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ABSTRACT
Although next generation sequencing technologies have made it
possible to quickly generate a large collection of sequences, current
genomic data still suffer from small data sizes, imbalances, and
biases due to various factors including disease rareness, test afford-
ability, and concerns about privacy and security. In order to address
these limitations of genomic data, we develop a Population-scale
Genomic Data Augmentation based on Conditional Generative Ad-
versarial Networks (PG-cGAN) to enhance the amount and diversity
of genomic data by transforming samples already in the data rather
than collecting new samples. Both the generator and discriminator
in the PG-CGAN are stacked with convolutional layers to capture
the underlying population structure. Our results for augmenting
genotypes in human leukocyte antigen (HLA) regions showed that
PC-cGAN can generate new genotypes with similar population
structure, variant frequency distributions and LD patterns. Since
the input for PC-cGAN is the original genomic data without as-
sumptions about prior knowledge, it can be extended to enrich
many other types of biomedical data and beyond.
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1 INTRODUCTION
A large volume of genomic sequences collected at population lev-
els has become quickly available, thanks to the recent progress in
sequencing technologies that surpasses the Moore’s law. However,
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human genomic data is still rather limited in several ways that
prevent the wide adoption of artificial intelligence and machine
learning in solving complex computational challenges in human
genetics and genomics. First, although a large collection of human
genomes has been sequenced in consortia projects (e.g. the 1000
Genome Project [12], the Genome 10K Project [21], UK Biobank
[34]) and clinical settings, it is still costly and sometimes infeasible
(e.g. in rare disease studies where samples are limited) to rapidly ac-
cumulate sufficient genomes for developing modern AI-empowered
data analytics that rely heavily on big data. Second, data imbalance
or bias are another key challenge resulting from factors such as
racical distribution, disease rareness, and test affordability. The
majority of genomes available are from populations with European
ancestries and other populations are under-represented in current
genomic data. Third, genomic sequences and genetic data are heri-
table by nature, and thus contain sensitive and private information
about individuals and their relatives [23]. Thus, partially due to
concerns about privacy and security, human genomic data are not
readily accessible or widely shared.

In the meanwhile, biological systems are usually complex with
interactions or crosslinks reflecting linear and non-linear relation-
ships among various components and across many layers. Mod-
ern machine learning methods, especially deep learning [25], are
empowered to reveal such complex interactions by mining mas-
sive data sets, and significantly facilitate scientific discovery and
biomedical research. Recent studies reported that these interactions
in genomic data can be captured using deep learning based methods
that outperform traditional bioinformatics methods for predicting
the relationship between genotypes and phenotypes [9–11]. Given
the constraints on genomic data collection and the demand of large
datasets for cutting-edge model development, it becomes crucial for
genomic studies to develop data augmentation approaches [35] that
can remedy this unfavorable scenario by increasing the amount and
diversity of data. Generally speaking, strategies for genomic data
augmentation at population levels can be traced back to genome
sequence simulation tools extensively used in population genetics,
such as SLiM [15] and msprime [20]. Nonetheless, these methods
require users to have a thorough understanding of the prior infor-
mation underlying the generation of population-based genomic
data and the parameters used in population genetics models.

Recently, deep learning based data augmentation has been com-
monly conducted and shown impressive success in various areas
including computer vision [3]. Typical data augmentation meth-
ods used in computer vision to generate realistic images rely on a
particular deep learning framework termed Generative Adversarial
Networks (GANs) [14]. A GAN is an adversarial game, in which
two neural networks (a generator and a discriminator respectively)
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contest with and learn from each other. However, vanilla GANs
deployed this way suffer from unstable training. To resolve this
problem, many GAN variants are proposed that have significantly
improved the quality of data outputs generated by GANs. These
new GAN models that show supreme performance include Cycle-
GANs [36], progressively growing GANs [19], deep convolutional
GANs (DCGANs)[31], conditional GANs (cGANs) [26], Wasserstein
GAN (WGAN) [4], and Boundary Equilibrium GAN (BEGAN) [7]).
In general, these new GAN variants differ from vanilla GANs in
that they utilize different network architectures, loss functions, evo-
lutionary methods, or additional information. Latest studies have
shown that in computer vision and image analysis, data augmented
with these GAN variants, together with input original data can be
combined together to improve image classifications. For example,
Zhu et al. [37] used CycleGAN-based data augmentation for image
synthesis for better emotion classification. Frid-Adar et al. [13] em-
ployed DCGAN [31] models to augment medical imaging data for
improved classification of liver lesions. Alyafi et al. [2] showed that
DCGAN [31] models can be used for synthesising photo-realistic
breast mass patches with a considerable diversity. Han et al. [16]
focused on generating synthetic multi-sequence brain Magnetic
Resonance (MR) images using DCGAN [31] and WGAN [4]. Their
preliminary validation showed that even an expert physician was
unable to accurately distinguish the synthetic images from the real
images in a Visual Turing Test. Bailo et al. [5] described how to ap-
ply image-to-image translation techniques to medical blood smear
data to generate new data samples and meaningfully augment small
datasets utilizing cGAN [26] models.

