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ABSTRACT

The ubiquity of mobile devices nowadays necessitates securing
the apps and user information stored therein. However, existing
one-time entry-point authentication mechanisms and enhanced
security mechanisms such as Multi-Factor Authentication (MFA)
are prone to a wide vector of attacks. Furthermore, MFA also in-
troduces friction to the user experience. Therefore, what is needed
is continuous authentication that once passing the entry-point
authentication, will protect the mobile devices on a continuous
basis by confirming the legitimate owner of the device and locking
out detected impostor activities. Hence, more research is needed
on the dynamic methods of mobile security such as behavioral
biometrics-based continuous authentication, which is cost-effective
and passive as the data utilized to authenticate users are logged
from the phone’s sensors. However, currently, there are not many
mobile authentication datasets to perform benchmarking research.
In this work, we share two novel mobile datasets (Clarkson Uni-
versity (CU) Mobile datasets I and II) consisting of multi-modality
behavioral biometrics data from 49 and 39 users respectively (88
users in total). Each of our datasets consists of modalities such as
swipes, keystrokes, acceleration, gyroscope, and pattern-tracing
strokes. These modalities are collected when users are filling out
a registration form in sitting both as genuine and impostor users.
To exhibit the usefulness of the datasets, we have performed initial
experiments on selected individual modalities from the datasets as
well as the fusion of simultaneously available modalities.
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1 INTRODUCTION

Currently, there are billions of cell phone users whose sensitive
information such as emails, online transactions, messages, multi-
media files, and other data is stored in their mobile devices. Hence,
to protect such sensitive information, traditional one-time, entry-
point security mechanisms (e.g., PINs, passwords, patterns, and
biometrics) are not secure enough as they can be compromised. On
the other hand, MFA, being a more advanced security mechanism,
introduces friction in the user experience as users need to perform
extra tasks, e.g., typing one-time passwords. To overcome such
disadvantages we need a continuous, non-intrusive, and dynamic
security mechanism. Behavioral Biometrics based continuous au-
thentication, in addition to being non-intrusive and dynamic, is also
cost-effective since the data required for user authentication can
be logged from the phone’s sensors. Utilizing such a mechanism
we can authenticate the legitimate user of the device and lock out
impostor activities.

There currently are not enough publicly available mobile datasets
to benchmark algorithms [6, 9] to advance the state of the art. In this
work, we present two novel mobile datasets with multiple behav-
ioral biometric modalities, namely, swipe, keystroke, acceleration,
gyroscope, rotation, and stroke. Our datasets are collected when
users are filling out a registration form in a seated posture, which
is a common activity. The seated posture of the users makes the
scenario more challenging as the magnitudes of the non-sporadic
motion sensors (acceleration, gyroscope, and rotation) are not high
when users are stationary. In such instances, when other stronger
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yet sporadic modalities (swipe and keystroke) are absent, the legiti-
mate user of the device can still be reliably authenticated through
the motion sensors. Such reliability of our data is further supported
by the results of our initial experiments.

When a user interacts with a mobile device, they tend to achieve
stability and precision. Users also attend a postural preference.
The user’s stability, precision, and postural preference, along with
physiological traits (muscular flexing, arm size, grip strength, and
age) together contribute to the unique characteristics of users [8].
Such uniqueness can be measured through the motion sensors
(acceleration, gyroscope, and rotation) logged continuously when
users sit and fill out the registration form. Additionally, we also log
swipes and keystrokes during the form-filling procedure which can
be utilized either individually or by fusing with the non-sporadic
motion sensors. These datasets will be shared upon request.

