
A Sparse Convolutional Predictor with Denoising Autoencoders
for Phenotype Prediction

Junjie Chen
University of North Carolina at Charlotte

Charlotte, North Carolina, USA
junjie.chen.hit@gmail.com

Xinghua Shi*
University of North Carolina at Charlotte

Charlotte, North Carolina, USA
mindyshi@gmail.com

ABSTRACT
Phenotype prediction has been widely conducted in many areas
to help understand disease risks and susceptibility, and improve
the breeding cycles of plants and animals. Most methods of phe-
notype prediction are based on regularized statistical approaches
which only consider linear relationships among genetic features.
Deep learning based methods have been recently reported to nicely
address regression problems in high dimensional data in genomic
studies. To explore deep learning for phenotype prediction, we
propose a deep learning regression model, called Sparse Convo-
lutional Predictor with Denoising Autoencoders (SCP_DAE), to
predict quantitative traits. We constructed SCP_DAE by utilizing
a convolutional layer that can extract correlation or linkage pat-
terns in the genotype data and applying a sparse weight matrix
resulted from the L1 regularization to handle high dimensional
genotype data. To learn efficient and compressed hidden represen-
tations of genotype data, we pre-trained the convolutional layer
and the first fully connected layer in SCP_DAE using denoising
autoencoders. These pre-trained layers were then fine-tuned to
improve its performance of the SCP_DAE model for phenotype pre-
diction. We comprehensively evaluated our proposed method on a
yeast dataset which contains well assayed genotype profiles and
quantitative traits. Our results showed that the proposed SCP_DAE
method significantly outperforms regularized statistical approaches
and similar deep learning models without pre-trained weights.

CCS CONCEPTS
• Applied computing → Computational genomics.

KEYWORDS
deep learning; convolutional network; autoencoder; sparse model;
phenotype prediction; genomics
ACM Reference Format:
Junjie Chen and Xinghua Shi*. 2019. A Sparse Convolutional Predictor
with Denoising Autoencoders for Phenotype Prediction. In 10th ACM Inter-
national Conference on Bioinformatics, Computational Biology and Health
Informatics (ACM-BCB ’19), September 7–10, 2019, Niagara Falls, NY, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3307339.3342179

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACM-BCB ’19, September 7–10, 2019, Niagara Falls, NY, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6666-3/19/09. . . $15.00
https://doi.org/10.1145/3307339.3342179

1 INTRODUCTION
Recent advances in biotechnology, particularly second- and third-
generation sequencing, have made genomics data available at an
unprecedented scale [1]. The abundant genomic data consequently
demand new methods that leverage powerful computing to address
many classical yet challenging problems in genomics and genet-
ics. One of such problems is phenotype prediction, that aims to
investigate how genetic variation among individuals, can be used to
predict phenotypic differences in these individuals for a particular
phenotype such as disease risks or the yield of a biomass of interest.
Phenotype prediction methods have been reported to help dissect
genetic causes and risks of complex phenotype including common
diseases, and improve the breeding cycles of plants and animals
[14]. However, there are several barriers that make it extremely
challenging to develop robust and powerful methods for phenotype
prediction. First, genomic data is typically high dimensional, where
the number of features p is significantly larger than the sample
size n (denoted the ‘n ≪ p’ problem). Second, genomic data is usu-
ally with high collinearity and correlation that introduces intrinsic
patterns or structures to the data.

