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A B S T R A C T   

Crystallization inhibitors in amorphous solid dispersions (ASD) enable metastable supersaturated drug solutions 
that persist for a physiologically relevant time. Olefin cross-metathesis (CM) has successfully provided multi
functional cellulose-based derivatives as candidate ASD matrix polymers. In proof of concept studies, we pre
pared hydrophobic bile salt/cellulose adducts by CM with naturally occurring bile salts. We hypothesized that 
increased hydrophilicity would enhance the ability of these conjugates to maximize bioactive supersaturation. 
Their selective preparation presents a significant synthetic challenge, given polysaccharide reactivity and 
polysaccharide and bile salt complexity. We prepared such derivatives using a more hydrophilic hydroxypropyl 
cellulose (HPC) backbone, employing a pent-4-enyl tether (Pen) for appending bile acids. We probed structure- 
property relationships by varying the nature and degree of substitution of the bile acid substituent (lithocholic or 
deoxycholic acid). These conjugates are indeed synergistic inhibitors, as demonstrated with the fast-crystallizing 
prostate cancer drug, enzalutamide. The lithocholic acid methyl ester derivative, AcrMLC-PenHHPCPen (0.64), 
increased induction time 68 fold vs. drug alone.   

1. Introduction 

Bile acids are complex, interfacially active, amphiphilic compounds. 
They promote the emulsification of fats and solubilize poorly aqueous- 
soluble drugs through micelle formation (Mukhopadhyay & Maitra, 
2004). These properties inspire use of bile acids and derivatives in 
biomedical applications, including to solubilize hydrophobic drugs and 
aid permeation (Pavlović et al., 2018). Bile acids can enhance super
saturated systems by promoting liquid-liquid or glass-liquid phase sep
aration (LLPS or GLPS), stabilizing the sub-micron diameter droplets of 
highly concentrated drug (Jackson, Kestur, Hussain, & Taylor, 2016; 
Trasi & Taylor, 2015). Recently, bile salts have been shown to inhibit 
crystallization of structurally diverse drugs (Chen, Mosquera-Giraldo, 
Ormes, Higgins, & Taylor, 2015; Li et al., 2016; Lu et al., 2017a; Lu 
et al., 2017b). Molecular dynamic simulations indicate that van der 
Waals and hydrogen bonding interactions strongly influence crystalli
zation inhibition (Li et al., 2016), while the degree of aggregation was 

found to influence effectiveness in delaying crystallization, as mono
meric bile salts presented superior inhibition properties (comparable to 
HPMCAS-MF) for telaprevir (Lu et al., 2017a). Poorly water soluble 
drugs currently pose challenges for oral therapy. ASDs are molecular 
dispersions of drug in polymeric matrices, from which the drug rapidly 
dissolves in the gastrointestinal (GI) tract to form a supersaturated so
lution. ASD polymers play multiple roles, including providing 
adequately high formulation glass transition temperature (Tg) even 
when challenged by high humidity or drugs which are plasticizers, to 
prevent drug aggregation and crystallization. The polymer also must 
dissolve in the aqueous GI milieu at a rate similar to that of the drug 
(Craig, 2002; Taylor & Zhang, 2016). Sufficient dissolved polymer 
thereby can associate with the drug and prevent it from nucleating from 
the supersaturated solution, or if crystal seeds are present, from un
dergoing crystal growth via polymer adsorption to kinks or steps, 
therefore blocking molecular incorporation (Hasegawa et al., 1988). 
Some critical ASD challenges are still unmet by current polymers, 
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including formulations that must contain a high bioactive concentra
tion, and/or where the drug is a fast crystallizer (Baird, Van Eerden
brugh, & Taylor, 2010; Van Eerdenbrugh, Baird, & Taylor, 2010; Van 
Eerdenbrugh, Raina, Hsieh, Augustijns, & Taylor, 2014). Thus synthesis 
of high-performance ASD polymers is crucial, informed by elucidation of 
the complex and interwoven structure-property relationships that are 
key to meeting all performance criteria (Arca, Mosquera-Giraldo, Bi, 
et al., 2018; Frank & Matzger, 2018; Liu et al., 2014; Liu, Taylor, & 
Edgar, 2015; Mosquera-Giraldo et al., 2016; Mosquera-Giraldo, Borca, 
et al., 2018; Pereira et al., 2013; Ricarte et al., 2019; Wilson et al., 2020). 

Recently we reported synthesis of the first model bile salts and ste
roids substituted with Grubbs type II olefins (Chatterjee, Choi, Sanders, 
& Grubbs, 2003; Dong, Matson, et al., 2017) as substrates for conjuga
tion with cellulose ether derivatives, e.g. ethyl 5-pent-1-enyl cellulose 
(EC2.30C5) (Dong, Novo, Mosquera-Giraldo, Taylor, & Edgar, 2019a). 
The objective was to form a construct between these two known classes 
of crystallization inhibitors that would exhibit synergistic performance. 
While the CM approach was successful, these bile ester derivatives of 
polysaccharides did not exhibit the expected synergy. In fact they 
reduced the time to crystallization of the poorly soluble drug, telaprevir, 
vs. drug alone. We hypothesize that the hydrophobicity of both the ethyl 
cellulose backbone, (DS(Et) = 2.3, DS(Pen) = 0.7), and the bile acids 
caused the observed poor ASD performance, creating a mismatch be
tween polymer and drug dissolution rates. We now hypothesize that bile 
salt/cellulosic polymer conjugates based on benign, water-soluble cel
lulose derivatives will have improved dissolution rates, therefore 
showing crystallization inhibition synergy. 