The Android application through which we log multiple modali-
ties consists of a registration form that includes three routine usage
scenarios, namely, filling the form using a user’s own credentials,
using the fingerprint scanner, and tracing geometrical patterns
along guided outlines. The form is a prototype of registration forms
required in online account opening scenarios. Fingerprint scan-
ning is a novel behavior during which a user is authenticated only
through the motion events logged when the scanning hardware
is utilized. Such security measure is useful when the user’s phone
is stolen by an impostor (e.g., a trusted friend, family member, or
colleague) who is capable of bypassing the entry-point security
and spoofing the fingerprint reader to get access to applications
that are locked using the genuine user’s fingerprint (banking or
shopping apps). Lastly, pattern tracing is a prototype of unlocking
phones using patterned passwords. Users are authenticated through
the strokes logged during shape tracing to provide an additional
security measure. In this case, beyond knowing the right pattern,
the user needs to be authenticated through strokes.

There are few existing mobile behavioral biometric datasets,
as shown in Table 1, where our datasets involve three novel user
behavior scenarios. No other datasets so far include the above
behavior scenarios for seated users.

We have tested the usefulness of our datasets by performing
authentication experiments on selected modalities. We perform
experiments on swipe, stroke, acceleration, and gyroscope as indi-
vidual modalities and fusion of motion events from the CU Mobile
dataset I. Furthermore, we perform authentication experiments on
keystrokes from the CU Mobile dataset II.

The rest of the paper is presented as follows. Section 2 discusses
the related work. Section 3 describes the two datasets. Section 4
presents the initial experiments performed on the selected modali-
ties from the datasets. Lastly, Section 5 concludes our paper.

2 RELATED WORK

This section describes related work on the currently available public
Mobile Behavioral Biometric datasets as shown in Table 1.

The public dataset BB-MAS, by Belman et al. (2019) [1], includes
117 recruited volunteers, providing data on three different interfaces
(phone, tablet, and desktop) while performing multiple activities.
The dataset includes acceleration, gyroscope, swipes, keystrokes,
and mouse event modalities.
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Table 1: Review of publicly available mobile datasets

Dataset #users Modalities User Behavior Best
perf.
BB-MAS [1] 117 accel, gyro, key, typing, gait in None
swipe, mouse multiple postures
HMOG [8] 100 accel, gyro, magneto, read/write/map 7.16%,
key, swipe, tap, pinch (sit and walk) EER
BrainRun [5] 2,218 accel, gyro, magneto, game playing None
swipe, tap
UMDAA-02 [3] 48 accel, gyro, magneto, routine usage 96.6%,
face, touch, light, Accur.
temp, prox, GPS,
BT, WiFi, pressure
Touchalytics [2] 41 swipe swiping in 0%,
sitting EER
LTU Touch [7] 190 swipe swiping in 10%,
sitting EER
BehavePassDB [9] 81 accel, gyro, magneto, routine usage 87.2%,
lin-accel, gravity, AUC
prox, light, temp,
pressure, humid, GPS,
WiFi, BT, battery
CU Mobile 88 accel, gyro, rotate, form filling 2.4%,
Datasets I & IT swipe, double tap, in sitting EER

key, touch, stroke

The HMOG public dataset by Sitova et al. (2015) [8] has 100
recruited participants where the data is collected on mobile devices.
Users provide data in 24 sessions by performing reading, writing,
and map navigation while sitting and walking. Out of the 8 typ-
ing/writing sessions, there are four sessions that require users to
sit and type. The dataset includes acceleration, gyroscope, magne-
tometer, swipe, tap, pinch, and keystroke modalities.

The large public dataset BrainRun by Papamichail et al. (2019) [5]
includes 2,218 volunteers who perform gaming activities while
accelerometer, gyroscope, magnetometer, swipe, and tap are logged.

The UMDAA-02 dataset by Mahbub et al. (2016) [3] involves
routine phone usage of 48 volunteers through which they log from
the front-facing camera, touchscreen, gyroscope, accelerometer,
magnetometer, light sensor, GPS, Bluetooth (BT), WiFi, proximity,
temperature, and pressure sensors.

The Touchalytics dataset by Frank et al. (2013) [2] includes single
modality swipe data from 41 volunteers. Users participate in three
sessions to provide horizontal and vertical swipes.

Another similar dataset that involves single swipe modality, is
the LTU Touch dataset by Serwadda et al. (2013) [7], where 190
recruited volunteers swipe across multiple choice questions.

