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Abstract—In recent years, mobile devices such as smartphones
and tablets have become one of the most popular digital devices of
choice in our daily lives when it comes to functionality and conve-
nience. With only ever increasing popularity, mobile devices with
Android operating systems have become a common target for
malware especially through third-party markets. To make things
worse, the emergence of obfuscation and adversarial example
attacks enables malware to evade traditional security methods
and steal a user’s private information. In this paper, we propose
an ensemble learning- based framework for detecting malware
by using risky permissions as features to train a classifier and
determine whether a mobile application (a.k.a. app) is malware
or not. To evaluate the performance of the proposed malware
detection approach, we have conducted a series of experiments
using real world Android app datasets that are composed of both
malicious and benign apps. Experimental results clearly show
that the proposed malware detection approach can effectively
detect malware with a high accuracy.

Index Terms—Android, security, malware detection, machine
learning, ensemble learning

I. INTRODUCTION

With such advanced technologies in the modern world,
mobile devices including smartphones and tablet computers
have been a popular choice of device for completing many
tasks ranging from communication to entertainment. The most
widely used operating system for mobile devices is Android,
dominating about 87% of the global market share [1]. Given
that the number of Android devices are predicted to grow
even more, one would expect the mobile operating system
to be secure with a user’s personal data and information well
kept against unwanted sharing and disclosure, which is the
main goal of hackers when developing malicious applications
(apps). However, that is far from the truth. In contrast, distribu-
tion of malicious Android apps, especially through third-party
markets, have been gaining in numbers of up to 48,000 newly
detected malware samples per month as of March 2020 [2].

While there have been many prior research works to address
the security risks which are brought by various malicious
apps (a.k.a. malware), their detection rates only range from
20.2% to 79.6% [3]. In addition, the Google Bouncer, which
is the security solution deployed by the official Android market
Google Play, has its own limitations. For instance, it can
only scan Android apps for a limited time. A malicious app
can simply surpass Google Bouncer by not doing anything
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during the scanning phase. Moreover, another limitation of
Google Bouncer is that an app may contain no malicious
code at the time of initial installation and make it seem
safe to Google Bouncer. After it is installed, the application
may download additional malicious code that can grant itself
additional commands and controls from remote access. These
additional commands and controls may allow the user’s private
and sensitive data to be shared without the user’s own consent,
which is a clear security breach. Other prior research works
like DroidMat [4] and DroidAPIMiner [5] have their own
limitations too. DroidMat is based on a K-Nearest Neighbor
approach where its recall value is significantly lower than its
precision value, which makes it unable to detect some types
of malware. DroidAPIMiner’s efficiency depends on a large
amount of benign apps and it is also very time consuming.

In this paper, we propose EnsembleDroid, a malware de-
tection approach for the Android system using the ensemble
learning algorithm. Specifically, we have integrated both ho-
mogeneous stacking and heterogeneous stacking models when
using the ensemble learning algorithm. Stacking allows us to
produce several predictions, which serve as the input for a final
meta classification model to distinguish malware from benign
applications. By using the real world Android application
datasets containing both malware and benign apps, we train
both of the stacking ensemble learning classifiers, and the
detection accuracy is 91

The rest of the paper is organized as follows. Section II
will present the prior research works related to this research.
Second III will focus on the methodology, and section IV
will go through the experiment setup and discuss the results.
Finally, Section V concludes this work and also presents some
possible future directions.

II. RELATED WORK

There have been many previous research efforts for detect-
ing malware in the Android system. In this section, we will
categorize them and summarize some research efforts for each
category.

A. Static Analysis

Static analysis is one of the widely used approaches for
detection. It extracts static features such as permissions, API



calls, URLs, and etc., thus being called static analysis. Then,
static analysis searches for the similarities between previously
existing malware and the targeted application. Kirin [8] mainly
uses decompiling and data flow tracking as its main approach
but requires manually-input malware patterns in order to
properly detect the malware. Another example is mining per-
missions of both benign and malicious applications to be used
to train a classifier that will distinguish the future permission
patterns as malware [18]. The advantage of static analysis is
that it scans for suspicious patterns and signatures without
executing them and runs in a relatively short time compared to
dynamic analysis. However, there are some limitations to static
analysis as it cannot identify security vulnerabilities during run
time.