Many methods have been developed for phenotype prediction
including linear mixed models (LMMs), regularized statistic ap-
proaches and machine learning approaches. LMMs are widely used
in genetic selection prediction, including Best Linear Unbiased
Prediction (BLUP) based algorithms, like ridge regression BLUP
(rrBLUP) [14] and genomic relationship BLUP (GBLUP) [25]. Appli-
cations of LMMs to polygenic modeling assume that every genetic
variant affects the phenotype with effect sizes normally distributed,
and predict phenotypes from a linear function of genetic markers.
Regularized statistic methods like least absolute shrinkage and se-
lection operator (Lasso) [24] have been proposed for phenotype pre-
diction using shrinkage and variable selection operators. A number
of Lasso variants have been developed to remedy certain limitations
of the original technique and to make the method more useful for
particular problems. These methods include elastic nets [30] that
add an additional ridge regression-like penalty to improve perfor-
mance when the number of genetic variants is significantly larger
than the sample size. Another approach is a spike-and-slab Lasso
(ssLasso) method [23] that addresses the limitations of Lasso by
imposing weak or no shrinkage on related features while imposing
strong shrinkage on unrelated features. Bayesian-based methods
are proposed for phenotype prediction as well, which includes a
hybrid of LMMs and sparse regression models such as Bayesian
Lasso [17] and Bayesian sparse linear mixed model (BSLMM) [29].
In addition to achieving variable selection like the Lasso based
methods, Bayesian approaches are suitable for coefficient estimates
and statistical assessment of uncertainty [18].

https://doi.org/10.1145/3307339.3342179
https://doi.org/10.1145/3307339.3342179

ACM-BCB ’19, September 7–10, 2019, Niagara Falls, NY, USA Chen and Shi

Machine learning methods for phenotype prediction include tra-
ditionally models like random forest [8] and support vector machine
(SVM) [26]. Recently, deep learning has emerged as a powerful ma-
chine learning method that builds multi-layered neural networks
to model complex relationship in big data [10]. Deep learning has
gained tremendous attention in bioinformatics due to its outstand-
ing performances in many tasks [15], including the gene variants
and expressions [4, 21, 28], protein structure prediction [7, 11], etc.
Several studies have reported that deep learning has strong poten-
tials to address high dimensional regression problems. For example,
a convolutional network was developed to predict the overall sur-
vival of patients diagnosed with brain tumors from microscopic
images of tissue biopsies and genomic biomarkers [16]. Particularly,
a new deep learning method called DeepGS was proposed that uses
a deep convolutional neural network (CNN) to explore the hidden
genetic architecture for phenotype prediction [13]. Another deep
learning model [12] was constructed that uses a CNN to predict
genomic estimated breeding value and also to investigate neigh-
boring SNP effects with linkage disequilibrium (LD) [20]. Deep
learning can solve the regression problem by learning an efficient
representation of input. However, it is still a challenging problem
to learn an efficient representation on high dimensional data. One
particular technique to learn an efficient representation of data is to
pre-train the weights by using autoencoders (AE) [3] or denoising
autoencoder (DAE) [27]. Both AE and DAE are unsupervised artifi-
cial neural networks that are designed to learn efficient data coding
and reconstruct the input. Hence, deep learning models including
CNNs and DAE are worthwhile for further investigation to support
genome-wide phenotype prediction on high dimensional genomic
data.

In this study, we propose a Sparse Convolutional Predictor with
Denoising Autoencoders (SCP_DAE) for phenotype prediction.
SCP_DAE can utilize the sparse convolution layer to captures
linkage patterns in high dimensional genomic data, and leverage
pre-trained weights by DAE to learn an efficient and compressed
representation of input data. We comprehensively evaluated the
performance of our proposed model on real yeast genomic data.
Our results show that SCP_DAE achieved significantly lower mean
squared errors than existing methods such as Lasso, elastic net, and
random forest. This study thus points to a direction in phenotype
prediction and other challenging problems in genomic data analysis,
where sparse convolutional networks are coupled with denoised
autoencoders to significantly improve model performance.

2 MATERIALS AND METHODS
2.1 Dataset
We employed a comprehensively assayed yeast dataset [2] to evalu-
ate the proposed SCP_DAE method. This dataset contains genotype
profiles of 28,820 unique genetic variants that were obtained by
sequencing 4,390 individuals from a cross between two strains of
yeast: a widely used laboratory strain (BY) and an isolate from
a vineyard (RM). The original data fields in the yeast genotype
profiles were encoded as -1 for BY and 1 for RM. Since the loss
function in our proposed model requires non-negative data fields,
we replaced all -1 values with 2 when preprocessing the genotype
data. Together with the profiled genotypes, this yeast population

was phenotyped for 20 end-point growth traits with at least two
replicates. One important characteristic about this genotype data
is that it includes epistasis, or non-linear interactions, among ge-
netic variants that are not easy to model in a typical method for
phenotype prediction. In this study, we picked three phenotypes
for investigation including Cobalt Chloride, Copper Sulfate, and
Diamide. For each trait, we calculated the mean of two replicates as
the final phenotypes. All phenotype values were normalized while
the NAs were ignored and outliers were removed.

