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a b s t r a c t 

Current security mechanisms in mobile devices such as PINs, passwords, patterned passwords, and bio- 

metrics are one-time entry-point authentication and vulnerable to attacks. Furthermore, advanced mech- 

anisms like Multi-Factor Authentication (MFA) introduce friction in the user experience. In contrast, be- 

havioral biometrics rely on user interaction with computing devices to authenticate a user and thus, can 

be continuous, non-intrusive, and cost-effective, representing a promising direction that complements ex- 

isting authentication techniques. This survey focuses on stationary/non-walking (sitting, standing) mobile 

behavioral biometrics through motion events like acceleration, gyroscope, magnetometer, and orienta- 

tion (rotation) with the optional support of other non-motion, sporadic modalities such as swipes and 

keystrokes. The focus on stationary behaviors can be justified because such behaviors represent the ma- 

jor way a user interacts with mobile devices. To help readers understand the broad landscape of user 

activities/behaviors, we categorize the state of the art into natural and designed behaviors and describe 

the underpinning of behavioral biometrics in cognitive psychology. Furthermore, we categorize the sur- 

veyed studies into three groups based on the fusion of motion modalities and characterize each study 

along dimensions such as task, datasets, modality, algorithms, and performance. Based on our survey, we 

identify several future directions of research. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Mobile devices are widely used for daily activities such as 

ransmission of sensitive information, messaging, online banking, 

tness tracking, and online shopping, among others. Confidential 

ser data is often protected through one-time entry-point secu- 

ity mechanisms like PINs, passwords, patterned passwords, and 

iometrics (face, iris, fingerprint). Such security mechanisms are 

ither knowledge-based static passwords (PINs, passwords, pat- 

erned passwords) ( Aravindhan and Karthiga, 2013 ) or static bio- 

etrics (iris, fingerprint, face) ( Behavioral biometrics vs static bio- 

etrics: Dynamic fraud detection explained, 2022 ; Li et al., 2020a; 

yu et al., 2021 ), both of which are vulnerable to attacks. On the

ther hand, the more advanced Multi-Factor Authentication (MFA) 

equires the user to provide additional factors such as one-time 

asswords (OTP) and thus introduces friction to the user experi- 

nce. 

Behavioral biometrics in addition to being dy- 

amic ( Behavioral biometrics vs static biometrics: Dynamic fraud 

etection explained, 2022 ; Fantana et al., 2015 ) is also frictionless 

s it passively authenticates users to secure their mobile devices. 
∗ Corresponding author. 
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here are multiple in-built mobile sensors (touch, keypress, mo- 

ion, light, camera, proximity, temperature, and elevation) that 

og the user’s behavioral biometrics data which can be used to 

uthenticate the legitimate user of the device. This cost-effective 

ecurity mechanism can continuously authenticate users if the 

ata is non-sporadic in nature. Among the phone sensors, touch 

vent (swipe, tap, pinch, zoom), keypress, and proximity log 

poradic data which if unavailable at an instant cannot be utilized 

or authentication. However, the motion sensors (accelerometer, 

yroscope, magnetometer, and rotation/orientation) can log data 

henever the phone is in operation and are therefore non-sporadic 

n nature which will support continuous authentication even when 

he sporadic modalities (keypress, swipes) are unavailable. 

In this survey, we explore the strengths and challenges of 

otion events (accelerometer, gyroscope, magnetometer, orien- 

ation) based continuous authentication on mobile devices. We 

ocus on studies where the users’ motion is captured in their 

tationary/non-walking (sitting/standing) states. This focus on sta- 

ionary behaviors can be justified because such behaviors rep- 

esent the major way a user interacts with mobile devices. Ad- 

itionally, stationary behaviors are important because modern 

nowledge workers spend a significant amount of time working 

ith mobile devices in stationary states ( Barkley and Lepp, 2016; 

agalaz-Sánchez et al., 2019 ). Barkley and Lepp (2016) ( Barkley and 

epp, 2016 ) show that 87% users in their study are seated while 

https://doi.org/10.1016/j.cose.2023.103184
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103184&domain=pdf
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nteracting with their phones and that only 5.9% of the users who 

se their phones frequently interact with their cell phones in non- 

tationary states. Zagalaz-Sánchez et al. (2019) review studies that 

how how excessive mobile phone usage in modern days is lead- 

ng to reduced physical activity. These studies show the prefer- 

nce of users to maintain stationary states over non-stationary 

hile interacting with mobiles. Furthermore, in many cases, the 

agnitudes of the sensor events and their variations with time 

re lower compared to when users are walking/moving which af- 

ects the performance ( Alobaidi et al., 2022; Ehatisham-ul Haq 

t al., 2018 ) therefore making the stationary scenario more chal- 

enging. Thus the stationary scenario deserves further attention. 

hrough our survey of the studies involving stationary behaviors, 

e observe that even with minimal motion during sitting and 

tanding the users can be authenticated with comparable high 

erformances to that of walking-based postures. The study by 

ay et al. (2021) has observed gyroscope data of lower magni- 

udes ( < 0.05 radian/second) produce worse results for which they 

onsider gyroscope data beyond 0.05 radian/second. In the dataset 

apers ( Ehatisham-ul Haq et al., 2018; Kumar et al., 2018; Sitová

t al., 2015 ) where the same experimental setup is maintained be- 

ween stationary and non-stationary data we observe a drop in 

erformance in the case of stationary data. These studies overcome 

his challenge by several techniques which include fine-tuning the 

ormalization technique of the data ( Kumar et al., 2018 ), perform- 

ng experiments with many algorithms ( Ehatisham-ul Haq et al., 

018; Kumar et al., 2018 ), performing fusion of modalities ( Ray 

t al., 2021; Sitová et al., 2015 ), and choosing deep network algo- 

ithms over traditional machine learning when the latter underper- 

orms ( Amini et al., 2018 ). However, we believe that in the future

ore research needs to be performed focusing on better overcom- 

ng this challenge. 

We identify the following unique characteristics of stationary 

ser behavior: 

1. Behaviors/Tasks performed when users are either sitting or 

standing (including relaxed and non-relaxed postures). 

2. Stationary behaviors broadly include fore limb movements 

ranging from hand micro-movements during moving phones, 

tapping, typing, and swiping to wide angular motion of arms 

during hand waving, sweeping, and moving arms around elbow 

holding phones. 

3. A stationary posture must involve minimal hip muscle move- 

ments. 

4. Stationary user postures must not include flexing of hind limb 

muscles due to walking and running. Flexing of hind limb 

muscles during stationary behaviors must be limited to fidget- 

ing/twitching and/or flexing during a change of posture (e.g. 

changing of posture to cross-legged sitting or the other way). 

In the case of stationary behaviors, users are either sitting or 

tanding and interacting with the mobile device during which even 

he smallest magnitude of hand micro-movements can be logged 

y the motion sensors. Users interacting with mobile devices in 

and tend to achieve stability and precision. As a result, the users 

evelop a postural preference. Additionally, the user’s hand size, 

rip strength, and age constitute the physiological traits. Both pos- 

ural preference and physiological traits are believed to contribute 

o the uniqueness of user behaviors ( Ray et al., 2021; Ray-Dowling 

t al., 2022; Sitová et al., 2015 ). Thus the highly available motion 

ensor data can be analyzed for continuous authentication to se- 

ure mobile devices. Stationary behavior on mobiles through mo- 

ion event-based biometric systems complements the existing se- 

urity mechanisms in mobile devices and provides additional pro- 

ection post the entry-point security checking. 

As shown in Fig. 5 , in this survey we have categorized the be-

aviors/activities of stationary users across the studies into natu- 
2

al (e.g., routine usage, postures with phones, novel behavior, and 

ontext limited) and designed (e.g., in-air signatures, pattern trac- 

ng, and tapping in predefined screen locations, among others). The 

atural behaviors are non-intrusive, more available than designed, 

nd thus have the advantage of enabling more frequent authenti- 

ations. Furthermore, the categorization provides a quick overview 

f all the relevant application scenarios to future researchers. This 

ategorization is also useful since user behavior affects the authen- 

ication performance in a biometric system ( Eglitis et al., 2020; 

itová et al., 2015 ). 

In our survey, we identify studies (for example Belman et al., 

019; Ehatisham-ul Haq et al., 2018; Kumar et al., 2018; Sitová

t al., 2015 ) which present datasets with both stationary and non- 

tationary behaviors. For the completeness of their survey and to 

xplain the entire user activities we acknowledge the presence of 

he non-stationary behaviors and group them under the postures 

ith phones context of the natural behaviors category. All such 

ataset papers have non-stationary behaviors along with substan- 

ial stationary behaviors. However, none of the surveyed studies 

onsists of purely walking-gait-based behaviors. 

In this survey, we observe the underpinning of behavioral bio- 

etrics by cognitive psychology since the features derived from 

ehavioral biometrics are sequences of motor actions. Irrespective 

f the skill level that a user possesses (novice, intermediate, and 

xpert), they perform a wide range of behaviors on mobile devices. 

uch user behaviors are influenced by the general psychology or 

illingness of the users which in turn affects performances. We 

xplore the stability that a user tends to achieve over time to get 

ccustomed to the mobile interface which is believed to have an 

ffect on authentication performance. 

Recent surveys ( Abuhamad et al., 2020b; Alsaadi, 2021; 

lzubaidi and Kalita, 2016; Eglitis et al., 2020; Mahfouz et al., 2017; 

tylios et al., 2021; Stylios et al., 2016; Teh et al., 2016 ) on behav-

oral biometrics group studies by the wide variety of modalities 

nvolved (keypress, touch, gait, and others). In contrast, our survey 

ocuses on stationary behaviors on mobile devices through motion 

vents. Given that stationary postures are the major way a user 

nteracts with a mobile phone, it is important to focus on station- 

ry user behaviors on mobiles. Moreover, unlike other surveys, we 

ighlight only stationary behaviors through motion events because 

he motion sensor readings are non-sporadic and become the only 

eans of user authentication when no other sporadic modalities 

keypress, swipes, taps) are available. 

The state of the art on motion event-based authentication sys- 

em often fuses the motion data with other sporadic modalities 

ike keypress, swipe, tap, and elevation. Fusing motion events with 

ther modalities when available can improve the performance of 

he authentication ( Abuhamad et al., 2020b; Roy et al., 2015; Shen 

t al., 2017; Stylios et al., 2021; Teh et al., 2016 ). In many cases,

nly the motion sensors (accelerometer, gyroscope, magnetome- 

er, and orientation) are fused to enhance the overall authentica- 

ion performance ( Shen et al., 2017; Sitová et al., 2015 ). Given the 

bove, we have categorized the reviewed state of the art into three 

ategories by focusing on motion events, as follows: 

i) stationary behavior on mobiles through only motion sensors 

(presence of at least two motion sensors) 

ii) stationary behavior on mobiles through at least two motion 

events fused with non-motion sporadic modalities 

ii) stationary behavior on mobiles through only one motion event 

which may or may not be fused with non-motion sporadic 

modalities 

Across the three categories above, our survey further highlights 

ach reviewed study along the following dimensions - the datasets 

sed, number of data providers, user behavior, duration of de- 

ice usage, modalities, sampling rate of motion events, algorithms 
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Fig. 1. Comparison of the recent surveys and ours. 
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valuated, fusion type, and performance measurement. We further 

roject the behavior dimension of each study to the following at- 

ributes/aspects, namely, walking versus non-walking-based tasks 

o create special datasets, tasks, and hand actions. See Fig. 1 and 

ection 5 . We also elaborately discuss notable feature extraction 

ethods performed by certain studies. 

Therefore, this survey has made the following contributions: 

1. Focuses on stationary mobile behavioral biometrics where the 

motion events may also optionally be fused with other non- 

motion modalities. No prior survey has focused on only station- 

ary behavior on mobiles through motion events which need at- 

tention given that stationary behaviors represent the major way 

of user interaction with mobile devices. See Section 2 . 

2. User behavior categorization across the state of the art studies 

into natural and designed behaviors. No prior survey has cat- 

egorized user behaviors. The natural behaviors which are the 

most common behavioral type among users (compared to de- 

signed) are further divided into four levels of contexts, namely, 

postures and phone locations, routine usage, context limited, 

and novel behaviors. See Sections 4.1 and 4.2 . 

3. Observing the effects of behavioral types on performance to 

analyze the usability in real-life implementation of behavioral 

biometrics-based mobile authentication. See Section 4.3 . 

4. Describing the underpinning of behavioral biometrics in cogni- 

tive psychology and the possible effects of general human psy- 

chology on the performance of an authentication system. See 

Section 4 . 

5. Grouping the state of the art on stationary user behaviors into 

three categories based on the usage of the motion modalities 

and others for authentication. See Section 5 . 

6. Reviewing each study from the three categories along dimen- 

sions such as tasks, number of users, datasets, modality, sam- 

pling rate, algorithms, and performance along with additional 

behavioral attributes (walking versus non-walking behaviors, 

tasks, and hand actions). See Sections 2 , 4.4 , and 5 . 

The rest of the paper is arranged as follows - Section 2 in- 

roduces our proposed conceptual framework and explains the 

election criteria of the reviewed studies and the methodology 
3 
ased on the conceptual framework to search the state of the 

rt. It also compares and contrasts our survey with existing ones. 

ection 3 describes the background of the surveyed mobile secu- 

ity system with involved motion event sensors and the authen- 

ication pipeline utilized across the studies. The section also es- 

ablishes stationary mobile behavioral biometrics as an authentica- 

ion modality. Section 4 is a detailed elaboration of our conceptual 

ramework and description of the categorization of user behaviors 

nder natural and designed types and linking each behavior across 

he studies under such category. It also describes the attributes or 

roperties exhibited by each study. Section 5 contains the survey 

f the state of the art and links each with the proposed framework 

escribed in the sections before. Section 6 discusses the future di- 

ections of this research domain towards its application in real-life 

s a mobile security system. Lastly, Section 7 concludes our survey. 

. Conceptual framework, survey methodology, and existing 

urveys 

This section describes the core conceptual framework of our 

urvey in brief based on which and other factors we list the crite- 

ia for choosing studies that we review for our survey in stationary 

obile behavioral biometrics through motion events. It also dis- 

usses the methodology of searching state of the art to frame our 

urvey following the criteria. Thereafter, in this section, we com- 

are and contrast the existing surveys with ours and demonstrate 

hat no other surveys have proposed similar ideas to ours. 

.1. Proposed conceptual framework 

In Fig. 1 , we present the taxonomy of the surveys on behav- 

oral biometrics and highlight our uniqueness from others. Our sur- 

ey focuses on an in-depth review of stationary behaviors on mo- 

iles through motion events/sensors, unlike other surveys which 

erform a wide review of studies under different modalities. We 

bserve that user behaviors/activities affect authentication perfor- 

ance for which we categorize user behaviors across the studies 

nto natural and designed to analyze the effects of the type on 

erformance. The core concept of our survey lies in the catego- 

ization of stationary behaviors in mobiles where we define nat- 
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ral behaviors as routine/daily activities on phones and designed 

ehaviors as the type which are defined by an experimenter for 

pecial research purposes ( Fig. 5 ). So far, no other surveys have 

ategorized user behaviors. Furthermore, as shown in Fig. 1 , nat- 

ral and designed behaviors are assigned to the attributes of walk- 

ng versus non-walking tasks to create special datasets, tasks, and 

and actions. Depending on the usage of motion event modalities 

nd their fusion with other sporadic modalities, we categorize the 

eviewed studies into three groups (see Fig. 1 ) and analyze each 

ased on dataset, modalities, number of users, duration of phone 

sage, algorithms, and performance. The above concept is elabo- 

ately explained by applying it to each of the surveyed studies in 

ections 4 and 5 . 

.2. Survey methodology 

Based on the core conceptual framework we set the criteria for 

he selection of the state of the art as follows: 

1. The state of the art must be about mobile behavioral biomet- 

rics. 

2. The state of the art must involve stationary (sitting and stand- 

ing) user behaviors. Some studies may involve both stationary 

and non-stationary (gait-based) user behaviors but they must 

have substantial stationary user behaviors. 

3. The stationary user behaviors must be measured utilizing em- 

bedded motion event sensors (acceleration, gyroscope, magne- 

tometer, and orientation) to capture a user’s stationary hand 

micro-movements. However, we encourage the fusion of other 

simultaneously available non-motion modalities with the mo- 

tion events. 

4. We review the novel state of the art works that are pub- 

lished in the following publication venues, namely, Elsevier, 

IEEE, ACM, and Springer. We have also identified a few notable 

studies from arXiv. We also review studies that show the po- 

tential to include a variety in the range of stationary user be- 

haviors. 

5. The existing surveys mostly cover the state of the art on mo- 

bile behavioral biometrics up to till 2015. Hence, we decide to 

review the more recent works (2015 to present) involving sta- 

tionary behaviors. However, we also include a few studies from 

the timeline ranging from 2006 to the present to observe the 

shift of using natural behaviors over designed with time. 

Our methodology of surveying the state of the art includes two 

ethods. First, we search Google Scholar and Research Gate with 

he following four phrases “continuous authentication on mobile be- 

avioral biometrics ”; “motion events based continuous authentica- 

ion ”; “acceleration based continuous authentication ”; and “gyroscope 

ased continuous authentication ”. Among the four, the first phrase is 

he most effective. Second, we utilize the “snowballing ” method to 

dentify more state of the art from the list of references of a study 

hat we have already reviewed. 

