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Abstract— Distributed denial-of-service (DDoS) attack
is a malicious cybersecurity attack that has become a global
threat. Machine learning (ML) as an advanced technology has
been proven to be an effective way against DDoS attacks. Feature
selection is a crucial step in ML, and researchers have put
endless efforts to mitigate the “Curse of Dimensionality”. Feature
selection is also causing problems to ML models, such as a
decrease in prediction accuracy. Four supervised classification
techniques, namely, Decision Tree (DT), k-Nearest Neighbors
(KNN), Logistic Regression (LR), and Random Forest (RF),
are tested using mutual information score ranking to study the
necessity of feature selection in DDoS detection.

Index Terms— Cybersecurity, DDoS, Supervised Learn-
ing, Classification, Curse of Dimensionality , Feature Selection
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Neighbors (KNN), Logistic Regression (LR), Random Forest
(RF)

I. INTRODUCTION

Distributed denial-of-service (DDoS) attack is a cyber-
attack that mainly targets websites and online services. By
directing enormous traffic from multiple servers, attackers can
flood a targeted service and make it inaccessible to legitimate
users. DDoS attack has always been an immense threat that
is causing significant financial losses all over the world [1].
Not only conventional web-based hosting services are DDoS
attackers’ targets [2], but also infrastructure clouds, cloud com-
puting, and Internet of Things (IoT) are under their menacing
strikes [3] [4]. DDoS attack has also been used as a weapon in
wars which makes it a threat to human civilization: broadcast
media companies in Ukraine have experienced the most DDoS
attacks among all the industries during the ongoing Russo-
Ukrainian War [5]; both the spread of information and the
communication in Ukraine have been severely affected by the
attacks [6] [7].

Techniques against DDoS attacks have been studied and pre-
sented by different researchers and organizations worldwide
[8]. Detection, filtering, and traceback are the three mainstream
DDoS defense mechanisms. Meanwhile, DDoS attacks are
making fascinating developments over time; they are getting
larger and more complex [9], and consistent efforts working
on DDoS detection and mitigation are indispensable.

A. Hypothesis

Using machine learning (ML) models has proven to be
effective for detecting DDoS attacks [10]. Researchers have
shown a significant interest in this approach [11] [12] [13].
Supervised learning (SL) and unsupervised learning (UL)
are two fundamental approaches in ML. UL is using ML
algorithms to train a machine without human intervention;
datasets used in UL are neither labeled nor classified. By
using externally supplied labeled data, SL can produce general
patterns and hypotheses to predict the fate of unlabeled new
data [14] [15]. While processing and analyzing data, SL can
be categorized into two types of problems, regression, and
classification.

Classification techniques are used to divide data instances
into specific categories [16], such as classifying spam into
another separate folder from the user’s inbox or separating dog
pictures from cat pictures. In contrast, regression techniques
are more suitable for comprehending the connection between
dependent and independent variables. A job like predicting
numerical values derived from different data points would need
regression models. As for the issue in this study — using a
whole lot of input variables to predict a target output (i.e.,
label), SL classification is the ideal way. The label that needs
to be predicted in this work is ”Benign” or "DDoS”.

As one of the important techniques for implementing ML
models, feature selection is both needed in SL and UL. It
is used to reduce overfitting and learning time as well as to
improve the accuracy of prediction. Classifying and detecting
DDoS attacks can be used to distinguish anomaly traffic from
normal network traffic, and the network traffic usually has
more than 80 network flow features [17].



“Curse of dimensionality” is a famous issue caused by
numerous input variables (i.e., dimensionality): the more di-
mensionalities there are, the higher the number of calculation
errors is [18]. In the field of ML, the volume of data that
needs to be generalized accurately grows exponentially with
the growth of the number of features or dimensions. This is
where feature selection techniques come into play. A model
that has applied feature selection to find the best possible set of
features can get a higher prediction accuracy with fewer data
[19]. Thus, it is always common sense that feature selection is
an indispensable step for ML: feature selection techniques not
only improve models’ predictive performance, but also reduce
data or computational needs. Precisely for this reason, many
feature selection techniques for network traffic classification
have been developed [20] [21].