In a recent study by Stragapede et al. (2022) [9], a routine phone
usage-based dataset is developed utilizing readings from 15 different
phone sensors. The study performs both single and multi-modality
experiments where the fusion of modalities improves the system
performance. Their work also involves impostor attack scenarios.

Our pair of novel mobile datasets involve three real-life usage
scenarios, namely, registration form filling, fingerprint scanning,
and tracing geometrical shapes during which we capture multiple
modalities from 88 seated users. Authentication during the sitting
posture will mostly depend on motion events when sporadic non-
motion modalities are not available. While sitting and typing are
common across existing datasets [1, 8, 9], the behaviors of filling
out forms, using the fingerprint scanner, and tracing shapes are
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Table 2: User demographics in CU Mobile datasets.

Demographics Type/ Cu CU
Group datasetI  dataset II
Age 18-20 17
(increasing order) 21-25
26-30 12
31-35 5 0
>35 6 2
Gender Female 23 20
(alphabetical order) Male 26 19
Ethnicity Asian 16 8
(alphabetical order) ~ Black or African American 6 7
Hispanic or Latino 2 3
White 23 22
UNKNOWN 3 1

unique to ours. Additionally, the datasets will benefit the research
community to perform benchmarking research in continuous au-
thentication on mobile devices when users are performing three
different real-life usage scenarios. Our datasets are a contribution
to advance the current state of the art when at present there are
not many mobile datasets. Additionally, our number of users is
comparable to the few publicly available datasets [1, 3, 8, 9].

3 CU MOBILE DATASETS I & II

3.1 Data collection

The collections of CU Mobile datasets I and II are approved by
Clarkson University’s IRB (Institutional Review Board). The only
criterion of volunteer recruitment is the age requirement of being 18
years old or above. Each user visits twice with a gap of at least two
days between the visits. The durations of the first and second visits
are limited to 1 hour and 1.5 hours respectively. In the first visit,
each user uses the Android logger 10 times where they fill out the
form with their own information. In the second session, each user
uses the logger 15 times where in the first 5 times they fill out the
form with their own information, and the last 10 times they perform
an attack scenario by filling out the form with the data of 5 previous
volunteers where each user’s data is typed twice. During the attack
scenario, users are not told whether the flashcards contain other
participants’ information. They are asked to enter the information
as perfectly as possible. Furthermore, the users are prompted before
they start providing data to not use their personal PINs or passwords
for the form’s password field and to make up one on the spot. For
all other fields, they utilize their own information. Data is collected
in a lab environment. The only differences of ours from outside,
natural environments are the scheduled time of the data collection
and the presence of the experimenter to ensure the smoothness of
the collection. We ask users to sit comfortably without restricting
the admission of others into the lab or controlling the level of noise.

The CU Mobile dataset I, collected in 2019, includes multi-modality
data from 49 volunteers. On the other hand, the CU Mobile dataset
II, collected in 2020, following COVID-19 safety protocols, includes
multi-modality data from 39 volunteers. The demographic informa-
tion of the participants is shown in Table 2.

From both datasets, we could collect multi-modality data from
88 volunteers in total. The keystroke data in CU Mobile dataset I
does not have key release timestamps. We also observe that in the
CU Mobile dataset I, volunteers made spelling errors for the same
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input to a text field, between iterations. Therefore, to overcome the
above two issues we collect CU Mobile dataset IT whose keystroke
data has both key press and release timestamps. Additionally, it has
a checker at the application level which compares entries in the
fields across iterations. If an error occurs beyond a minimum thresh-
old then the users are notified about the spelling errors between
iterations. Thereafter users need to retype the iteration to enter the
error-free information. Therefore, in the future, researchers may
individually utilize the datasets or may combine the 88 users’ data
for all modalities except the keystroke. The sampling rate of each of
the motion events is 2 Hz in CU Mobile dataset I. While collecting
the first dataset we observe that the motion events (acceleration,
gyroscope, and rotation) are allowed by the API to be logged at a
higher sampling rate than the rate specified in the Android applica-
tion. Hence, in the second dataset we vary the sampling rates per
motion event within the values of 2, 5, and 10 Hz.