As a commonly-used way to pre-process data in machine learn-
ing, we randomly split the whole dataset into three separate sub-
datasets containing 80%, 10% and 10% for training, validation and
testing respectively. The missing values in the input of denoising au-
toencoder were generated by randomly masking 10% of the original
genotypes to zeros when training denoising autoencoder models.
All methods for comparison were run repeatedly for 10 times on 10
random splits.

2.2 Sparse convolutional network
To take into account of the intrinsic correlation or linkage patterns
of genotype data, we leverage convolution networks to learn the
underlying structures and relationships in data. Convolutional net-
works were inspired by biological processes in that the connectivity
pattern between neurons resembles the organization of an animal’s
visual cortex [9]. Each convolutional neuron processes data only for
its receptive field. Such character of convolutional network makes
it able to successfully capture the spatial or local patterns in geno-
type data, such as the highly correlated patterns such as LD [20] in
genotype data.

Since genotype values are discrete, we use convolution opera-
tions in a discrete space as defined in Eq. (1).

O(i) =
k∑

u=1
F (u)I (i − u) (1)

where O(i) is the output of the i marker in input. F is the convolu-
tional filter. k is the convolutional filter size, represented as an odd
number. I is the input vector. The convolution operation is done
for every location of the input vector I and thus for each genetic
variant, that completely overlaps with the convolutional filter.

Every convolutional layer is composed of n convolutional filters,
each with depth D, where D is the input depth. A convolution
among an input I = {I1, · · · , ID } and a set of n convolutional filters
{F1, · · · , Fn }, each with depth D, produces a set of n activation
maps , or equivalently, a volume of activation maps with depth n
based on Eq. (2).

Om = σ (I ⊗ Fm + bm) m = 1, · · · ,n (2)
where σ is a non-linear activation function, ⊗ is a convolution
symbol of Eq. (1). Here, bm is the bias, andm represents themth

feature map.
To prevent overfitting and introducing model sparsity for analyz-

ing high-dimensional genomic data, we use sparse convolutional
networks by introducing the L1 regularization to all convolutional
filters. More specifically, the L1 regularization is conducted by ap-
plying L1 penalties to layer weights during the optimization process
of the model. These penalties are incorporated in the loss function
where the model will optimize on. The L1 regularization, described

Sparse Convolutional Predictor with Denoising Autoencoders ACM-BCB ’19, September 7–10, 2019, Niagara Falls, NY, USA

in Eq. (3), will penalize or shrink small weights to zeros to improve
the robustness and sparsity of the model.

L1 = λ
n∑

m=1
∥Fm ∥1,1 (3)

where ∥ · ∥ refers to the L1,1 norm of matrix, Fm ismth convolution
filter weight matrix in the layer, and λ ∈ [0, 1] is a hyperparameter
to control the shrinkage. The larger λ leads to the more sparse
model.

2.3 Autoencoder and denoising autoencoder
An autoencoder (AE) [3] is an unsupervised artificial neural net-
work that is designed to learn efficient data coding to reconstruct
the input data. As shown in Fig. 1.a, an autoencoder consists of
two parts: an encoder and a decoder, which can be defined as f and
д respectively. The encoder takes an input vector x ∈ ℜn and maps
it to a hidden representation h ∈ ℜm through a mapping function
in Eq. (4).

h = fθ (x) = Φ(Wx + b) (4)
where θ = {W, b}, W is am × n weight matrix, b is a bias vector
and Φ is an activation function such as a sigmoid [6] or Rectified
Linear Units (ReLU) [5]. The hidden representation h is also called
a latent representation. The decoder takes a hidden representation
h and map it to a reconstructed input vector z ∈ ℜn using Eq. (5).

z = дθ ′(h) = Φ′(W′h + b′) (5)
where θ ′ = {W′, b′},W′ is a n×m weight matrix, b′ is a bias vector
and Φ′ is an activation function, the same as Φ. The parameters θ
and θ ′ of an autoencoder will be optimized to minimize the average
reconstruction error as shown in Eq. (6).

