attribute
of tasks as shown in Fig. 1. The study mainly focuses on the analy-
sis of resource usage when a behavioral biometrics-based continu-
ous authentication platform runs in the background. It is observed
that the power consumption and CPU usages are more during au-
thentication through motion (acceleration, gyroscope, and magne-
tometer) and touch sensors than during normal scenarios when no
authentication is performed. During the collection of each touch
gesture the following information is collected, namely, finger pres-
sure, size, and (x, y) coordinates on the screen. The authors select
the user behavior of browsing banking app since it is a sensitive
application and therefore needs security measures. They also study
the effects of sampling rates of the sensors on resource usage.
When only the banking app is used the power consumption and
CPU usage are 136 mW and 28.6% respectively. When the banking
app is integrated with the logger app (with motion and touch log-
ging) to perform authentication the power consumption and CPU
usage are 189 mW and 33.86% respectively. The sampling rates of
5 Hz, 20 Hz, and 100 Hz are used per sensor, to see the impact
of it on power consumption and CPU usage. The impact of accel-
eration sampled at 5 Hz, 20 Hz, and 100 Hz on power consump-
tion is 149 mW, 188 mW, and 209 mW respectively. The impact
of acceleration sampled at 5 Hz, 20 Hz, and 100 Hz on CPU us-
age is 30.22%, 32.16%, and 40.12% respectively. The impact of gy-
roscope sampled at 5 Hz, 20 Hz, and 100 Hz on power consump-
tion is 170 mW, 214 mW, and 231 mW respectively. The impact
of gyroscope sampled at 5 Hz, 20 Hz, and 100 Hz on CPU usage is
31.33%, 35.94%, and 42.56% respectively. The impact of magnetome-
ter sampled at 5 Hz, 20 Hz, and 100 Hz on power consumption is
167 mW, 184 mW, and 253 mW respectively. The impact of mag-
netometer sampled at 5 Hz, 20 Hz, and 100 Hz on CPU usage is
31.72%, 33.85%, and 45.41% respectively.

Stragapede et al. (2022b) utilizes the large dataset of HuMIdb
(Human Mobile Interaction database) (Acien et al., 2020) consist-
ing of data from 600 users. The dataset consists of data from the
following modalities, namely, touch, accelerometer, gravity sensor,
gyroscope, linear accelerometer, and magnetometer. Users perform
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the tasks of typing a prescribed text in Spanish, "En un lugar de
la Mancha, de cuyo nombre no quiero acordarme”; scrolling up and
down; drawing the number '8’ with their finger; and tapping on
the screen. Of these behaviors typing the prescribed text and draw-
ing the number '8’ with their finger are designed and the rest are
natural. All the behaviors possess the attribute of hand actions. The
sampling rate per sensor is kept at 50 Hz. Features corresponding
to a single timestamp are arranged into a 12-dimensional vector
per sensor [X, V, z, X, Y, Z, X", y", 2", fft(x), fft(y), fft(z)]. Utilizing
the LSTM-RNN deep learning network both individual modality-
based authentication and weighted score level fusion of available
modalities in a time window is performed. Scores from modali-
ties occurring at the same time window are fused. They come up
with 63 different fusion combinations. The best EER of 12.19% is
obtained with individual keypress modality. Fusing keypress, ac-
celeration, and magnetometer the best fusion result of 3.96% EER
is obtained.

Shen et al. (2022) propose the MMAuth continuous authentica-
tion platform. Utilizing HMOG (Sitova et al., 2015) and their own
dataset, they perform authentication utilizing touch and motion
sensor data. Users in HMOG perform read, write, and navigation
while the users in their own dataset perform routine usage for 63
days. Both are natural behaviors with the attribute of walking ver-
sus non-walking-based tasks to create special datasets. They ex-
tract a time-extended behavioral feature set from motion events,
touch events, and usage context data. To create the TEB feature
set, they quantify each touch gesture as a feature vector [fm, ft,
fc] of motion sensor-based feature (fm), touch screen sensor-based
feature (ft), and usage context-based feature (fc). The features ex-
tracted from motion sensors from a time interval of the start and
end of a touch gesture are mean, minimum, maximum, variance,
complexity, and intensity. The features extracted from touch events
are position, length, angle, touch time, speed, area, pressure, and
direction. The features extracted from the usage context are ap-
plication and time. Given only genuine training is possible for the
authentication system in a real-life scenario, they utilize a deep
one-class SVDD (Support Vector Data Description) classifier. EERs
of 0.149% and 0.088% are obtained with their own data and HMOG
dataset respectively.