In our study of using classification techniques to detect
DDoS attacks, we found a case where a model fitted with all
features performed better than a model applied with feature
selection. Is this a special case that appears in the DDoS
detection or is it possible that models applied feature selection
techniques always perform worse than the models trained
with all existed features? Could feature selection be a step
to skip in DDoS detection or all binary classification tasks?
If it is, would skipping feature selection a good choice for all
classification cases, such as multi-label classification, multi-
class classification, and imbalanced classification? Is there
a “curse of feature selection” in ML, which means feature
selection is overrated and can be harmful to model training?
With such doubts, we conducted a series of experiments
using four SL classification algorithms, including decision tree
(DT), k-nearest neighbors (KNN), logistic regression (LR),
and random forest (RF). Through a two-by-two combination of
four models and three datasets with different selected features,
a total of twelve models were trained and evaluated.

B. Contribution

1) We offer a comparison of the accuracy of four SL
classification techniques predicting DDoS attacks.

2) We explore the relationships between the number of
features and prediction accuracy of classification models
in ML.

3) We demonstrate that fitting the same classification model
with a different number of features may create noise for
model training and lower the prediction power.

4) We offer a hypothesis on the potential negative impact
of feature selection in the accuracy of the resulted
predictive models and conduct experiments to verify it.

II. RELATED WORK

ML methodologies have been used to help against cyber-
crime and support data-driven decision-making in Cyberse-
curity for many years, and building a data-driven security
model for every security problem has always been the ultimate
goal [22]. As one of the more serious hazards amidst all
cybersecurity issues, DDoS attacks are in the spotlight and
related detection strategies have been studied extensively [23],

and DDoS detection is a typical binary classification problem.
This section has reviewed feature selection methodologies
from two perspectives: feature selection techniques for DDoS
detection and binary classification.

A. Feature Selection Techniques for DDoS Detection

As is common in feature selection approaches, applied
DDoS feature selection techniques can be categorized into
three kinds of methods: filter, wrapper, and embedded.

1) Filter: uses statistical methods to find the intrinsic
properties of the features. Mutual information (MI) score used
in this study is a typical filter-based feature selection method.
A threshold is set to select the independent and relevant DDoS
attack features in this work [24]. A confidence-based filtering
technique has been tested that can satisfy the real-time filtering
requirements in cloud environment [25]. DDoS classification
achieved using a dynamical threshold has been proven to gain
higher performance [26]. Filter feature selection technique has
also been integrated with an ensemble algorithm to improve
DDoS classification accuracy [27].

2) Wrapper: builds a subset of features for the input dataset
and evaluates the model trained by the subset, then chooses
a new subset and repeats the steps until an ideal performance
is obtained [28]. Sequential feature selection was used for
optimal feature choosing and combined with MLP-based de-
tection methodology for DDoS detection [29]. Wrapper feature
selection approach designed for imbalanced classification has
been proven useful [30]. It is believed that a lot of DDoS
detection systems have performed better with the enhancement
of wrapper strategies [31].

3) Embedded: also called hybrid feature selection, is a
combination of both wrapper and filter methods. A hybrid
Filter-Wrapper feature selection is used to reduce the number
of input variables [32].

Four filter techniques, including information gain, gain ratio,
Chi-squared, and ReliefF, were tested in each of six classifiers
for DDoS attack detection, and information gain has the best
result among the four filter techniques and random forest is
the most efficient classifier [33]. It is noteworthy that in this
study [33], models trained without any feature selection (i.e.,
using all features) have better performances overall compared
to models that used filter techniques. In another similar study,
all three feature selection techniques were used with different
ML models; it shows ML models applied feature selections
can have better performance in the reductions of processing
loads and time [34].

B. Feature Selection Techniques for Binary Classification

The stability of variable selection is very important for
model building, which means the smaller the range of variation
of feature selection using different training datasets is, the
better the feature selection technique is. A method that can
improve the stability of wrapper feature selection techniques
that suits binary classification is proposed in [35]. A modified
discrete particle swarm optimization (PSO) algorithm has been
proposed to select the feature subsets for binary classification



based on the relevance and dependence of the features [36].
Many preceding studies have shown the defectiveness of
single feature selection results, which causes difficulties for
professionals in a variety of fields (e.g., medical practitioners)
to analyze and interpret the obtained feature subsets. Whereas
each of these methods is highly biased, an ensemble feature
selection has the advantage to alleviate and compensate for
such biases. A novel ensemble feature selection is presented
in [37] to alleviate and compensate biases in feature selection
for binary classification problems. Some extensions for greedy
forward selection and genetic algorithms used in binary clas-
sification have been proposed, the run-time is decreased, and
the detection rate of relevant features is increased [38].