θ∗,θ ′∗ = argmin
θ,θ ′

1
n

n∑
i=1

L(x(i), z(i))

= argmin
θ,θ ′

1
n

n∑
i=1

L(x(i),дθ ′(fθ (x
(i)))

(6)

where θ∗ and θ ′∗ are parameters to be learned on data.
The aim of an autoencoder is to reconstruct z(i) such that z(i) ≈

x(i) by minimizing the loss function L which can be defined as
the widely used mean squared error for continuous data or cross-
entropy for discrete data. We minimized the binary cross-entropy
loss using Eq. (7) between the input x and reconstructed z, because
the genotype values are discrete, particularly binary in the yeast
genotype data.

L(x, z) = −(yloд(p) + (1 − y)loд(1 − p)) (7)
where y is a binary indicator (0 or 1) in the input x, and p is the
predicted probability in z.

A denoising autoencoder (DAE) (Fig. 1b) [27] is an extension of a
standard autoencoder, which differs in that a denoising autoencoder
reconstructs the output from randomly corrupted data based on Eq.
(8).

θ∗,θ ′∗ = argmin
θ,θ ′

1
n

n∑
i=1

L(x(i),дθ ′(fθ (x
(i)
missinд)) (8)

where θ∗ and θ ′∗ are parameters to be learned on data. x represents
original input, and xmissinд represents corrupted data. The aim

Figure 1: An illustration of a (a.) standard autoencoder and
(b.) a denoising autoencoder.

of denoising autoencoder is to reconstruct x from xmissinд by
minimizing the loss function L.

Since a denoising autoencoder reconstructs the output from ran-
domly corrupted data, it can let the encoder learn a more robust
representation of the input data by preventing complex node in-
teractions. This corruption process can be done by adding random
noises to the input and optimize the autoencoders to remove the
noises. In our experiments, the complete yeast data was corrupted
by randomly masking 10% of original values to zeros, and then a
denoising autoencoder model was trained on the corrupted data.

2.4 The proposed method
We constructed a sparse convolutional predictor (SCP) (Fig. 2a) for
predicting yeast phenotypes. Convolutional networks are used to
incorporate local correlation or linkage patterns from input data.
Each convolutional kernel generates a feature map from the input,
and in this process, correlation patterns in the filtering window of
the convolutional layer can be learned. Moreover, we introduce an
L1 regularization to every layer to induce sparsity in the model.
The L1 regularization is set as 1E-5. Regression layers are fully
connected layers which can capture the global dependencies that
are distant from each other. For predicting a quantitative trait, the
last two layers are fully connected layers with the dimension of
one quarter and one tenth of original dimension, respectively, with
the output as a real number. In this study, the hyperparameters
were empirically optimized on training and validation dataset to
predict the quantitative trait of Cobalt Chloride. The SCP has one
convolutional layer with 8 convolutional kernels and a filter size of
5, followed by an average pooling layer with filter size of 2 and a
dropout layer with drop percentage of 25%.

Since the feature dimension is much larger than sample size
in genomic data, it is a challenging problem to learn an efficient
representation for phenotype prediction. To address this challenge
with an aim of learning an efficient representation and compressing
the dimension of the genomic data, we use an AE and a DAE to
pre-train the weights of a convolutional layers. The AE and DAE
have same architecture, but the input of DAE contains noises. Fig.
2b shows the architecture of a DAE for pre-training the weights.