We report attempts to design and prepare a series of conjugates with 
enhanced hydrophilicity, based on water-soluble HPC. Building on our 
previous work (Dong et al., 2019a), we sought to etherify HPC with a 
Type I olefin-terminated side chain for olefin CM (PenHPC) (Dong, 
Mosquera-Giraldo, Taylor, & Edgar, 2016). We broadened the series of 
bile acid derivatives by probing two attachment sites (A-ring OH vs. D- 
ring COOH) to determine which bile salt most influences crystal growth 
inhibition. Bile salt carboxyl groups were previously protected as methyl 
esters (Dong, Novo, Mosquera-Giraldo, Taylor, & Edgar, 2019b), while 
in this study we examine both ester and carboxylate-terminated conju
gates. Carboxyl substituents are frequently elements of effective ASD 
polymers (Liu et al., 2014; Mosquera-Giraldo et al., 2016; Mosquera- 
Giraldo, Borca, et al., 2018). We investigate the influence of these 
polymers upon nucleation induction times of enzalutamide, an impor
tant, fast-crystallizing, hydrophobic drug for prostate cancer. 

2. Experimental 

2.1. Materials and methods 

Hydroxypropyl cellulose (HPC, Mw = 100 kg mol−1, DP = 100, DS 
(HP) 2.2, MS(HP) 4.4) (Dong, Mosquera-Giraldo, Troutman, et al., 
2016)), sodium hydride (95%), anhydrous tetrahydrofuran (THF), 5- 
bromo-pent-1-ene, Hoveyda-Grubbs' 2nd generation catalyst, 3,5-di- 
tert-butylhydroxytoluene (BHT), triethylamine (TEA), lithocholic acid, 
deoxycholic acid, ethylene glycol, para-toluenesulfonyl hydrazide 
(pTSH), and potassium bromide (KBr) were from Sigma-Aldrich (Saint 
Louis, MO, USA). N,N-Dimethylacetamide (DMAc), N,N-dime
thylformamide (DMF), lithium chloride (LiCl), dichloromethane (DCM), 
methanol, ethanol, and dialysis tubing (MWCO 3.5 k Da) were from 
Fisher Scientific (Fair Lawn, NJ, USA). Enzalutamide was obtained from 
ChemShuttle (Hayward, California). 

1H and 13C NMR spectra were acquired on a Bruker Avance II spec
trometer operating at 500 MHz except as indicated. Polymer (ca. 10 mg 
for 1H NMR, 50 mg for 13C NMR) was dissolved in ca. 1 mL CDCl3 or 
dimethylsulfoxide (DMSO‑d6); CF3CO2H (three drops) was added to 
shift the water peak downfield. Fourier transform-infrared (FT-IR) 
spectra were recorded in transmission mode with a Thermo Nicolet 8700 
instrument (Madison, WI, USA); samples prepared as KBr pellets (1 mg 

polymer/99 mg KBr mixed by mortar and pestle). Glass transition 
temperatures (Tg) were measured by a TA Instruments Q2000 using 
modulated differential scanning calorimetry (MDSC), with N2 as purge 
gas. Each polymer sample (~0.3–6 mg in a Tzero aluminum pan) was 
first equilibrated at −50 ◦C and then heated as high as 270 ◦C at ramp 
rate 3 ◦C/min, with modulation amplitude of 1 ◦C and oscillation period 
of 60 s (results from first heating cycle). Molecular weights (Mw) were 
measured by size exclusion chromatography (SEC) applying a Wyatt 
Technologies TRIOS II light scattering and Optilab T-REX refractive 
index (RI) detectors, using two Agilent Technologies PLgel 10 μm mixed- 
bed columns, DMAc/LiCl solvent, and a Shimadzu LC-20AD at 50 ◦C at a 
flow rate of 1 mL min−1. 

2.2. Synthetic methods 

2.2.1. Synthesis of hydroxypropyl 1-pent-4-enyl cellulose (PenHPC DS 
0.60 and 1.00) 

PenHPC (DS = 0.6, 1) was prepared according to Mosquera-Giraldo 
et al. (2016) (NMR (Fig. 2a, 3a), FTIR (Fig. S1a–d, top) and DS calcu
lations (Fig. S7) in ESI (S1.1). 

2.2.2. Syntheses of lithocholic acid (LCA) and deoxycholic acid (DCA) 
methyl esters 

Syntheses carried out as adapted from Dong et al. (2019b); charac
terization information in ESI (S1.2). 

2.2.3. Acrylation of A-ring bile acids and their methyl esters (exemplary 
procedure for LCA provided) 

LCA (0.500 g, 1.32 mmol) was dissolved in anhydrous THF (5 mL, 
0 ◦C), and triethylamine (0.134 g, 1 eq), then acrylic anhydride (Acr2O, 
0.201 g, 1.2 eq) was added gradually. The solution was stirred at RT for 
20 h, then concentrated under rotary evaporation. The crude lith
ocholate 3-O-acrylate (AcrLC) product thus obtained was recrystallized 
from water. The product was isolated by filtration, then dried under 
vacuum at 80 ◦C. Methyl lithocholate acrylate (AcrMLC) and methyl 
deoxycholate acrylate (MDCAc) were prepared according to Dong et al. 
(2019b) (NMR data in ESI). 