B. Dynamic Analysis

Dynamic analysis works by analyzing for issues while an
Android application is running in a safe environment. This
may be done by running the application through a sandbox, an
isolated testing environment that does not affect the platform
or system that the program is in, or by installing it on
real devices that can gather information about the run-time
behavior. During that time, it monitors for suspicious activity
that allows unwanted third parties to obtain sensitive and
private data. TaintDroid [17] automatically labels data from
privacy-sensitive sources and transitively applies labels as
sensitive data propagates through program variables, files, and
interprocess messages. Any tainted data that is transmitted to
the network or leaves the system is labeled and the application
responsible for the data becomes flagged. An evident limitation
of dynamic analysis is that it suffers from run time overhead,
where the process may take more time than it needs to.

C. Machine Learning

Machine learning is a prominent pathway for researchers
in detecting malware due to its ability to automatically clas-
sify Android applications. Unlike static analysis and dynamic
analysis, which requires humans to manually input and make
decisions for them, machine learning algorithms can take in
datasets and teach themselves to make accurate predictions of
later input data.

An example of machine learning algorithms that is widely
used for malware detection, is deep learning. Inspired by the
human brain, deep learning algorithms classify applications
by connecting neurons to other neurons. These neurons pass
a message or signal to other neurons based on the received
input and form a complex network that learns with some
feedback mechanism. Current classifiers that use deep learning
like AdversarialDroid [6], DroidDetector [7], DL-Droid [15],
employ several layers that connect to each other and produce
a final result to the output layer. While deep learning is proven
to perform better than traditional techniques, its disadvantages
is that it requires a large amount of data for training, which
is computationally expensive, in order to do better than other
machine learning techniques. Deep learning based approaches
are also prone to adversarial example attacks. In addition, there

were many other research efforts that also used deep learning
to help detect malware [19, 20].

A machine learning algorithm that will be used in this
research paper is the support vector machine. This algorithm
uses a hyperplane and support vectors to help classify An-
droid applications as benign or malicious. A hyperplane is a
decision boundary that is N-dimensional. The more features an
application has, the more dimensions the hyperplane becomes.
Li and others [9] extracts risky API calls, permissions, and
URLs and sends these features that correspond to widely
accepted measures like TF-IDF to a SVM model that produces
a result based on the hyperplane. Support vectors allow the
margins that shape the hyperplane to be as fitting as possible
to all the data points and find a plane that has the maximum
margin, i.e the maximum distance between data points of
both classes. The maximum margin distance provides some
reinforcement so that future data points can be classified with
more confidence. While SVM is also more effective than
traditional malware detection techniques, like deep learning,
it is also prone to adversarial example attacks.

D. Adversarial Example Attacks

Adversarial example attacks are malicious applications that
evade the detectors of traditional approaches such as static and
dynamic analysis. Malware authors use generative methods
that tweak and mutate existing malware to create new attacks.
E-MalGAN [12] is an invasive method that does not require
information about its target and plays a noncooperative game
between the generator model and the discriminator model.
Malware recomposition variation (MRV) uses semantic analy-
sis of existing malware to create and mutate feasible malware
[13]. It produces evolution and confusion attacks which mimic
and automates the evolution of malware that can hide their
malicious feature during the detection phase and cause the
classifier to misidentify it as benign. Once the application
passes through the classifier, an intruder can remotely install
additional code that can harm and steal private information,
making the attack successful. Li et al. proposed DroidEnemy,
which is a malware detection approach that can battle against
adversarial example attacks [21].

III. METHODOLOGY

In this section, we first introduce the overall architecture of
the proposed approach. A detailed description of each part of
the scheme will then follow to get a better understanding of
the overall process of detecting malware. Figure 1 displays the
overall structure of the proposed work.

A. Overview

As shown in Figure 1, there are three main components
of EnsembleDroid: app decompilation, feature extraction, and
classification. During the app decompilation stage, Android
applications are unpacked into a set of files such as smali
files, source files, and the manifest file. The key features we
will be using in this work will be the Android permissions
that are extracted from the manifest file.The permissions will
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then be combined to create a feature set that will be used to
train and test the stacked ensemble learning classifier model.
Finally, the model produces a result of whether the Android
application is malicious or benign.