ACM-BCB ’19, September 7–10, 2019, Niagara Falls, NY, USA Chen and Shi

The encoder in a DAE has the same hyperparameters with a convo-
lutional layer in SCP. The compressed representation is the same
with the first fully connected layer in SCP. The decoder in a DAE
is a mirror of the encoder. An AE takes the original genotype data
to reconstruct itself. A DAE takes the corrupted genotype data
to reconstruct the original genotype data. In these processes, the
weights of the encoder are trained to learn an efficient represen-
tation. At last, the trained weights in AE or DAE will need to fine
tune in the SCP in order to perform phenotype prediction.

In summary, the weights of a convolution layer and the first fully
connected layer in SCP are first pre-trained by using a AE or DAE.
Then the SCP is initialized with pre-trained weights. Finally, all
layers in the SCP architecture are fine tuned.

Figure 2: The architecture of our proposed sparse convolu-
tional predictor with denoising autoencoders.

3 RESULTS
3.1 The sparsity of the weight matrix
We investigated the effect of sparsity of weight matrix on training
and validation dataset to predict the quantitative trait of Cobalt
Chloride, in terms of mean squared errors between predicted and
observed phenotype values. Fig. 3 shows the effect of different L1
norm regularization values. Overfitting obviously occurred while
no regularization was applied, while it was was restricted when
the regularization value was 1E-6. However, if the regularization is
too strong, the predictive performance can decrease as shown in
the result of a large regularization of 1E-4. Hence, we need to find a
balance between overfitting andmodel performance when choosing
a regularization hyperparameter. In this study, SCP achieved the
best performance when L1 norm regularization value was 1E-5.
Not only did the overfitting disappear, but also was the predictive
performance improved when appropriate regularization was used
in the SCP model.

Figure 3: The effect of L1 regularization.

The kernel visualization of a convolution layer in SCP with
regularization of 1E-5 is shown in Fig. 4. There are 8 kernels with
a size of 5 in the convolution layer. The squares in green indicate
positive weights, and those in magenta represent negative weights.
The deeper the color is, the larger absolute value the weight is. Grey
squares represent weights with zero values, indicating the sparsity
of our model.

Figure 4: The kernel visualization of the convolution layer
in SCP with a regularization of 1E-5.

3.2 Pre-trained weights by autoencoders
Although L1 regularization can improve robustness and prevent
overfitting, the efficient and compressed representations of yeast
samples are hard to learn due to the high dimension of the yeast
genotype data. Thus, we introduce a denoising autoencoder to learn
efficient representations of yeast samples. Fig. 2b shows the archi-
tecture of a denoising autoencoder used in this study. In comparison,
we also include a standard authoencoder in the model. The only one
difference between an autoencoder and a denoising autoencoder is
that 10% genotypes were masked as zeros in training a denoising
autoencoder.

We compared the performance between an autoencoder and a
denoising autoencoder in terms of average accuracy for reconstruct-
ing original data for 10 random repeats by randomly splitting the

Sparse Convolutional Predictor with Denoising Autoencoders ACM-BCB ’19, September 7–10, 2019, Niagara Falls, NY, USA

dataset. Fig. 5 shows the violin plot for comparing the accuracy be-
tween an autoencoder and a denoising autoencoder. The accuracy
refers to the percentage of correct genotypes of genetic variants in
reconstructed yeast genotypes. A higher accuracy indicates that
there is less loss between the original input and reconstructed out-
put, and the compressed hidden representation contains more exact
information from the original input. The violin plot for 10 repeated
experiment results hence shows that denoising autoencoders out-
perform autoencoders in terms of average accuracy. This indicates
that denoising autoencoder can extract efficient and robust features
in yeast genotype, and the compressed representations learned
by denoising autoencoders contain more exact information than
autoencoders. Thus, we can expect the performance of SCP with
denoising autoencoders outperforms the SCP with autoencoders as
described later.

Figure 5: The model performance of an autoencdoer and de-
noising autoencoder in terms of accuracy.