III. SUPERVISED LEARNING CLASSIFICATION MODELS

This section presents brief descriptions and explanations of
the SL classification models used in this work: DT, KNN, LR,
and RF.

A. Decision Tree

A DT is a hierarchical model that divides the fitting data
into homogeneous subsets (nodes), and the subsets are formed
based on decision rules, which is asking every feature straight-
forward yes-or-no question [39]. Every DT is a tree-structured
flowchart. As shown in Fig. 1, it is a DT example of removing
coordinate points that are belonging to the first and third
quadrant. Every input data point will be asked if the value
of X is greater than 0; if yes, then the value of y will be
checked. Only data points that contain different signs X and
Y will be kept. From the root to a certain leaf node, every data
point is sorted by several yes-or-no questions, every instance
is classified.

B. K-Nearest Neighbors

KNN is another essential classification algorithm in SL,
and it is widely used in intrusion detection [40] and pattern
recognition [41].

The intuition for KNN algorithm can be explained by the
example shown in Fig. 2, and KNN computation process can
be understood better by figuring its intuition out. The dataset
of Fig. 2 contains two sets of points: X points and O points.
Triangle cl is the predicted target that needs to be decided
whether it is an X point or an O point. The intuition of nearest-
neighbor classification is to find the most similar example with
cl. In Fig. 2, cl is surrounded with O points, the most similar
example to cl is an O point; based on the relative distance
measures, cl is most similar to O points. Hence, c1 will be
classified as an O point. Points al and bl are called outliers in
this situation. If bl is the nearest neighbor of c1, c1 could be
labeled as an X point. To avoid this situation where a single
mislabeled example (i.e., an outlier) has a huge impact on the
prediction, the nearest-neighbour algorithm uses more than one
(k) nearest neighbor to make the decision, and k most similar
training examples are used to label the predict target. That is
where the name of this algorithm KNN comes from.
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Fig. 1. An example of decision tree
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Fig. 2. Intuition of k-nearest neighbors

C. Logistic Regression

LR is used for predicting the probability of a target variable.
Instead of giving a specific result as 0 and 1, the given
probability lies between 0 and 1 [42]. It is widely used
for classification problems like risk analysis [43], diabetes
prediction [44], cancer detection [45], etc.

In order to map real value into another value between 0 and
1, logistic function, also known as sigmoid function, is used
to model data in LR. The sigmoid function can be defined as:
(1)

o(z) =

o(z) in (1) is the mapping value of the input value z and €
is Euler’s number. Fig. 3 is the graph of the sigmoid function,
which has an S shape. A threshold is set to classify the returned
probability value that is assigned by the sigmoid function [46].
As shown in Fig. 3, if there are two classes, and 0.5 is the
threshold value; Class A is 1 and Class B is 0, then values
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Fig. 4. Intuition of random forest algorithm

above 0.5 in the graph will be classified into Class A and
values below 0.5 will be signed into Class B.

D. Random Forest

Same as DT, RF uses tree structures to make predictions;
different from DT, RF uses many component trees to get many
results, then a prediction is made by averaging all the results
[47]. When it is used as a classifier, the output of RF is the
category selected by most trees; while dealing with regression
problems, RF returns the average prediction of the component
trees [48].

Fig. 4 is a simplified computation process of RF. The
computation process of RF can be roughly divided into two
stages [49]. In stage 1, n feature sets are selected randomly
and built from all m (m > n) features. Using the best split
method builds forests for n decision trees based on n feature
sets (i.e., N1, N2, ...) separately. Every tree will reach a node
and that will be its prediction. And stage 2 begins after all
decision trees got their own predictions. The votes for each
predicted value from each tree are counted, and the predicted

value that has a majority vote will be the final prediction for
this RF classifier.

IV. DATA & EXPERIMENTS

In this study, four SL classification techniques have been
applied to Intrusion Detection Evaluation Dataset (CIC-
IDS2017) from Canadian Institute for Cybersecurity for DDoS
detection [18].