2.2.3.1. Lithocholate acrylate (AcrLC). Yield: 0.37 g, 64.5%. 1H NMR 
(selected signals, CDCl3): 0.63 (s, CH3), 0.91 (s, CH3), 0.93 (s, CH3), 4.80 
(m, 1H, C3 CH2––CHCOOCH), 5.78 (dd, COOCH––CH2, trans), 6.06 (dd, 
COOCH––CH2), and 6.36 (dd, COOCH––CH2, cis). 13C NMR δ 12.1, 18.2, 
20.8, 23.3, 24.2, 26.3, 26.6, 27.0, 28.2, 30.75, 31.0, 32.2, 34.6, 35.0, 
35.3, 35.8, 40.1, 40.4, 41.9, 42.7, 55.9, 56.5, 74.6 (C3 
CH2––CHCOOCH), 129.1 (COOCH––CH2), 130.2 (COOCH––CH2), 165.8 
(CH2 = CHCOO), and 180.3 (C––OOH). 

Deoxycholate acrylate (AcrDC) was prepared similarly by dissolving 
DCA (3.714 g, 9.57 mmol) in 20 mL anhydrous DCM containing 1 eq 
trimethylamine and 1 eq Acr2O for 12 h. The solution was then 
concentrated under rotary evaporation, then the material was recrys
tallized from acetone, and collected as a pellet via centrifugation (0.782 
g, 18% DCA). The liquid filtrate was collected, concentrated, and dried 
under vacuum at 80 ◦C. The resulting crude oil was then redissolved in 
DCM, and purified by column chromatography (silica gel, 15% EtOAc in 
DCM) to isolate the A-ring 3-O-acrylate, AcrDC (15% EtOAc/DCM, TLC 
Rf = 0.35), DCA (15% EtOAc/DCM, TLC Rf = 0), and D-ring 12-O- 
acrylate (15% EtOAc/DCM, TLC Rf = 0.65). 

2.2.3.2. Deoxycholate acrylate (C3-O-AcrDC). Yield: 1.17 g, 27%. 1H 
NMR (selected signals, CDCl3): δ 0.69, 0.93, 4.00 (t, 1H, C12 HOCH), 
4.80 (m, 1H, C3 CH2––CHCOOCH), 5.78, 6.05, and 6.35. 13C NMR 
(DMSO) δ 12.87, 17.41, 23.25, 23.72, 26.13, 26.61, 27.07, 27.56, 28.80, 
30.78, 31.13, 32.26, 33.78, 34.27, 34.98, 35.18, 36.09, 41.97, 46.60, 
47.43, 48.39, 73.36 (C3 CH2––CHCOOCH), 74.58 (C12 HO-CH), 129.19 
(COOCH––CH2), 130.42 (COOCH––CH2), 165.98 (COOCH=CH2), and 
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179.98 (24C C––OOH). 

2.2.3.3. Deoxycholate diacrylate (C3 & C12-O-AcrDC). Yield: 2 g, 
46.1%. 1H NMR (CDCl3) δ 0.86, 0.90, 0.92, 1.25, 1.48, 1.51, 1.62, 1.63, 
1.69, 1.71, 1.80, 1.85, 2.24, 2.27, 2.33, 2.35, 2.37, 4.77, 5.17, 5.77, 
5.80, 5.85, 5.88, 6.06, 6.08, 6.12, 6.16, 6.18, 6.20, 6.23, 6.34, 6.39, 
6.42, and 6.46. 13C NMR δ 12.45, 14.14, 17.40, 22.70, 23.09, 23.45, 
24.69, 25.69, 25.91, 26.50, 26.88, 27.34, 29.07, 29.25, 29.37, 29.44, 
29.60, 29.65, 29.67, 29.71, 30.56, 30.85, 31.93, 32.24, 33.97, 34.48, 
34.66, 34.72, 35.69, 41.81, 45.23, 47.59, 49.64, 74.37, 76.00, 128.91, 
129.03, 130.28, 130.61, 165.62, 179.60, and 179.88. 

2.2.4. General procedure for olefin CM of PenHPC (DS (pen) =1.00) 
Preparation of AcrLC-PenHPC(1.00) exemplifies the process: 

PenHPC(1.00) (190 mg, 0.22 mmol C––C), AcrLC (500 mg, 1.2 mmol, 
2.9 equiv), and BHT (25 mg) were dissolved in ethyl acetate (EtOAc,12 
mL) under N2. HG II catalyst (39 mg, 12 mol%) was dissolved in 
anhydrous EtOAc (1 mL) and gradually added to the solution, which was 
stirred at 50 ◦C for 3 h before adding three drops of ethyl vinyl ether to 
terminate the reaction. The solution was concentrated under vacuum 
and added to hexanes to precipitate the product, which was redissolved 
in THF and reprecipitated into water, then dried overnight under vac
uum at 40 ◦C. Additional NMR data in ESI, S1.3. 