In addition to the success of GAN family models in augmenting
imaging data, recent studies have also demonstrated that GAN
and its variants can be applied to clinical trial and transcriptomics
data. Specifically, Beaulieu-Jones et al. [6] showed that GANs can
be trained with differential privacy [1], enabling them to share
the synthetic data with others as though they had the original
clinical trial (e.g. Systolic Blood Pressure Trial) data. To enhance
sparse single-cell RNA-seq data, cscGAN [24] is developed based
on Similarity Constraint on GANs (SCGAN) [22] for single-cell
transcriptomics analysis. RAN-seq data in single-cell populations
augmented with cscGAN generated cells, was reported to improve
downstream analyses such as the detection of marker genes and
cell type classification [24].

Compared to widely used image datasets, genomic data is sig-
nificantly smaller, sparser, and is limited with small sample sizes.
Therefore, it is an unknown yet challenging task to investigate
if GAN and its variants can be applied to meaningfully enhance
genomic data with small sets of observations and high dimensions.
In addition, we need to develop new measurement metrics to eval-
uate the performance of data augmentation models for genomic
data including genotypes. In computer vision, humans and domain
experts can be asked to evaluate the quality of an augmented im-
age by checking if they can distinguish a synthetic image from a
real image. This type of evaluation is broadly used in computer
vision and image processing. For example, previous studies [8] have
reported to measure the quality of images from GAN models by
conducting a visual Turing test. In such a test, two humans are
asked to distinguish real and artificial images of objects, or two
pathological experts are asked to tell a real medical image from a

synthetic image for skin lesion classification or liver cancer detec-
tion. However, this kind of human expert evaluation is infeasible for
genomic data, since humans themselves can not tell the difference
between real and synthetic genomic data. Hence, we need to not
only develop novel models for data augmentation of genomic data,
but also design new metrics to effectively evaluate the performance
of data augmented models in genomics.

In this study, we develop a novel Population-scale Genomic
data augmentation approach based on Conditional Generative Ad-
versarial Networks (PG-cGAN) utilizing several state-of-the-art
strategies in improving GAN models. Specifically, we deploy the
generator and discriminator, using stacked convolutional layers,
to extract relationships or high correlations within neighboring
genomic regions such as Linkage Disequilibrium (LD) patterns. To
reflect population structures stratified in human genomic data, we
encode population labels as the conditional information on both the
generator and discriminator in a cGAN framework. Instead of using
visual Turing tests and Fréchet Inception Distance (FID) to measure
image qualities of augmented data in computer vision, we utilize
frequently-used population and genetics characteristics to evaluate
the realness of synthetic human genomes. Specifically, the evalua-
tion metrics include genomic and genetic characteristics such as
population stratification using principal component analysis (PCA),
minor allele frequency (MAF) distribution, and LD patterns. We
then applied the proposed PG-cGAN to a human genomic dataset
and demonstrated that PG-cGAN can learn the distribution of real
data, and generate high-quality synthetic genotypes.

2 METHODS
We developed a novel population-scale genomic augmentation
method, named as PG-cGAN, based on conditional GAN with
wasserstein loss function. We then applied the PG-cGAN to model
the human leukocyte antigen (HLA) genotypes extracted from the
1000 Genome project [12]. The code and supplementary informa-
tion of themethods can be accessed at https://github.com/shilab/PG-
cGAN.git.