A. Dataset

CIC-IDS2017 contains labeled datasets received by their
online system: random samples of network traffic which
have been categorized into DDoS attacks or benign. Though
not perfect, CIC-IDS2017 is widely recognized as a reliable
network traffic dataset that is fitly used as raw data or as flow-
based features in CSV files [50] [51].

There are eleven criteria proposed for the building of this
benchmark dataset, and they will be the criteria for dataset
selection in the future work of this study. CIC-IDS2017 has
not only captured original network traffic, it also provided the
corresponding datasets that have dropped six special format or
timestamp-related features, including “Flow ID”, “Source IP”,
“Source Port”, “Destination IP”, “Timestamp”, and “Protocol”,
so the datasets are more suitable for ML. The datasets were
collected in half-hour increments and the dataset used in this
study has 225,745 rows and 79 columns.

Among 79 columns, 78 columns are independent variables
and one is dependent variable (i.e., label). All 78 independent
features’ names are shown in Fig. 8.

B. Experiments

The following steps are the designed procedure steps for
classification of DDoS attacks in the chosen dataset. The
ultimate goal of the experiments is to examine the proposed
hypothesis, which is whether feature selection is useful and
necessarily needed in all ML cases and if it is always bad or
good for accuracy.

Step 1: A CIC-IDS2017 DDoS attack dataset “Friday-
WorkingHours-Afternoon-DDos” with all attributes is cap-
tured as the input.

Step 2: The input dataset is preprocessed. All the missing
values are filled in the corresponding median of their columns
according to the imputation rule. To make sure all data is
meaningful, all the infinity values are replaced with “0”; all the
rows with “NaN” values are dropped. Two unique categorical
values in the label column, “Benign” and “DDoS”, are signed
to 0 and 1 to avoid errors in the training process.

Step 3: Separate the prediction target (i.e., label column)
from the dataset and name it y.

Step 4: Construct a ranking with a feature utility metric
using MI score. High-mutual-information-score features in SL
are considered optimal features since they can influence the
predictive model towards the right prediction and increase the
accuracy of the model. “It measures the average reduction in
uncertainty about x that results from learning the value of y; or
vice versa, the average amount of information that x conveys
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Fig. 5. Relational plot between the highest MI score feature and label
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Fig. 6. Relational plot between the median MI score feature and label

about y.” [52] Relational Plots of the statistical relationships
between the label and three variables are visualized and
correspondingly shown in Fig. 5, Fig. 6, and Fig. 7. “Fwd
IAT Total” has the highest MI score, 1.418770, and there are
lots of data points equal to one in the figure, which means
all these traffic are DDoS attacks. The MI score of “Bwd IAT
Mean” is the median among all the features, 0.330619. And
Fig. 7 shows that there is nearly no “Active Std” value related
to label that values 1 (i.e., it is a DDoS attack), and its score
also shows the situation: 0.023413, only 1.6% of the highest
MI score, it can be conjectured that the feature “Active Std”

variabhle = Active Std
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Fig. 7. Relational plot between the lowest MI score feature and label

is not a good sign to label a network traffic. A ranking plot
based on the MI scores of all features is in Fig. 8.

Step S5: Build three datasets with different features based
on the MI scores of features. Dataset X1 consists of features
the MI score is greater than 0.5, which includes 19 features;
X2 consists of features the MI score is greater than 0.2,
which includes 47 features; X3 consists of all features, which
includes all 78 features.

Step 6: Split the X1 dataset and break up the data into two
pieces: the training part and the testing part. Do the same split
to the prediction target y dataset. X1-train and y1-train are for
the model fitting; X1-validation and y1-validation are prepared
for model prediction and evaluation.

Step 7: Build the model. Define a DT model with scikit-
learn and fit it with X1-train and y1-train.

Step 8: Make predictions for the prepared validate traffic
network dataset X1-validation.

Step 9: Calculate Mean Absolute Error (MAE) of the
predictions to summarize the quality of the trained model.
The error of every prediction is the difference between the
prediction value and the actual value (i.e., yl-validation). With
the MAE metric, the absolute value of each error is used, so
every prediction error is converted to a positive number. The
quality of a model can be measured using the average of those
absolute errors.

Step 10: Repeat steps 7 - 9 with the corresponding train
datasets and validation datasets split from X2, and X3.

Step 11: Repeat steps 7 - 10 to fit KNN, LR, and RF models.