The users in Cherifi et al. (2021) perform prehensile movements
of reaching, grasping, and manipulating objects which is a natural
behavior under the tasks attribute. The modalities utilized are ac-
celeration, gyroscope, and gravity. From each sensor, the following
features are extracted, mean, standard deviation, speed, or angle
of motion. They propose a user pattern based on HMM architec-
ture with a mixture of Gaussian outputs. The training: testing split
of 60:40 is utilized. They obtain the best EER of 19.2%.

Shen et al. (2016) presents a sensor-based smartphone au-
thentication system utilizing acceleration and gyroscope as motion
events, gravity as another sensor event, and touch/tap events. The
modalities of acceleration, gyroscope, and gravity (each with three
components X, y, and z) are collected during the occurrence of
taps. The target is to log users’ unique touch habits and rhythms.
The touch/tapping data is collected from 50 users across several
rounds that span for 2 weeks. This is a natural behavior under
context limited subset. It has the hand actions attribute. For each
touch event, the touch timestamp (touch-up and down) and touch
pressure are logged. From the sensor events occurring within a
touch event, the following features are extracted - mean, variance,
range, maximum, minimum, median, quartile deviation, kurtosis,
and skewness. From the touch event, the features derived are the
mean of touch pressure as well as the duration of the touch event.
The Kolmogorov-Smirnov test is performed to test whether fea-
tures are significantly different from one another. They perform
one-class classification using SVM and kNN where one-class KNN
produces the best EER of 11.05%.
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Giuffrida et al. (2014) develop a sensor-enhanced keystroke
dynamics-based authentication system where the acceleration and
gyroscope motion sensors are utilized. Users need to type two
passwords, namely, “satellite” and “internet”. This is a natural be-
havior with the hand actions attribute. They only consider al-
phanumeric keystrokes and ignore the rest to remove noise. Mo-
tion events corresponding to acceptable keystrokes are considered
for user authentication. They utilized distance metric algorithms
of Euclidean, Euclidean normed, Manhattan, Manhattan scaled,
and Mahalanobis for classification. They perform experiments on
only keypress, only motion events, and combining keystrokes and
motion events. However, the combination of keystroke and mo-
tion sensor modalities does not improve the results of individual
modality experiments. The maximum sampling rate per sensor is
kept at 17 Hz. They observe the performance with an increase
in the sampling rate of the motion events up to 17 Hz. Across
all the configurations, the best EER obtained is 4.97% using only
keystrokes and 0.08% using only sensor data.

5.3. Studies involving only one motion event without/fused with
other sporadic modalities

Table 3 lists the state of the art under this category that in-
volves only one motion event modality which is optionally fused
with other sporadic modalities.

A single motion event modality (acceleration) combined with
other non-motion modalities is utilized to perform authentication
in the study by Kumar et al. (2016b). This work investigates the fu-
sion of phone movement patterns with typing and swiping when
a user uses a web browser in sitting. This user behavior is a natu-
ral behavior. The user behavior possesses the attribute of tasks as
shown in Fig. 1. The work achieves the best performance of 93.33%
accuracy for a feature fusion of acceleration and swipes.

Kim and Kang (2020) authenticate users based on typing in En-
glish and Korean languages where keypress is fused with accelera-
tion and touch events logged during typing. Such typing activity
is natural under the context limited subset. It possesses the at-
tribute of hand actions. Users type 20 reference sets in both lan-
guages where 10 references are utilized for training and the rest
for testing. Experiments are performed utilizing three classifiers
(Kolmogorov Smirnov, Cramer-von Mises, and TT and R measure)
over individual feature sets and their combination. They achieve
the best EER of 0%.

On a dataset of 39 users Crawford and Ahmadzadeh (2017) per-
form authentication based on keypress and gyroscope achieving
97.7% AUC. Here users perform free text typing which is a natu-
ral behavior. It possesses the attribute of hand action as shown in
Fig. 1.

The study by Centeno et al. (2017) utilizes two public datasets
HMOG (Sitova et al., 2015) (100 users; behavior duration 6 h) and
Algosnap (Algosnap dataset, 2022) (20 users; behavior duration
several days). User behavior includes miscellaneous routine activ-
ities that fall under natural behavior. The user behaviors in both
datasets are projected into the attribute of walking versus non-
walking-based tasks to create special datasets. This work includes
only acceleration data sampled at 100 Hz for HMOG and 200 Hz
for Algosnap. Data is later downsampled to 25 Hz and used to eval-
uate their re-authentication platform. The data is split into train-
ing, validation, and testing. Deep Learning based autoencoders are
used for classification that achieves the best EER of 2.2%.

