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ABSTRACT: Mass spectrometry studies of the stability of the S. cerevisiae 20S proteasome from
11 to 5SS °C reveal a series of related configurations and coupled transitions that appear to be
associated with opening of the proteolytic core. We find no evidence for dissociation, and all
transitions are reversible. A thermodynamic analysis indicates that configurations fall into three
general types of structures: enthalpically stabilized, tightly closed (observed as the +54 to +58
charge states) configurations; high-entropy (+60 to +66) states that are proposed as precursors to

Oopen

LR

pre-open

pore opening; and larger (+70 to +79) partially and fully open pore structures. In the absence of
the 19S regulatory unit, the mechanism for opening the 20S pore appears to involve a charge-

priming process that loosens the closed-pore configuration. Only a small fraction (<2%) of these
20S precursor configurations appear to open and thus expose the catalytic cavity.

he eukaryotic 20S proteasome from S. cerevisiae (budding

yeast) is a stack of four heptameric-protein rings (Figure
1), forming a proteolytic cavity that cleaves proteins into
peptides.” Either, or both, of the 20S ends may bind 19S caps,
generating 26S or 30S proteasomes: highly structured, ATP-
driven machines that control cellular processes through
regulated protein degradation.” Although mechanisms of the
26S are not entirely understood, progress characterizing
intermediates and pathways involved in lid opening and
threading a targeted polypeptide chain into the 20S core has
been made (including high-resolution characterization of the
19S—20S interface).” In contrast, less is known about
structures and energetics of isolated 20S particles, although
they can process some polypeptide chains and unstructured
proteins despite lacking a 19S unit, especially during heat or
oxidative stress to cells.” Below, we examine structures and
stabilities of the 20S proteasome using mass spectrometry
(MS)-based techniques. Upon incubation in ammonium
acetate solutions from 11 to 55 °C, we observe coexisting
20S configurations and determine AG, AH, and AS for these
species. We interpret these results as evidence for two
compact, closed-pore configurations: a tightly closed (enthalpi-
cally stabilized) form and a loosened (entropically favored)
preopen configuration. Conformational changes induced upon
addition of charge may be key in regulating proteolytic activity
without a bound 19§ cap.

Structural analysis is performed using variable-temperature
electrospray ionization coupled with ion mobility spectrometry
(IMS)—MS instrumentation (see SI). The 1.0 uM 20S
solutions were incubated for ~2 to 10 min at a specified
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temperature (from 11 to 55 + 1 °C) in a capillary emitter. As
electrospray droplets shrink, they undergo an evaporative
cooling process, trapping ensembles of 20S species at each
incubation temperature (see SI).S’6 Figure 1 shows mass
spectra recorded at solution temperatures of 23, 33, and 54 °C;
the peaks correspond to species having different amounts of
excess positive charge, the largest of each distribution
corresponding to the +58, +60, and +62 charge states,
respectively (see SI for additional temperatures). Incremental
changes in solution temperature cause gradual shifts in the
charge state distribution (from +54 to +58 at 15 °C, to +60 to
+66 at 54 °C). It is instructive to plot the weighted average of
208 charge states for each temperature (Figure 1, top right). In
this analysis, a well-behaved, cooperative two-state transition
would yield a sigmoidal curve having a “melting temperature”
inferred from the inflection point.>” The data in Figure 1 show
a gradual, linear increase of ~1 charge per 6 °C, indicating that
changes in the 20S charge do not follow a cooperative, two-
state model.

We thus consider relative abundances of the individual
charge states, also shown in Figure 1. Each displays a unique
abundance profile; the maximum abundance for each state is
similar, ~20 to 30% of the total. Disregarding low abundance
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Figure 1. (top) Crystal structure of the 20S proteasome (PDB:
SCZ4). Top, side, and isolated a-ring views show closed and open
structures generated by extending a-protein N-termini (blue). (left)
Mass spectra for 20S proteasome at 23 °C, 33 °C, and 54 °C. The
inset at 54 °C shows examples of high charge state populations (+70
to +79) from two measurements (see SI). (top right) Weighted
average charge state as a function of temperature. (bottom right)
Relative abundances of +54 to +66 charge states for each temperature.
Dotted line indicates 5% abundance level.

(<5%) species, we observe five or six abundant states at nearly
every temperature. The transitions between these species are
highly coupled. Populating new, higher-charge configurations
depletes species accommodating five or six fewer charges. In
this way, the 20S charge increases, but the distribution of states
remains narrow, suggesting that ensembles of structures and
transitions between them are similar. Numerous structural
studies indicate that the 20S frame is extremely stable.®
Structures are dynamic near the N-terminal peptide regions of
the a-ring proteins responsible for regulating the proteolytic
cavity.” We note that five abundant charge states spanning +54
to +59 would require seven additional charges to reach five
states spanning +61 to +66. The highly basic amino termini
localized in the heptameric a-ring are good candidate sites for
proton addition.

In addition to the +54 to +66 particles, above ~30 °C, a new
population of 20S species (+70 to +79) is observable (Figure
1). These increase in abundance with increasing temperature.
However, they comprise only a small percentage of the total
ensemble (~0.5 to ~2%). The +70 to +79 distribution does
not overlap in the charge state with the +54 to +66
distribution, indicating a new 20S geometric form.

