
EnsembleDroid: A Malware Detection Approach for

Android System based on Ensemble Learning

Sharon Guan

College of Engineering and Applied Sciences

Stony Brook University

Stony Brook, NY 11794

sharon.guan@stonybrook.edu

Wenjia Li

Department of Computer Science

New York Institute of Technology

New York, NY 10023

wli20@nyit.edu

Abstract—In recent years, mobile devices such as smartphones
and tablets have become one of the most popular digital devices of
choice in our daily lives when it comes to functionality and conve-
nience. With only ever increasing popularity, mobile devices with
Android operating systems have become a common target for
malware especially through third-party markets. To make things
worse, the emergence of obfuscation and adversarial example
attacks enables malware to evade traditional security methods
and steal a user’s private information. In this paper, we propose
an ensemble learning- based framework for detecting malware
by using risky permissions as features to train a classifier and
determine whether a mobile application (a.k.a. app) is malware
or not. To evaluate the performance of the proposed malware
detection approach, we have conducted a series of experiments
using real world Android app datasets that are composed of both
malicious and benign apps. Experimental results clearly show
that the proposed malware detection approach can effectively
detect malware with a high accuracy.

Index Terms—Android, security, malware detection, machine
learning, ensemble learning

I. INTRODUCTION

With such advanced technologies in the modern world,

mobile devices including smartphones and tablet computers

have been a popular choice of device for completing many

tasks ranging from communication to entertainment. The most

widely used operating system for mobile devices is Android,

dominating about 87% of the global market share [1]. Given

that the number of Android devices are predicted to grow

even more, one would expect the mobile operating system

to be secure with a user’s personal data and information well

kept against unwanted sharing and disclosure, which is the

main goal of hackers when developing malicious applications

(apps). However, that is far from the truth. In contrast, distribu-

tion of malicious Android apps, especially through third-party

markets, have been gaining in numbers of up to 48,000 newly

detected malware samples per month as of March 2020 [2].

While there have been many prior research works to address

the security risks which are brought by various malicious

apps (a.k.a. malware), their detection rates only range from

20.2% to 79.6% [3]. In addition, the Google Bouncer, which

is the security solution deployed by the official Android market

Google Play, has its own limitations. For instance, it can

only scan Android apps for a limited time. A malicious app

can simply surpass Google Bouncer by not doing anything

during the scanning phase. Moreover, another limitation of

Google Bouncer is that an app may contain no malicious

code at the time of initial installation and make it seem

safe to Google Bouncer. After it is installed, the application

may download additional malicious code that can grant itself

additional commands and controls from remote access. These

additional commands and controls may allow the user’s private

and sensitive data to be shared without the user’s own consent,

which is a clear security breach. Other prior research works

like DroidMat [4] and DroidAPIMiner [5] have their own

limitations too. DroidMat is based on a K-Nearest Neighbor

approach where its recall value is significantly lower than its

precision value, which makes it unable to detect some types

of malware. DroidAPIMiner’s efficiency depends on a large

amount of benign apps and it is also very time consuming.

In this paper, we propose EnsembleDroid, a malware de-

tection approach for the Android system using the ensemble

learning algorithm. Specifically, we have integrated both ho-

mogeneous stacking and heterogeneous stacking models when

using the ensemble learning algorithm. Stacking allows us to

produce several predictions, which serve as the input for a final

meta classification model to distinguish malware from benign

applications. By using the real world Android application

datasets containing both malware and benign apps, we train

both of the stacking ensemble learning classifiers, and the

detection accuracy is 91

The rest of the paper is organized as follows. Section II

will present the prior research works related to this research.

Second III will focus on the methodology, and section IV

will go through the experiment setup and discuss the results.

Finally, Section V concludes this work and also presents some

possible future directions.

II. RELATED WORK

There have been many previous research efforts for detect-

ing malware in the Android system. In this section, we will

categorize them and summarize some research efforts for each

category.

A. Static Analysis

Static analysis is one of the widely used approaches for

detection. It extracts static features such as permissions, API



calls, URLs, and etc., thus being called static analysis. Then,

static analysis searches for the similarities between previously

existing malware and the targeted application. Kirin [8] mainly

uses decompiling and data flow tracking as its main approach

but requires manually-input malware patterns in order to

properly detect the malware. Another example is mining per-

missions of both benign and malicious applications to be used

to train a classifier that will distinguish the future permission

patterns as malware [18]. The advantage of static analysis is

that it scans for suspicious patterns and signatures without

executing them and runs in a relatively short time compared to

dynamic analysis. However, there are some limitations to static

analysis as it cannot identify security vulnerabilities during run

time.