An early work based on the designed behavior of arm sweep
action is presented by Okumura et al. (2006) where users perform
sweep action by shaking the handheld device up and down along
the y-axis. This designed behavior possesses the tasks attribute.
They hypothesize that the acceleration data from the standalone
device collected during the arm sweep action can be used for a
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Comparative literature review: Single motion sensor to measure stationary behavior on mobiles with/without another sporadic modality. Abbreviations - ACC: Accuracy,
AUC: Area Under the Curve, ANN: Artificial Neural Network, CM: Cramer-von Mises, CC: Cross Correlation, DT: Decision Trees, DP: Dynamic Programming matching, DTW:
Dynamic Time Warping, EA: Error of Angle, EER: Equal Error Rate, FAR: False Acceptance Rate, FNR: False Negative Rate, FPR: False Positive Rate, FRR: False Reject Rate, KNN:
k Nearest Neighbor, KS: Kolmogorov Smirnov, LReg: Logistic Regression, MLP: Multilayer Perceptron, RF: Random Forest, sq ED: Squared Euclidean Distance, SVM: Support

Vector Machine, TT and R: TT and R measure, TPR: True Positive Rate.

Sampling Best
Study & Dataset #User Behavior Duration Modality (Hz) Algorithm Fusion performance
Kumar et al. (2016b), 28 browsing web - Accel, Key, - kNN, RF Score, Feature  93.33%, ACC
own Swipe
Kim and Kang (2020), 50 typing in English and - Accel, Key - KS, CM, TT and sensor 0%, EER
own Korean R
Crawford and 39 typing free text 1 Sess. Gyro, Key - DT, LReg sensor 97.7%, AUC
Ahmadzadeh (2017),
own
Laghari et al. (2016), 10 hand waving/arm 1 Sess. Accel - cC - 1.46% FAR,
own sweeping holding 6.87% FRR
phone
Casanova et al. (2010), 34 hand waving/arm 2 Sess. Accel 100 DTW decision 2.5%, EER
own sweeping holding
phone
Hong et al. (2015), own 8 hand waving/arm 8 weeks Accel 80 SVM (0CC) - 92.83% TPR,
sweeping holding 3.67% FPR
phone
Yang et al. (2014), own 200 hand waving/arm 1 Sess. Accel 50, 100 SVM - 15% FPR, 8%
sweeping holding FNR
phone
Centeno et al. (2017), 100, 20 read, write, navigate; 6 hr, several Accel 100, 200 ANN - 2.2%, EER
HMOG (Sitova et al., routine usage days
2015), Algosnap
(Algosnap dataset, 2022)
Okumura et al. (2006), 22 hand waving/arm 1 Sess. Accel 100 sq.ED, EA, DP - 5%, EER
own sweeping holding
device
Lin et al. (2012), own 20 up-down flick, - Rotate 30 kNN decision 6.85%, EER
left-right flick
Owusu et al. (2012), own 4 typing presecribed - Accel, Key 50 RF, MLP, SVM, - -
texts and passwords DT

security check on a cell phone using the cell phone’s accelerom-
eter. For classification, three algorithms are used - squared error
of Euclidean distance, error of angle, and Dynamic Programming
matching. They observe an ERR of 5% as their best result.

The work by Laghari et al. (2016) involves the behavior of in-
air signature holding the phone in hand. This is a designed behav-
ior captured using accelerometer motion event. The user behavior
is projected into the attribute of tasks. They implement a three-
tier system - user: from where input is obtained, server: where
authentication is performed, and database: where the template is
kept. An app runs on the phone while users perform the in-air
signature gestures. Cross-correlation of the signature is performed
where a genuine user shows a higher cross-correlation value than
an impostor. The best performance obtained is a FAR of 1.46% and
a corresponding FRR (False Rejection Rate) of 6.87%.

A similar in-air signature hand gesture-based work is per-
formed by Casanova et al. (2010). The authors hypothesize that
user authentication through the above-designed behavior is possi-
ble because of uniqueness across users due to the speed and man-
ner of signing in air and other user physical factors like the length
of the arm, the capability of turning the wrist, and the size of
the hand holding the device. Each user has repeated their gesture
seven times, with intervals of 10 s in between, to reduce depen-
dency between samples. The in-air signed gestures performed are-
writing a word or a number in the air, performing a usual gesture
(like playing guitar), drawing a symbol in the air, drawing some-
thing real in the air, performing a complex gesture by concatenat-
ing simple gestures (squares, triangles, circles), and making their
own signatures in the air. A second session has been performed by
studying the videos recorded in the previous session. In this ses-
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sion, three different people tried to forge each of the original in-air
biometric signatures. Utilizing DTW as the classifier they achieve
an EER of 2.5% as the best performance.