Depending on the usage of modalities, we identify and review 

9 relevant papers by grouping them under three categories. Ad- 

itionally, we also review the 8 most recent surveys on mobile 

ehavioral biometrics to support our understanding of the state 

f the art. Given that we categorize the user behaviors/activities 

cross the 59 studies, we study the effect of users’ cognitive psy- 

hology to interact with the interface for which we analyze 6 stud- 

es related to cognitive psychology. 

.3. Other surveys of mobile behavioral biometrics 

In this section, we compare other surveys on mobile behavioral 

iometrics with ours. 
4 
The survey by Alzubaidi and Kalita (2016) , has grouped stud- 

es under seven mobile behavioral biometric modalities (keypress, 

ouch, gait, hand waving, signature, voice, and general profiling). 

he motivation of this survey is to review the state of the art that 

an provide additional security mechanisms to overcome active at- 

acks like shoulder surfing. The authors survey papers based on the 

ollowing key points, namely, the amount of data used in authenti- 

ation, the types of classifiers utilized, and the authentication per- 

ormances. 

In the survey by Stylios et al. (2016) , the authors have grouped 

ontinuous authentication studies on mobile devices under walk- 

ng gait, touch gestures, input methods, location familiarity, power 

odalities, and their fusion. The key points of surveying each 

tudy are the context of the problem, methods/algorithms, num- 

er of participants, and citation count. 

Reviewing touch and keypress dynamics-based behavioral bio- 

etrics studies, Teh et al. (2016) point out the characteristics of 

n ideal authentication platform based on customizability, flexibil- 

ty, cost, and market share factors. It explains the degree of con- 

rol that can be adapted during the data acquisition and device se- 

ection process. Additionally, it discusses the type of input string 

hat is ideal for touch-based authentication (free, fixed, semi-fixed, 

r any touch gestures). The survey discusses the scenario of cross- 

ession-based data acquisition methods which should focus on be- 

avioral adaptation due to cognitive factors, psychological factors, 

hysiological factors, and environmental factors that may affect the 

uthentication performance over time. It also surveys studies that 

erform fusion of touch-based modalities with motion sensors (ac- 

eleration and gyroscope) logged simultaneously. 

Mahfouz et al. (2017) , group the reviewed state of the art based 

n gesture, keypress, general profiling, gait, and fusion-based au- 

hentication. The authors classify two types of attack scenarios that 

ommonly challenge the traditional security mechanisms of mo- 

ile devices, namely insider attacks (from close circles like family 

nd friends) and stranger attacks (from unknown impostors). The 

ain characteristics that a continuous authentication system must 

ossess are continuity- where a smartphone is verifying the user 

n a continuous manner; periodic re-authentication mechanism- 

e-authenticating the genuine users; and transparency- unobtru- 

ive continuous authentication. The state of the art are reviewed 

ased on data collection, feature extraction, classification models, 

nd performance. The survey points out the limitations of an au- 

hentication system, which are, noisy data, non-universality, intra- 

lass variations, and lack of uniqueness. 

A recent survey by Abuhamad et al. (2020b) groups around 

40 studies under gait, motion, keystroke, touch, voice modali- 

ies, and combination (fusion) of modalities. It classifies the enroll- 

ent phase of an authentication system into template and model- 

ased. In template-based, users submit multiple samples to es- 

ablish templates for the future. Physiological biometrics mostly 

ollow template-based enrollment methods. On the other hand, 

odel-based enrollment trains a Machine Learning model for user 

uthentication where the model decides whether the data be- 

ongs to the genuine user. Behavioral biometric-based authentica- 

ion mostly relies on model-based enrollments where the quality 

f the features plays an important role. The studies are reviewed 

nder the following key points: user activities, modalities, classi- 

ers used, number of users, performance, authentication time, and 

he mobile device used. 

Eglitis et al. (2020) , in their survey discuss the effect of discrete 

daptive learning on authentication and therefore relate learning 

o the overall psychology of the users while getting adapted to 

he data acquisition interface. They review around 40 works under 

ccelerometer, gyroscope, geomagnetic field, location, magnetome- 

er, phone status, proximity sensor, and touch sensor modalities. 

he review dimensions for each study are citation count, device 
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perating system, data and software availability, modalities used, 

ata collection conditions, user activities during data collection, 

essions, the time between sessions, use of multiple datasets, and 

ttack scenarios. 

In a recent short survey, Alsaadi (2021) review studies under 

oice, gait, keystroke dynamics, and signature modalities. The di- 

ensions of reviewing each study are general problem description, 

dvantages, disadvantages, and applications. 

Stylios et al. (2021) , is an updated survey on mobile behav- 

oral biometrics that groups reviewed works under touch gestures, 

eystroke dynamics, hand waving, and power consumption modal- 

ties. The survey states the advantages of behavioral biometrics- 

ased continuous authentication as cost-effective, im proving sys- 

ems and the socio-political pressure, and user-friendly. The survey 

ncludes the following dimensions to review each study, analysis of 

ata collection methodologies, different feature extraction meth- 

ds, possible attack vectors of behavioral biometrics, challenges, 

nd future trends. The survey categorizes different attack mecha- 

isms (passive attack and active attack) and points out the kind of 

ttack that is common per reviewed modality. 

In our survey, the reviewed state of the art capture user’s hand 

icro-movements while they are in their stationary states and in- 

eracting with a mobile device. The state of the art therefore must 

tilize motion sensors (accelerometer, gyroscope, magnetometer, 

nd orientation) to log the micro-movements exhibited by the 

ser. It is hypothesized that the user’s hand micro-movements dur- 

ng stationary behaviors along with their other physiological traits 

arm sweep, muscular flexing, grip strength, and hand size) are 

nique among individuals and can be utilized to authenticate the 

egitimate user of the mobile device. Additionally, the hand micro- 

ovements are impacted by the user’s task/activity/behavior, for 

hich we categorize user behaviors into natural and designed 

 Section 4 ). 

. Background 

As background, this section aims to present stationary mobile 

ehavioral biometrics through motion events as an acceptable and 

sable authentication modality. It describes the three major mo- 

ion sensors that measure the hand micro-movements of static 

sers, the building blocks of a typical authentication pipeline based 

n authenticating stationary users through micro-movements, and 

he characteristics and application-scenarios of non-walking mo- 

ile behavioral biometrics. 

.1. Motion sensors in smartphones 

A biometric system measures one or more physical (face, iris, 

and geometry, fingerprint, and others) or behavioral characteris- 

ics (micro-movements, typing, swiping, gait, and others) informa- 

ion of an individual to determine or verify their identity. These 

haracteristics are referred to by different terms such as traits, in- 

icators, identifiers, or modalities ( Jain et al., 2011 ). This section de- 

cribes the three most commonly used motion sensor modalities 

or user authentication on mobile devices, namely, accelerometer, 

yroscope, and magnetometer. The reviewed state of the art stud- 

es have measured stationary/non-walking behaviors in mobile uti- 

izing these three most common motion sensors. Other motion 

ensors on Android devices like step counters and step detectors 

re out of the scope of our discussion. Figure 2 shows the graph- 

cal readings of acceleration, gyroscope, and magnetometer (geo- 

agnetic field) sensors from the Sensors app (from the Google Play 

tore) on a Samsung Galaxy S22 Android phone. The Sensors app 

uns in the background when a subject is sitting and typing. The 

pp displays the readings of the phone’s sensors on the application 
5 
nterface. The magnitudes of each sensor are low since the subject 

s in a sitting state. 

.1.1. Accelerometer 

Acceleration is the change of speed of an object in three di- 

ensions. An accelerometer is designed to measure static and dy- 

amic accelerations ( Carlson et al., 2015 ). Static acceleration is the 

onstant force acting on a body, like gravity (acceleration due to 

ravity is constant at 9.8 m/s). Dynamic acceleration forces are 

on-uniform and caused by vibration or shock. In smartphones, 

n accelerometer is used to measure the vibration or accelera- 

ion of motion of the device. The force caused by vibration or 

cceleration triggers the sensor material to produce an electrical 

harge which is proportional to the force exerted on it. The de- 

ice mass is constant. The charge is also proportional to the ac- 

eleration produced due to exerted force and so we have f orce = 

cceleration ∗ de v ice _ mass ( How to measure acceleration, 2022; Liu, 

013 ). 

.1.2. Gyroscope 

Gyroscope is used to measure orientation, based on angu- 

ar momentum which is the rotational analog of linear momen- 

um (linear _ momentum = mass ∗ v elocity ) . The gyroscope returns 
he value of angular velocity which indicates how fast the device 

otates around its axes ( Liu, 2013 ). 

Applications of a phone’s gyroscope include motion sensing GUI 

Graphical User Interface) which enables users to hover, shake, se- 

ect, and perform other interactions; answer phone by shaking the 

evice; stabilizing image quality by preventing trembling; GPS nav- 

gation; and other motion sensing gaming activities ( How does a 

yroscope sensor work in your smartphone, 2022 ). 

.1.3. Magnetometer 

A magnetometer measures the strength and direction of the 

agnetic field. It requires an absolute direction (the direction that 

beys the earth’s coordinate system). For acquiring error-free mag- 

etometer readings, we need to get rid of the offsets from each 

xis. 

X _ of f set = [ max (Mx ) + min (Mx )] / 2 

Y _ of f set = [ max (My ) + min (My )] / 2 

Z _ of f set = [ max (Mz) + min (M z)] / 2 where M x , M y , and M z are

agnetometer readings along the x , y , and z axes respectively. 

M x ′ = M x − X _ of f set

M y ′ = M y − Y _ of f set

M z ′ = M z − Z _ of f set where M x ′ , M y ′ , and M z ′ are the new
agnetometer readings along the x , y , and z axes respectively after 

ubtracting the offsets ( Liu, 2013 ). 

Magnetometers in smartphones are used as an e-compass that 

easures the magnetic fields generally greater than 1 nT (nan- 

Tesla). The magnetometer sensor in smartphones creates a minia- 

ure Hall-effect that detects the Earth’s magnetic field along the 

hree axes x, y, and z. It works on the principle that a voltage can

e detected across a thin metallic element when placed in a strong 

agnetic field perpendicular to the element’s plane (surface) as 

hown in Fig. 3 . The detected voltage is called Hall voltage ( V _ hal l ).

he Hall voltage is directly proportional to the strength and polar- 

ty of the magnetic field perpendicular to the surface. The sensed 

oltage is converted to a digital signal representing the magnetic 

eld intensity. The output Hall voltage is: 

V _ hall = R h ∗ [(I/t) ∗ B ] where R h is the Hall Effect co-efficient, I

s the current flow through the surface in Ampere (amp), t is the 

urface thickness in millimeter (mm), and B is the magnetic field 

n Tesla ( Cai et al., 2012; hall-effect, 2022; What is magnetometer 

ensor, 2022 ). 

In addition to accelerometer, gyroscope, and magnetometer 

here are other position sensors in modern smartphones, namely, 
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Fig. 2. (a) Acceleration, (b) Gyroscope, and (c) Magnetometer sensor readings from the Sensors app on a Samsung Galaxy S22 Android phone while the user is sitting and 

typing. 

Fig. 3. The Hall Effect principle works by detecting a voltage across a metallic sur- 

face (the Hall voltage) in response to a magnetic field that’s perpendicular to the 

metallic surface ( Cai et al., 2012 ). 
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otation or orientation sensors which can additionally complement 

ser authentication. 

.2. Building blocks of behavioral biometrics-based authentication 

ystem 

This section presents the general building blocks of the authen- 

ication pipeline of the reviewed studies on stationary mobile be- 

avioral biometrics. A behavioral biometrics-based authentication 

ystem generally has the following subsystems , namely, collection, 

ransmission, storage, processing, classifier, and decision. Each sub- 

ystem comprises processes . A behavioral biometric-based authen- 

ication system has enrollment and authentication phases in both 

f which the processing and classifier subsystems are present. See 

ig. 4 . The reviewed state of the art studies include such building 

locks or its subset. The subsystems together with their processes 

re described as follows: 

• Collection - is the data collection subsystem in which a biomet- 

ric pattern is presented to a sensor. The processes of the col- 

lection subsystem include biometric pattern, presentation, and 

sensor ( Jain et al., 1999 ). 
• Transmission - is the subsystem that is generally present follow- 

ing the collection subsystem. Here, the biometric pattern/signal 

can be compressed for storage purposes. The signal can be ex- 

panded for further processing of the data in the next stages. 

The processes of this subsystem include compression, transmis- 

sion, and expansion ( Jain et al., 1999 ). 
• Storage - is the subsystem to store raw signals from the trans- 

mission phase ( Jain et al., 1999 ). 
• Processing - this subsystem is present in both enrollment and 

authentication phases to process the raw signals to be used as 

training and testing samples respectively. The testing samples 
6 
are future examples that are validated through the pre-trained 

model. The subsystem includes processes like data cleaning 

(pre-processing and quality control), feature extraction, and fea- 

ture selection (optional). 
• Classifier - The classifier subsystem is present in the enrollment 

phase for training the model/classifier with the training sam- 

ples. It is also used in the authentication phase to verify the 

test samples against the pre-trained model. 
• Decision - is the last subsystem of the authentication system. 

Here a decision over the test sample is made of whether or not 

the sample is accepted as a genuine or rejected as an impostor. 

.3. Characteristics and application-scenarios of stationary mobile 

ehavioral biometrics 

In this section, we explore stationary mobile behavioral biomet- 

ics through motion events as a biometric modality for user au- 

hentication. 

Any physiological or behavioral biometrics should possess the 

ollowing desirable characteristics: i) universality - every user pos- 

essing the measurable trait; ii) uniqueness - the trait must be 

nique in every individual; iii) permanence - the trait should be 

nvariant with time; iv) collectibility - the trait can be measured 

uantitatively; v) performance - the trait should achieve an accept- 

ble identification accuracy; vi) acceptability - user acceptance of 

he biometric system based on the trait; vii) circumvention - how 

asily the biometric system based on the trait can be compro- 

ised ( Jain et al., 1999; 2011; Ross et al., 2006 ). Several state of

he art on stationary behavior on mobiles show that the modality 

as universality, uniqueness, collectibility, performance, acceptabil- 

ty, and endurance against spoof attacks (cannot be circumvented). 

owever, no single biometrics is expected to possess all the char- 

cteristics. 

Any biometric system design is application dependent. The ap- 

lications of stationary behavior-based authentication systems on 

obiles can be classified based on the following issues: 

i) Cooperative versus non-cooperative users: this issue refers to 

he user behavior while interacting with the biometric system. The 

otive of a non-cooperative user generally lies in attempting to 

ide their identity ( Jain et al., 1999; 2011 ). Stationary behavior on 

obiles through motion events-based authentication system does 

ot have this issue as there is passive data logging. Genuine users 

ill allow the sensors to log their data in their own interest in 

ecuring their devices. On the other hand, any non-legitimate user 

ill be locked out of the device by the authentication system. For 

ecognition systems that are based on face, fingerprint, and hand 

eometry, a lot depends on the cooperation of the user. 
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Fig. 4. General Building blocks of behavioral biometrics-based authentication system utilized by the reviewed studies ( Abuhamad et al., 2020b; Jain et al., 1999 ). 

Fig. 5. Subcategories of different user behaviors within natural and designed behavior sets. 
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ments. 
ii) Overt versus covert deployments: indicate whether the users 

re aware that they are being authenticated (overt) or otherwise 

covert) ( Jain et al., 1999; 2011 ). Motion through a stationary mo- 

ile behavior-based authentication system is covert as the users do 

ot have to perform any additional task to authenticate themselves 

nd therefore the data logging is passive. An example of an overt 

iometric system is fingerprint-based recognition in general. 

iii) Habituated versus non-habituated users: Habituated users are 

hose who are accustomed to the biometric system due to frequent 

nteraction. Non-habituated users on the other hand are new to 

he system ( Jain et al., 1999; 2011 ). Stationary behavior-based au- 

hentication systems on mobiles are expected to remain unaffected 

ith users having various skill levels since the motion data gets 

assively logged while users are interacting on their devices. Addi- 

ionally, the familiarity of users with the system positively affects 
7 
he recognition/authentication accuracy ( Jain et al., 2011 ). More in- 

ight into this is provided in Section 4 . 

iv) Attended versus unattended operations: Attended operation 

efers to observed, guided, or supervised data acquisition ( Jain 

t al., 1999; 2011 ). An example of an attended operation is a face 

nd fingerprint-based biometric system used to issue identity doc- 

ments. On the other hand, passive data logging through mobile 

ensors is unattended. 

v) Controlled versus uncontrolled operations: Under controlled 

peration, environmental conditions like temperature, crowd, light- 

ng, and others can be moderated. On the other hand, data acqui- 

ition in outdoor environments is classified as uncontrolled ( Jain 

t al., 1999; 2011 ). Stationary behavior on mobiles through motion 

vents can be logged in both controlled and uncontrolled environ- 
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vii) Open versus closed systems: When a user’s biometric tem- 

late can be used as an authenticator in multiple applications it is 

nown as open system. For example, a user’s fingerprint may be 

sed for entering a secured building, logging into a workstation, 

anking, and others ( Jain et al., 1999; 2011 ). On the other hand,

he dynamic time-dependent data of motion events-based authen- 

ication system cannot be used as an authenticator across several 

pplications or devices and is therefore a closed system. Open sys- 

ems can be more prone to spoof attacks. 

. Categorizing user behaviors 

An authentication system can expect users with different skill 

evels of interacting with the authentication interface, which are 

 novice, intermediate, and expert ( Haasnoot et al., 2018 ). Irre- 

pective of the skill level, users perform a wide range of activ- 

ties/behaviors while interacting with an authentication interface 

nstalled to secure a mobile device. Such user activities or behav- 

ors can be categorized as natural and designed behaviors. 