B. Dynamic Analysis

Dynamic analysis works by analyzing for issues while an

Android application is running in a safe environment. This

may be done by running the application through a sandbox, an

isolated testing environment that does not affect the platform

or system that the program is in, or by installing it on

real devices that can gather information about the run-time

behavior. During that time, it monitors for suspicious activity

that allows unwanted third parties to obtain sensitive and

private data. TaintDroid [17] automatically labels data from

privacy-sensitive sources and transitively applies labels as

sensitive data propagates through program variables, files, and

interprocess messages. Any tainted data that is transmitted to

the network or leaves the system is labeled and the application

responsible for the data becomes flagged. An evident limitation

of dynamic analysis is that it suffers from run time overhead,

where the process may take more time than it needs to.

C. Machine Learning

Machine learning is a prominent pathway for researchers

in detecting malware due to its ability to automatically clas-

sify Android applications. Unlike static analysis and dynamic

analysis, which requires humans to manually input and make

decisions for them, machine learning algorithms can take in

datasets and teach themselves to make accurate predictions of

later input data.

An example of machine learning algorithms that is widely

used for malware detection, is deep learning. Inspired by the

human brain, deep learning algorithms classify applications

by connecting neurons to other neurons. These neurons pass

a message or signal to other neurons based on the received

input and form a complex network that learns with some

feedback mechanism. Current classifiers that use deep learning

like AdversarialDroid [6], DroidDetector [7], DL-Droid [15],

employ several layers that connect to each other and produce

a final result to the output layer. While deep learning is proven

to perform better than traditional techniques, its disadvantages

is that it requires a large amount of data for training, which

is computationally expensive, in order to do better than other

machine learning techniques. Deep learning based approaches

are also prone to adversarial example attacks. In addition, there

were many other research efforts that also used deep learning

to help detect malware [19, 20].

A machine learning algorithm that will be used in this

research paper is the support vector machine. This algorithm

uses a hyperplane and support vectors to help classify An-

droid applications as benign or malicious. A hyperplane is a

decision boundary that is N-dimensional. The more features an

application has, the more dimensions the hyperplane becomes.

Li and others [9] extracts risky API calls, permissions, and

URLs and sends these features that correspond to widely

accepted measures like TF-IDF to a SVM model that produces

a result based on the hyperplane. Support vectors allow the

margins that shape the hyperplane to be as fitting as possible

to all the data points and find a plane that has the maximum

margin, i.e the maximum distance between data points of

both classes. The maximum margin distance provides some

reinforcement so that future data points can be classified with

more confidence. While SVM is also more effective than

traditional malware detection techniques, like deep learning,

it is also prone to adversarial example attacks.

D. Adversarial Example Attacks

Adversarial example attacks are malicious applications that

evade the detectors of traditional approaches such as static and

dynamic analysis. Malware authors use generative methods

that tweak and mutate existing malware to create new attacks.

E-MalGAN [12] is an invasive method that does not require

information about its target and plays a noncooperative game

between the generator model and the discriminator model.

Malware recomposition variation (MRV) uses semantic analy-

sis of existing malware to create and mutate feasible malware

[13]. It produces evolution and confusion attacks which mimic

and automates the evolution of malware that can hide their

malicious feature during the detection phase and cause the

classifier to misidentify it as benign. Once the application

passes through the classifier, an intruder can remotely install

additional code that can harm and steal private information,

making the attack successful. Li et al. proposed DroidEnemy,

which is a malware detection approach that can battle against

adversarial example attacks [21].

III. METHODOLOGY

In this section, we first introduce the overall architecture of

the proposed approach. A detailed description of each part of

the scheme will then follow to get a better understanding of

the overall process of detecting malware. Figure 1 displays the

overall structure of the proposed work.

A. Overview

As shown in Figure 1, there are three main components

of EnsembleDroid: app decompilation, feature extraction, and

classification. During the app decompilation stage, Android

applications are unpacked into a set of files such as smali

files, source files, and the manifest file. The key features we

will be using in this work will be the Android permissions

that are extracted from the manifest file.The permissions will