3.2 Android logger

The Android application involves three routine usages, namely, fill-
ing out the form, using the fingerprint scanner, and tracing geomet-
rical patterns along guided outlines. The logger captures keystrokes,
swipes, motion events (acceleration, gyroscope, and rotation), mo-
tion events during fingerprint scanning, and strokes from pattern
tracing. We also log other on-touch events, namely, taps, double
taps, and longpresses in addition to swipes. However, we observe
few samples of longpress per user. Also, there are users who do not
exhibit longpress at all. The occurrence of double taps is mostly
triggered when some users by habit double click on edit-text fields
to initiate typing during form filling. The single touch/ tap events
have samples that are subsets to other touch events (keystroke,
swipe, double tap, and longpress). However, we have independent
touch events which occur when a user taps on the screen beyond
inputting other touch events.

The registration form consists of the following fields: Full name,
Email, Phone, Address, City, State, Zip, Password, Age, and Declaration
statement. We utilize a virtual keyboard to log keystroke data from
users. Figure 1 shows the Android logger.

Android provides an API to read data from the phone’s embedded
motion sensors (accelerometer, gyroscope, and rotation). The sensor
listeners read data from the sensor at pre-defined time intervals. The
collected motion events during both form-filling and fingerprint-
scanning activities are separated in our database. The fingerprint
sensor is called when the user presses INPUT FINGERPRINT button.
It is designed to capture the fingerprint for 5 times. Once fingerprint
reading is done, the user clicks the REGISTER button after which
they are asked to trace regular shapes (triangle, square, hexagon,
octagon, 5-point star, and 6-point star) along a guided outline.

The CU Mobile dataset Iis stored in SQLite3 database files and the
CU Mobile dataset II is stored in MySQL server which is extracted
to CSV files and can be shared upon signing a release form.

3.3 Mobile devices used

During the collection of the CU Mobile dataset I we utilize the
following Android devices: Samsung Galaxy S8 (size: 5.8 inches),
Samsung Galaxy Note 9 (size: 6.4 inches), and Motorola X4 (size:
5.2 inches). Each user is provided with a Samsung Galaxy S8 and
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Figure 1: User interface of our Android logging app where a user simulates the account recovery process by filling out a form
with personal information to reclaim an account, performing fingerprint scanning, and tracing geometrical patterns.

any one of Motorola X4 and Samsung Galaxy Note 9. Therefore,
this dataset is collected using two mobile devices per user in each
visit. All of these devices have inbuilt sensors like an accelerome-
ter, gyroscope, magnetometer, and fingerprint. Collecting data on
two different devices will enable future researchers to explore the
potential impact of devices on performance. During the collection
of CU Mobile dataset II, we only utilize Samsung Galaxy S8.

3.4 Multiple modalities

Our Android application lets users interact with the mobile de-
vice using three usage scenarios. During each scenario, we collect
different modalities which are listed as follows.

e Registration form filling: keystroke, touch/ tap, double tap,
longpress, swipe, acceleration, gyroscope, and rotation.

o Fingerprint scanning: acceleration, gyroscope, and rotation.

e Pattern tracing: stroke (smaller swipe segments).

Table 3 shows the data columns logged per modality and the raw
data statistics. For CU Mobile dataset I, the statistics per modality
is calculated based on the cumulative data collected from the two
phones given to each user. In CU Mobile dataset II there is no such
scenario since data is collected from only one mobile device.

3.5 Data privacy & data provision

To protect the personally identifiable information (PII) in our key-
stroke data, the “key” column, was encrypted using the substitution
cipher method. With an encryption key, the substitution cipher
consistently replaces each character of the plaintext with another
letter, number, or symbol.