2.2.4.1. AcrLC-PenHPC(1.00). Yield: 350 mg, 87.5%. 1H NMR (CDCl3): 
δ = 0.64 (s, CH3), 0.91 (s, CH3), 0.92 (s, CH3), 1.00–2.57 (m, steroid ring 
protons, OCH2CH2CH2CH––CHCOO-LCAc), 2.90–4.68 (m, cellulose 
backbone, OCH2CH2CH2CH––CHCOO-LCAc, 4.77 (m, LCAc C3 CH), 5.77 
(OCH2CH2CH2CH––CHCOO-LCAc), and 6.94 (OCH2CH2CH2CH––CH
COO-LCAc). 13C NMR (126 MHz, DMSO) δ 12.32, 17.78, 18.59, 20.71, 
23.50, 24.28, 24.90, 25.71, 26.44, 26.76, 28.19, 28.89, 29.52, 29.81, 
31.16, 32.38, 34.62, 35.27, 35.76, 41.64, 42.72, 56.05, 56.40, 65.73, 
67.97, 68.52, 72.98–79.16 (cellulose C2, C3, C5 and bile acid C3 
CH2––CHCOOCH), 83.10 (cellulose C4), 101.72 (cellulose C1), 121.78 
(OCH2CH2CH2CH––CHCOO-LCAc), 149.38 (OCH2CH2CH2CH––CHCOO- 
LCAc), 172.65 (C––OOAcrLC), and 175.25 (24C C––OOH). 

2.2.5. General procedure for hydrogenation of PenHPC-bile ester 
conjugates 

Preparation of AcrDC-PenHHPC(1.00) was adapted from Dong et al. 
(2019b); all details found in ESI (S1.4), with remaining hydrogenated 
product characterizations on (Fig. S4 and S6). 

2.2.5.1. AcrDC-PenHHPC(1.00). Yield: 160 mg, 71%. 1H NMR 
(selected, DMSO) δ 0.58 (s, CH3) 0.86 (s, CH3), 1.01–2.21 (m, steroid 
ring protons, OCH2CH2CH2CH2CH2COO-DCAcAn), 2.76–4.54 (m, cel
lulose backbone, OCH2CH2CH2CH2CH2COO-DCAcAn, C12 HO-CH), and 
4.60 (DCAcAn C3 –OCH). 13C NMR δ 12.44, 16.94, 17.34, 19.12, 20.29, 
22.83, 23.49, 24.45, 25.25, 25.92, 26.14, 26.67, 27.18, 28.53, 29.37, 
30.77, 30.88, 31.89, 32.83, 33.79, 34.55, 34.97, 35.55, 41.18, 46.03, 
46.24, 47.42, 64.98, 65.29, 68.14, 71.06–79.28 (cellulose C2, C3, C5, 
and bile ester C3 CH2CH2COOCH and C12 HO-CH), 82.52 (cellulose C4), 
101.37 (cellulose C1), 172.28 (C––OODCAc), and 174.97 (C––OODCAc). 

2.2.6. Selective hydrolysis of D-ring methyl ester, AcrMLC-PenHHPC 
AcrMLC-PenHHPC(1.00) (250 mg, 0.29 mmol –OMe) dissolved in 5 

mL THF was heated to reflux (~59 ◦C) with stirring, followed by 
dropwise addition of 2 M NaOH (5 mL). The solution was stirred 1 h, 
then cooled to RT, followed by partitioning between EtOAc/water; 
water extraction was repeated 3×. Aqueous layer was dialyzed against 
methanol (1 day) and water (2 days), then lyophilized. 

Yield: 18%, 1H and 13C NMR signals agreed with those of AcrLC- 
PenHHPC obtained via direct acrylation and CM of the bile acid (Sec
tion 2.2.5). 

2.3. Measurement of nucleation induction times 

Polymer was dissolved in DMSO (20 mg/mL) by sonication (60 min, 
40 ◦C). Next, small aliquots (125 μL) of this solution were added, using 
constant agitation, to 50 mL of pH 6.8100 mM buffer at 37 ◦C to obtain 
50 μg/mL polymer solutions (<1% DMSO). Supersaturated enzaluta
mide solutions (35 μg/mL) were prepared by adding 175 μL of the 
enzalutamide methanolic stock solution (10 mg/mL) to 50 mL phos
phate buffer (0.100 M) with polymer concentration 50 μg/mL, main
tained at 37 ◦C and magnetically stirred (300 rpm). Crystallization 
induction time from unseeded samples was measured using an SI Pho
tonics UV/vis spectrometer (Tucson, AZ) coupled to a fiber optic probe 
(path length 5 mm). Wavelength scans (200–450 nm) were performed at 
60 s time intervals. Crystal formation onset time was determined from 
the drop in drug concentration (absorbance at 237 nm) in the absence 
and presence of pre-dissolved polymer at 37 ◦C, designated as the 
nucleation induction time; measurement repeated 3×. 

2.4. Solubility parameter (SP) calculation 

Cellulose derivatives and enzalutamide SP were determined using 
Fedor's method (Fedors, 1974). Procedural details in ESI of Dong, 
Mosquera-Giraldo, Taylor, et al., 2016. 

3. Results and discussion 

Our strategy exploited the 4-pent-1-enyl ether of HPC (PenHPC, 
Scheme 1) as the Grubbs Type I olefin in CM (Dong, Mosquera-Giraldo, 
Troutman, et al., 2016; Grubbs, 2004) with an acrylated bile salt de
rivative (Type II olefin). We faced chemoselectivity challenges, 
including selectivity between the neutral A-ring hydroxyl and the 
anionic D-ring carboxylate nucleophiles of LCA. 

The DCA A-ring OH-nucleophile competes with both the D-ring 
carboxylate and the C-ring hydroxyl. Cellulose derivatives are relatively 
unreactive since they diffuse slowly, have relatively high Mw, and hy
droxyls have relatively narrow approach angles; all non-conducive to 
regioselectivity (Fox, Li, Xu, & Edgar, 2011). Fortunately, PenHPC has a 
flexible oligo(HP) tether and broader approach angles. 