3.3 The performance of sparse convolutional
predictor

The performance of SCP, SCP_AE (SCP with pre-trained weights by
using autoencoders), and SCP_DAE (SCP with pre-trained weights
by using denoising autoencoders) was listed in Table 1. We ob-
served that SCP_DAE achieved the mean square errors of 0.0051,
0.0024, and 0.0049 for three quantitative traits of Cobalt Chloride,
Copper Sulfate, and Diamide in yeast, respectively. Our final model
of SCP_DAE thus outperformed SCP_AE, which had mean square
errors of 0.059, 0.038 and 0.066 for the three quantitative traits
repectively. This nice performance of SCP_DAE thus comes from
the characteristics of a denoising autoencoder in that it reconstructs
the output from the corrupted input data to let the encoder extract
most important features and learn a more robust representation of
the original input data.

Fig. 6 shows the predictive results of SCP_DAE on Cobalt Chlo-
ride trait of some yeast samples in the test dataset. The predicted
results aligned well with most of observed yeast traits, and they
had similar peaks and changing trends to the assayed phenotypes.

3.4 Comparison with other methods
We compared our proposed SCP_DAE method, a straight SCP, and
SCP_AE method, with other popular regularized statistical meth-
ods and machine learning methods for phenotype prediction in-
cluding Lasso, elastic net, random forest, and a plain deep neural

Figure 6: Visualization of the assayed phenotype (in red) and
the predicted phenotype (in black) by SCP_DAE on test data.

network (DNN). Lasso and elastic net are popular regularization-
based methods for sparsity learning, and random forest is one of
popular machine learning methods for regression problems. All
of these methods are widely used in high dimensional genomic
data analysis. For Lasso, the hyperparameter λ is learned via cross-
validation. For elastic net, the hyperparameter α that controls the
balance of L1 and L2 norm was set as a conventional value 0.5,
and the hyperparameter λ that controls the model sparsity was
optimized via cross-validation, similar to Lasso. For random forest,
all hyperparameters were automatically decided depending on the
genotype dimension as default in the randomForest package in R.
DNN has three fully connected layers with the number of neural
nodes of 14110, 7055 and 2822, respectively, comparing with our
proposed SCP in that DNN does not have convolutional layers.

As shown in Table 1, Lasso, elastic net and random forest have
similar performance on the three quantitative traits. DNN performs
slightly worse than previous methods, because the fully connected
layers in DNN are hard to capture the underlying local linkages
and local genetic loci dependencies in genomic data and thus it
fails for phenotype prediction. The straightforward SCP slightly
outperforms Lasso, elastic net and random forest. Comparing with
regularization-based methods, SCP not only leverages L1 regular-
ization to learn sparse weights, but also it can extract the non-linear
relationship between genetic loci dependencies. Comparing with
DNN, SCP utilizes convolution layers to learn the local linkages
and employs the followed fully connected layers to capture global
genetic loci dependencies.

The performance of SCP is significantly improved by pre-training
weights in an autoencoder and a denoising autoencoder. SCP_AE
achieved mean square errors of 0.059, 0.038 and 0.066 for the three
quantitative traits respectively. SCP_DAE further improves the
performance of SCP_AE with mean squared errors of 0.0051, 0.0024,
and 0.0049 for the three traits respectively. Such nice results of
SCP_DAE reflect the benefits from the pre-trained weights using
denoising autoencoders.

4 CONCLUSION
In summary, we have proposed a novel sparse convolutional pre-
dictor with denoising autoencoder for phenotype prediction. Our
method leverages a convolutional layer to learn the underlying

ACM-BCB ’19, September 7–10, 2019, Niagara Falls, NY, USA Chen and Shi

Table 1: Performance comparison of different methods on
predicting three yeast quantitative traits in terms of average
mean squared errors over 10 repeats.

Methods Phenotypes
Cobalt Chloride Copper Sulfate Diamide

Lasso 0.0118 0.0070 0.0092
Elastic net 0.0115 0.0074 0.0089
Random forest 0.0114 0.0073 0.0121
DNN 0.0118 0.0117 0.0164
SCP 0.0109 0.0059 0.0113
SCP_AE 0.0059 0.0038 0.0066
SCP_DAE 0.0051 0.0024 0.0049

correlation or linkage patterns in input data, and applies L1 regu-
larization to learn sparse weights on high dimensional data. The
process of pre-training weights using a denoising autoencoder
further improves the model’s predictive performance. Our newly
proposed method achieves state-of-the-art performance compar-
ing with other popular regularized statistic methods and machine
learning methods on a comprehensive yeast dataset. This study
thus demonstrates that sparse convolutional networks coupled with
pre-trained weights by denoising autoencoders can significantly
improve prediction tasks on high dimensional genotype data.