B. Decompilation

All applications used on the Android operating system are
in apk format. Within the apk file, there are features that
make up the application such as the permissions it requests
or the URLs it uses. In order to find these features, the apk
file must be decompiled into different files which correspond
to those features. In this work, we use an open source tool
called Apktool [17], which could decompile the apk files into
the readable manifest file and source files.

Apktool unpacks the apk file into a set of readable files,
most notably the manifest (XML) file. The manifest file
contains permissions that the application uses. These per-
missions contain the juses-permission; tag along with the
label of what the permission is. For example, Figure 2 shows
the permissions used by an application sample. The “an-
droid.permission.INTERNET” permission allows the applica-
tion to access the internet and “android.permission. CAMERA”
allows the application to access your device’s camera. In the
interest of hackers, permissions like these can be extremely
dangerous when not detected.

C. Feature Extraction

Once an apk file is unpacked and we are able to read the
manifest file, we can then extract the permissions that the
application uses. In order to do this, we develop a Python

android:nai

Fig. 2: Depiction of permissions inside a manifest file

program that is used to open up the manifest file and create a
feature vector based on the permissions that are requested in
the manifest file. Each feature vector is represented as a single
array of 1’s and 0’s. The feature vectors are later combined to
make one 2D array feature set to write to the classifier as a
CSV file.

0, if = exists in application
1, otherwise

Fig. 3: Cases for Feature Vector

The cases for creating a feature vector are depicted above
in Figure 3 where X represents a permission in the application.
To create a feature vector, a list of the permissions used in an
application is compared to the list of all Android permissions.
We iterate through the application’s permission list and check
whether it exists in the list of all Android permissions. If a spe-
cific permission is requested by a given Android application,
it will receive an 1, and O elsewise. Finally, the last column
of an app’s feature vector will represent if the application is
malicious or benign: it will be assigned the label of 1 if it is
malicious or 0 if it is benign, in order to efficiently keep track
of data for training and testing.

D. Classifier

After the feature set is written to a CSV file, the data will be
evaluated by the classification model. The stacked ensemble
learning classifier consists of two components: the base models
and the meta-model. The base models consist of several weak
learners. While these learners produce accuracies just slightly
better than random guessing, it is computationally fast to
train when compared to strong learners. Having multiple weak
learners take in data allows multiple predictions to be made.
These predictions are served as input to train the meta-model
and produce the best final prediction. The overall functionality
of stacking is shown in Figure 4.

Rather than using different types of classifiers as weak
learners, the homogeneous stacking model sticks to one single
type of learner. This classifier uses multiple support vector
machine classifiers as the base models. On the other hand,
heterogeneous stacking involves a variety of weak classifiers.
This approach is more popular because it allows the base
models to use different classification algorithms for prediction.
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IV. EXPERIMENTAL STUDY

In this section, we will discuss the experiments performed as
well as the corresponding results that can be used to evaluate
our proposed framework.

A. Dataset

In the experiment, we use Drebin [22] as the source for
malware, which is one of the most widely accepted datasets
of Android malware containing 5,560 applications from 179
malware families. The benign apps are privately collected from
the Google Play Store which contains 1,550 applications. An
80/20 split was used to separate the data where 80% was used
for training and the 20% was used for testing.

B. Experimental Results

For both homogeneous stacking and heterogeneous stacking
models, data from the CSV file was split to ensure that the
base models will be using the training set to produce their
predictions and the metal-model will be using the testing set
to assess its performance. A 10-fold cross validation approach
is also used to train the meta-model.

# Defining homogeneous base model

levelo = list()
levele.append(
levelo.append
levele.append
levele.append
levele.append

‘svml',SVC(C=0.1, gamma = 0.1, kernel = 'rbf')))
'svm2',SVC(C=0.1, gamma = 1, kernel = 'rbf')))
‘svm3',SVC(C=1, gamma = 8.1, kernel = 'rbf')))
'svmd' ,SVC(C=1, gamma = 1, kernel = 'rbf')))
‘svms', SvC(C=1@, gamma = @.1,kernel= 'rbf')))

levele.append(('svm6', SvC(C=10, gamma = 1,kernel= 'rbf')))
‘svm7',SVC(C=0.1, gamma = 0.1, kernel = 'linear')))
levelo.append(('svm8',SvC(C=0.1, gamma = 1, kernel = 'linear')))

levele.append
levelo.append
levele.append
levele.append

'svml@', SVC(C=1, gamma = 1, kernel = 'linear')))
‘svm1l',SVC(C=1@, gamma = @.1, kernel = 'linear’')))