The key issue was selective bile salt acrylation. We began by making 
bile acid methyl esters to eliminate carboxylate/hydroxyl competition 
(Scheme 1). LCA (methyl lithocholate, MLC) and deoxycholic acid 
(methyl deoxycholate, MDC) esters were prepared by Fischer esterifi
cation (Fischer & Speier, 1895) as reported previously (Dong et al., 
2019b). Acrylation of bile salt methyl esters was by Dong's procedures, 
catalyzed by triethylamine at 0 ◦C using Acr2O, with excellent yield from 
MLC, and moderate, somewhat selective acrylation yield from difunc
tional MDC. 1H NMR spectra for bile acid and acrylates are shown on 
Fig. 1; 13C NMR spectra are in Fig. S2. As exemplified for LCA reactions, 
successful methyl esterification was confirmed by the new 1H NMR 
singlet at 3.66 ppm and the methyl ester 13C NMR resonance (C25) at 
51.39 ppm. Subsequent A-ring hydroxyl acrylation was confirmed by 
downfield shift of the C3-OCH methine multiplet (3.62 to 4.66 ppm) due 
to presence of 3-O-acrylate (Fig. 1b). Product acrylate olefin protons 
were observed as doublets (5.79, 6.10, 6.39 ppm) (Fig. 1b), with cor
responding 13C NMR quaternary resonances (129.15, 130.2 ppm) 
(Fig. S2b). 

Direct bile salt acrylation would afford a carboxyl-functionalized 
adduct, which we hypothesized would be an effective crystallization 
inhibitor based on earlier structure-property studies (Mosquera-Giraldo 
et al., 2016; Mosquera-Giraldo, Li, et al., 2018). We chose Acr2O to effect 
selective acrylation of the less hindered LCA A-ring hydroxyl (Dong 
et al., 2019b; Hu, Zhang, Zhang, Li, & Zhu, 2005; Li & Ray Dias, 1997; 
Zhu & Nichifor, 2002; Table 1). C3-OH selectivity was maximized by 
limiting the Acr2O/OH ratio. One equivalent each of Acr2O and trie
thylamine worked best; after 20 h, we were gratified to observe com
plete C3-OH chemoselectivity. Purity and identity of the 3-O-acrylated 
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Scheme 1. CM partner syntheses. Structures do not imply regioselectivity; particular positions of substitution in all schemes only for convenience of depiction 
and clarity. 

Fig. 1. Proton NMR spectra of a) LCA, b) acrylated LCA (AcrLC), c) DCA, d) monoacrylated C3-OAc DCA (AcrDC), and e) diacrylated DCA (AcrDC).  
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AcrLC product were confirmed by FTIR and NMR spectroscopy. Down
field shift of the 3-CH-OH proton (3.63 to 4.66 ppm) upon acrylation 
was diagnostic; (Fig. 2a, b), supported by the downfield 13C NMR shift of 
C3-OAcr (71.39 to 74.6 ppm). Additional strong evidence was provided 
by the acrylate proton resonances (5.79, 6.05, 6.36 ppm), acrylate car
bons (129.1, 130.2), and the new ester carbonyl (165.8 ppm) (Fig. 2b, 
Fig. S3c). FT-IR spectroscopy was also supportive, with new olefinic 
stretches at 1621 cm−1 (Fig. S1). 

With its additional C-ring hydroxyl (C12-OH), regioselective DCA 
acrylation is more challenging (Hu et al., 2005). We sought selectivity by 
brief esterification with Acr2O at 0 ◦C. Selectivity was modest, affording 
57% 3-O-Ac, 20% 12-O-Ac, and 42% unreacted DCA by 1H NMR 
(emergence of three acrylate olefin protons, and characteristic down
field shifts protons alpha to acrylation sites). Disappearance of the 
methine (alpha to methoxyl) resonance at 3.62 ppm was accompanied 
by emergence of the 3-O-Ac C3-OCH monoacrylate at 4.44 ppm, as well 
as new olefinic protons (5.78, 6.05, 6.35 ppm) (Fig. 1d); analogously, 

the C12-OCH methine proton (4.0 ppm) disappeared, replaced by the 
deshielded monoacrylate 12-O-Ac-OCH (5.17 ppm), whereas new 
olefinic acrylate protons emerged (5.84, 6.16, 6.40 ppm) in the dia
crylate mixture (Fig. 1e). Longer reaction times, more acrylate, and use 
of more reactive acryloyl chloride all harmed regioselectivity (Table 1). 
Despite modest selectivity, we were able to isolate pure deoxycholic acid 
3-acrylate by flash column chromatography. 

Our previous successful CM with ethyl pent-4-enyl cellulose 
(EC2.30C5; Dong et al., 2019b) inspired the methodology herein, 
reacting PenHPC (Grubbs type I olefin) with acrylated bile acids and 
esters (Grubbs Type II olefins) (Chatterjee et al., 2003; Dong, Matson, 
et al., 2017). Exemplary reaction of 3-O-acryloyl-lithocholic acid 
(AcrLCA) with pent-4-enyl HPC is shown (Scheme 2). 