2.1 Data
We evaluated our proposed PG-cGANmodel to augment HLA geno-
types that covers a 3 Mbp region at chromosome 6p21.31, responsi-
ble for the regulation of the immune system in humans [18]. The
HLA region is highly polymorphic and heterogeneous across indi-
viduals, which means that this region has many different alleles,
allowing them to fine-tune the adaptive immune system. We ex-
tracted the genotypes of this HLA region from the 1000 Genome
Consortium Project [12] with whole genome sequenced for 2,504
individuals from five super-populations worldwide, including Eu-
ropean (EUR), East Asian (EAS), Afican (AFR), American (AMR),
and South Asian (SAS). Table S.1 of the supplementary materials
summarizes the number of unrelated individuals in each super-
population. In this study, we focus on common genetic variants,
i.e. single nucleotide polymorphisms (SNPs) with a Minor Allele
Frequency (MAF) of at least 5%. We then obtained the genotypes of
7,160 unique SNPs in these 2,504 individuals which will serve as the
input to our PG-cGAN model. We converted the genotypes from
the original Variant Call Format (VCF) files of the 1000 Genomes
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Project as follows: ‘0’ representing the original genotype of ‘0|0’,
‘1’ representing the genotype of ‘0|1’, ‘2’ representing the geno-
type of ‘1|0’, and ‘3’ representing the genotype of ‘1|1’ respectively.
Genotype vectors are then one-hot encoded with 4 channels, which
is significantly different from image data in that images usually
have 3 color channels and color values are continuous rather than
categorical.

2.2 Model description
In this section, we present this novel method termed as Population-
scale Genomic data augmentation based on Conditional Generative
Adversarial Networks (PG-cGAN). This novel PG-cGAN model
is based on conditional GAN (cGAN) framework, with both the
generator and the discriminator stacked with convolutional layers
with an aim to capture the underlying structures in genomic data,
such as LD patterns that describe correlations of genotypes in
neighboring genomic regions.

2.2.1 The conditional GAN (cGAN). The cGAN framework [26] was
extended from a vanilla GAN by adding auxiliary information as a
condition on both the generator and discriminator. In a cGANmodel,
a generator 𝐺 and a discriminator 𝐷 are engaged in a minmax
adversarial training process with auxiliary information as condition,
as illustrated in Figure 1 (a). In this study, we use population labels
as the condition in order to augment genomic data for a particular
population. A cGAN can be formulated as:

min
𝐺

max
𝐷

𝐸 (𝑥,𝑦)∼P𝑟 [log𝐷 (𝑥,𝑦)]+

𝐸𝑧∼P𝑧 ,𝑦∼P𝑦 [log(1 − 𝐷 (𝐺 (𝑧,𝑦), 𝑦))]
(1)

where the first term is discriminator loss on the training data and
the second term is a generator loss. Both of these two terms are
under the condition 𝑦 ∼ P𝑦 . The generator 𝐺 (𝑧,𝑦) → 𝑥 learns
the conditional distribution P𝑔 over real data distribution P𝑟 by
mapping a random noise vector 𝑧 ∼ P𝑧 with a given condition 𝑦

to a sample 𝑥 ∼ P𝑔 . The way to combine the noise 𝑧 and with a
label 𝑦 is flexible. One widely-used strategy of doing so is through
the element-wise multiplication between the noise vector and an
embedding of 𝑦. 𝐷 (𝑥,𝑦) → [0, 1] formulates a discriminator in a
cGAN, which accepts an the input 𝑥 with a condition or label 𝑦 and
predicts the probability under the condition 𝑦 that 𝑥 is drawn from
the real data distribution rather than from the generative model.

Originally, the optimization of a vanilla GAN or cGAN model
is to minimize the Jensen-Shannon divergence [14] between the
distributions of real and fake samples. The problem with this type
of optimization is the difficulty to achieve a globally optimized
solution. For instance, a well-known problem with this optimiza-
tion goal is that the model will reach a state called mode collapse,
where the generator learns to generate only a limited number of
samples [4].