‘svmd',sSvC(C=1, gamma = ©.1, kernel = ‘linear')))
‘svml2',SvC(C=106, gamma = 1, kernel = 'linear')))

(
(
(
{
(
levelo.append(
{
(
(
(
(

# Defining meta-model
levell = MLPClassifier()

# Building stacking classifier

stack_clf = stackingClassifier(estimators = levelo, final estimator = levell, cv=18)
stack_clf.fit(X_train, y_train)

Fig. 5: Homogeneous Stacking Classifier

In homogeneous stacking (Figure 5), a total of 12 support
vector machine classifiers were used as the base models of
the homogeneous stacking classifier. Each SVM classifier
had different hyperparameter values in order to make them

unique.The most common hyperparameters chosen to tune
were: C, gamma, and kernel. The values for each hyperparam-
eter was defined based on the tuning of a default support vector
machine classifier by using GridSearchCV, a cross validation
method that produces the best values for given parameters.
After the base models are set, we choose the multilayer
perceptron classifier as the meta-model.

precision recall fi1-score support

%] 8.76 0.85 0.80 292

]l 8.96 0.93 0.94 1852

accuracy 9.91 1344
macro avg 9.86 .89 0.87 1344
weighted avg 9.91 9.91 9.91 1344

Fig. 6: Homogeneous Stacking Classification Report

The classification report in Figure 6 showed that the clas-
sifier was able to produce a 91% accuracy in predicting
whether an application was malicious or benign. Along with
the accuracy, a report on its precision, recall, and F1-score
is presented. These additional metrics allow researchers to
get a better understanding of the overall performance of the
classifier.

Tevelo = Hiet0y
levele.append((‘knn', KNeighborsClassifier(leaf size=10,metric= 'euclidean’,

levelo.append(('svn', SVC(C=10, gamma = 0.1, kernel = 'rbf’
levelo.append(('lr’, LogisticRegression(C=0.0001, max_iter= 100, penalty= 'none’, solver='sag')))

n_neighbors= 11, p= 1, weights= 'distance)))

# Building meta-model
levell= LogisticRegression()

# Building stacking model
stack_clf = stackingClassifier (estimators =
stack_c1f.fit(X_train, y_train)

levelo, final estimator = levell), cv=10)

Fig. 7: Heterogeneous Stacking Classifier

The heterogeneous stacking classifier depicted by Figure
7 consists of 3 different weak learners. Having the variety
of learners allows the base models to work with several
different algorithms and produce different predictions. The 3
chosen supervised machine learning algorithms used as the
base models are: K-Nearest Neighbor, support vector machine,
and logistic regression. Each base model was tuned using
GridSearchCV to find their best values for their parameters.
This is done to slightly improve each base model in order to
give better predictions to the meta-model. The default logistic
regression learner was chosen as the meta-model.

As seen by the classification report in Figure 8, the hetero-
geneous stacking classifier also had a 91% detection accuracy.
Other measurements on the performance like precious, recall,
and F1-score are displayed below.

V. CONCLUSION

In this paper, we proposed EnsembleDroid, a malware
detection approach using ensemble learning. Specifically, we
explored both homogeneous and heterogeneous stacking mod-
els when deploying the ensemble learning algorithm. When
we build the homogeneous stacking classifier, we use mul-
tiple support vector machines as the base models and the
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Fig. 8: Heterogeneous Classification Report

multilayer perceptron classifier. The heterogeneous stacking
classifier uses the K-nearest neighbor, support vector machine,
and logistic regression algorithms as the base models and
logistic regression model again as the meta-model. During the
experimental study, both models interestingly produced a 91

Now let us discuss the future research directions. First, due
to the time limitation for this summer research program, the
dataset is considered to be relatively small for the experimen-
tation purpose. The ratio of benign to malicious applications
could also be another factor for the further improvement to the
accuracy of the classifiers. For future works, the dataset should
be larger and contain a better ratio of benign to malicious
apps. In addition, it would also be interesting to evaluate the
performance of malware detectors against adversarial example
attacks. As technology is getting advanced progressively, op-
portunities for malware to evade the detection of classifiers
will surely be growing rapidly. Thus, this paper has set a
good ground for further research in the security of smartphone
devices.
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