We explored effects of solvent (EtOAc, THF, DCM) and temperature 
(37, 50 ◦C) on CM reaction time and conversion (Table 2). Earlier bile 
ester CM conjugation with ethyl cellulose derivatives reached comple
tion within 24 h (37 ◦C) (Dong et al., 2019b), but here we made the 
useful observation that EtOAc accelerates CM, affording higher effi
ciency (<equiv. (2.9) of precious acrylate required, vs. 5 equiv. in THF 
or CH2Cl2 (Dong et al., 2019b)) in reaching 100% conjugation. Even 
with this smaller excess, kinetics in EtOAc were significantly faster; 
100% conversion within 5 h at 37 ◦C. At 50 ◦C, achievable because of the 
higher EtOAc boiling point, 100% completion was reached within 3 h 
even at only 2.9:1 type II:type I olefin. 

Conjugate formation was monitored by disappearance of terminal 
olefin proton resonances (4.96, 5.82 ppm) from PenHPC and 5.78–6.36 
ppm from the acrylates (e.g. Fig. 2a, b) along with emergence of new, 
distinct conjugated olefin proton resonances (5.82, 6.89 ppm). Products 
also showed expected steroid nucleus proton resonances, between 2.4 
and 0.6 ppm (Fig. 2c). Adduct structures were further supported by new 
olefinic carbon resonances (Figs. 3b, S3), which shifted as expected upon 
conjugation (PenHPC from 114.5, 138.4; acrylate from 129.1, 130.2 

Table 1 
Selectivity vs. conditions for esterification of A-ring hydroxyl (C3-OH).  

Substrate Acrylate/TEA 
molar ratio 

Time 
(h) 

Starting 
material 
(%) 

3-O- 
Acrylate 
(%) 

12-O- 
Acrylate 
(%) 

LCA 1.2:1  12  0  100 n/a  
16  
16 

1.2:3  12  56.7  43.2 n/a 
1.2:5  12  31  69 n/a 

DCA 1.2:1  12  42  57 20  
16  63  36 29  
16  40*  50* 30* 

1.2:3  16  60*  41* 32*  

* 16 h using acryloyl chloride. 

Fig. 2. Proton NMR spectra of a) PenHPC b) AcrLC, c) CM conjugate, 3-O-PenHHPC lithocholate (1.00).  
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ppm) to 121 and 149.4 ppm, respectively (Fig. 3a, b). After CM 
completion, we demonstrated the possibility of recovering valuable, 
unreacted bile salt acrylate, by concentrating the hexanes filtrate after 
precipitation, and redissolving the resulting crude solid in minimal 
solvent for subsequent injection into a silica plug for further isolation 
from residual catalyst or polymer. The more polar PenHPC or PenHPC- 
bile ester conjugate residue was retained by the silica, while the less 
polar acrylate and potentially some HG II catalyst coeluted with the 
mobile hexanes, from which it was readily recovered by evaporation. 

We have previously shown that α, β-unsaturated CM products are 
prone to radical-initiated γ-H-atom abstraction (Meng & Edgar, 2015), 
followed by undesired radical reactions. We eliminated this risk in our 
CM adducts by final transfer hydrogenation of the conjugated olefins 
(Dong & Edgar, 2015; Dong, Mosquera-Giraldo, et al., 2017; Meng & 
Edgar, 2015; Meng, Matson, & Edgar, 2014), refluxing the conjugate at 
135 ◦C in the presence of p-toluene sulfonyl hydrazide (pTSH). Complete 
hydrogenation was clearly indicated by the absence of vinyl proton or 
carbon resonances in product 1H and 13C NMR spectra (Fig. S4). Further, 
expected FT-IR shifts and absorbance reductions were observed for 
conjugates and their corresponding hydrogenated products (Fig. S1a–d, 
bottom). We refer to the hydrogenated conjugate of PenHPC and AcrLC 

as 3-O-PenHHPC lithocholate (Scheme 2; where the “H” that precedes 
“HPC” refers to “hydrogenated”); in this case DS(pent-4-enyl) was 1.0 
(exemplary 1H NMR spectra Figs. 2, 3). 

We demonstrated selective hydrolysis of 3-O-PenHHPC lithocholate 
D-ring methyl ester. Hydrolysis was performed after hydrogenation, via 
brief reflux (2 M NaOH, 1 h). This afforded a ready, straightforward 
approach to obtain two of our target compounds (methyl ester- or car
boxylic acid-bearing), avoiding potential cleavage of acrylate ester. In 
spite of this success, purification afforded a modest yield (~18%). It is 
possible that, despite the brief heating, sufficient depolymerization may 
have occurred to cause polymer loss during dialysis (MWCO 3.5 kDa). 

Polymers with sufficiently high Tg (40–50 ◦C above ambient tem
perature) are desired to combat effects of humidity and possible drug 
plasticization upon the formulation. Many cellulose derivatives have 
high Tg values (Dong et al., 2019a), but it was important to investigate 
possible internal plasticization by bile acid substituents. PenHPC (DS 
(Pen) = 1.00) Tg is 91 ◦C, (Dong, Mosquera-Giraldo, Taylor, et al., 2016). 
Each hydrogenated conjugate displayed Tg well above ambient tem
perature, from 80.71 to 145 ◦C, though some were quite weak. The 
higher Tg derivatives have significant potential for sustaining ASD for
mulations in the glassy state (Fig. S9–16, Table S1). 

We tested performance of these complex bile acid- and bile ester- 
tethered polysaccharides in vitro as drug crystallization inhibitors. The 
time at which drug crystallization became detectable due to drop in drug 
solution content (inflection point in A237nm) was designated as the 
nucleation induction time, measured in the absence and presence of 
each polymer. Enzalutamide is a hydrophobic, fast crystallizing, poorly 
water-soluble (crystalline solubility = 2.9 μg/mL) prostate cancer 
therapeutic (Wilson et al., 2018). 