Although there are many other encryption methods available,
we choose the substitution cipher due to the keystroke dynamics
authentication mechanism where instances of each graph in a test
sample are compared with the graph in the profile samples. Hence

the encryption of each character must be consistent (e.g., if the
cipher of “a” is “w”, then all “a” must be substituted with the ci-
phertext “w"). In this way, the encrypted data remains usable for
keystroke dynamics research and can be released to a third party
in CSV format upon signing a release form.

A known drawback of the substitution cipher is that it can be
broken with frequency analysis. Frequency analysis relies on hav-
ing a sufficiently large block of cipher text to create distributions
of individual letters and n-grams that match the statistical profile
of a language (e.g., English). To overcome this method of crypt-
analysis, we encrypt each field of each user with a different key,
thereby breaking the connection between fields. That is, no two
fields share the same encryption key. Therefore no reliable dis-
tributions of n-grams can be formed with the short fields. This
approach should mitigate against all possible manual cryptanalysis
and should suffice in protecting the PII in our data. Furthermore, a
license agreement will be put in place to further ensure that only
authorized researchers may use our datasets for research purposes.
To further enhance the usefulness of the dataset, we add a column
indicating whether the encrypted key is a digit, alphabet, or symbol.

4 INITIAL EXPERIMENTS

We perform experiments on selected modalities from both datasets.
We demonstrate both single and multi-modality experiments. The
performance metric utilized across all the experiments is EER (Equal
Error Rate) which occurs when the False Acceptance Rate (FAR) is
equal to the False Rejection Rate (FRR) on the ROC curve.

4.1 Experiments on keystrokes

We pre-process the raw keystroke data by removing backspaces
and the keystrokes deleted by backspaces, which have been used for
correcting misspellings. Thereafter we extract the down-down (DD)
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Table 3: Data columns per modalities collected from phone’s sensors and statistics of the datasets

Modality Columns CU I data statistics CU II data statistics
(avg/med/min/max/stdv) (avg/med/min/max/stdv)
Swipe timestamps (ms), x coordinate (px), y coordinate (px), pressures ([0, 1]), orientations, sizes ([0, 1]) 254 /280 /69 /423 /87 253/ 256/ 89/ 496/ 103
Double Tap timestamps (ms), x coordinates (px), y coordinates (px) 1650 /1610 /95 /3184 /642 1394/ 1530/ 393/ 2401/ 489
Keystroke field, key, x coordinate (px), y coordinate (px), press timestamp (ms), release timestamp (ms) 5267 /5307 /1710 /13317 /1943 4259/ 4699/ 1473/ 6376/ 1334
Acceleration timestamp (ns), x-acceleration (m/sz), y-acceleration (m/sz), z-acceleration (m/sz) 37373 /26640 /3687 /139919 /33391 14677/ 10284/ 1972/ 94411/ 16297
Gyroscope timestamp (ns), x-gyroscope (rad/s), y-gyroscope (rad/s), z-gyroscope (rad/s) 6241 /6282 /1879 /13096 /2393 17667 / 6147/ 1397/ 135970/ 25970
Rotation timestamp (ns), x-rotation (rad), y-rotation (rad), z-rotation (rad) 17134 /16839 /5417 /38020 /6859 19361/ 20167/ 5122/ 38809/ 7594

Fingerprint Accel

timestamp (1), x-acceleration (m/s?), y-acceleration (m/s%), z-acceleration (m/s?)

4053 /2103 /311 /21586 /4711 463/ 324/ 53/ 1679/ 428

Fingerprint Gyro

timestamp (ns), x-gyroscope (rad/s), y-gyroscope (rad/s), z-gyroscope (rad/s)

556 /460 /155 /2128 /345 437/ 198/ 53/ 2567/ 561

Fingerprint Rotate

timestamp (ns), x-rotation (rad), y-rotation (rad), z-rotation (rad)

1438 /1316 /411 /3834 /701 574/ 599/ 140/ 1399/ 252

Stroke shape type, shape sub-type, timestamp (ms), x coordinate (px), y coordinate (px)

346 /311 /111 /2148 /309 107/ 100/ 29/ 385/ 59

Table 4: Authentication based on individual fields for the
keystroke dataset. The best performances are shown in bold.