2.2.2 Wasserstein loss function. To improve the training stability
of cGAN toward an effective model to augment genomic data, we
introduce the wasserstein loss function to the cGAN optimization.
The wasserstein loss function was first proposed in WGAN [4],
attempting to address the instability problems of GANs by replacing
the optimization objective with the wasserstein distance. Arjovsky
et al. [4] described two main benefits of WGAN compared with

vanilla GANs. The first benefit is that WGAN drastically reduces
the occurrence of mode collapse phenomena. The second advantage
of WGAN is that it can recall the direct relation between the quality
of generated data and the loss value of the model, which is a unique
and nice property of WGAN.

The Wasserstein distance between P𝑟 and P𝑔 is defined as fol-
lows:

𝑊 (P𝑟 , P𝑔 ) = inf
𝛾 ∈Π (P𝑟 ,P𝑔)

𝐸 (𝑥𝑟 ,𝑥𝑔)∼𝛾 [∥𝑥𝑟 − 𝑥𝑔 ∥] (2)

where Π(P𝑟 , P𝑔 ) is the set of all joint distributions 𝛾 (𝑥𝑟 , 𝑥𝑔 ) whose
marginals are P𝑟 and P𝑔 , respectively. In simple terms, 𝛾 (𝑥𝑟 , 𝑥𝑔 ),
also called a transport plan, represents the amount of “mass” that
is needed to transfer from 𝑥𝑟 to 𝑥𝑔 in order to convert P𝑟 to P𝑔 .
Hence, the wasserstein distance is a cost of an optimal transport
plan for this conversion. However, this infimum is hard to achieve.
Thus, the authors proposed the wasserstein-1 distance by taking
advantage of the Kantorovich-Rubinstein duality [4] in order to use
an easier-to-achieve form of Eq. (2) as:

𝑊 (P𝑟 , P𝑔 ) = sup
∥𝑓 ∥𝐿≤1

𝐸𝑥𝑟∼P𝑟 𝑓 (𝑥𝑟 ) − 𝐸𝑥𝑔∼P𝑔 𝑓 (𝑥𝑔 ) (3)

where the supremum is over a set of 1-Lipschitz functions. Basically,
Eq. (3) states that all we need to do is to find a regression function
𝑓 which maximizes the average distance between real and fake
samples while maintaining the 1-Lipschitz constraint. In order to
satisfy such a constraint, the weights at all layers in a discriminator
are clipped to a value no larger than 0.01. Note that the output of a
WGAN model is not the log-likelihood of a vanilla GAN. Instead,
the output of WGAN is a linear function to measure the realness of
generated samples. Thus, WGAN refers to the regression function
𝑓 as critic. However, many studies do not exactly distinguish the
terms of discriminator and critic. Hence, in this study, we just use
the discriminator except for specific explanations.

2.2.3 The proposed PG-cGAN model. To utilize the advantages of
cGAN and WGAN for genomic data augmentation, we propose a
novel PG-cGAN based on a cGAN framework incorporated with the
wasserstein loss function. Combining Eq. (1) and (3), the objective
of optimizing a PG-cGAN model is defined as follows:

min
𝐺

max
𝐷

𝐸 (𝑥,𝑦)∼P𝑟𝐷 (𝑥,𝑦) − 𝐸𝑧∼P𝑧 ,𝑦∼P𝑦𝐷 (𝐺 (𝑧,𝑦), 𝑦) (4)

where 𝐷 is constricted with weight clipping less than 0.01 in order
to satisfy the 1-Lipschitz constraint.

As illustrated in Figure 1 (a), the architecture of PC-cGAN takes
input from the original genotypes and population labels as con-
ditions. Both the generator and discriminator are stacked with
convolutional layers to capture the local patterns or correlations in
neiboring genomic regions (e.g. LD patterns). As shown in Figure 1
(b), our PG-cGAN model employs Convolutional Neural Networks
(CNN) for both the generator and discriminator. A noise 𝑧 ∼ P𝑧 is
a 100 dimension vector drawn from a standard Gaussian distribu-
tion. Here, 𝑥 is the one-hot encoded genotype of a sample. Each
genotype 𝑥 belongs to one of the five super-populations (EUR, EAS,
AFR, AMR, SAS), where these super-population labels are used
as condition information 𝑦. The layers and output shapes of the
generator and discriminator of PG-cGAN are presented in Table
S.2 of the supplementary materials.
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(a) Architecture of conditional GAN on genomics data

(b) Architectures of the generator and discriminator
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Figure 1: Architecture of the proposed PG-cGAN model for ge-
nomic data augmentation. (a) Architecture of conditional GAN on
genomic data, taking genotypes as input and population labels as
condition on both generator and discriminator. (b) Specific archi-
tectures of the generator and discriminator in PG-cGAN.