We had hypothesized that more hydrophilic polymers would result 
in effective crystallization inhibition. In the absence of polymer (Fig. 4), 
the drug crystallized quickly, within 7 min. 

Previous studies showed the importance of carboxylic acids in 
effective crystallization inhibitors (Mosquera-Giraldo et al., 2016), but 
also showed that higher DS(CO2H) at some point does not enhance 
polymer effectiveness (Mosquera-Giraldo, Borca, et al., 2018). Using 
computer simulations, we have shown that drug molecules tended to 
interact with the hydrophobic portion of the polymer rather than 
forming specific interactions with the carboxylic acids. This suggested 
that carboxylic acids may provide amphiphilicity, but do not necessarily 

Scheme 2. Bile salt CM chemistry.  

Table 2 
Reaction times, conversion achieved (DSbile acid conjugate) vs. acrylated bile acid, 
solvent, and reaction temperature.*  

PenHPC DS 
(pent-4-enyl) 

Solvent, 
(temp. (◦C)) 

Conversion (reaction time, h) 

AcrMLC AcrLC AcrMDC AcrDC 

1.00 THF (37 ◦C) 100 (36) – – – 
DCM (37 ◦C) 100 

(14.5) 
50 (12) – – 

EtOAc (50 ◦C) 100 (3) 100 (3) 100 (3) 100 
(3) 

0.60 THF (37 ◦C) 50 (39.5) 50 
(39.5) 

– – 

DCM (37 ◦C) 80 (24) 100 
(54) 

– – 

100 (36) – – – 
EtOAc (50 ◦C) 100 (3) 100 (3) 100 (3) 100 

(3)  

* Catalyst HGII, 10 mol%. 
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Fig. 3. 13C NMR spectra of a) PenHPC b) AcrLC, c) CM conjugate, 3-O-PenHHPC lithocholate (1.00).  

Fig. 4. Enzalutamide nucleation induction times in absence and presence of pre-dissolved polymers (n = 3; polymer abbreviations and structures see Table S2).  
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form specific interactions with drug molecules. Herein, we found that 
the best performing ASD polymers with regard to inhibition of enzalu
tamide crystallization were methyl esterified, in particular those with 
lower DS(bile salt ester). 3-O-PenHHPC methyl lithocholate (DS(bile 
ester) 0.64) can effectively maintain supersaturation for ca. 8 h (when 
experiment was terminated). Meanwhile, 3-O-PenHHPC methyl deoxy
cholate (DS bile ester 0.64) afforded induction time until crystallization 
of ca. 385 min. It appears that for enzalutamide, hydrophobic in
teractions between bile salt ester and drug were more important than 
amphiphilicity provided by the carboxylic acid substituents, which 
seemed to be of importance for many polysaccharide derivatives (Arca, 
Mosquera-Giraldo, Pereira, et al., 2018; Dong, Mosquera-Giraldo, et al., 
2017; Dong, Mosquera-Giraldo, Troutman, et al., 2016; Ilevbare, Liu, 
Edgar, & Taylor, 2013b; Liu et al., 2014; Tanno, Nishiyama, Kokubo, & 
Obara, 2004). Alternatively, the combination of bile ester and hydro
philic cellulose ether backbone generates a degree of ampiphilicity that 
enables the appropriate balance between polymer-water interactions 
and polymer-drug interactions, as suggested in previous studies (Mos
quera-Giraldo, Borca, et al., 2018). All of our bile acid/ester conjugates 
with HPC pentyl ether prolonged enzalutamide crystallization time. We 
were pleased to observe that LCA derivatives (simpler to make) consis
tently out-performed DCA derivatives. 

We compared performance of these novel ASD polymer candidates to 
their cellulose ether precursors (pent-4-enyl HPC, DS(pent-4-enyl) 0.64, 
1.0), which were not conjugated to bile salts and thus could serve as 
negative controls. As positive controls, we used CM adducts of pentenyl 
HPC with acrylic acid (after hydrogenation), HPC-Pen-AA-H (0.64) and 
HPC-Pen-AA-H (1.00), since we previously shown that they are effective 
crystallization inhibitors (Wilson et al., 2020). Enzalutamide crystallizes 
in <150 min using similar conditions (50 μg/mL polymer, 50 mM 
phosphate buffer) in the presence of 5-carboxypentyl HPC with DS 
(carboxypentyl) 1.0 (Wilson et al., 2020), supporting the concept that 
sufficiently hydrophilic bile salt-appended cellulose ethers are syner
gistic and effective crystallization inhibitors. 

Fedor SPs of our derivatives were calculated (Table S3). Effective 
crystallization inhibitors have been associated with moderate hydro
phobicity, ranging from SP 20–23 MPa1/2 for promising cellulose esters 
(Ilevbare et al., 2013b; Ilevbare, Liu, Edgar, & Taylor, 2013a) and ethers 
(Dong, Mosquera-Giraldo, Taylor, et al., 2016). The pentenyl HPC de
rivatives are more hydrophilic, with SP values 22.8 and 21.8 MPa1/2 for 
DS (Pen) = 0.64 and 1, respectively; vs. the more hydrophobic pentenyl 
substituted EC2.30C5 DS(Pen) = 0.69 (SP values 18.0 to 19.9 MPa1/2). 
Thus SP values for HPC-bile salt adducts prepared herein, falling within 
21.0–23.2 MPa1/2 indicate improved hydrophilicity, which contributes 
to longer nucleation induction times in most cases. 