Field Zip City ~ Phone Name  Address Email Declare
# Avg shared 3 6 6 12 16 14 43
diagraph
EER (%) 32.17 20.86 25.13 15.29 13.1 19.42 12.26

features from the data. We apply the Scaled-Manhattan distance
algorithm on individual fields and perform weighted score fusion.
We treat each field individually and compare only the profile and
test samples of the same field. The weighted score fusion is the
weighted sum of individual field scores d;, where all weights sum
up to one (see Equations 1 and 2). We use grid search method [8] to
find the optimum weights for each combination, with the minimum
weight being 0.05 and an increment of 0.05 at every search iteration.

D=w; Xdi+wp Xda +...+wny Xdn (1)
wi+wr+..+wy=1 ()

The results of the individual fields are shown in Table 4. “Declare”,
“Address" and “Fullname" are the three best-performing individual
fields with an EER of 12.36%, 13.1%, and 15.29% respectively. Among
other possible reasons such as familiarity, the results suggest that
keystroke length can significantly influence performance.

With fusion technique, there are 21 possible combinations for
Duet (two fields), 35 for Trio (three fields) and Quartet (four fields),
21 for Quintet (five fields), 7 for Sextet (six fields), and 1 for Septet
(seven fields). Table 5 shows the results for the best weighted score
fusion combinations. As the field combination increases from Duet
(two fields) to Septet (seven fields), performance improves accord-
ingly, showing that more data (longer text) results in better perfor-
mance. The overall best performance of 2.64% EER is achieved at
the combination of seven fields (Septet) [10].

4.2 Experiments on motion events

We perform both single and multi-modalities experiments taking
acceleration and gyroscope (of CU Mobile dataset I) logged during
form filling. We perform weighted score level fusion and Nandaku-
mar et al’s (2006) Likelihood Ratio (LR) based score fusion [4]
to fuse multiple modalities (acceleration and gyroscope). These

Table 5: Weighted score fusion of multiple fields for the key-
stroke data, w =weight. Best performance is shown in bold.

Best Combinations EER (%)
DUET Declare (w=0.75)+Address (w=0.25) 5.28
TRIO Email (w=0.45)+Declare (w=0.25)+ 5.14

Fullname (w=0.3)

QUARTET  Fullname (w=0.4)+Address (w=0.35)+ 3.65
City (w=0.15)+Phone (w=0.1)

Email (w=0.1)+Declare (w=0.2)+
QUINTET  Fullname (w=0.4)+ 3.44
Address (w=0.15)+City (w=0.15)

Email (w=0.2)+Declare (w=0.3)+
SEXTET Fullname (w=0.2)+Address (w=0.15)+ 2.81
City (w=0.05)+Zip(w=0.1)

Email (w=0.2)+Declare (w=0.25)+
SEPTET Fullname (w=0.2)+Address (w=0.2)+ 2.64
City (w=0.05)+Zip (w=0.05)+Phone (w=0.05)

multi-modalities experiments ensure the feasibility of the fusion of
simultaneously available modalities.

For single modality (acceleration or gyroscope) we fuse k dis-
tance scores to enhance the authentication performance. The slid-
ing window with k distance scores slides by n stride. We split each
user’s data into training, testing, and validation. We validate the k
and n values, where k ranges from 5 to 150 with step size 5 and n
ranges from 5, 10 to 140 with step size 10.

For weighted score level fusion, weights are assigned to each
motion event, which is multiplied by the generated scores from their
respective classifiers, to perform a weighted sum. The resultant sum
becomes a new score, k of which is fused for enhanced performance.
In addition to k and n, we also validate weight per modality in
the range between 0.0 to 1.0 with step size 0.1. The sum of every
pair of acceleration and gyroscope weight is always 1. For LR-
based fusion, we take 2-dimensional vectors of match scores of
acceleration and gyroscope from their respective SVMs. We create
genuine and impostor distributions which are estimated as Gaussian
Mixture Models (GMM). The LR is defined as the ratio of genuine
to impostor distribution. For LR, we also validate the number of
Gaussian components ranging from 2 to 18 [6].