The study by Hong et al. (2015) involves the behavior of hand
waving gestures. They collect data from 8 users and each user per-
forms 10 hand gestures for weeks. Hence, this is designed user be-
havior. It is projected into the tasks attribute as shown in Fig. 1.
Acceleration motion event is used to log the user’s gestures. Utiliz-
ing SVM as the classifier they achieve the best result of 92.83% TPR
(True Positive Rate) with a corresponding FPR (False Positive Rate)
of 3.67%.

Another behavior to authenticate users is unlocking phones
through hand waving as shown in Yang et al. (2014) (Yang et al.,
2014). Acceleration is the only motion event modality that captures
the above designed user behavior (having the tasks attribute). Uti-
lizing SVM as the classifier they achieve the best performances of
15% FPR (False Positive Rate) and 8% FNR (False Negative Rate).

Lin et al. (2012) proposes a novel non-intrusive authentica-
tion mechanism where users perform up-down and left-right
flicks/swipes in sitting. There are 20 users who provide the data
from which the flicks of duration < 100 milliseconds are discarded.
The user behavior is natural under the context limited subset and
has the hand actions attribute. Only orientation (rotation) motion
event is utilized to log the user’s wrist motions. We must know
the relationship between wrist motion and the reading of the ori-
entation sensor while a user holds and operates a smartphone. Our
wrist offers three dimensions of freedom, which are, wrist flexion
and extension, supination and pronation, and wrist radial and ul-
nar deviation. They extract 53 features in total from the data. Uti-
lizing the orientation data along the y and z axes they calculate
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the combined angle which is the square root of the sum of squares
of orientation along the y and z axes. Features extracted are aver-
age, minimum, maximum, range, and standard deviation of orien-
tation along x, y, z, and combined angles. Feature selection is per-
formed per user using linear regression. They utilize the kNN clas-
sifier with 1, 3, 5, 7, and 9 as k values and combine the decisions of
each kNN using majority voting to obtain improved performance.
They obtain the best EER of 6.85%.

The study by Owusu et al. (2012) involves authentication us-
ing the corresponding acceleration data during keypresses. Users
type prescribed texts to make sure all the keys are pressed by a
single user and they also type several passwords. There are two
types of experiments performed, namely, area mode inference and
character mode inference. In area mode inference a total of 1300
keypresses and the corresponding acceleration data are collected.
In the area mode inference experiment, they divide the screen
into smaller areas from each of which they collect approximately
20 samples. Before each data collection run, participants are in-
structed to press keys in any order until all of the keys received at
least one press. They represent a heat map that shows the areas on
the screen whose acceleration has performed the best and worst in
authenticating users. For character mode inference, in total 2700
keypresses and their corresponding acceleration data are collected.
Here the training data includes typing pangrams and testing data
includes typing 99 6-character passwords. Features extracted from
each of x, y, z, and resultant components of acceleration are - Root
Mean Square (RMS) value, RMS error, minimum, maximum, aver-
age sample by sample change, number of local peaks, number of
local crests, the average time from a sample to a peak, the average
time from a sample to a crest, RMS cross rate, and signal magni-
tude area. There are two meta information as features which are,
the total time of the window and the number of samples in the
windows. Feature selection is performed using the Wrapper algo-
rithm. They plot the percentage of passwords cracked against the
median number of trials required to extract those passwords. 1 of
99 passwords is cracked in 1 attempt and 6 of 99 in 4.5 median
attempts.

6. Future research implications and directions

This survey focuses on stationary mobile behavioral biometrics
through motion events. We categorize user behaviors into natu-
ral and designed and present further sub-categorization. We be-
lieve that our conceptual framework will be used in enhancing the
knowledge about the background of this domain and also will be
beneficial for readers (from both academia and industry) to eas-
ily grasp the vast behavior landscape of user behaviors. We believe
that our survey will present readers with the reasonings or intents
of our past researchers towards their choice of a certain behavior
for authentication. The readers can also view the gradual shift in
usage of natural behaviors over designed (Fig. 8) which demon-
strates the future application trend while implementing such se-
curity mechanisms in real-life.