4. Conclusions 

We confirmed our original hypothesis by demonstrating synergistic, 
enhanced ASD performance of conjugates of bile acids with HPC de
rivatives, with their improved hydrophilicity. Grubbs Type II olefin ac
rylates of bile salts or their methyl esters were prepared chemo- and 
regioselectively by acrylation of bile salts and esters, followed by effi
cient, mild CM, in order to probe both A- and D-ring structure-property 
relationships regarding crystal growth inhibition. Careful selection of 
acrylating agent, minimizing its excess, and optimizing base stoichi
ometry allowed us to achieve chemoselective acrylation of the LCA A- 
ring hydroxyl. By so doing we eliminate the extra methyl esterification 
step as well as the sensitive saponification of the methyl ester in the 
presence of the acrylate ester. These methods also provided a degree of 
regioselectivity in acrylation of the equatorial 3-OH of DCA in the A-ring 
vs. to the C-ring 12-OH. We significantly improved both CM kinetics and 
efficiency of preparing these complex structures by optimizing condi
tions. EtOAc provides much faster CM conversion. Rates of initiation in 
olefin methathesis are known to increase with solvent polarity (Sanford, 
Love, & Grubbs, 2001), and DCM (20.2) has a higher Hildebrand SP than 

EtOAc (18.2), so the faster rates in EtOAc are an important and pleasant 
surprise. The higher EtOAc boiling point must certainly be influential on 
kinetics; for example, AcrMLC CM completion in EtOAc taking 3 h at 
50 ◦C vs. 14.5 h in DCM at 37 ◦C (Table 2). Although their polarities are 
similar and THF boiling point is slightly higher (Hildebrand SP 18.3, BP 
66 ◦C (Sanford et al., 2001)), CM was faster in EtOAc than in THF, 100% 
conversion of AcrMLC in the latter solvent for example taking 36 h. The 
better ability of THF to coordinate metals may be a factor, perhaps by 
competing for Ru coordination sites. Superior CM performance in EtOAc 
promises greater efficiency than previously reported bile salt CM 
chemistry (Dong et al., 2019a), reducing usage of expensive bile acid 
starting materials, and allowing recycle of unreacted bile salt acrylate; 
virtually 100% efficiency with regard to bile salt acrylate may be 
possible. 

These results illuminate structure-property relationships of bile acid 
vs. bile ester decorated polysaccharides for oral drug delivery, simul
taneously highlighting the remarkable potential of mild, flexible, and 
efficient CM chemistry for synthesis of complex polysaccharide de
rivatives. It is worth emphasizing that even with large, sterically 
demanding, slow diffusing molecules like these cellulose derivatives, 
and even when the CM type II olefin partner is a relatively bulky small 
molecule like a bile salt derivative, relatively rapid and fully complete, 
selective CM conversions were achieved, enabling preparation of these 
challenging structures in a few synthetic steps. 

The improved hydrophilicity of each ASD polymer vs. the corre
sponding ethyl cellulose-bile salt adduct led to substantially increased 
nucleation-induction times (e.g., slower crystallization) even with the 
fast-crystallizing prostate cancer drug, enzulatamide. In some cases, bile 
salt adduct methyl esters performed better than the corresponding acids. 
This was a surprising result, given our earlier studies showing the value 
of carboxylic acid substituents in prolonging nucleation times. While 
carboxyl-containing polysaccharides have often performed well in 
crystallization inhibition (e.g., hydroxypropyl methyl cellulose acetate 
succinate is a leading commercial ASD polymer (Curatolo, Nightingale, 
& Herbig, 2009)) and in structure-property studies (Liu et al., 2014), it is 
also true that neutral cellulose ethers like HPC and hydroxypropyl 
methyl cellulose are effective ASD polymers for certain drugs (Arca, 
Mosquera-Giraldo, Pereira, et al., 2018), and neither contains carboxyl 
groups. This study highlights the importance of amphiphilic character of 
the polymer to ASD performance, indicating that, in this family of 
polymers at least, the absence of a pendent carboxylic acid to act as a pH 
trigger and provide amphiphilicity can be overcome by interactions 
between the hydrophobic bile salt methyl ester substituent and the drug. 
It also illustrates the complex nature of these structure property re
lationships, illustrated in Fig. S17 by comparing crystallization induc
tion time of these polymers to solubility parameter, bile salt type and DS, 
and whether the terminus of the bile salt substituent was a carboxylic 
acid or a methyl ester. It is clear from the relationship that LCA de
rivatives performed better, as did those with higher DS (bile salt). While 
the methyl esterified LCA adduct gave the best performance, there was 
not a clear overall trend to better performance for the methyl esters. The 
best performers had solubility parameters between 21.5 and 22.5, but 
there were also several poor performers in that SP range. 

In the best case, the methyl ester of LCA and pentenyl HPC adduct, in 
vitro enzalutamide crystallization time was nearly 8 h, considerably 
exceeding normal small intestine residence time. It was also gratifying 
and useful that the LCA derivatives performed best, since they are 
simpler to synthesize and pose less complex regioselectivity problems. It 
will be of great interest to probe further the structure property re
lationships of these cellulose ether–bile salt adducts, further illumi
nating features needed for truly superior crystallization inhibition even 
in difficult cases like enzalutamide, and providing further insight into 
the fundamental nature of and structural requirements for crystalliza
tion inhibition. 
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