Natural User Behavior - It is a type of common behavior when 

 passive authentication is performed to authenticate the user as a 

egitimate owner of the device where a user is not constrained to 

erform any active/designed special tasks. Behaviors like routine 

hone usage, browsing, typing, form filling, and swiping fall un- 

er this category. Therefore, no user training is required before the 

ata acquisition process. The only factor that can affect the authen- 

ication is the experience/skill level of the user to interact with a 

obile device. 

Designed User Behavior - It is the type of user behavior where 

n active (a designed) special task is required to be performed to 

og data that will be used for authentication. In many cases, when 

n authentication dataset is built, researchers may require user be- 

avioral patterns for a certain task ( Carroll and Rosson, 1987 ) for 

hich they include designed behaviors. Examples of designed user 

ehavior are hand waving/arm sweeping, pattern tracing through 

uided behavior, phone shaking around the elbow, typing pre- 

cribed texts, and others. Many data acquisition processes require 

sers to perform an active attack scenario. Here, a user acts as an 

mpostor and tries to mimic a genuine user by watching them per- 

orm a designed task in a video. This too falls under the designed 

ser behavior category to test the robustness of the authentication 

ystem through the collected data. The designed user behavior re- 

uires training/practice for users to get accustomed to the process. 

Through our research, we observe that behavioral biometrics in- 

olve user tasks/ behaviors that are either performed as per the 

ser’s own will without any training or performed when a dataset 

s collected by an experimenter who is providing special instruc- 

ions/training. Thus we broadly classify behaviors/tasks into natu- 

al and designed. 

The concept of cognitive psychology lies in the mental pro- 

essing of attention, language use, memory, perception, prob- 

em solving, creativity, and reasoning as a sequence of informa- 

ion ( Cognitive psychology, 2022 ). On the other hand, the features 

erived from behavioral biometrics (behaviorism in individuals) 

re sequences of motor actions. Thus, behavioral biometrics is un- 

erpinned by the founding idea of cognitive psychology. Hence, un- 

erstanding the behavior of users and their adaptability to an in- 

erface through a learning process is important. 

For both natural and designed behaviors performed, the key 

actor is the general psychology or degree of willingness of the 

ser. Irrespective of the level of skill and perception, a user tends 

o develop a learning or an adaptability curve to interact with the 

uthentication interface. The perception of using an embedded bio- 

etric system varies across users. Cooperative users have the gen- 

ral psychology to follow the process of authentication and de- 

elop individually unique behaviors that are difficult for imposters 
8

o emulate. In many cases, an impostor can exhibit haphazard psy- 

hology and has the motive to bypass the security mechanism. 

owever, there are enough cooperative and stable users available 

o utilize the advantages of an authentication system. Therefore, a 

ser’s cognitive psychology and adaptability affect their interactive 

ehavior which in turn affects the authentication performance. We 

bserve the effects of natural and designed behaviors in authenti- 

ation performance to further refine our justification of behavior 

ategorization ( Section 4.3 ). We explore whether both types ex- 

ibit acceptable authentication performance given in the real-life 

mplementation both of them can be utilized for user authentica- 

ion. Additionally, we expect natural behaviors to show good per- 

ormance since that is exhibited the most by the users during de- 

ice interactions. 

There is an effect of practice (to get accustomed to the task) on 

he authentication performance ( Anderson, 1982; Ericsson et al., 

993; Haasnoot et al., 2018 ). In Psychology, the Power Law of 

ractice states that learning does not occur at a constant rate. 

hen learning a new task, the speed of performance improve- 

ent in an individual declines. See Fig. 6 (b). In behavioral biomet- 

ics, the adaptability (the steady state in the curve in Fig. 6 (b)) 

o perform tasks like typing, and swiping while holding devices 

s believed to reach faster compared to learning any other skill- 

ul tasks (e.g. a designed behavior). The natural behaviors are non- 

ntrusive and users are more accustomed to them than designed 

ehaviors. Cognitive Science recognizes that users tend to develop 

onsistency while performing natural behaviors faster than de- 

igned ( Carroll and Rosson, 1987 ). Figure 6 (a) shows the Speed Ac- 

uracy Trade-off (SATF) curves for novice, intermediate, and expert 

sers. The SATF shows a complex relationship between the speed 

f learning and the accuracy of a system’s performance. It shows 

hat a fast learner does not necessarily produce high authentication 

ccuracy and a slow learner does not necessarily show low authen- 

ication accuracy. In motor skill learning (like in behavioral biomet- 

ics), skill improvements are defined as the changes in the location 

nd shape of a Speed-Accuracy Trade-off Function. See Fig. 6 (a). 

uch variations in performance can affect authentication in a bio- 

etric system. 

.1. Natural behaviors across the state of the art 

In the case of passive/natural tasks, it requires an individual to 

rocess a sequence of motor events. Sequences of motor events 

an be classified into - (i) motor adaptation which is a form of re- 

earning with gradual improvements in performance and (ii) motor 

equence learning that involves the acquisition of skill to produce 

 sequence of movements with limited effort ( Anderson, 1982 ). In 

ig. 5 , the set of natural behaviors shows the identified user be- 

aviors from the reviewed studies that fall in this group. 

Each study involving different natural behaviors has been iden- 

ified under the appropriate subcategories or levels of context. 

ooking at the wide range of user behaviors performed naturally 

e coin four levels of context. However, with fewer designed be- 

aviors such sub-categorization is not meaningful. There are four 

ajor frames of reference within natural behavior. The broadest 

rame of reference is when a user is in different postures (e.g., 

itting, standing, walking, running, climbing stairs) and keeps the 

hone in different body locations (e.g., pockets, waist, hands, up- 

er arms). Under this context, users can perform a wide range 

f natural behaviors. The next frame of reference is routine us- 

ge followed by context limited natural behaviors (typing, swip- 

ng, browsing, and others). Routine usage is daily activities on the 

evice whereas context limited focuses on a specific natural task. 

he narrowest frame of reference is performing novel behaviors for 

 small interval of time. See Fig. 7 . Among the levels of context, 

ovel behaviors, routine usage, and context limited include station- 
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Fig. 6. (a) Speed-Accuracy Trade-off (SATFs) for novice, intermediate, and expert individuals. For each level, there is a change in the shape and location, (b) An example of 

a Power Law of Practice. The rate of skill change becomes lower for those with higher initial skill/more accumulated practice ( Haasnoot et al., 2018 ). 

Fig. 7. Four levels of context under natural behaviors. The contexts of novel behav- 

iors, routine usage, and context limited include stationary behavior whereas pos- 

tures with phone include both stationary and walking behaviors. 
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ry behaviors. On the other hand, the broadest context, postures 

ith phone, consists of identified studies that include walking be- 

aviors (in addition to stationary behaviors). However, our focus is 

ainly on studies that involve stationary behaviors. 

Postures with phone: Studies that include different pos- 

ures and phone locations beyond stationary user postures 

all under this broadest frame of reference. In the study by 

elman et al. (2019) the users walk and climb up and down the 

tairs with the phone in their pocket. The study by Ehatisham- 

l Haq et al. (2018) authenticates users when they are walk- 

ng, sitting, standing, running, walking up and down stairs with 

he phone in one of the five different body locations (upper 

rm/wrist/waist/right pocket/left pocket). User authentication has 

een performed taking every combination of the user’s posture 

nd phone location. In the study by Kumar et al. (2018) , the users

re walking while wearing a smartwatch and while having a phone 

n their pocket, through which the movements are measured us- 

ng motion events. Apart from these, there is the study by Sitová

t al. (2015) which involves walking posture in addition to sit- 

ing. Figure 5 shows the different natural behaviors under the 

evel/subset of postures with phones exhibited across the above 

tudies. 

Routine usage: The studies under routine usage ( Abuhamad 

t al., 2020a; Centeno et al., 2017; Deb et al., 2019; Lee and Lee, 

015; Neverova et al., 2016; Roy et al., 2015; Shen et al., 2017; 

022 ) have asked users to use the device for a long time span

anging from hours to weeks and perform daily activities. The 

ain purpose of these studies has been collecting large samples 

f data when users are performing daily tasks. The routine usage 

ehavior in the study by Roy et al. (2015) includes activities like 

eading Wikipedia articles and answering Qualtrix questions. In 

buhamad et al. (2020a) , the users perform a wide range of activi- 

ies which include screen touch and taps, web browsing, document 
9 
nd email reading, making calls, chatting, and browsing pictures 

mong others. In a different study by Acien et al. (2019) users use 

PS, WiFi, and different phone applications like Whatsapp, Face- 

ook, YouTube, and others. Here, users are profiled utilizing infor- 

ation from keystrokes, touch, acceleration, gyroscope, app usage, 

iFi, and GPS usage. In Lee and Lee (2017) , users perform four 

outine behaviors which are- using a smartphone while standing, 

itting, or moving; when stationary on the table; and in a moving 

ehicle. The user behavior of read/write/map navigation belongs to 

outine usage. However, all of these natural activities together are 

he data collection format of HMOG data by Sitová et al. (2015) . 

hereafter, other studies ( Bhattarai and Siraj, 2018; Centeno et al., 

017; Li et al., 2018; Li et al., 2020a; Li et al., 2021; Li et al., 2020b;

hen et al., 2022; Volaka et al., 2019 ) have either utilized HMOG 

r followed the same data collection method to create a special 

ataset. Motion events are logged while users perform the above 

outine phone usage. Figure 5 shows the different natural behav- 

ors under the level/subset of routine usage exhibited across the 

bove studies. 

Context limited: Other natural behaviors like typing, typing pass- 

ords, browsing, swiping, game playing, and phone pick-up fall 

ithin the context limited frame of reference. There are stud- 

es ( Belman et al., 2019; Centeno et al., 2017; Crawford and Ah- 

adzadeh, 2017; Kim and Kang, 2020; Kumar et al., 2018; Li et al., 

020a; Ray et al., 2021; Ray-Dowling et al., 2022; Sitová et al., 

015; Volaka et al., 2019 ) that involve the specific task of typ- 

ng. Out of these works, the study by Kim and Kang (2020) in- 

olves typing in both Korean and English languages. In the study 

y Stragapede et al. (2022a) , users answer questions and type free 

exts through which keypress and other sensor data are logged. 

orks by Owusu et al. (2012) , Giuffrida et al. (2014) , Cai and

hen (2012) , Stanciu et al. (2016) , and Buriro et al. (2021) in-

olve authentication through motion events when users are 

yping PINs/passwords. Studies by Jain and Kanhangad (2015) , 

elman et al. (2019) , Sitová et al. (2015) , Stragapede et al. (2022a) ,

tragapede et al. (2022b) , and Ray et al. (2021) have logged 

ubstantial swipes along with motion event data. In the study 

y Belman et al. (2019) there is a large number of horizon- 

al and vertical swipes. The study by Sitová et al. (2015) logs 

wipes during the reading and writing activities that users per- 

orm across sessions. In Ray et al. (2021) swipes during the 

orm filling process are logged in addition to other modalities. 

n Jain and Kanhangad (2015) the data includes left to right, 

ight to left, and up and down swipes. In one among 8 differ- 
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nt tasks in Stragapede et al. (2022a) , users read a document 

hat involves logging vertical swipes along with motion events. It 

lso includes gallery swiping which has logged horizontal swipes 

nd simultaneous motion events. Lin et al. (2012) include up- 

own flicks/swipes and left-right flicks on the phone’s screen. 

here are wide ranges of applications that are browsed across 

he studies. The users in Amini et al. (2018) browse the Target 

hopping app. Users in Incel et al. (2021) , Basar et al. (2019) ,

nd Stragapede et al. (2022a) browse a banking app and 

erform standard online banking activities. In the study by 

urmuria et al. (2015) users browse Chrome and Facebook. In 

umar et al. (2016b) users sit and perform web browsing. Other 

ontext limited behaviors include game playing as performed by 

he users in Li et al. (2020a) and Papamichail et al. (2019) . One

f the most common context limited tasks is phone pickup. Stud- 

es by Feng et al. (2013) , Carlson et al. (2015) , Kunnathu (2015) ,

tragapede et al. (2022a) , and Buriro et al. (2015) have authenti- 

ated users through the phone pickup trajectory. The behavior of 

icking to unlock phones by users in Nohara and Uda (2016) is 

nother example of a specific task for user authentication. On the 

ther hand, Stragapede et al. (2022a) perform unlocking of de- 

ices using patterned passwords. Stragapede et al. (2022a) also 

nclude signature tasks on the device’s screen as a context lim- 

ted natural behavior. Shen et al. (2016) involve inputting taps on 

he phone’s screen. Another such context limited user behavior 

s form filling for registration purposes as performed by users in 

ay et al. (2021) . During all the above tasks the studies capture 

otion events. Figure 5 shows the different natural behaviors un- 

er the level/subset of context limited exhibited across the above 

tudies. 

Novel behaviors: We have identified two novel natural behaviors 

erformed by three studies. The studies by Buriro et al. (2017) and 

upta et al. (2022) have authenticated users through motion 

vents for n seconds after being notified with a broadcast event 

hat gets triggered when suspicious activity is detected. In the 

tudy by Ray et al. (2021) users are authenticated through mo- 

ion events during a few seconds of using the fingerprint hardware. 

his is to prevent sensitive applications like online banking that 

re sometimes locked through the user’s fingerprint which can be 

poofed easily once an impostor manages to bypass the entry-point 

uthentication. Figure 5 shows the different natural behaviors un- 

er the level/subset of novel behaviors exhibited across the above 

tudies. 

.2. Designed behaviors across the state of the art 

For designed behaviors, training leads to the acquisition of cog- 

itive skills which has two phases - (i) declarative stage in which 

nformation about the skill domain is interpreted and (ii) proce- 

ural stage in which domain knowledge is applied for performing 

he skill ( Abrahamse et al., 2013 ). Figure 5 shows the user activi-

ies/behaviors grouped under the set of designed behavior. 

In the study by Ray et al. (2021) users trace basic shapes 

ike triangle, square, hexagon, octagon, pentagram, and hexagram. 

sers trace the patterns through a guided outline and are au- 

henticated through the strokes obtained from the tracing. In 

tragapede et al. (2022b) , users draw the figure ’8’ on screen. 

Although typing in general is a natural behavior, typing pre- 

cribed texts is designed. In the study by Ray et al. (2021) , users

ave to type a declaration statement which is ”I declare that 

verything I type is truthful”. One of the tasks in the study of 

elman et al. (2019) includes typing two static texts which are ”this 

s a test to see if the words that i type are unique to me. there are

wo sentences in this data sample” and ”second session will have dif- 

erent set of lines. carefully selected not to overlap with the first col- 

ection phase”. Similarly, in the study by Gascon et al. (2014) users 
10 
ype the pangram ”The quick brown fox jumps over the lazy dog”. 

wusu et al. (2012) also involves typing of prescribed pangrams. 

sers in Stragapede et al. (2022b) perform the tasks of typing a 

rescribed text in Spanish, which is, ”En un lugar de la Mancha, 

e cuyo nombre no quiero acordarme”. In all these studies, motion 

vents are captured while users type the prescribed texts. 

In the study by Stragapede et al. (2022a) , one of the user behav-

ors includes a designed behavior of tapping on predetermined lo- 

ations of the device’s screen as fast as possible. Although tapping 

ehavior itself is a natural behavior, the factor of predetermined 

ocations makes the behavior designed. 

The study by Yang et al. (2015) has collected motion event data 

or authentication while users are performing the designed behav- 

or of hand gestures wearing a smartwatch. 

Multiple studies have collected motion event data through 

he designed behavior of hand waving/arm sweeping. The study 

y Kratz et al. (2013) has trained users to perform six dif- 

erent hand waving gestures as shown in Fig. 9 . Similarly, 

kumura et al. (2006) have collected user’s hand waving data 

hile users have swept their hands vertically along the y- 

xis. In-air signatures are performed by users in the studies 

f Casanova et al. (2010) and Laghari et al. (2016) . Addition- 

lly, Casanova et al. (2010) also performs drawing of concate- 

ated shapes by holding phones in the air. Other similar studies 

hat perform hand waving/arm sweeping are Hong et al. (2015) , 

ang et al. (2014) , and Fantana et al. (2015) . 

There is a designed behavior performed by 

hu et al. (2017) where users shake the handheld phone uti- 

izing their elbow as the fulcrum as shown in Fig. 10 . Hand 

aving is different from phone shaking around the elbow since 

n the former case the elbow is not always used as the fulcrum. 

owever, here their elbows are fixed. Additionally, there are only 

our gestures that users perform under this behavior by always 

aking sure that the shaking happens about the elbow. 

We can therefore understand that for most natural behav- 

ors the stability in learning skills to get accustomed to the in- 

erface will reach faster (see Fig. 6 (b) where the curve plateaus 

or expert users) than most designed behaviors. To deploy sta- 

ionary mobile behavioral biometric systems in real life, our 

esearch community has performed their studies with mostly 

atural behaviors. In Fig. 8 we can see a gradual shift to- 

ard research using natural user behavior over time. After 

015 the utilization of designed behaviors to authenticate users 

ased on motion events has narrowed down. However, in the 

tudies like Belman et al. (2019) , Stragapede et al. (2022a) , 

tragapede et al. (2022b) , and Ray et al. (2021) there is the utiliza-

ion of both natural and designed behaviors where the number of 

esigned behaviors are less. On the other hand, towards the middle 

f the timeline (around 2015), there are several studies that started 

xploring natural behaviors. The plot in Fig. 8 shows a preference 

or natural behaviors over designed ones since the utilization of 

atural behaviors can estimate the robustness of the authentica- 

ion system when deployed in real life. Additionally, natural behav- 

ors are to be expected more in a real-life scenario, than designed. 

herefore, the gradual shift in the usage of natural behaviors is jus- 

ified. 