Furthermore, we review each study along dimensions such as
tasks, datasets, modalities, algorithms, and performances along
with additional behavioral attributes, and link the state of the art
to our proposed model. We believe that our proposed conceptual-
ization framework and the survey in its entirety will help future
academic researchers and industry practitioners in setting up the
constraints or modules (such as type of behavior, choice of motion
sensors and supporting sporadic modalities, choice of features for
motion sensors, setting sampling rate, making the desired classi-
fication model, and choosing suitable metrics, among others). The
aim of our survey is to present a handbook on stationary mobile
behavioral biometrics that demonstrates the choice of such con-
straints and their effects on authentication performance. This we
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believe should support academic researchers in benchmarking mo-
bile behavioral biometrics which in turn should be beneficial for
industrial practitioners for real-life implementation.

We have identified several important directions for future re-
search. Although the above-contributing factors in our survey will
support the essential benchmarking of mobile behavioral biomet-
rics, we observe that at present not many benchmarking of mo-
bile behavioral biometrics exist. For the real-life implementation of
mobile behavioral biometrics for continuous authentication of le-
gitimate users such benchmarking studies are necessary. This will
demonstrate an estimated performance range to future researchers
before such mobile security system gets deployed in real-life. We
believe that there is a requirement to rigorously evaluate different
groups of classifiers along with feature sets and fusion strategies
in the process of benchmarking. Although we have described the
underpinning of behavioral biometrics in cognitive psychology, we
believe that significant future work is needed to formally estab-
lish human psychology and other related disciplines such as hu-
man physiology as the scientific foundation of behavioral biomet-
rics. Furthermore, studies are needed to investigate the usability
and the social acceptability of behavioral biometrics-based mobile
security. Lastly, another important direction is to integrate behav-
ioral biometrics in a way that compliments other existing security
mechanisms, where much future work needs to be done.

7. Conclusion

Our survey reviews the state of the art in mobile behavioral
biometrics with a focus on motion events, which authenticate
users through their stationary (sitting/standing) behaviors. Station-
ary behaviors represent the major way modern users interact with
mobile devices and thus more focus is needed to observe its ef-
fects on authentication performance. We categorize the user be-
haviors across the studies into natural and designed for researchers
to grasp the broad landscape of stationary user behaviors. Under
natural behaviors, we identify four kinds of contexts, namely, novel
behaviors, routine usage, context limited, and postures with phone.
The contexts of novel behaviors, context limited, and routine usage
include stationary user behaviors. In contrast, postures with phone,
being the broadest context, includes a few walking behaviors along
with dominant stationary behaviors.

We study the research timeline of the reviewed state of the art
and observe that the usage of designed behaviors for user authen-
tication appears to have gone out of fashion. Since 2015 the re-
search community has explored substantial natural behaviors. This
is consistent with the fact that it is more common for regular mo-
bile users to exhibit natural behaviors than designed. We also plot
the performances of each study and observe the effects of behav-
ior types on the authentication performance. Each user behavior,
irrespective of its type, is projected into three different attributes
or aspects (walking versus non-walking, tasks, and hand actions).

Additionally, we lay our focus on the general psychology of the
users. We describe the underpinning of behavioral biometrics by
cognitive psychology and project the necessity of further future
work on this topic to formally establish cognitive psychology as the
foundation of behavioral biometrics. We acknowledge the fact that
users with cooperating psychology tend to learn/get accustomed to
the mobile user interface (Carroll and Rosson, 1987) which is be-
lieved to add a positive impact on the authentication performance.
On the other hand, the psychology of non-cooperating users put a
negative impact on authentication. However, we have enough co-
operating and stable users who in the best interest of their device’s
security will utilize the advantages of the user authentication sys-
tem.

Our survey groups the reviewed studies on stationary mobile
behavioral biometrics into three categories based on the involve-
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ments of the motion events. Given that sporadic modalities are
not always available, we focus on motion events to log the unique
hand micro-movement characteristics of users. But we highly en-
courage the fusion of sporadic non-motion modalities (when avail-
able) with motion events to further benefit the authentication per-
formance. We survey the studies along the dimensions of user
behaviors, duration of device usage, sensor utilization, sampling
rate, feature extraction, classifiers/algorithms used, and perfor-
mance. We observe acceptable authentication performances across
the studies involving stationary user behaviors. Through our sur-
vey, we observe that there are not many benchmarking done on
behavioral biometrics which is needed in the future to deploy it as
a mobile device security mechanism in real-life.

As the field of behavioral biometrics evolves, more studies are
needed to evaluate its practicality and generalizability. This survey
aims to demonstrate the role of user behavior on authentication
performance and identifies those behaviors that are highly normal-
ized in real life while a user is interacting with their mobile de-
vice. We hope that our survey of different authentication technolo-
gies applied to behavioral biometrics will be useful for future re-
searchers to deploy passive authentication mechanisms in real life
on mobile devices based on users’ stationary behaviors which are
most commonly exhibited.
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