There are several directions that we can explore in the future
to improve the proposed model. It is a key problem to learn an
efficient representation of input data to build a powerful and robust
phenotype prediction method. Hence, it should be interesting to
explore other effective architectures for pre-training layer weights
such as generative adversarial network [19]. To induce sparsity to
the model, in addition to the L1 norm, other regularization can be
explored such as the L1-L2 norm. Bayesian optimization strategies
[22] can be employed to improve hyperparameter tuning in the
model. Although our method is designed for quantitative traits pre-
diction, it can be extended to categorical traits by slightly changing
the output layer.

ACKNOWLEDGMENTS
This work is partially supported by National Science Foundation of
the United States (Award Number: 1750632).

REFERENCES
[1] Anna Alemany, Maria Florescu, Chloé S Baron, Josi Peterson-Maduro, and Alexan-

der Van Oudenaarden. 2018. Whole-organism clone tracing using single-cell
sequencing. Nature 556, 7699 (2018), 108.

[2] Joshua S Bloom, Iulia Kotenko, Meru J Sadhu, Sebastian Treusch, Frank W Albert,
and Leonid Kruglyak. 2015. Genetic interactions contribute less than additive
effects to quantitative trait variation in yeast. Nature communications 6 (2015),
8712.

[3] Lujia Chen, Chunhui Cai, Vicky Chen, and Xinghua Lu. 2016. Learning a hierarchi-
cal representation of the yeast transcriptomic machinery using an autoencoder
model. BMC Bioinformatics 17, 1 (11 Jan 2016), S9. https://doi.org/10.1186/
s12859-015-0852-1

[4] Yifei Chen, Yi Li, Rajiv Narayan, Aravind Subramanian, and Xiaohui Xie. 2016.
Gene expression inference with deep learning. Bioinformatics 32, 12 (2016),
1832–1839.

[5] George E Dahl, Tara N Sainath, and Geoffrey E Hinton. 2013. Improving deep
neural networks for LVCSR using rectified linear units and dropout. In 2013
IEEE international conference on acoustics, speech and signal processing. IEEE,
8609–8613.

[6] Jun Han and Claudio Moraga. 1995. The influence of the sigmoid function
parameters on the speed of backpropagation learning. In International Workshop
on Artificial Neural Networks. Springer, 195–201.

[7] Rhys Heffernan, Yuedong Yang, Kuldip Paliwal, and Yaoqi Zhou. 2017. Capturing
non-local interactions by long short-term memory bidirectional recurrent neural
networks for improving prediction of protein secondary structure, backbone
angles, contact numbers and solvent accessibility. Bioinformatics 33, 18 (2017),
2842–2849.

[8] Jason A Holliday, Tongli Wang, and Sally Aitken. 2012. Predicting adaptive
phenotypes from multilocus genotypes in Sitka spruce (Picea sitchensis) using
random forest. G3: Genes, Genomes, Genetics 2, 9 (2012), 1085–1093.

[9] David H Hubel and Torsten N Wiesel. 1968. Receptive fields and functional
architecture of monkey striate cortex. The Journal of physiology 195, 1 (1968),
215–243.

[10] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436.

[11] Haiou Li, Jie Hou, Badri Adhikari, Qiang Lyu, and Jianlin Cheng. 2017. Deep
learning methods for protein torsion angle prediction. BMC bioinformatics 18, 1
(2017), 417.

[12] Yang Liu and Duolin Wang. 2017. Application of deep learning in genomic
selection. In 2017 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM). IEEE, 2280–2280.

[13] Wenlong Ma, Zhixu Qiu, Jie Song, Jiajia Li, Qian Cheng, Jingjing Zhai, and
Chuang Ma. 2018. A deep convolutional neural network approach for predicting
phenotypes from genotypes. Planta 248, 5 (2018), 1307–1318.