.3. Effects of behavior type on authentication 

In case of the natural behaviors, users are free to follow accus- 

omed strategies. On the other hand, while performing designed 

ehaviors users are constrained to perform artificial tasks. Cogni- 

ive Science recognizes that users tend to develop consistency in 

erforming natural behaviors which is not the same in the case of 

esigned or artificial tasks ( Carroll and Rosson, 1987 ). 
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Fig. 8. Research timeline to show a gradual shift toward natural behaviors. 

Fig. 9. Hand waving or arm sweeping in Kratz et al. (2013) . 

Fig. 10. Phone shaking around the elbow in Zhu et al. (2017) . 
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Figure 11 shows the performances across the reviewed stud- 

es which utilize natural behaviors for user authentication. We plot 

ar graphs for each performance metric. The performance metrics 

tilized by the studies are EER ( Fig. 11 (a)), Accuracy ( Fig. 11 (b)),

AR ( Fig. 11 (c)), AUC ( Fig. 11 (d)), and HTER ( Fig. 11 (e)). We observe

rom each bar graph that the user authentication performance uti- 

izing natural behaviors for most studies is more than acceptable. 

On the other hand, Fig. 12 shows the performances across the 

eviewed studies which utilize designed behaviors for user authen- 

ication. We present bar graphs for each performance metric uti- 

ized by the studies which are EER ( Fig. 12 (a)) and FPR ( Fig. 12 (b)).

owever, there are lesser samples of designed behavior perfor- 

ances compared to natural which explains the shift in utilizing 

atural behaviors more than designed as the research timeline has 
11 
rogressed ( Fig. 8 ). Even among the few identified designed behav- 

ors, the user authentication performances are acceptable. 

In real-life experience, user authentication should primarily de- 

end on natural behaviors since those are easily available through 

ser inputs. However, as a security mechanism, there can be de- 

igned behaviors incorporated in the real-life implementation of 

ser authentication on mobiles, e.g. pattern tracing of geomet- 

ical shapes for unlocking interfaces. The authentication perfor- 

ances across studies utilizing natural and designed behaviors are 

bserved to be acceptable. However, the difference between the 

atural and designed behaviors strongly exists due to their vari- 

tions in nature and the reaching of user stability ( Carroll and 

osson, 1987 ) as explained by cognitive psychology. From a clas- 

ifier’s capability, for either natural or designed, the training and 

esting samples belong to the same group (either natural or de- 

igned), which makes the performances more than acceptable in 

oth cases. Attaining faster stability among users while perform- 

ng natural than designed behaviors hypothesizes better authen- 

ication performance of natural behaviors. But the classifiers are 

bserved to overcome the noise or haphazardness due to unfamil- 

arity among users to perform designed behaviors which explains 

he comparable performances of both natural and designed. 

Therefore, we need to acknowledge the difference in nature be- 

ween natural and designed behaviors and the differences as ex- 

lained by cognitive science which will be helpful before real- 

ife deployment of user authentication utilizing any behavior type. 

longside, we need to understand a classifier’s capability to over- 

ome haphazard traits in designed behaviors and therefore per- 

orm equivalent to natural. This further ensures that the future 

eal-life implementation of user authentication can depend both 

n natural and designed behaviors. However, it is expected to rely 

ore on natural, as is the trend, due to its large availability and 

sage familiarity among mobile consumers. 

.4. Additional attributes/aspects of behaviors 

In addition to the user behavior categorization, we also charac- 

erize each behavior from the reviewed studies under the following 

ttributes/aspects: 

• Attribute 1: walking versus non-walking 
• Attribute 2: tasks 
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Fig. 11. Performances across studies utilizing natural behaviors: (a) Equal Error Rate (EER); (b) Accuracy; (c) True Acceptance Rate (TAR); (d) Area Under the Curve (AUC); 

and (e) Half Total Error Rate (HTER). 
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• Attribute 3: hand actions 

There are studies ( Belman et al., 2019; Ehatisham-ul Haq et al., 

018; Kumar et al., 2018; Sitová et al., 2015 ) that involve a wide 

ange of postures with the handheld phone to create special 

atasets with multiple modalities. In other cases, researchers hand 

ver the data collection device/phone to volunteers for several 

ays to log multi-modality data while users perform routine ac- 

ivities. Such behaviors hold the first attribute of walking versus 

on-walking-based tasks to create special datasets. On the other 

and, there are studies ( Okumura et al., 2006; Ray et al., 2021; 

tragapede et al., 2022a ) that collect data through assigning tasks 

o users, such as browsing, form filling, waving, and phone pickup, 

mong others. Therefore, they are assigned to the second attribute. 

astly, typing, swiping, tapping, and hand motion, among oth- 

rs ( Frank et al., 2012; Gupta et al., 2022; Ray et al., 2021; Stra-

apede et al., 2022a ) are fine-grained characteristics of the tasks 

ttribute and form the third attribute of hand actions. The taxon- 

my of surveys in Fig. 1 lists the attributes projected in addition 

o the behavior categorization into natural versus designed. These 
12 
ttributes will be assigned to the behaviors of each reviewed study 

n Section 5 . 

. Survey of stationary mobile behavioral biometrics 

Our survey groups studies in stationary mobile behavioral bio- 

etrics into three categories. We highlight each reviewed study 

long the following dimensions - the datasets used, number of 

ata providers, user behavior, duration of device usage, modalities, 

ampling rate of motion events, algorithms evaluated, fusion type, 

nd performance measurement. 

Our survey focuses on studies that involve motion events. Based 

n the number of motion event modalities and whether fusion is 

nvolved, three categories of stationary mobile behavior are defined 

s follows: 

1. presence of at least two motion sensors but without fusion 

with non-motion sporadic modalities 

2. at least two motion events fused with non-motion sporadic 

modalities 
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Fig. 12. Performances across studies utilizing designed behaviors: (a) Equal Error Rate (EER) and (b) False Positive Rate (FPR). 
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3. only one motion event which may or may not be fused non- 

motion sporadic modalities 

The above grouping is motivated by observed advantages and 

isadvantages unique to each of the studies. We list them along 

ith the performance trend of each group which will help readers 

o observe each category as a whole and understand their distinc- 

iveness from one another. 

The first group of works includes studies that involve measuring 

otion through two or more motion sensor modalities (accelera- 

ion, gyroscope, magnetometer, and rotation) only. No other non- 

otion modalities data are included. These studies focus solely on 

he measurement of phone’s motion about the reference frame of 

nertia due to the user’s behavior/activity on the device. The other 

poradic modalities (keypress, touch, location, and gravity) are con- 

idered stronger compared to the motion sensor modalities. Thus, 

xcluding them makes the first group of studies more challeng- 

ng than the others. However, there are studies that involve ac- 

ivities like typing, swiping, and touch events but these sporadic 

ensor data are not utilized for authentication under this category. 

n these cases, users are authenticated through the motion events 

ogged while a user is performing such activities of typing, swip- 

ng, and others. 

Advantages: 

• Systems falling under this group do not have to depend on the 

occasional presence of sporadic modalities. 
• The motion events are always available whenever the phone is 

in use which serves the core purpose of continuous authentica- 

tion. 

Disadvantages: 

• System’s authentication depends on at least two motion events 

where each may have a very high sampling rate ( Buriro et al., 

2015; Zhu et al., 2017 ). This has the potential to challenge the 

mobile’s battery consumption. 
• Systems processing such highly sampled data may pose chal- 

lenges to the computational cost. 

Performance and Overall Trends: 

• In this study we identify the use of two algorithms in most 

cases which are SVM and neural networks ( Table 1 ) which jus- 

tifies handling the higher sampled data or the same with more 

feature dimensions. 
13 
• We find a few studies with high performances even with 

smaller sampling rates ( Feng et al., 2013; Ehatisham-ul Haq 

et al., 2018; Kumar et al., 2018; Ray et al., 2021 ). However, our 

research community is encouraged to perform benchmarking 

for further assurance. 

The second group of studies includes works that involve exper- 

ments with two or more motion sensor modalities fused or com- 

ined with other sporadic non-motion sensor modalities. The spo- 

adic modalities usually log the user behaviors like typing, swip- 

ng, zooming in/out, and others in an input format. These are spo- 

adic because their logging depends on human behavior. One can- 

ot expect the behavior of typing or swiping to occur constantly. 

hese are comparatively stronger modalities than the motion sen- 

or modalities. The fusion/combination of these sporadic modal- 

ties (when available) with motion sensor modalities strengthens 

he authentication performance. 

Advantages: 

• Motion events occur simultaneously with stronger sporadic 

events which enhance performances as demonstrated in Sitová

et al. (2015) , Deb et al. (2019) , Incel et al. (2021) . 
• Due to occasional occurrences the sampling rates of the motion 

events will be under control to not challenge the battery con- 

sumption and computational cost. 

Disadvantages: 

• System’s performance depending on the sporadic modalities 

fails to serve the purpose of continuous authentication. 
• Cases, where the system’s algorithm is not competent enough, 

will fail to produce satisfactory performance with multiple 

modalities. 

Performance and Overall Trends: 

• We observe the usage of a wide range of algorithms. 
• Here we observe a range of performances with low satisfactory 

results as in Cherifi et al. (2021) , Gascon et al. (2014) to high 

performances as in Abuhamad et al. (2020a) , Roy et al. (2015) , 

Incel et al. (2021) among others. Further benchmarking will en- 

sure the performance range of fusion of motion events with 

other sporadic modalities. 

The third group of studies involves works that measure user be- 

avior through only one motion event ( Kim and Kang, 2020; Ku- 

ar et al., 2016b; Yang et al., 2014 ). The single motion event may 
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Table 1 

Comparative literature review: Fusion of at least two motion events for measuring stationary behaviors on mobile. Abbreviations - ACC: Accuracy, AB: AdaBoost, 

AUC:Area Under the Curve, BN:Bayes Network, DT: Decision Trees, DTW: Dynamic Time Warping, EE: Elliptic Envelope, EER: Equal Error Rate, FAR: False Acceptance Rate, 

FRR: False Rejection Rate, GCU: Glasgow Caledonian University dataset, GBC: Gradient Boosting Classifier, HTER: Half Total Error Rate, HMOG:Hand Movement, Orientation, 

and Grasp, IF: Isolation Forest, kNN: k Nearest Neighbor, KRR: Kernel Ridge Regression, LDA: Linear Discriminant Analysis, LinReg: Linear Regression, LOF: Local Outliers 

Factor, LReg: Logistic Regression, LSTM: Long Short-Term Memory, MLP: Multilayer Perceptron, NB: Naive Bayes, PABG: Phone Acceleration-based Gait Biometric, RF: Random 

Forest, RNN: Recurrent Neural Network, StatM: Statistic Method, SVDD: Support Vector Data Description, SVM: Support Vector Machine, SPMP: Swiping and Phone Movement 

Patterns, TRM: Trajectory Reconstruction Method, WABG: (Smart)watch Acceleration-based Gait, WRBG: (Smart)watch Rotation-based Gait. 

Study & Dataset #User Behavior Duration Modality Sampling (Hz) Algorithm Fusion 

Best 

performance 

Li et al. (2020a) , own, 

Brain- 

Run ( Papamichail et al., 

2019 ) 

100, 82 read, write, navigate; 

game playing 

24 Sess. ( ∼60 

hr), - 

Accel, Gyro 100, 10 SVM sensor (data) 5.14%, EER 

Kumar et al. (2018) , 

PABG ( Kumar et al., 

2015 ), 

WABG ( Kumar et al., 

2016a ), 

WRBG ( Kumar et al., 

2016a ), 

SPMP ( Kumar et al., 

2016b ) 

18, 40, 

28 

typing in sitting, gait - Accel, Gyro 46, 25, - SVM, LOF, IF, EE, AB, 

NB, kNN, LDA, LReg, 

MLP, RF 

score, decision 94.22%, AUC 

Ray et al. (2021) , own 49 Form filling in siting, 

typing prescribed 

texts, motion during 

fingerprint scanning, 

pattern tracing 

through guided 

behavior 

2 Sess. (intra, 

inter) 

Accel, Gyro 2 SVM score 

(weighted, LR) 

2.4%, EER 

(intra); 6.9%, 

EER (inter) 

Li et al. (2018) , own 100 read, write, navigate 6 hr Accel,Gyro 100 SVM feature 4.66%,EER 

Amini et al. (2018) , 

own 

47 browsing shopping 

app in sitting 

10-13 min Accel, Gyro 100 LSTM, SVM, RF, LReg, 

GBC 

sensor 96.7%, ACC 

Ehatisham-ul Haq 

et al. (2018) , own 

10 walking, sitting, 

standing, running, 

walking up and down 

stairs placing phone in 

different locations of 

user’s body 

90 min Accel, Gyro, 

Magneto 

50 SVM, DT, kNN feature 100%, ACC 

Lee and Lee (2017) , 

own 

35 routine usage 2 weeks Accel, Gyro 50 KRR, SVM, LinReg, NB feature 98.1%, ACC 

Fantana et al. (2015) , 

own 

- hand waving/arm 

sweeping holding 

phone 

5 Sess. Accel, Gyro 200 DTW - 0.02% FAR, 10% 

FRR, 3% EER 

Lee and Lee (2015) , 

own, 

GCU ( Kayacik et al., 

2014 ) 

4, 4 routine usage 5 days, 3 

weeks 

Accel, Rotate, 

Magneto 

5, - SVM sensor 95%, ACC 

Zhu et al. (2017) , own 20 phone shaking around 

elbow in sitting and 

standing 

2 Sess. Accel, Gyro 200 SVM sensor 1.2%, EER 

Feng et al. (2013) , own 31 phone pick up 3 Sess. Accel, Gyro, 

Magneto 

25 StatM, TRM feature 6.13%, EER 

Neverova et al. (2016) , 

own 

1500 routine usage several days Accel, Gyro - RNN feature 18.17%, EER 

Carlson et al. (2015) , 

own 

10 phone pickup 1 Sess. Accel, Gyro 68.7 MLP feature 88%, ACC 

Buriro et al. (2015) , 

own 

26 phone pickup 1 Sess. Accel, Gyro, 

Rotate 

150, 190, - BN, RF, SVM score 7.33%, HTER 

Kunnathu (2015) , own 7 phone pickup 1 Sess. Accel, Gyro 25 MLP feature 91.43%, ACC 

Kratz et al. (2013) , 

own 

15 hand waving/arm 

sweeping holding 

phone 

1 Sess. Accel, Gyro 80 Protractor3D, DTW, 

LReg 

feature 95%, F1 score 

Yang et al. (2015) , own 30 hand gestures wearing 

smartwatch 

2 Sess. Accel, Gyro 100 DTW, histogram feature 2.6%, EER 

Li et al. (2020b) , own 50 read, write, navigate 24 Sess Accel, Gyro, 

Magneto 

100 SVDD feature 1.47%, HTER 

Li et al. (2021) , own 100 read, write, navigate 24 Sess. Accel, Gyro 100 SVM (OCC) feature 1%, EER 

Bhattarai and 

Siraj (2018) , 

HMOG ( Sitová et al., 

2015 ) 

100 read, write, navigate 24 Sess. Accel, Gyro 100 SVM (OCC), fuzzy SVM 

(OCC) 

feature 3.7%, EER 

14 
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(

r may not be fused with other sporadic modalities. For example, 

he study by Kumar et al. (2016b) has acceleration as the only mo- 

ion sensor modality and two sporadic modalities - keypress and 

wipe. This work is based on authenticating users while they per- 

orm the two most common activities which are typing and swip- 

ng during which the phone motion gets captured through acceler- 

tion. The common single motion sensor modality is acceleration 

hich is used by most of the studies under this group. Among all 

he motion sensors, acceleration is considered to be the most use- 

ul modality as it includes inertial force (force which is caused due 

o the momentum of the mass/phone). The only reason for which 

he phone’s mass is subjected to momentum is the user activity on 

he device and therefore it becomes an important motion sensor 

odality. However, considering only one motion sensor modality 

or authentication can be challenging. 

Advantages: 

• Due to the presence of only one motion modality the bat- 

tery consumption and computational cost are not potential con- 

cerns. 

Disadvantages: 

• Due to the presence of only one single modality system relia- 

bility can be challenging. 

Performance and Overall Trends: 

• We observe the utilization of a wide variety of algorithms even 

in this small group of studies. 
• In most cases the performances are satisfactory ( Centeno et al., 

2017; Crawford and Ahmadzadeh, 2017; Kim and Kang, 2020; 

Kumar et al., 2016b; Laghari et al., 2016 ). Future benchmarking 

is required to be conclusive. 

.1. Fusion of two or more motion modalities 

Table 1 lists the state of the art under this category. 

In the study by Li et al. (2020a) two motion events (acceleration 

nd gyroscope) are logged with the goal of capturing arm move- 

ent and fine-grained motion. Two datasets are utilized in this 

tudy, of which their own collected dataset consists of 100 users 

ho perform reading, writing, and map navigation activities over 

4 sessions. There is the use of the BrainRun ( Papamichail et al., 

019 ) public dataset as the second dataset from which 82 ran- 

om users’ data is utilized for evaluation. The users in the pub- 

ic dataset perform a game-playing activity that can be classified 

nder the natural behavioral trait. The user activities from their 

wn and public datasets belong to the subset of routine phone 

sage and context limited respectively under natural behaviors. 

ased on such categorization, the user behavior of routine usage 

nd gaming possess the attribute of walking versus non-walking- 

ased tasks to create special datasets and tasks respectively (See 

ig. 1 ). The platform, Scanet, evaluates the logged data which con- 

ists of two-stream CNN (Convolutional Neural Network) as fea- 

ure extractors so that both time and frequency domain features 

re learned. Thereafter, PCA (Principal Component Analysis) is uti- 

ized to select the top 25 features with high discriminability after 

hich classification is performed utilizing a one-class SVM (Sup- 

ort Vector Machine). During training the SVM, they perform 10- 

old cross-validation. Investigating the combination of acceleration 

nd gyroscope using one-class SVM, they achieve an average EER 

Equal Error Rate) of 5.14% on their own and the BrainRun dataset. 