3 RESULTS
PG-cGAN mimics the distribution of real genomic data by using
stacked convolutional networks to capture local structures in the
input data, such that the trained generator can generate genotypes
for a specific population similar to the input data. We applied PG-
cGAN to generate 2,500 synthetic HLA genotypes with random
sizes of five super-populations, with almost the same size of real
HLA genotypes collected from the 1000 Genomes Project. In order
to effectively evaluate the performance of our models, we utilized
several metrics to compare the generated genotypes with real geno-
types. These metrics aim to reflect the underlying data distribution
and characteristics, as well as those of importance to downstream
genomic analysis, including population structures and variant fre-
quency distributions.

3.1 The quality of synthetic HLA genotypes in
terms of principal component analysis

Principal component analysis (PCA) [32] is a general dimension
reduction method for reducing high-dimensional data, for example,
population-level genomic data, to a smaller number of dimensions.
PCA plays an important role for many population genetics tasks [28,
32]. For example, it is broadly used for population stratification and
provided projected covariates to represent population structures

in genome-wide association studies [29] possibly due to different
ancestry backgrounds [30].

Therefore, the synthetic HLA genotypes generated from our
model must have similar principal components (PCs) compared
to the original data, so that these synthetic data can be used in
population-level genomics studies. As shown in Figure 2, the syn-
thetic HLA genotypes generated by PG-cGAN did have similar PCA
distribution and clusters compared with the real HLA genotypes in
each super-population. This observation assures us that the syn-
thetic genotypes can depict the population structures underlying
these genotypes as encoded in real genotypes.
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Figure 2: The PCA distribution in a 2-dimension space of real HLA
genotypes (left) and synthetic HLA genotypes (right).

3.2 The quality of synthetic HLA genotypes in
terms of linkage disequilibrium

Linkage disequilibrium (LD) [33] is the non-random association
of alleles at different loci in a given population and reflects the
correlation or relationship among nearby genetic variants. LD in
human populations is influenced by many evolutionary factors,
including selection, the rate of genetic recombination, mutation
rate, genetic drift, the system of mating, population structure, and
genetic linkage [27]. As a result, LD patterns in a population is a
powerful and widely-used signal to decipher relatedness, ancestry,
demographic, and evolution of human genomes.

Comparing with the evaluation of genotypes in terms of PCA
which investigates the underlying population structure, LD de-
picts more detailed correlations or relationships between different
genomic loci on various chromosomes. Figure 3 shows the LD
patterns measured by pair-wise correlation (i.e. 𝑅2) values of dif-
ferent alleles for real and synthetic HLA genotypes, respectively.
We observed that most of the LD blocks lie close to the diagonal
line, which means the local alleles have strong LD linkages, while
the long-distance alleles have no LD relationship. LD blocks in syn-
thetic HLA genotypes match well with the LD blocks in synthetic
HLA genotypes near the diagonal line, which demonstrates that
our model can augment genomic data that mimics the original data
in terms of reserving LD patterns. Besides, those relatively large
LD blocks near the diagonal line, the upper right corner and lower
left corner are all clear, which means that our PG-cGAN model not
only learns useful local patterns, but also depresses noises in long
distances. Our PG-cGAN model achieves such nice performance
since it learns LD patterns through stacked convolutional layers in
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the generator and discriminator to incorporate the relationships in
nearby genomic regions.

Figure 3: The pairwised 𝑅2 of different loci for real HLA (upper
right) and synthetic HLA (lower left). The deeper the red color is,
the stronger the LD relationship is in the data.