V. RESULTS

All MAEs of the four models trained by three different
feature-selected datasets are presented in tables I to IV. As
shown in the figures, both DT and RF have given a significant
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Fig. 8. Mutual information scores of all features

performance in DDoS attack prediction. More importantly,
DT and RF have basically verified our hypothesis: with the
increment of the number of features used for the training of
the model, the prediction accuracy of the models has also
shown a decent improvement. RF performed well with a
small number of features; the difference in prediction accuracy
between using 19 features and 78 features is not a big gap.
On the contrary, DT model trained with all features gave
the best predicted performance among the twelve models.
This situation might be related to the calculation structure of
DT and RF: as previously stated, DT is making decisions
using a tree with lots of leaves, and this can lead to a
DT model overfitting or having a high variance. However,
as deeper as it gets (i.e., the feature number increases), the
prediction accuracy goes higher. In comparison, by averaging
the predictions of the multiple decision trees, RF can get
an accurate prediction with a few provided features; and the
enhancement is not noteworthy either while providing many
more features to it.

An interesting result emerged in the experiments using KNN
models. When KNN model was trained only using 19 features
whose MI scores are higher than 0.2, the worst performance
appeared, MAE is 0.0047486577954179. The best accuracy
given by KNN model is when the model was trained by 47
features whose MI scores are higher than 0.5; and different
from DT and RF models, the model trained using all features is
slightly inferior. As mentioned in section III, KNN algorithm is
very sensitive to outliers, one mislabeled example can change
the prediction result dramatically. That should be the reason
why KNN model performed better without using all features.
Thus, either using all features or using too less features is not
the best option for KNN model training.

TABLE I
MAE ofF DT MODELS

DT

MAE Using Features MI > 0.5 | 0.00039921915569928834
MAE Using Features MI > 0.2 | 0.0001417509789676985
MAE Using All 78 Features 0.00012403210659673618

TABLE 11
MAE oF KNN MODELS (K = 3)

KNN

MAE Using Features MI > 0.5 | 0.0047486577954179
MAE Using Features MI > 0.2 | 0.002285734535854138
MAE Using All 78 Features 0.0023034534082251004

TABLE III
MAE OF LR MODELS

LR

MAE Using Features MI > 0.5 | 0.02620621223665326

MAE Using Features MI > 0.2 | 0.060297322678384745
MAE Using All 78 Features 0.06442581994081896




TABLE IV
MAE oF RF MODELS

RF

MAE Using Features MI > 0.5 | 0.0002796019075631741
MAE Using Features MI > 0.2 | 0.00024062228679766823
MAE Using All 78 Features 0.00021120895866187078

In complete contrast to the performance of the other models,
the prediction accuracies of LR models are getting lower and
lower with the increment of the feature number.

It seems that the added features add random noise to LR
models; the prediction power has a noticeable drop with more
input variables.

VI. CONCLUSION

The conclusions from the experiments conducted for the
hypothesis in this study with four different SL classification
models can be summarized as follows:

1) It is not the best option to choose features only based
on their MI scores. MI is a univariate metric and the
interactions between features cannot be obtained by that.
A feature with a low MI score could be very informative
when combined with some other features, though it is
not so informative all alone. Possible interaction effects
between features should be investigated before building
feature sets.

2) DT could be the best classification technique for a high
accuracy goal when the study has abundant computation
and data resources. The prediction accuracy and the
number of features are positively correlated, and feature
selection could be a limitation in this case.

3) There is a balance or an optimal choice existed between
feature reduction and enough feature input while training
KNN models; either too many or too few features can
make its prediction worse.

4) Extra features can add noise to the training of LR models
and lower the prediction power.

5) The performances of two of the four classification mod-
els (i.e., DT and RF) used in this study are consistent
with the proposed hypothesis. It is a strong argument
that the importance and the necessity of feature selection
are questionable in some cases. We conclude that this
hypothesis deserves further exploration.

VII. FUTURE WORK

The feature selection methods that have been tested in this
study is very limited; more feature selection techniques can be
tested to examine the hypothesis. Experiments completed in
this study for the proposed hypothesis about feature selection
are only for DDoS detection, the generalizability of this hy-
pothesis for other problems, like general binary classification
problems, multi-class classification, multi-label classification,
imbalanced classification, and regression issues, needs to be
further experimented.
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