Kumar et al. (2018) compare the performances of several one- 

lass classifiers (OCC) with binary classifiers (BC) utilizing four 

mall datasets (number of users in each set < 50 ). However, the 

ser activity of the four datasets involves both non-gait and gait- 

ased activities under natural behavior (web browsing, typing, 
15 
wiping, walking, and walking while wearing a wristwatch as a 

earable sensor device). The user behaviors of the four datasets 

nclude walking back and forth for 200 m with a phone in trouser 

ocket (PABG dataset Kumar et al., 2015 ), wearing a smartwatch 

nd walking (WABG and WRBG datasets Kumar et al., 2016a ), and 

rowsing (SPMP dataset Kumar et al., 2016b ). These are natural be- 

aviors where the first two possess the attribute of walking versus 

on-walking-based tasks to create special datasets and the third 

ehavior of browsing possesses the attribute of tasks. Acceleration 

nd/or gyroscope are the motion events that are utilized across all 

our datasets to log user behaviors. Among experiments performed 

n individual OCC, BC, and fusion of multiple OCCs, the kNN (k- 

earest Neighbor) BC produces the best result of 94.22% Area Un- 

er the Curve (AUC). 

In Ray et al. (2021) , utilizing acceleration and gyroscope, con- 

inuous authentication is performed on mobile devices collecting 

 dataset of 49 seated users. The user behavior includes an An- 

roid registration form filling which is categorized under natural 

ehavior type given it is a real-life scenario or a common prac- 

ice of mobile users to sit and fill out online registration forms to 

pen an account or a portal for utilizing banking, e-commerce, and 

ther online services. The form filling in sitting behavior is pro- 

ected into tasks attribute. The data collection also includes typ- 

ng a prescribed text (a designed behavior with the attribute of 

and actions), followed by capturing motion events when users 

re using the phone’s fingerprint scanner (a natural behavior with 

he tasks attribute), and then tracing geometrical patterns through 

uided outline (a designed behavior projected into tasks attribute). 

using the two modalities at weighted score level and likelihood 

atio-based score level, the best EERs of 2.4% and 6.9% are achieved 

or intra- and inter-session experiments respectively. Between the 

wo score fusion techniques, the likelihood ratio-based score fusion 

erforms the best in both intra-session and inter-session (with the 

ffect of concept drift) experiments. 

Another study by Li et al. (2018) with 100 users’ data utilizes 

nly acceleration and gyroscope to capture the fine-grained mo- 

ion of users’ hand movements. Users perform routine phone usage 

s a natural behavior for around 6 h. The routine usage behavior 

ossesses the attribute of walking versus non-walking-based tasks 

o create special datasets. The authentication platform, SensorAuth, 

onsists of a feature extraction module that extracts both the time 

omain (mean, median, standard deviation, maximum, minimum, 

ange, kurtosis, skewness, 25%, 50%, and 75% quantiles) and fre- 

uency domain (energy, entropy, peak1, peak2f, and peak2) fea- 

ures. The raw data in this study undergo data augmentation to 

revent overfitting and improve the classifier’s generalizability. Uti- 

izing the SVM classifier, they obtain the best EER of 4.66%. 

In the study by Amini et al. (2018) a Deep Learning-based re- 

uthentication platform, DeepAuth, is utilized through RNN (LSTM) 

odels. The data is collected from 47 volunteers using accelerom- 

ter and gyroscope sensors. The user behavior includes sitting and 

rowsing the Target shopping app for 10–13 min while another 

pp logs the sensor data running in the background. It is a context 

imited natural behavior as in real-life scenarios it is a common 

ask for mobile users. The user behavior of browsing is projected 

nto tasks attribute as shown in Fig. 1 . The platform architecture 

s to re-authenticate genuine users but lock out impostors unless 

hey can pass other security mechanisms like providing passwords. 

he data is first pre-processed by downsampling from 100 Hz to 

0 Hz. Then it is windowed or segmented with window sizes of 

0, 40, 100, 200, and 500. It is observed that the window size of 

00 performs the best. The time domain features of the sensors are 

onverted to the frequency domain using Fast Fourier Transform. 

ata is split into training-validation-testing sets in percentages of 

0%-15%-15%. In the next stage, the data is passed to the LSTM 

Long Short-Term Memory) network which outputs a series of fea- 
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ure vectors. The very last output is fed to a fully connected out- 

ut layer and then to a sigmoid activation function from which the 

ositive/negative result is obtained. The LSTM produces the best 

esult of 96.7% accuracy based on 20 s of data. 

Ehatisham-ul Haq et al. (2018) perform six user behaviors, 

amely walking, sitting, standing, running, walking upstairs, and 

alking downstairs for a duration of 90 min when the sensor de- 

ice is kept in 5 locations of a user’s body (left, right jeans pocket, 

aist, upper arm, and wrist). These user behaviors are natural be- 

aviors under the subset of postures with phone. The user be- 

aviors are projected into the attribute of walking versus non- 

alking-based tasks to create special datasets. The classifiers uti- 

ized for the user authentication are SVM, Decision Trees, and kNN 

k-Nearest Neighbors) of which SVM performs the best. They au- 

henticate users through acceleration, gyroscope, and magnetome- 

er sensors achieving 100% accuracy from walking and running be- 

aviors. 

The work by Lee and Lee (2017) focuses on unobtrusive user 

uthentication. The authentication system SmarterYou combines 

sers’ information recorded in the smartphone and wearable de- 

ice. The work also includes the calculation of energy consumption 

f the device as the system needs to be continuously retrained. 

he authors assume that each smartwatch is associated with one 

wner who does not share their smartphone or smartwatch and 

hat the communication between the two devices is secure. The 

martwatch monitors the user’s raw sensor data and sends this in- 

ormation to the smartphone via Bluetooth. The sampling rate for 

ollecting the data from both devices is 50 Hz. The authors choose 

ccelerometer and gyroscope sensor data because the accelerome- 

er records motion patterns and the gyroscope records fine-grained 

otions of users such as how one holds a smartphone. They have 

egmented the raw data into sliding windows. The features de- 

ived from the two modalities are mean, variance, maximum, min- 

mum, range, peak, peakf, peak2, and peak2f of the sensor stream. 

ccelerometer and gyroscope data from both devices are fused at 

he feature level. It is observed that the data from the smartwatch 

used with the phone’s data enhances the performance. Users per- 

orm four routine behaviors- using smartphone while standing or 

itting, while moving, while it is stationary on the table, and in 

 moving vehicle. All of these are of the natural behavior type. 

hese routine phone usage behaviors possess the attribute of walk- 

ng versus non-walking-based tasks to create special datasets. They 

ave classified the data using Kernel Ridge Regression (KRR), SVM, 

inear Regression, and Naive Bayes. Out of these, KRR performs the 

est with an accuracy of 98.1%. 

The study by Lee and Lee (2015) involves their own dataset and 

he GCU (Glasgow Caladonian University) dataset ( Kayacik et al., 

014 ). The users in their dataset perform routine phone usage (nat- 

ral behavior) for several days, which is captured using three mo- 

ion sensors - accelerometer, magnetometer, and rotation (orien- 

ation). The user behavior is projected into the attribute of walk- 

ng versus non-walking-based tasks to create special datasets. They 

tilize 10-fold cross-validation during classification. Fusing the data 

t sensor level and utilizing SVM as the classifier they obtain the 

est result of 95% accuracy. 

The study by Neverova et al. (2016) is performed on a large 

ataset of 1500 users. Users perform routine phone usage for sev- 

ral months which is a natural behavior. The user behavior is pro- 

ected into the attribute of walking versus non-walking-based tasks 

o create special datasets. Both acceleration and gyroscope data are 

sed for authentication. RNN-based deep neural network is used 

n this study. They propose a Dense Convolutional Clockwork RNN 

odel. They pre-process the data by normalizing and making a 14- 

uple data vector (accel x, accel y, accel z, accel magnitude, gyro x, 

yro y, gyro z, gyro magnitude, angles made by accel and gyro in 

he phone’s coordinate system per axis). They perform authenti- 
16 
ation experiments with their proposed RNN-based network and 

ther neural networks. Data from all 1500 users is collected using 

87 phones. Data from 150 phones are used for validation and an- 

ther 150 phones are used for testing. An EER of 18.17% is obtained 

s the best. 

In the study by Fantana et al. (2015) , a designed behavior of 

and waving holding a phone is performed across five sessions. 

he user behavior possesses the tasks attribute as shown in Fig. 1 . 

wo modalities namely, acceleration and gyroscope are utilized 

o log the user behavior. Each movement/gesture is recorded for 

 s and is referred to as a snippet. To test the reliability of the

uthentication method they perform another designed behavioral 

ask to create an attack scenario. They utilize genuine user’s video- 

ecorded attempts to reproduce the movement by skilled forgers. 

he recorded video is shown to the forgers and they are asked to 

epeat the movement to the best of their ability. Both zero-effort 

nd skilled forgeries are performed. In the data processing stage, 

he 3-second data per movement is reduced to 500 ms data where 

he actual gesture is present. Several experiments are performed to 

valuate authentication performance utilizing DTW (Dynamic Time 

arping) classifier. The best performance obtained in this study is 

n EER of 3%. 

The study by Carlson et al. (2015) involves a special behavior 

f taking out a phone from pocket to ear, holding it to ear, and 

utting it back to the pocket. This is a natural behavior because in 

eal life this activity is common in practice. The behavior falls un- 

er the attribute of tasks as shown in Fig. 1 . The number of partic-

pants involved in this study is 10 from different age groups. Each 

ser repeats the behavioral pattern for 5 times. Both accelerometer 

nd gyroscope motion events are utilized to log users’ hand move- 

ents. Utilizing MLP (Multi-Layer Perceptron) as the classifier, they 

bserve the best performance of 88% accuracy. 

A similar study by Kunnathu (2015) utilizes their own dataset 

f 7 users. Here also the same natural behavioral patterns (falling 

nder the attribute of tasks) of taking out a phone from pocket to 

ar, holding it to ear, and putting it back in pocket are performed 

uring data collection. Both accelerometer and gyroscope motion 

vents are utilized to log users’ hand movements. Utilizing MLP as 

he classifier, they obtain a CCI (Correctly Classified Instances or 

ccuracy) of 91.43%. 

In another similar study by Buriro et al. (2015) users perform 

he behavior of slide swiping while unlocking a phone, then put 

he phone to ear, and speak over the phone while sitting and walk- 

ng. It is classified under natural behavior with the attribute of 

asks. Acceleration, gyroscope, and rotation are logged when users 

ut the phone to their ears after unlocking. They achieve a Half To- 

al Error Rate (HTER) of 7.33% as the best using Bayesian Network 

mong other classifiers. 

Feng et al. (2013) is a similar work that involves the natural 

ehavior of phone pick-up through accelerometer, gyroscope, and 

agnetometer modalities. This work achieves an EER of 6.13% as 

he best performance. 

The work by Kratz et al. (2013) involves the user behavior of 

rm sweep action holding the device in hand. The sweep actions 

r gestures include left to right, circular, left to right arc, infinity, 

riangle, and rotation which are designed behaviors. The user be- 

avior also possesses the tasks attribute. The modalities that log 

he user’s arm sweeps are acceleration and gyroscope. The classi- 

ers used in this study are Protractor3D, DTW and Logistic Regres- 

ion. They observe the best performance of 95% F1 score. 

The work by Yang et al. (2015) involves the behavior of hand 

aving while wearing a smartwatch. This is a designed behavior 

ince the wave motions are random. It has the attribute of tasks. 

he gesture is logged through acceleration and gyroscope motion 

vent modalities. They achieve an EER of 2.6% as their best perfor- 

ance. 
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The work by Zhu et al. (2017) involves a designed user behav- 

or of phone shaking around the elbow in sitting and standing. 

uch designed user behavior is projected into the attribute of tasks. 

hake refers to a to-and-fro movement with one hand holding a 

martphone and swinging the x- and y-axis coordinate plane of 

he phone around the elbow in the air. The authors divide contin- 

ous shakes into segments and extract two behavioral patterns of 

otion velocity and angular speed and one physiological pattern of 

haking radius based on shaking segments. The user’s phone shak- 

ng gesture is logged using accelerometer and gyroscope. Utilizing 

VM as the classifier they achieve the best performance of 1.2% 

ER. 

The study by Li et al. (2020b) implements a sensor-based con- 

inuous mobile authentication system, FusionAuth where acceler- 

tion, gyroscope, and magnetometer motion sensors are utilized. 

hey utilize data from 50 users who participated in 24 sessions 

erforming the natural behavior of read, write, and map navi- 

ate. Such behavior possesses the attribute of walking versus non- 

alking-based tasks to create special datasets. The raw sensor 

ata is segmented into time windows from which statistical and 

requency features are extracted. The work extracts 11 statistical 

eatures (mean, median, maximum, minimum, standard deviation, 

ange, 25%, 50%, and 75% quartiles, kurtosis, and skewness) and 5 

requency features (energy, entropy, HP1, FHP2, and HP2). HP1 is 

he amplitude of the first highest peak in one-axis reading in a 

ime window, FHP2 is the frequency of the second highest peak, 

nd HP2 is the amplitude of the second highest peak. Therefore, 

44 features (3 sensors ∗3 axes ∗16 features) are extracted. They per- 
orm both serial and parallel feature level fusion where the feature 

imension of a sample is 144 and 48 respectively. They utilize the 

onditional Mutual Information Maximization (CMIM) method for 

eature selection per user. Utilizing one-class Support Vector Do- 

ain Description (SVDD) classifiers, they obtain the mean HTERs 

f 1.47% and 1.79% with serial and parallel feature fusion respec- 

ively. 

The study by Li et al. (2021) proposes DeFFusion (Deep Fea- 

ure Fusion) CNN-based continuous authentication system. They 

ollect a dataset of 100 users who perform read, write, and map 

avigation for 24 sessions which is a natural behavior under the 

ubset of routine usage. It possesses the attribute of walking ver- 

us non-walking-based tasks to create special datasets. The mo- 

ion event modalities utilized are acceleration and gyroscope that 

re fused at feature level. From each acceleration and gyroscope, 

hey process time and frequency domain data and feed it to CNN 

o extract CNN-based features. Then feature selection happens us- 

ng factor analysis. These resultant fused feature vectors are input 

o the one-class SVM classifier for authentication. The CNN archi- 

ecture utilizes multi-stream feature extraction and spatial down- 

ampling followed by two fully connected layers. The best result 

f 1% median EER is obtained with a time window size of 5 s. 

o observe the effectiveness of CNN-based features they compare 

he performance of the DeFFusion architecture to statistical fea- 

ures extracted from the data (mean, standard deviation, maxi- 

um, minimum, range, kurtosis, skewness, 25%, 50%, 75% quar- 

iles, energy, entropy, P1 (amplitude of the first highest peak of 

ne-axis readings), P2F (frequency of the second highest peak of 

ne-axis readings), and P2 (amplitude of the second highest peak 

f one-axis readings)) and input to traditional machine learning al- 

orithms, namely, one-class SVM, kNN, random forest, and decision 

rees. In such comparison also DeFfusion performed the best with 

n EER of 1%. 

Bhattarai and Siraj (2018) utilize the acceleration and gyroscope 

ata from HMOG dataset ( Sitová et al., 2015 ). They extract HMOG 

esistance features on acceleration and gyroscope and perform fea- 

ure selections utilizing filter-based and wrapper-based methods. 

he data is fused at feature level. They split the data into train- 
17 
ng and testing in the ratio of 80:20. They utilize both one-class 

VM and one-class fuzzy SVM (membership values between 0 and 

 are assigned to each sample to denote the degree of belonging- 

ess to the class). The best EER of 3.7% is obtained utilizing fuzzy 

CC-SVM utilizing the HMOG sitting data. 

.2. Fusion of two or more motion event modalities with other 

poradic modalities 

Table 2 lists the state of the art under this category. 

Abuhamad et al. (2020a) evaluate their authentication plat- 

orm AUToSen on their own dataset of 84 volunteers. The data is 

ogged through motion sensors accelerometer, gyroscope, and mag- 

etometer which are fused with the elevation sensor which is a 

on-motion sensor modality. They also log other sporadic modal- 

ties like touch and tap data from the touch sensor. Users per- 

orm routine phone usage for five days which is a natural behav- 

or. Such user behavior can be projected into the attribute of walk- 

ng versus non-walking-based tasks to create special datasets. They 

tilize LSTM models for classification. They perform four groups 

f experiments, namely, 5-sensor data (touch, acceleration, gyro- 

cope, magnetometer, and elevation); 4-sensor data (acceleration, 

yroscope, magnetometer, and elevation); 3-sensor data (acceler- 

tion, gyroscope, and magnetometer); and 2-sensor data (acceler- 

tion and gyroscope). Combining the modalities at sensor (data) 

evel, they achieve the best performance of 0.09% EER with the 3- 

ensor modality set up. 