[14] T.H.E. Meuwissen, B.J. Hayes, and M.E. Goddard. 2001. Prediction of total genetic
value using genome-wide dense marker maps. Genetics 157, 4 (2001), 1819–1829.

[15] Seonwoo Min, Byunghan Lee, and Sungroh Yoon. 2017. Deep learning in bioin-
formatics. Briefings in bioinformatics 18, 5 (2017), 851–869.

[16] Pooya Mobadersany, Safoora Yousefi, Mohamed Amgad, David A Gutman, Jill S
Barnholtz-Sloan, José E Velázquez Vega, Daniel J Brat, and Lee AD Cooper. 2018.
Predicting cancer outcomes from histology and genomics using convolutional
networks. Proceedings of the National Academy of Sciences 115, 13 (2018), E2970–
E2979.

[17] Trevor Park and George Casella. 2008. The bayesian Lasso. J. Amer. Statist. Assoc.
103, 482 (2008), 681–686.

[18] Menelaos Pavlou, Gareth Ambler, Shaun Seaman, Maria De Iorio, and Rumana Z
Omar. 2016. Review and evaluation of penalised regression methods for risk
prediction in low-dimensional data with few events. Statistics in medicine 35, 7
(2016), 1159–1177.

[19] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434 (2015).

[20] David E Reich, Michele Cargill, Stacey Bolk, James Ireland, Pardis C Sabeti,
Daniel J Richter, Thomas Lavery, Rose Kouyoumjian, Shelli F Farhadian, Ryk
Ward, et al. 2001. Linkage disequilibrium in the human genome. Nature 411, 6834
(2001), 199.

[21] Ritambhara Singh, Jack Lanchantin, Gabriel Robins, and Yanjun Qi. 2016.
DeepChrome: deep-learning for predicting gene expression from histone modifi-
cations. Bioinformatics 32, 17 (2016), i639–i648.

[22] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical Bayesian
Optimization of Machine Learning Algorithms. arXiv:1206.2944 [cs, stat] (June
2012). http://arxiv.org/abs/1206.2944 arXiv: 1206.2944.

[23] Zaixiang Tang, Yueping Shen, Xinyan Zhang, and Nengjun Yi. 2016. The Spike-
and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes
Detection. Genetics (2016), genetics–116.

[24] Robert Tibshirani. 1996. Regression shrinkage and selection via the Lasso. Journal
of the Royal Statistical Society. Series B (Methodological) (1996), 267–288.

[25] Paul M VanRaden. 2008. Efficient methods to compute genomic predictions.
Journal of dairy science 91, 11 (2008), 4414–4423.

[26] Vladimir Vapnik. 1998. Statistical learning theory. 1998. Vol. 3. Wiley, New York.
[27] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.

2008. Extracting and composing robust features with denoising autoencoders.
In Proceedings of the 25th international conference on Machine learning. ACM,
1096–1103.

[28] Jian Zhou, Chandra L Theesfeld, Kevin Yao, Kathleen M Chen, Aaron K Wong,
and Olga G Troyanskaya. 2018. Deep learning sequence-based ab initio prediction
of variant effects on expression and disease risk. Nature genetics 50, 8 (2018),
1171.

[29] Xiang Zhou, Peter Carbonetto, and Matthew Stephens. 2013. Polygenic modeling
with Bayesian sparse linear mixed models. PLoS Genetics 9, 2 (2013), e1003264.

[30] Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
67, 2 (2005), 301–320.

https://doi.org/10.1186/s12859-015-0852-1
https://doi.org/10.1186/s12859-015-0852-1
http://arxiv.org/abs/1206.2944

	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 Sparse convolutional network
	2.3 Autoencoder and denoising autoencoder
	2.4 The proposed method

	3 Results
	3.1 The sparsity of the weight matrix
	3.2 Pre-trained weights by autoencoders
	3.3 The performance of sparse convolutional predictor
	3.4 Comparison with other methods

	4 Conclusion
	Acknowledgments
	References