3.3 The quality of synthetic HLA genotypes in
terms of minor allele frequency

Minor Allele Frequency (MAF), i.e., the frequency of minor allele at
one locus, is widely utilized in population genetics studies because
it depicts the frequency spectrum of genetic variants in a population
[17]. Allele frequency can be used to study selection and heritability
of genetic regions in a population, and is a critical characteristic in
genomic data. We thus compared the MAF distributions of real and
synthetic HLA genotypes (Figure 4) to evaluate how well our PG-
cGAN model captures the allele frequency distributions in genomic
data. As shown in Figure 4 (a), the MAF of real and synthetic geno-
types align well along the diagonal line, indicating that real and
synthetic genotypes have similar MAF distributions. We also cre-
ated histogram plots (Figure 4 (b)) to show that although different
bins of real and synthetic data contain slightly different numbers
of variants, the MAF distributions are fairly close.

3.4 Conditional data generation for a specific
population

It is critical to generate genomic data for a particular population
or group based on the real data from that population or group. In
this study, we encode this population or group information as a
condition in the proposed PG-cGAN model. Conditional generation
of genotypes can be particularly useful to increase the number of
samples that are hard or infeasible to obtain for a specific population
or disease group to address a key challenge of imbalanced and biased
data in genomics. Table S.3 of the supplementary materials shows
the number of individuals in each super-population in synthetic
HLA genotypes, using the corresponding super-population label as
a condition.
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Figure 4: MAF comparison between real and synthetic genotypes.
(a) Scatter plot where points lying closer to the diagonal line repre-
sent a better match. (b) Histograms of MAF distributions for real
(in red) and synthetic (in blue) genotypes.

The quality of the conditional generation of genotypes for each
super-population is assessed by using PCA and LD visualization
for the five super-populations respectively, as illustrated in Figure
S.2 and Figure S.3 of the supplementary materials. In the PCA
visualization, blue dots represent real HLA genotypes and red dots
are the synthetic HLA genotypes in the same super-population. The
larger overlap between red and blue areas means a better match
between real and synthetic HLA genotypes. Additionally, LD blocks
of synthetic (lower left panel) and real (upper right panel) HLA
genotypes mirror each other along the diagonal line, indicating
that, for each super-population, our PG-cGANmodel can accurately
learn specific LD patterns in real genomic data. There are slightly
different details of LD blocks in each super population, for example,
EAS has a larger central LD block, in contrast to the central LD
block of AFR which is the smallest and weakest. This difference
reflects the different genetic architecture of these super-populations
due to evolution and selection in human populations.

We quantitatively measured the difference of two LD matrices
by calculating the Mean Squared Error (MSE) between the real and
synthetic genotypes in each super-population as shown in Table.
1. We observed that PG-cGAN achieves fairly low MSE values on
all super-populations. While the lowest MSE was observed in AFR,
our PC-cGAN model achieves a similar performance on any of the
other four super-populations.

Table 1: Mean squared error of LD values in real and synthetic
HLA genotypes. A lower value represents a better match.

Super population MSE

AMR 0.003059
AFR 0.002380
EAS 0.003525
EUR 0.003694
SAS 0.003620
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4 CONCLUSION
In summary, we propose a novel data augmentation method, termed
as PG-cGAN, to synthesize and augment genomic data for any
specific population or group by transforming existing real genomic
data without setting any prior or model parameters. Our results for
generating HLA genotypes show that PG-cGAN can generate high
quality genotype data of individuals that capture population and
correlation structures in real genotypes. The success of PG-cGAN
benefits from the stacked convolutional networks in the generator
and discriminator, while incorporating population or group labels
as conditions in a combined cGAN and WGAN framework.

Although we showed the success of our PG-cGANmodel for gen-
erating genomic data that is typically sparse and high dimensional,
it is still a challenging problem to generate high-dimensional data
of high quality using GAN models. In the future, we plan to adopt
other emerging techniques to improve data quality in augmenting
genomic data, i.e. Boundary Equilibrium GANs (BEGAN) [7].

Note that the generated genomic data are automatically anony-
mous. Hence, these synthetic genomic data can be widely shared
without worries about privacy or security [23]. These synthetic
data reflect the population structure and underlying correlations
of genetic variants in real genomic data, and can thus allow for
augmenting and sharing data for building robust and complex AI
and machine learning based models for a wide range of genomics
studies.
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