Roy et al. (2015) implement an HMM (Hidden Markov Model)- 

ased multi-sensor system, which is evaluated on their own 

ataset of 42 volunteers. The user activities include routine usage 

f reading Wikipedia articles and filling out a questionnaire which 

re natural behaviors. The user behaviors possess the attribute 

f walking versus non-walking tasks to create special datasets. 

hrough these user tasks, they log modalities like swipe, tap, ac- 

eleration, and gyroscope. Here acceleration and gyroscope are the 

otion event modalities whereas swipe and tap are the sporadic 

ouch modalities. Utilizing a single swipe observation and its cor- 

esponding motion events, they achieve an EER of 13.29% which 

mproves to 0% when 19 consecutive swipes (and the simultane- 

us motion events) are combined. A similar pattern is observed in 

he case of taps where the EER improves from 16.55% to 1% when 

7 consecutive taps are consolidated. 

Incel et al. (2021) investigate authentication performance over 

5 sessions when 45 users interact with smartphones in hand 

browsing banking apps) while sitting and standing and in sitting 

hen the device is on the table. Such user behavior is a natural be- 

avior under context limited subset. The behavior of browsing dur- 

ng data collection projects itself into the tasks attribute as shown 

n Fig. 1 . They utilize acceleration, gyroscope, and magnetometer as 

otion event modalities and scroll event as a sporadic non-motion 

odality. Utilizing binary classifier they achieve the best perfor- 

ance of 3.5% EER. 

The work by Shen et al. (2017) involves their own dataset col- 

ected from 102 users. The motion events used to authenticate a 

ser are acceleration, rotation/orientation, gyroscope, and magne- 

ometer. The volunteers in this study have input touch gestures 

n the smartphone during which the motion sensor data are col- 

ected. The authors observe that more than 98% of touch interac- 

ion comprises touch-tapping and single-touch sliding actions and 

ypothesize that different users would generate different levels of 

osture and motion which exhibits uniqueness among users. The 

sers in this study have undergone three behavioral scenarios for 

ontributing data which are- hand-hold (holding smartphones and 

erforming touch actions while sitting and standing), table-hold 

smartphones are placed on a desktop and subjects perform touch 

ctions using a single hand), and hand-hold walk (subjects hold 



A. Ray-Dowling, D. Hou and S. Schuckers Computers & Security 128 (2023) 103184 

Table 2 

Comparative literature review: Fusion of at least two motion events with other sporadic modalities captured during stationary behaviors on mobiles. Abbreviations 

- ACC: Accuracy, AUC: Area Under the Curve, BN:Bayes Network, BB-MAS:Behavioural Biometrics Multi-device and multi-Activity data from Same users, DT: Decision Trees, 

DeSVDD: Deep Support Vector Data Description, DTW: Dynamic Time Warping, EL: Ensemble Learning, EER: Equal Error Rate, ED: Euclidean Distance, END: Euclidean 

Normed Distance, FAR: False Acceptance Rate, HTER: Half Total Error Rate, HMOG:Hand Movement, Orientation, and Grasp, HMM: Hidden Markov Model, HuMIdb: Human 

Mobile Interaction database, IF: Isolation Forest, kNN: k Nearest Neighbor, LOF: Local Outliers Factor, LSTM: Long Short-Term Memory, ManD: Manhattan Distance, ManSD: 

Manhattan Scaled Distance, MCD: Minimum Covariance Determinant, MHD: Modified Hausdorff Distance, MLP: Multilayer Perceptron, NB: Naive Bayes, NN: Neural Network, 

RF: Random Forest, SE: Scaled Euclidean, SM: Scaled Manhattan, SOM: Self Organizing Maps, SVM: Support Vector Machine, TCM: Transductive Classification Machine, TAR: 

True Acceptance Rate, UMDAA-02: University of Maryland Active Authentication Dataset 02. 

Study & Dataset #User Behavior Duration Modality 

Sampling 

(Hz) Algorithm Fusion 

Best 

performance 

Abuhamad et al. (2020a) , 

own 

84 routine usage 5 days Accel, Gyro, Magneto, 

Elevation, Touch 

64 LSTM sensor (data) 0.09%,EER 

Roy et al. (2015) , own 42 routine usage 1 Sess. Accel, Gyro, Swipe, Tap - HMM feature 0%, EER 

Shen et al. (2017) , own 102 routine usage 3 rounds Accel, Gyro, Magneto, 

Rotate, Touch 

- HMM, SVM, 

NN 

feature 4.74%, EER 

Incel et al. (2021) , own 45 browsing banking app 

in sitting and standing 

15 Sess. (22.5 

min) 

Accel, Gyro, Magneto, 

Scroll 

100 SVM, kNN, 

MLP, DT, RF, 

NB, EL 

Feature 3.5%, EER 

Deb et al. (2019) , own 37 routine usage 15 days Accel, Linear Accel, 

Gyro, Magneto, Rotate, 

Key, GPS, Gravity 

1 LSTM score 99.98%, TAR at 

0.1% FAR 

Stragapede et al. 

(2022a) , BehavePassDB 

(own) 

81 pattern unlock, 

texting, reading, 

gallery swiping, 

signature, critical app, 

phone pickup, tapping 

in predetermined 

locations 

4 Sess. Accel, Linear Accel, 

Gyro, Magneto, 

Gravity, Key, Tap, 

Swipe, GPS, temp, 

proximity, light, 

humidity, pressure, 

WiFi, BT, battery 

200 LSTM score 87.2% AUC 

Gascon et al. (2014) , 

own 

315 typing prescribed texts 1 Sess. Accel, Gyro, Rotate, 

Key 

- SVM feature 80%, AUC 

Cai and Chen (2012) , 

own 

21 typing PINs - Accel, Gyro, Key - SVM, DTW - 55%, ACC 

Papamichail et al. 

(2019) , BrainRun (own) 

2218 game playing - Accel, Gyro, Magneto, 

Swipe, Tap 

10 - - - 

Volaka et al. (2019) , 

HMOG ( Sitová et al., 

2015 ) 

100 read, write, navigate 24 Sess. ( ∼60 

hr) 

Accel, Gyro, Swipe 100 LSTM Feature 15%, EER 

Belman et al. (2019) , 

BB-MAS (own) 

117 multiple activities 1 Sess. (1.8 hr) Accel, Gyro, Swipe, 

Key, Mouse 

100 - - - 

Sitová et al. (2015) , 

HMOG (own) 

100 read, write, navigate 24 Sess. ( ∼60 

hr) 

Accel, Gyro, Magneto, 

Swipe, Tap, Key, Pinch 

100 SM, SE, SVM score 7.16%, EER 

Murmuria et al. (2015) , 

own 

73 browsing Google 

chrome and Facebook 

2 Sess. (each 

45 min) 

Accel, Gyro, Touch, 

Key, Zoom, Pinch, 

Power 

- TCM feature 6.1%, EER 

Stanciu et al. (2016) , 

own 

20 typing passwords 1 Sess. Accel, Gyro, Key 17 kNN, ED, ManD feature 0.08%, EER 

Nohara and Uda (2016) , 

own 

- flicking to unlock 

phone 

1 Sess. Accel, Gyro, Flick - SOM feature - 

Jain and Kanhangad 

(2015) , own, own 

104, 30 swiping 1 Sess. Accel, Rotate, Swipe, 

Tap, Zoom 

- DTW, MHD score 0.03%, EER 

Acien et al. (2019) , 

UMDAA-02 ( Mahbub et 

al., 2016 ) 

48 WiFi, GPS, and app 

usages 

10 days Accel, Gyro, Touch, 

Key, Wifi, GPS, app use 

- SVM score 97.1%, ACC 

Buriro et al. (2017) , own 31 micro-hand 

movements through 

routine usage for 10 

sec when notified with 

broadcast event 

1 Sess. Accel, Gyro, Magneto, 

Gravity, HPF, LPF 

5 BN, MLP, NN, 

RF 

feature 4% EER, 96% 

TAR 

Gupta et al. (2022) , own 41 micro-hand 

movements through 

routine usage for 5 sec 

when notified with 

broadcast event 

1 Sess. Accel, Gyro, Magneto, 

Gravity, HPF, LPF 

1000 IF, SVM, LOF, 

MCD 

decision, 

feature 

1%, HTER 

Buriro et al. (2021) , own 95 typing passwords in 

sitting, standing, and 

walking 

3 Sess. Accel, Gyro, Rotate, 

Magneto, Gravity, Key 

- NB, NN, RF feature 91.79% TAR, 

0.04% FAR 

Ray-Dowling et al. 

(2022) , HMOG ( Sitová et 

al., 2015 ), BB-MAS 

( Belman et al., 2019 ) 

100, 115 typing in sitting 4 Sess., 25 min Accel, Gyro, Swipe 100, 100 SVM (OCC, BC) score (LR 

Nandakumar 

et al. (2007) ) 

0.2%, EER 

Basar et al. (2019) , own 15 browsing banking app multiple days Accel, Gyro, Magneto, 

Touch 

5, 25, 100 - - - 

Stragapede et al. 

(2022b) , HuMIdb ( Acien 

et al., 2020 ) 

600 typing prescribed text, 

swipe, drawing the 

number 8, tap 

5 Sess. Accel, Gyro, Magneto, 

Touch 

50 LSTM-RNN score 3.96%, EER 

( continued on next page ) 

18 
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Table 2 ( continued ) 

Study & Dataset #User Behavior Duration Modality Sampling 

(Hz) 

Algorithm Fusion Best 

performance 

Shen et al. (2022) , own, 

HMOG ( Sitová et al., 

2015 ) 

100, 100 routine phone usage; 

read, write, navigate 

63 days, 24 

Sess. 

Accel, Gyro, Magneto, 

Rotate, Touch 

-, 100 DeSVDD decision 0.088%, EER 

Cherifi et al. (2021) , own 7 reaching, grasping, and 

manipulating objects 

- Accel, Gyro, Gravity 50 HMM feature 19.2%, EER 

Shen et al. (2016) , own 50 touch/tapping 2 weeks Accel, Gyro, Gravity, 

Tap 

- SVM (OCC), 

kNN (OCC) 

feature 11.05%, EER 

Giuffrida et al. (2014) , 

own 

20 typing passwords 1 Sess. Accel, Gyro, Key 17 ED, END, 

ManD, ManSD 

feature 0.08%, EER 
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he smartphone and perform touch actions while walking). All of 

hese are natural user behavior types under routine phone usage. 

he user behaviors possess the attribute of walking versus non- 

alking-based tasks to create special datasets. For each touch ac- 

ion that the user inputs, four sensor data are logged each of which 

as 3 components along the x, y, and z axes. The authors propose 

 statistical feature set with 16 features per sensor which are- en- 

rgy, entropy, mean, minimum, maximum, range, variance, kurto- 

is, quantiles (from 30% to 80% with a step of 10%), cross mean 

ate, and skewness. Therefore, there are 3 ∗4 ∗16 = 192 features per 

ouch input. The informativeness of the features is calculated for 

ach sensor behavior to determine how users’ identities differ with 

espect to features. The authors applied Hidden Markov Model 

HMM) as the one-class classifier, SVM, and Neural Network (NN) 

o classify the data. They combine multiple motion events (accel- 

ration, gyroscope, magnetometer, and orientation) and a subset of 

he four sensor events. However, the combination of all four mo- 

ion sensor modalities produces the best EER of 4.74%. 

In the study by Deb et al. (2019) multi-modal data from smart- 

hone sensors is collected from 37 users. A passive authentication 

f the users (unobtrusive monitoring of the user’s interaction with 

he device) is performed. In total, 30 smartphone sensor modali- 

ies are collected but for experiments, only 8 (keystroke dynam- 

cs, GPS location, accelerometer, gyroscope, magnetometer, linear 

ccelerometer, gravity, and rotation) are used. Each user has con- 

ributed data for over 15 days during which they perform rou- 

ine phone usage (natural behavior type). This behavior possesses 

he attribute of walking versus non-walking-based tasks to cre- 

te special datasets. Out of the 8 modalities, accelerometer, gyro- 

cope, magnetometer, linear accelerometer, and rotation are mo- 

ion events and the others are non-motion events. For each modal- 

ty, they train a Siamese LSTM network to learn deep temporal fea- 

ures. To remove the irregularity in data samples across sensors, 

hey segment the data by moving a window of fixed size. The orig- 

nal data is in the time domain. So they transform the data to the 

requency domain using Fast Fourier Transform. Following this, the 

re-processed data is passed to the Siamese LSTM network. They 

erform 5-fold cross-validation where each fold has 29 user data 

or training and 8 user data for testing. Experiments are performed 

n individual modalities but it is observed that the performance 

s not satisfactory. Therefore, the fusion of 2, 3, 4, 5, 6, 7, and 8

odalities is performed at score level. They achieve the best TAR 

True Acceptance Rate) of 99.98% at FAR (False Acceptance Rate) of 

.1%. 

In the recent study by Stragapede et al. (2022a) , data from 15 

hone sensors are logged while users perform 8 different tasks of 

attern unlock, typing, reading, gallery swiping, tapping on prede- 

ermined locations, signing, using a banking app, and performing 

hone pickup trajectory. Out of these 8 behaviors, only tapping on 

redetermined locations is a designed behavior and the rest are 

atural behaviors. The behaviors of reading, using a banking app, 

nd performing phone pickup trajectory possess the attribute of 
19 
asks, and the other behaviors of phone unlocking, typing, gallery 

wiping, tapping on predetermined locations, and signing possess 

he attribute of hand actions (see Fig. 1 ). The study collects a 

ovel dataset, named BehavePassDB from 81 users across 4 ses- 

ions where each session is parted by a day. For pre-processing the 

ensor data, they retain the readings along the x, y, and z-axis and 

alculate and add their Fast Fourier Transforms (FFTs), first-order 

erivatives, and second-order derivatives. For pre-processing the 

ouch event data, they retain the x and y coordinates of each touch 

vent and add their FFTs, first-order derivatives, and second-order 

erivatives. They utilize LSTM RNN Deep Neural Networks to per- 

orm authentication using a single modality and fusion of modal- 

ties. The fusion of the modalities at score level improves system 

erformance. They have fused 6 modalities where any one of the 

ouch events (keypress/swipe/tap) is fused with sensor events (ac- 

eleration, linear acceleration, gyroscope, magnetometer, and grav- 

ty). Hence, from all the tasks, they perform a total of 63 differ- 

nt fusion experiments. They have performed two attack scenarios, 

amely, skilled and random which involve the estimation of sys- 

em performance when different users’ data is logged from their 

wn devices and when different users log data on the same device, 

espectively. Fusing keystrokes with sensor events they achieve the 

est Area Under the Curve (AUC) of 87.2%. 

The study by Gascon et al. (2014) involves 315 users who type 

hort prescribed sentences of 160 characters each. This is a de- 

igned behavior as the texts are prescribed. The user behavior is 

rojected into the hand actions attribute as shown in Fig. 1 . The 

otion event modalities utilized in this study are accelerometer, 

yroscope, and rotation. The non-motion sporadic modality used is 

eypress. The motion events corresponding to the keypress or oc- 

urring during the keypress are included in the experiments while 

he others are eliminated. The data is then normalized from which 

8 features are extracted. Hence, there are 3 ∗9 ∗88 = 2376 features 

n total. The classifier used in this study is Support Vector Machine. 

he best performance achieved is an AUC of 80%. 

Another similar study by Cai and Chen (2012) includes motion 

vents of accelerometer and gyroscope in combination with the 

on-motion sporadic event, keypress. Here, 21 users need to type 

andom strings/PINs which is a natural behavior under the context 

imited subset. The user behavior possesses the hand actions at- 

ribute. The best performance obtained in this study is accuracy of 

5%. 

The public dataset BrainRun by Papamichail et al. (2019) in- 

ludes 2218 volunteers who perform a natural behavior of game 

laying. The motion events logged from the users are accelerom- 

ter, gyroscope, and magnetometer and the non-motion event 

odalities obtained are swipe and tap. No authentication experi- 

ents are performed in this study. 

Volaka et al. (2019) utilizes the HMOG public dataset ( Sitová

t al., 2015 ) to evaluate their authentication platform. The data in- 

olves reading, writing/typing, and map navigation in sitting and 

alking which are natural behaviors. The behaviors possess the at- 
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ribute of walking versus non-walking-based tasks to create special 

atasets (See Fig. 1 ). The modalities they select from the HMOG 

ata are acceleration, gyroscope (motion events), and swipe (non- 

otion sporadic event). A three-layer deep neural network is used 

or binary classification (each user profile is made with all data 

rom the genuine user and randomly selected data from other 

sers as impostors). Data processing involves the application of the 

in-max normalization technique. One network has 64 nodes in 

ach layer and the other has 128 nodes in each layer. The data 

s batched as 8192 ∗feature columns and is used as input to the 

etwork that ran with 200 epochs. Data is split into training- 

alidation-testing. Four groups of experiments are performed with 

ata from only swipes, swipes combined with acceleration, swipes 

ombined with gyroscope, and a combination of swipe, accelera- 

ion, and gyroscope. They obtain an EER of 15% as the best re- 

ult with only swipes using the 128 nodes per layer setup. Another 

est result of 88% accuracy is obtained when all the modalities are 

used and using 64 nodes per layer. 

The public dataset, BB-MAS by Belman et al. (2019) , has 117 re- 

ruited volunteers who provide data on multiple interfaces (phone, 

ablet, and desktop), while performing several activities (sitting, 

alking, walking up and down staircase) which are falling un- 

er natural behavior. These user behaviors possess the attribute of 

alking versus non-walking-based tasks to create special datasets. 

he user behaviors also include typing prescribed texts which is a 

esigned behavior. This behavior is projected into the attribute of 

and actions. See Fig. 1 . While sitting and typing, the sequence of 

ctivities that the users need to perform are typing two pieces of 

tatic texts of approximately 112 characters each, followed by ten 

uestions whose answers must be of at least 50 characters each. 

he layout of the questions makes users swipe vertically and hor- 

zontally in between. Within one visit users need to finish the en- 

ire task of logging data on multiple devices which takes around 

 h (110 min) in total. The motion events logged in this dataset 

re acceleration and gyroscope. The non-motion sporadic modali- 

ies logged in this dataset are swipe, keypress, and mouse events. 

he authors report no experiments for user authentication with 

B-MAS. 