We perform both intra-session (training, testing, and validation
from visit-1 data per user) and inter-session (training and validation
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Table 6: Experimental results of single modality authenti-
cation (acceleration and gyroscope). Bold-faced are the best
results obtained.

Single modality experiments  Intra-session EER (%) Inter-session EER (%)
avg/med/min/max/std  avg/med/min/max/std

Acceleration 20.5/20.2/ 3/ 35/ 7 8.4/ 4.1/ 0/ 31/ 10.8

Gyroscope 18.3/19.9/ 0/ 34.6/ 9.6 8.5/ 5.7/ 0/ 34.9/ 10.9

Table 7: Experimental results for fusion of acceleration and
gyroscope from Mobile dataset I. Bold-faced are the best
results obtained.

Intra-session EER (%) Inter-session EER (%)
avg/med/min/max/std  avg/med/min/max/std

Cross-modality experiments

Weighted Score 8.3/ 8/ 0/ 28/ 5.6 7.9/ 0.8/ 0/ 34.5/ 11.5

Likelihood Ratio 2.4/0.9/0/ 15.3/3.3 6.9/ 2/ 0/ 33.4/ 10.1

Table 8: Experimental results using pattern tracing strokes.

Shape Triangle  Square  Hexagon  Octagon  5-pointstart  6-point star

EER (%) 57 8.5 9.4 14.4 14.2 16.5

from visit-1 and testing from visit-2 per user) experiments. We
utilize a Support Vector Machine (SVM) for each experiment where
the SVM parameters are set to Radial Basis Function (RBF) kernel,
C = 100, and gamma = auto. Each genuine user is authenticated
against all other impostors. The average EER obtained across all
genuine users is the overall performance. Tables 6 and 7 show the
results of single and cross-modalities experiments respectively.

4.3 Experiments on swipes

We perform experiments on swipes from the CU Mobile dataset
I. We extract Frank et al’s (2013) Touchalytics features [2] on the
swipes. Utilizing binary SVM, we perform both intra-session (both
training and testing from visit-1 data per user) and inter-session
(training from visit-1 and testing from visit-2) experiments. Here,
each genuine user is authenticated against all other impostors. The
SVM parameters are set to RBF kernel, C = 100, and gamma = auto.
We fuse k distance scores from the SVM to enhance the authentica-
tion result, where we set k = 12 as the sliding window value. The
average EER obtained across all genuine users estimates the overall
performance. For the intra-session experiment, the average EER
obtained is 1% and for the inter-session experiment, the average
EER obtained is 10%.

4.4 Experiments on pattern tracing strokes

We utilize the stroke data during pattern tracing from the CU Mo-
bile dataset I. Here we perform binary classification using SVM
where the same classifier parameters are retained as in the swipe
experiments (Section 4.3). We perform experiments per shape data,
where in each experiment, we fuse k = 12 distance scores for better
performance. Each genuine user is authenticated against all other
impostors. For the overall estimation of performance, we average
the EERs across users. The results of experiments performed per

Aratrika Ray-Dowling, Ahmed Anu Wahab, Daging Hou, & Stephanie Schuckers

shape are shown in Table 8. We observe an increase in the EER
with the increased shape complexity.

5 CONCLUSION

We present two novel behavioral biometrics-based mobile datasets
(CU datasets I and II) consisting of a total of 88 users. Both are
multi-modality datasets with data logged from keystroke, swipe,
motion events, and stroke. The data is collected while seated users
are performing three common behaviors, namely, filling out a regis-
tration form, using the fingerprint scanner, and tracing shapes. No
other mobile datasets include these behaviors. We perform initial
experiments on selected modalities from the two datasets which
demonstrate the usefulness of the data. We also show the feasibility
of fusion-based experiments. Given the lack of publicly available
mobile datasets, our datasets can be useful to the behavioral bio-
metrics community to enhance research on mobile security.
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