Additional structural information comes from analyzing IMS
cross sections, shown in Figure 2.'% These data also show that
different structures are favored at different temperatures (see
SI). Two populations of structures are observed for the +54 to
+66 charge states: a compact species (Q ~ 223 nm?), unique
to the +54 to +59 charge states, favored from ~11 to 17 °C;
and a larger (Q ~ 226 nm*) configuration, favored from ~17
to 33 °C. Formation of the larger conformers is accompanied
by depletion of the compact species. Our analysis indicates that
these configurational changes are coupled with addition of
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normalized effective openness scale (right). Blue and red circles
represent +54 to +59 at the indicated temperatures; peach circles
represent +60 to +66; and purple and red circles represent +70 to +79
families. Horizontal lines (navy) indicate calculated values of effective
openness for candidate structures obtained upon stepwise extension
of N-terminal a-ring proteins. Example configurations having
calculated values that are not in good agreement with the experiment
are indicated as transparent structures. See text and SI for details.

charge (see SI)."" The low abundance +70 to +79 species are
much larger: Q ~ 250—255 nm? for +70 to +72, favored from
~35 to 45 °C, and Q ~ 260—265 nm? for the largest +77 to
+79 states. A slight shift to higher cross sections with
increasing temperatures is also observed for these config-
urations.

The experimental finding that 20S cross sections vary over a
range of ~18% [ie, Q(+79) = 264 nm*> compared with
Q(+54) = 223 nm?] provides a means of bracketing calculated
cross sections from crystallographic or other coordinates.
Although we cannot rule out the possibility that these cross
sections correspond to other regions of the core armature,
several observations suggest that multiple axial gate config-
urations are most consistent with our findings. Numerous high-
resolution structures show that the stack of four heptameric
protein rings that frame the main armature are highly
conserved.'” In contrast, images of the N-terminal regions of
the a-ring proteins are poorly defined, indicating that these
regions are highly dynamic.'” These opening < closing
transitions are also consistent with the measured reversibility of
this system. With this assumption, the calculated range of cross
sections for the smallest (closed) and largest (open)
configurations is ~16%. This allows us to develop a relative
effective openness scale that spans a range of cross sections for
anticipated structures (see SI). By definition, an entirely
closed-pore particle has an openness of 0.0; an entirely open-
pore configuration has an openness of 1.0 (Figure 2). The
range of experimental values varies by nearly the same factor,
allowing us to convert the measured cross section values to this
relative scale. From this, we assign the +54 to +66
configurations to a closed form and a second slightly larger
closed form that might have N-terminal peptides from the a-
ring protruding on each side of the core. The +70 to +76
species span a range of open structures. We note that
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symmetric structures that are partially open at both ends
appear to be most consistent with our analysis (see SI) and in
agreement with allosteric transitions observed by others.'* Our
data are inconsistent with each axial gate of the 20S opening
independently. The +72 to +76 cross sections are similar to
calculated values for open gates, where all but one N-termini
are extended. The +77 to +79 states are completely open.
With these assignments, we examine relative stabilities of
different structures. Equilibrium populations can be converted
into Gibbs free energies using AG = —RT ln(Keq).ls Figure 3
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Figure 3. (top) AG values for each charge state at three temperatures
(15 °C, 37 °C, 55 °C). Values were derived in reference to the +59
state. Structures posited to correspond to observed changes in AG are
shown. (bottom) Histograms show AG (kJ-mol™", yellow), AH® (kJ-
mol ™!, blue), and AS°(J-K™"-mol™’, red) for each charge state at 298
K

shows free energy landscapes for opening and closing the pore
at 15, 37, and S5 °C. Compact, fully closed (+54 to +59)
species are favored at 15 °C. At higher temperatures, these
structures become unfavorable, and slightly larger (+60 to
+66) configurations are favored. Open-pore (+70 to +79)
conformers are unfavorable; but of these, the highly open (+74
to +79) configurations are lowest in energy. The scant
evidence for partially open forms (having two or three
extended N-terminal regions at each end) indicates that it is
favorable for N-terminal chains to open together—a
cooperative transition.

Derivation of enthalpic and entropic terms provides clues
about why different configurations are observed. Figure 3
shows values of AH®,5g and AS°,q¢ derived from Van 't Hoff
analyses for all charge states (see SI). Individual charge state
configurations fall into three types of structures. The most
compact +54 to +58 closed-pore species are energetically
stabilized (average AH®95 ~ —192 kJ-mol™") but disfavored
entropically (average AS®y5 ~ —668 J-K™':mol™"). Enthalpic
favorability arises because of intramolecular binding inter-
actions associated with closing the pore gates. As the closed-
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pore configurations tighten, they become less accessible,
consistent with a large entropic barrier. In contrast, the +61
to +66 closed-pore configurations are energetically unstable
(AH®,95 ~ 129 kJ-mol™") but entropically favored (AS®,55 ~
400 J-K"mol™"). Although the pore remains closed, the
addition of charge has loosened the axial gates. It is perhaps
not surprising that thermochemistry for the more open (+70 to
+79) configurations (AH®,95 ~ 86 kJ-mol™" and AS°,4g ~ 230
J- K 'mol™) is similar to that for the (+60 to +66)
configurations. The tightly closed (+54 to +58) configurations
have largely disappeared at temperatures where the open-pore
(+70 to +79) configurations are observed. From this, we see
that the mechanism for opening a closed pore appears to
require an entropically favored, charge-primed, preopen state.
It is interesting that the open-pore configurations that emerge
upon addition of charge to the +60 to +66 forms are
enthalpically favorable transitions (ie, AH®g ~ —300 kJ-
mol™" for (+60 to +66) — (+70 to +79)), an indication of the
formation of additional structure upon pore opening. Perhaps
the protruding N-termini become stiffer, or access to the pore
involves many favorable interactions—or both.
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