The HMOG public dataset by Sitová et al. (2015) has recruited 

00 participants. The data is collected on Android mobile phones. 

here are 24 sessions in total involving several activities like read- 

ng, writing, and map navigation which are natural behaviors. 

he user behaviors possess the attribute of walking versus non- 

alking-based tasks to create special datasets. Out of the 8 typ- 

ng/writing sessions, the 4 sessions (3, 9, 15, 21) require users to 

it and type. In these four sessions, each user is asked to perform 

hree free text typing tasks where each answer is approximately 

50 characters. Users visit for multiple days to finish the entire 

ask. The motion event modalities logged in this dataset are ac- 

eleration, gyroscope, and magnetometer. The non-motion sporadic 

odalities are swipe, tap, pinch, and keypress. They utilize SVM, 

caled Euclidean, and Scaled Manhattan classifiers. The best result 

btained is an EER of 7.16%. 

The study by Murmuria et al. (2015) involves 73 volunteers 

o evaluate the system which continuously authenticates users on 

obile devices. The authors hypothesize that the behavior of users 

s context specific. This means the user behavior changes from one 

pplication under use to another. Thus, they have presented the 

erformance of the system while users browse two applications, 

amely, Google Chrome and Facebook. They observe differences in 

uthentication performance between the usage of Facebook and 

hrome applications by taking five random baseline users and test- 

ng users. When both the contexts or data while using both ap- 

lications are fused an improvement in performance is noticed. 

hese browsing activities are natural behavior projected into tasks 

ttribute. The modalities used in this study are acceleration, gyro- 
20
cope (motion events), power consumption, touch, keypress, zoom, 

wipe, and pinch (non-motion events). From the motion event, 14 

eatures are extracted which include mean and standard devia- 

ion along each axis and the resultant magnitude of all axes, for 

oth accelerometer and gyroscope readings. From the touch-based 

odality, five features are extracted which are duration, end-to- 

nd distance, end-to-end direction, average pressure, and average 

ouch area. The classification algorithm used in this study is known 

s Transduction Classification Machine (TCM). The train-test split 

rom each user data is 60% training and 40% testing. They obtain 

he best EER of 6.1%. 

Stanciu et al. (2016) have recruited 20 volunteers who type 

asswords as a natural behavior. The behavior possesses the at- 

ribute of hand actions. The modalities utilized in this study are 

cceleration and gyroscope as motion events and keypress as the 

on-motion sporadic event. The features extracted from acceler- 

tion and gyroscope are root mean square, minimum and maxi- 

um, the number of local maxima and minima, mean delta, the 

um of positive, the sum of negative, mean, mean during keystroke 

vents, and standard deviation. Features extracted from the key- 

ress are hold time and inter-key press time. They utilize kNN, Eu- 

lidean distance, and Manhattan distance as classifiers. They obtain 

he best EER of 0.08%. 

The work by Nohara and Uda (2016) requires users to flick and 

nlock phones which is a natural behavior (under the subset of 

ontext limited) through which they log accelerometer and gyro- 

cope as motion events and flick as a non-motion sporadic touch 

vent. Thus this behavior possesses the hand action attribute. The 

lassifier utilized in this study is SOM (Self Organizing Maps) 

hich is a type of Artificial Neural Network. Several features are 

xtracted from the modalities which are - distance from touch to 

elease on X and Y-axes; moving distance per unit time on X and 

-axes; time from touch to release; acceleration at touch on X, Y, 

nd Z axes; acceleration at release on X, Y, and Z axes; angular ve- 

ocity at touch on X, Y, and Z axes; and angular velocity at release 

n X, Y, and Z axes. 

Jain and Kanhangad (2015) perform a swipe-based study on 

ore than 100 users. Each user performs seven gestures - left to 

ight swipe (L2R), right to left swipe (R2L), scroll up (SU), scroll 

own (SD), zoom in (ZI), zoom out (ZO), and single tap (ST). These 

re natural behaviors. This user behavior is projected into the at- 

ribute of hand actions as shown in Fig. 1 . The motion event 

odalities logged simultaneously with the touch events (swipe, 

ap, and zoom) are acceleration and rotation. Features extracted 

rom the data are x, and y coordinates of every touch point, finger 

rea from non-motion events, acceleration along x/y/z axes, rota- 

ion along x/y/z axes, point curvature, and swipe curvature. They 

tilize two classifiers, namely, MHD (Modified Hausdorff Distance) 

nd DTW. MHD consistently outperforms DTW. They obtain the 

est result of 0.03% EER. 

The study by Acien et al. (2019) utilizes the UMDAA-02 (Univer- 

ity of Maryland Active Authentication Dataset 02) ( Mahbub et al., 

016 ). In this dataset, users perform routine usage of phones which 

s a natural behavior. Through this, they log motion event modali- 

ies like acceleration, gyroscope, and non-motion events like touch, 

eypress, WiFi, GPS, and app use (apps used by users are What- 

app, Navigator, Youtube, and Facebook). The user behaviors are 

rojected into the attribute of walking versus non-walking-based 

asks to create special datasets. Features extracted from accelera- 

ion and gyroscope include mean, median, maximum, minimum, 

istance between maximum and minimum, and standard devia- 

ion for each array of coordinates. The two other features are 1 

nd 99 percentiles and the distance between them. Extracted fea- 

ures from keystrokes include hold time, press-press latency, and 

ress-release latency. The data is split into training (60%) and test- 

ng (40%). Two scenarios are tested in this study, namely, one-time 
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uthentication (involving data from 1 session that is the time be- 

ween unlocking and locking of the device) and active authentica- 

ion (involving data from multiple sessions). Utilizing SVM as the 

lassifier they obtain the best performance of 97.1% accuracy. 

Buriro et al. (2021) collected data from 95 volunteers, obtaining 

1,400 samples in total. Users are recruited using Ubertesters. The 

tudy is based on one-shot-cum-continuous authentication mecha- 

ism where risk management is a novelty. If the risk score is more 

han a predefined threshold then a user needs to re-authenticate. 

ser behavior includes entering a random PIN of 8 alphanumeric 

haracters while sitting, standing, and walking. This falls under 

atural behavior. The duration of data collection is 3 h (1 h per 

ay). The user behavior is projected into the hand action attribute 

s shown in ( Fig. 1 ). Modalities collected are acceleration, gy- 

oscope, magnetometer, rotation as motion event modalities and 

ravity and keypress as non-motion modalities. The data is divided 

nto data streams from each of which four features are extracted, 

amely, mean, standard deviation, skewness, and kurtosis. Finally, 

0 keypress samples and 112 hand-movements features are used 

o create a feature vector of size 142 (therefore they perform a 

eature-level fusion). Classifiers used in this study are Naive Bayes, 

eural Network, and Random Forest. The Random Forest classifier 

utperforms Neural Network. They achieve a TAR of 91.79% and a 

orresponding FAR of 0.04% as the best result. 

The work by Ray-Dowling et al. (2022) evaluates the perfor- 

ance of user authentication based on acceleration, gyroscope, 

nd swipe data from two public mobile datasets, HMOG ( Sitová

t al., 2015 ) and BB-MAS ( Belman et al., 2019 ) extracted with dif-

erent feature sets to observe the variation in authentication per- 

ormance. The study only includes data when users are typing in 

itting (which is a natural behavior) and also projected into the 

and actions attribute. The study evaluates the performances of 

oth individual modalities and their fusion. From the swipe data, 

rank et al.’s (2012) Touchalytics ( Frank et al., 2012 ) features are 

xtracted. But the work extracts three different feature sets (me- 

ian, HMOG Sitová et al., 2015 , and Shen et al., 2017 ’s) on the mo-

ion event data, among which the Shen’s features perform best. 

usion of multiple modalities is performed using Nandakumar’s 

ikelihood ( Nandakumar et al., 2007 ) ratio-based score fusion by 

tilizing both one-class and binary SVMs. The best EERs (Equal 

rror Rates) of fusing all three modalities when using the one- 

lass SVMs are 8.8% and 0.9% for HMOG and BB-MAS respectively. 

n the other hand, the best EERs in the case of binary SVMs 

re 1.5% and 0.2% respectively. Observing the better performances 

f BB-MAS compared to HMOG in swipe-based experiments, the 

tudy examines the difference in swipe trajectory between the two 

atasets and finds that BB-MAS has longer swipes than HMOG 

hich would explain the performance difference in the experi- 

ents. 

The study by Buriro et al. (2017) involves the behavior of log- 

ing micro-hand movements through phone usage for 10 s af- 

er the user is notified of a broadcast event. The broadcast re- 

eiver is triggered at the moment the user either enters their cre- 

entials or performs the slide-to-unlock gesture to unlock their 

martphone. This is natural user behavior and has the hand ac- 

ions attribute. The authors consider the situation where an at- 

acker is already in possession of a smartphone. An attacker can 

e an unknown person, e.g., traveling with a real user on a bus 

r train and getting smartphone access (stranger attacks). Alterna- 

ively, an attacker could be the victim’s friend, family member, or 

o-worker attempting to access the smartphone (insider attacks). 

imple statistical features are extracted from the data, namely, 

ean, mean absolute deviation, median, unbiased standard er- 

or of the mean, standard deviation, unbiased skewness, and kur- 

osis. With 10-fold cross-validation, they achieve the best EER 

f 4%. 
21 
A similar study is performed by Gupta et al. (2022) which eval- 

ates their deauthentication platform, named as IDeAuth. The aim 

s to minimize unauthorized access to security-sensitive applica- 

ions and services running on users’ smartphones when unau- 

horized access or intrusions are detected. The deauthentication 

echanism automatically revokes the usage of the applications 

hen unauthorized access is detected. The scheme acquires the 

and movements data for 5 s using four built-in smartphone sen- 

ors, i.e., accelerometer, gyroscope, magnetometer, and gravity sen- 

or, and two mathematically derived high-pass and low-pass sen- 

ors. This is a natural behavior and is projected into the hand ac- 

ions attribute as shown in Fig. 1 . They have collected their own 

ataset of 41 users. They consider a scenario in which the impostor 

s already in possession of the user’s smartphone. There can be two 

ossibilities where either the smartphone has no authentication 

echanism or the impostor manages to bypass the existing single 

ntry-point authentication mechanism on it. The user’s micro-hand 

ovement data will be logged by the motion sensors for 5 s upon 

eceiving a notification for the broadcast events that trigger when 

he user unlocks, adds, or removes a package on the smartphone. 

ny unauthorized operation or intrusion detection will trigger the 

efault user account’s sign-off, and thus, access to all the applica- 

ions and services linked with the default user account will be re- 

oked. Four statistical features are extracted from the data, namely, 

ean, standard deviation, skewness, and kurtosis. They obtain 1% 

TER (Half Total Error Rate) as the best performance. 

The study by Basar et al. (2019) involves browsing a local bank- 

ng app by 15 volunteers in sitting while the phone is on the table 

nd standing. Users check their bank account and credit card bal- 

nce in the process. It is a natural user behavior with the attribute 

f tasks as shown in Fig. 1 . The study mainly focuses on the analy-

is of resource usage when a behavioral biometrics-based continu- 

us authentication platform runs in the background. It is observed 

hat the power consumption and CPU usages are more during au- 

hentication through motion (acceleration, gyroscope, and magne- 

ometer) and touch sensors than during normal scenarios when no 

uthentication is performed. During the collection of each touch 

esture the following information is collected, namely, finger pres- 

ure, size, and (x, y) coordinates on the screen. The authors select 

he user behavior of browsing banking app since it is a sensitive 

pplication and therefore needs security measures. They also study 

he effects of sampling rates of the sensors on resource usage. 

hen only the banking app is used the power consumption and 

PU usage are 136 mW and 28.6% respectively. When the banking 

pp is integrated with the logger app (with motion and touch log- 

ing) to perform authentication the power consumption and CPU 

sage are 189 mW and 33.86% respectively. The sampling rates of 

 Hz, 20 Hz, and 100 Hz are used per sensor, to see the impact

f it on power consumption and CPU usage. The impact of accel- 

ration sampled at 5 Hz, 20 Hz, and 100 Hz on power consump- 

ion is 149 mW, 188 mW, and 209 mW respectively. The impact 

f acceleration sampled at 5 Hz, 20 Hz, and 100 Hz on CPU us- 

ge is 30.22%, 32.16%, and 40.12% respectively. The impact of gy- 

oscope sampled at 5 Hz, 20 Hz, and 100 Hz on power consump- 

ion is 170 mW, 214 mW, and 231 mW respectively. The impact 

f gyroscope sampled at 5 Hz, 20 Hz, and 100 Hz on CPU usage is

1.33%, 35.94%, and 42.56% respectively. The impact of magnetome- 

er sampled at 5 Hz, 20 Hz, and 100 Hz on power consumption is 

67 mW, 184 mW, and 253 mW respectively. The impact of mag- 

etometer sampled at 5 Hz, 20 Hz, and 100 Hz on CPU usage is 

1.72%, 33.85%, and 45.41% respectively. 

Stragapede et al. (2022b) utilizes the large dataset of HuMIdb 

Human Mobile Interaction database) ( Acien et al., 2020 ) consist- 

ng of data from 600 users. The dataset consists of data from the 

ollowing modalities, namely, touch, accelerometer, gravity sensor, 

yroscope, linear accelerometer, and magnetometer. Users perform 
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he tasks of typing a prescribed text in Spanish, ”En un lugar de 

a Mancha, de cuyo nombre no quiero acordarme”; scrolling up and 

own; drawing the number ’8’ with their finger; and tapping on 

he screen. Of these behaviors typing the prescribed text and draw- 

ng the number ’8’ with their finger are designed and the rest are 

atural. All the behaviors possess the attribute of hand actions. The 

ampling rate per sensor is kept at 50 Hz. Features corresponding 

o a single timestamp are arranged into a 12-dimensional vector 

er sensor [x, y, z, x’, y’, z’, x”, y”, z”, fft(x), fft(y), fft(z)]. Utilizing

he LSTM-RNN deep learning network both individual modality- 

ased authentication and weighted score level fusion of available 

odalities in a time window is performed. Scores from modali- 

ies occurring at the same time window are fused. They come up 

ith 63 different fusion combinations. The best EER of 12.19% is 

btained with individual keypress modality. Fusing keypress, ac- 

eleration, and magnetometer the best fusion result of 3.96% EER 

s obtained. 

Shen et al. (2022) propose the MMAuth continuous authentica- 

ion platform. Utilizing HMOG ( Sitová et al., 2015 ) and their own 

ataset, they perform authentication utilizing touch and motion 

ensor data. Users in HMOG perform read, write, and navigation 

hile the users in their own dataset perform routine usage for 63 

ays. Both are natural behaviors with the attribute of walking ver- 

us non-walking-based tasks to create special datasets. They ex- 

ract a time-extended behavioral feature set from motion events, 

ouch events, and usage context data. To create the TEB feature 

et, they quantify each touch gesture as a feature vector [fm, ft, 

c] of motion sensor-based feature (fm), touch screen sensor-based 

eature (ft), and usage context-based feature (fc). The features ex- 

racted from motion sensors from a time interval of the start and 

nd of a touch gesture are mean, minimum, maximum, variance, 

omplexity, and intensity. The features extracted from touch events 

re position, length, angle, touch time, speed, area, pressure, and 

irection. The features extracted from the usage context are ap- 

lication and time. Given only genuine training is possible for the 

uthentication system in a real-life scenario, they utilize a deep 

ne-class SVDD (Support Vector Data Description) classifier. EERs 

f 0.149% and 0.088% are obtained with their own data and HMOG 

ataset respectively. 

The users in Cherifi et al. (2021) perform prehensile movements 

f reaching, grasping, and manipulating objects which is a natural 

ehavior under the tasks attribute. The modalities utilized are ac- 

eleration, gyroscope, and gravity. From each sensor, the following 

eatures are extracted, mean, standard deviation, speed, or angle 

f motion. They propose a user pattern based on HMM architec- 

ure with a mixture of Gaussian outputs. The training: testing split 

f 60:40 is utilized. They obtain the best EER of 19.2%. 

Shen et al. (2016) presents a sensor-based smartphone au- 

hentication system utilizing acceleration and gyroscope as motion 

vents, gravity as another sensor event, and touch/tap events. The 

odalities of acceleration, gyroscope, and gravity (each with three 

omponents x, y, and z) are collected during the occurrence of 

aps. The target is to log users’ unique touch habits and rhythms. 

he touch/tapping data is collected from 50 users across several 

ounds that span for 2 weeks. This is a natural behavior under 

ontext limited subset. It has the hand actions attribute. For each 

ouch event, the touch timestamp (touch-up and down) and touch 

ressure are logged. From the sensor events occurring within a 

ouch event, the following features are extracted - mean, variance, 

ange, maximum, minimum, median, quartile deviation, kurtosis, 

nd skewness. From the touch event, the features derived are the 

ean of touch pressure as well as the duration of the touch event. 

he Kolmogorov-Smirnov test is performed to test whether fea- 

ures are significantly different from one another. They perform 

ne-class classification using SVM and kNN where one-class kNN 

roduces the best EER of 11.05%. 
22 
Giuffrida et al. (2014) develop a sensor-enhanced keystroke 

ynamics-based authentication system where the acceleration and 

yroscope motion sensors are utilized. Users need to type two 

asswords, namely, “satellite” and “internet”. This is a natural be- 

avior with the hand actions attribute. They only consider al- 

hanumeric keystrokes and ignore the rest to remove noise. Mo- 

ion events corresponding to acceptable keystrokes are considered 

or user authentication. They utilized distance metric algorithms 

f Euclidean, Euclidean normed, Manhattan, Manhattan scaled, 

nd Mahalanobis for classification. They perform experiments on 

nly keypress, only motion events, and combining keystrokes and 

otion events. However, the combination of keystroke and mo- 

ion sensor modalities does not improve the results of individual 

odality experiments. The maximum sampling rate per sensor is 

ept at 17 Hz. They observe the performance with an increase 

n the sampling rate of the motion events up to 17 Hz. Across 

ll the configurations, the best EER obtained is 4.97% using only 

eystrokes and 0.08% using only sensor data. 

.3. Studies involving only one motion event without/fused with 

ther sporadic modalities 

Table 3 lists the state of the art under this category that in- 

olves only one motion event modality which is optionally fused 

ith other sporadic modalities. 

A single motion event modality (acceleration) combined with 

ther non-motion modalities is utilized to perform authentication 

n the study by Kumar et al. (2016b) . This work investigates the fu- 

ion of phone movement patterns with typing and swiping when 

 user uses a web browser in sitting. This user behavior is a natu- 

al behavior. The user behavior possesses the attribute of tasks as 

hown in Fig. 1 . The work achieves the best performance of 93.33% 

ccuracy for a feature fusion of acceleration and swipes. 

Kim and Kang (2020) authenticate users based on typing in En- 

lish and Korean languages where keypress is fused with accelera- 

ion and touch events logged during typing. Such typing activity 

s natural under the context limited subset. It possesses the at- 

ribute of hand actions. Users type 20 reference sets in both lan- 

uages where 10 references are utilized for training and the rest 

or testing. Experiments are performed utilizing three classifiers 

Kolmogorov Smirnov, Cramer-von Mises, and TT and R measure) 

ver individual feature sets and their combination. They achieve 

he best EER of 0%. 

On a dataset of 39 users Crawford and Ahmadzadeh (2017) per- 

orm authentication based on keypress and gyroscope achieving 

7.7% AUC. Here users perform free text typing which is a natu- 

al behavior. It possesses the attribute of hand action as shown in 

ig. 1 . 

The study by Centeno et al. (2017) utilizes two public datasets 

MOG ( Sitová et al., 2015 ) (100 users; behavior duration 6 h) and 

lgosnap ( Algosnap dataset, 2022 ) (20 users; behavior duration 

everal days). User behavior includes miscellaneous routine activ- 

ties that fall under natural behavior. The user behaviors in both 

atasets are projected into the attribute of walking versus non- 

alking-based tasks to create special datasets. This work includes 

nly acceleration data sampled at 100 Hz for HMOG and 200 Hz 

or Algosnap. Data is later downsampled to 25 Hz and used to eval- 

ate their re-authentication platform. The data is split into train- 

ng, validation, and testing. Deep Learning based autoencoders are 

sed for classification that achieves the best EER of 2.2%. 

An early work based on the designed behavior of arm sweep 

ction is presented by Okumura et al. (2006) where users perform 

weep action by shaking the handheld device up and down along 

he y-axis. This designed behavior possesses the tasks attribute. 

hey hypothesize that the acceleration data from the standalone 

evice collected during the arm sweep action can be used for a 
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Table 3 

Comparative literature review: Single motion sensor to measure stationary behavior on mobiles with/without another sporadic modality. Abbreviations - ACC: Accuracy, 

AUC: Area Under the Curve, ANN: Artificial Neural Network, CM: Cramer-von Mises, CC: Cross Correlation, DT: Decision Trees, DP: Dynamic Programming matching, DTW: 

Dynamic Time Warping, EA: Error of Angle, EER: Equal Error Rate, FAR: False Acceptance Rate, FNR: False Negative Rate, FPR: False Positive Rate, FRR: False Reject Rate, kNN: 

k Nearest Neighbor, KS: Kolmogorov Smirnov, LReg: Logistic Regression, MLP: Multilayer Perceptron, RF: Random Forest, sq ED: Squared Euclidean Distance, SVM: Support 

Vector Machine, TT and R: TT and R measure, TPR: True Positive Rate. 

Study & Dataset #User Behavior Duration Modality 

Sampling 

(Hz) Algorithm Fusion 

Best 

performance 

Kumar et al. (2016b) , 

own 

28 browsing web - Accel, Key, 

Swipe 

- kNN, RF Score, Feature 93.33%, ACC 

Kim and Kang (2020) , 

own 

50 typing in English and 

Korean 

- Accel, Key - KS, CM, TT and 

R 

sensor 0%, EER 

Crawford and 

Ahmadzadeh (2017) , 

own 

39 typing free text 1 Sess. Gyro, Key - DT, LReg sensor 97.7%, AUC 

Laghari et al. (2016) , 

own 

10 hand waving/arm 

sweeping holding 

phone 

1 Sess. Accel - CC - 1.46% FAR, 

6.87% FRR 

Casanova et al. (2010) , 

own 

34 hand waving/arm 

sweeping holding 

phone 

2 Sess. Accel 100 DTW decision 2.5%, EER 

Hong et al. (2015) , own 8 hand waving/arm 

sweeping holding 

phone 

8 weeks Accel 80 SVM (OCC) - 92.83% TPR, 

3.67% FPR 

Yang et al. (2014) , own 200 hand waving/arm 

sweeping holding 

phone 

1 Sess. Accel 50, 100 SVM - 15% FPR, 8% 

FNR 

Centeno et al. (2017) , 

HMOG ( Sitová et al., 

2015 ), Algosnap 

( Algosnap dataset, 2022 ) 

100, 20 read, write, navigate; 

routine usage 

6 hr, several 

days 

Accel 100, 200 ANN - 2.2%, EER 

Okumura et al. (2006) , 

own 

22 hand waving/arm 

sweeping holding 

device 

1 Sess. Accel 100 sq.ED, EA, DP - 5%, EER 

Lin et al. (2012) , own 20 up-down flick, 

left-right flick 

- Rotate 30 kNN decision 6.85%, EER 

Owusu et al. (2012) , own 4 typing presecribed 

texts and passwords 

- Accel, Key 50 RF, MLP, SVM, 

DT 
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ecurity check on a cell phone using the cell phone’s accelerom- 

ter. For classification, three algorithms are used - squared error 

f Euclidean distance, error of angle, and Dynamic Programming 

atching. They observe an ERR of 5% as their best result. 

The work by Laghari et al. (2016) involves the behavior of in- 

ir signature holding the phone in hand. This is a designed behav- 

or captured using accelerometer motion event. The user behavior 

s projected into the attribute of tasks. They implement a three- 

ier system - user: from where input is obtained, server: where 

uthentication is performed, and database: where the template is 

ept. An app runs on the phone while users perform the in-air 

ignature gestures. Cross-correlation of the signature is performed 

here a genuine user shows a higher cross-correlation value than 

n impostor. The best performance obtained is a FAR of 1.46% and 

 corresponding FRR (False Rejection Rate) of 6.87%. 

A similar in-air signature hand gesture-based work is per- 

ormed by Casanova et al. (2010) . The authors hypothesize that 

ser authentication through the above-designed behavior is possi- 

le because of uniqueness across users due to the speed and man- 

er of signing in air and other user physical factors like the length 

f the arm, the capability of turning the wrist, and the size of 

he hand holding the device. Each user has repeated their gesture 

even times, with intervals of 10 s in between, to reduce depen- 

ency between samples. The in-air signed gestures performed are- 

riting a word or a number in the air, performing a usual gesture 

like playing guitar), drawing a symbol in the air, drawing some- 

hing real in the air, performing a complex gesture by concatenat- 

ng simple gestures (squares, triangles, circles), and making their 

wn signatures in the air. A second session has been performed by 

tudying the videos recorded in the previous session. In this ses- 
23 
ion, three different people tried to forge each of the original in-air 

iometric signatures. Utilizing DTW as the classifier they achieve 

n EER of 2.5% as the best performance. 

The study by Hong et al. (2015) involves the behavior of hand 

aving gestures. They collect data from 8 users and each user per- 

orms 10 hand gestures for weeks. Hence, this is designed user be- 

avior. It is projected into the tasks attribute as shown in Fig. 1 .

cceleration motion event is used to log the user’s gestures. Utiliz- 

ng SVM as the classifier they achieve the best result of 92.83% TPR 

True Positive Rate) with a corresponding FPR (False Positive Rate) 

f 3.67%. 

Another behavior to authenticate users is unlocking phones 

hrough hand waving as shown in Yang et al. (2014) ( Yang et al.,

014 ). Acceleration is the only motion event modality that captures 

he above designed user behavior (having the tasks attribute). Uti- 

izing SVM as the classifier they achieve the best performances of 

5% FPR (False Positive Rate) and 8% FNR (False Negative Rate). 

Lin et al. (2012) proposes a novel non-intrusive authentica- 

ion mechanism where users perform up-down and left-right 

icks/swipes in sitting. There are 20 users who provide the data 

rom which the flicks of duration < 100 milliseconds are discarded. 

he user behavior is natural under the context limited subset and 

as the hand actions attribute. Only orientation (rotation) motion 

vent is utilized to log the user’s wrist motions. We must know 

he relationship between wrist motion and the reading of the ori- 

ntation sensor while a user holds and operates a smartphone. Our 

rist offers three dimensions of freedom, which are, wrist flexion 

nd extension, supination and pronation, and wrist radial and ul- 

ar deviation. They extract 53 features in total from the data. Uti- 

izing the orientation data along the y and z axes they calculate 
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he combined angle which is the square root of the sum of squares 

f orientation along the y and z axes. Features extracted are aver- 

ge, minimum, maximum, range, and standard deviation of orien- 

ation along x, y, z, and combined angles. Feature selection is per- 

ormed per user using linear regression. They utilize the kNN clas- 

ifier with 1, 3, 5, 7, and 9 as k values and combine the decisions of

ach kNN using majority voting to obtain improved performance. 

hey obtain the best EER of 6.85%. 

The study by Owusu et al. (2012) involves authentication us- 

ng the corresponding acceleration data during keypresses. Users 

ype prescribed texts to make sure all the keys are pressed by a 

ingle user and they also type several passwords. There are two 

ypes of experiments performed, namely, area mode inference and 

haracter mode inference. In area mode inference a total of 1300 

eypresses and the corresponding acceleration data are collected. 

n the area mode inference experiment, they divide the screen 

nto smaller areas from each of which they collect approximately 

0 samples. Before each data collection run, participants are in- 

tructed to press keys in any order until all of the keys received at 

east one press. They represent a heat map that shows the areas on 

he screen whose acceleration has performed the best and worst in 

uthenticating users. For character mode inference, in total 2700 

eypresses and their corresponding acceleration data are collected. 

ere the training data includes typing pangrams and testing data 

ncludes typing 99 6-character passwords. Features extracted from 

ach of x, y, z, and resultant components of acceleration are - Root 

ean Square (RMS) value, RMS error, minimum, maximum, aver- 

ge sample by sample change, number of local peaks, number of 

ocal crests, the average time from a sample to a peak, the average 

ime from a sample to a crest, RMS cross rate, and signal magni- 

ude area. There are two meta information as features which are, 

he total time of the window and the number of samples in the 

indows. Feature selection is performed using the Wrapper algo- 

ithm. They plot the percentage of passwords cracked against the 

edian number of trials required to extract those passwords. 1 of 

9 passwords is cracked in 1 attempt and 6 of 99 in 4.5 median

ttempts. 

. Future research implications and directions 

This survey focuses on stationary mobile behavioral biometrics 

hrough motion events. We categorize user behaviors into natu- 

al and designed and present further sub-categorization. We be- 

ieve that our conceptual framework will be used in enhancing the 

nowledge about the background of this domain and also will be 

eneficial for readers (from both academia and industry) to eas- 

ly grasp the vast behavior landscape of user behaviors. We believe 

hat our survey will present readers with the reasonings or intents 

f our past researchers towards their choice of a certain behavior 

or authentication. The readers can also view the gradual shift in 

sage of natural behaviors over designed ( Fig. 8 ) which demon- 

trates the future application trend while implementing such se- 

urity mechanisms in real-life. 

Furthermore, we review each study along dimensions such as 

asks, datasets, modalities, algorithms, and performances along 

ith additional behavioral attributes, and link the state of the art 

o our proposed model. We believe that our proposed conceptual- 

zation framework and the survey in its entirety will help future 

cademic researchers and industry practitioners in setting up the 

onstraints or modules (such as type of behavior, choice of motion 

ensors and supporting sporadic modalities, choice of features for 

otion sensors, setting sampling rate, making the desired classi- 

cation model, and choosing suitable metrics, among others). The 

im of our survey is to present a handbook on stationary mobile 

ehavioral biometrics that demonstrates the choice of such con- 

traints and their effects on authentication performance. This we 
24 
elieve should support academic researchers in benchmarking mo- 

ile behavioral biometrics which in turn should be beneficial for 

ndustrial practitioners for real-life implementation. 

We have identified several important directions for future re- 

earch. Although the above-contributing factors in our survey will 

upport the essential benchmarking of mobile behavioral biomet- 

ics, we observe that at present not many benchmarking of mo- 

ile behavioral biometrics exist. For the real-life implementation of 

obile behavioral biometrics for continuous authentication of le- 

itimate users such benchmarking studies are necessary. This will 

emonstrate an estimated performance range to future researchers 

efore such mobile security system gets deployed in real-life. We 

elieve that there is a requirement to rigorously evaluate different 

roups of classifiers along with feature sets and fusion strategies 

n the process of benchmarking. Although we have described the 

nderpinning of behavioral biometrics in cognitive psychology, we 

elieve that significant future work is needed to formally estab- 

ish human psychology and other related disciplines such as hu- 

an physiology as the scientific foundation of behavioral biomet- 

ics. Furthermore, studies are needed to investigate the usability 

nd the social acceptability of behavioral biometrics-based mobile 

ecurity. Lastly, another important direction is to integrate behav- 

oral biometrics in a way that compliments other existing security 

echanisms, where much future work needs to be done. 

. Conclusion 

Our survey reviews the state of the art in mobile behavioral 

iometrics with a focus on motion events, which authenticate 

sers through their stationary (sitting/standing) behaviors. Station- 

ry behaviors represent the major way modern users interact with 

obile devices and thus more focus is needed to observe its ef- 

ects on authentication performance. We categorize the user be- 

aviors across the studies into natural and designed for researchers 

o grasp the broad landscape of stationary user behaviors. Under 

atural behaviors, we identify four kinds of contexts, namely, novel 

ehaviors, routine usage, context limited, and postures with phone. 

he contexts of novel behaviors, context limited, and routine usage 

nclude stationary user behaviors. In contrast, postures with phone, 

eing the broadest context, includes a few walking behaviors along 

ith dominant stationary behaviors. 

We study the research timeline of the reviewed state of the art 

nd observe that the usage of designed behaviors for user authen- 

ication appears to have gone out of fashion. Since 2015 the re- 

earch community has explored substantial natural behaviors. This 

s consistent with the fact that it is more common for regular mo- 

ile users to exhibit natural behaviors than designed. We also plot 

he performances of each study and observe the effects of behav- 

or types on the authentication performance. Each user behavior, 

rrespective of its type, is projected into three different attributes 

r aspects (walking versus non-walking, tasks, and hand actions). 

Additionally, we lay our focus on the general psychology of the 

sers. We describe the underpinning of behavioral biometrics by 

ognitive psychology and project the necessity of further future 

ork on this topic to formally establish cognitive psychology as the 

oundation of behavioral biometrics. We acknowledge the fact that 

sers with cooperating psychology tend to learn/get accustomed to 

he mobile user interface ( Carroll and Rosson, 1987 ) which is be- 

ieved to add a positive impact on the authentication performance. 

n the other hand, the psychology of non-cooperating users put a 

egative impact on authentication. However, we have enough co- 

perating and stable users who in the best interest of their device’s 

ecurity will utilize the advantages of the user authentication sys- 

em. 

Our survey groups the reviewed studies on stationary mobile 

ehavioral biometrics into three categories based on the involve- 
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ents of the motion events. Given that sporadic modalities are 

ot always available, we focus on motion events to log the unique 

and micro-movement characteristics of users. But we highly en- 

ourage the fusion of sporadic non-motion modalities (when avail- 

ble) with motion events to further benefit the authentication per- 

ormance. We survey the studies along the dimensions of user 

ehaviors, duration of device usage, sensor utilization, sampling 

ate, feature extraction, classifiers/algorithms used, and perfor- 

ance. We observe acceptable authentication performances across 

he studies involving stationary user behaviors. Through our sur- 

ey, we observe that there are not many benchmarking done on 

ehavioral biometrics which is needed in the future to deploy it as 

 mobile device security mechanism in real-life. 

As the field of behavioral biometrics evolves, more studies are 

eeded to evaluate its practicality and generalizability. This survey 

ims to demonstrate the role of user behavior on authentication 

erformance and identifies those behaviors that are highly normal- 

zed in real life while a user is interacting with their mobile de- 

ice. We hope that our survey of different authentication technolo- 

ies applied to behavioral biometrics will be useful for future re- 

earchers to deploy passive authentication mechanisms in real life 

n mobile devices based on users’ stationary behaviors which are 

ost commonly exhibited. 
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