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Abstract

Volcano infrasound data contain a wealth of information about eruptive patterns, for
which machine learning (ML) is an emerging analysis tool. Although global catalogs of
labeled infrasound events exist, the application of supervised ML to local (<15 km) volcano
infrasound signals has been limited by a lack of robust labeled datasets. Here, we auto-
matically generate a labeled dataset of >7500 explosions recorded by a five-station infra-

sound network at the highly active Yasur Volcano, Vanuatu. Explosions are located via
backprojection and associated with one of Yasur’s two summit subcraters. We then apply
a supervised ML approach to classify the subcrater of origin. When trained and tested
on data from the same station, our chosen algorithm is >95% accurate; when training
and testing on different stations, accuracy drops to about 75%. The choice of waveform
features provided to the algorithm strongly influences classification performance.

Introduction

Machine learning (ML) has shown promise within seismology
and infrasound studies for finding patterns in waveforms that
are not easily perceived by humans, and for automating large-
scale data analysis (Kong et al, 2019). In a volcanic context, ML
can identify eruptive trends and help reduce analyst workload
(Carniel and Raquel Guzman, 2020). However, the application
of supervised ML to local volcano infrasound signals has to date
been limited by a lack of large labeled datasets. Therefore, the
previous research has focused on unsupervised techniques, with
a limited number of supervised approaches using relatively small
labeled datasets. Feature extraction—the process of summariz-
ing data examples by calculating a collection of waveform attrib-
utes—is a key step in ML pipelines (Christ et al., 2018). These
studies have employed diverse approaches for feature extraction
with variable results.

At Etna (Italy), Cannata et al. (2011) used an unsupervised
algorithm to cluster infrasound signals into three groups and
then used those groups to train a support vector machine (SVM)
to recognize the active vent with implications for monitoring.
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Witsil and Johnson (2020) and Watson (2020) used unsuper-
vised learning to cluster recorded infrasound signals—at
Stromboli (Italy) and Etna, respectively—into groups represent-
ing different modes of activity, and then analyzed the contribu-
tions of these groups over time to characterize changing eruptive
modes. Liu et al. (2014) achieved an accuracy of 98% using SVMs
to classify volcano, tsunami, and earthquake classes with features
derived from the Hilbert-Huang transform, whereas Li et al.
(2016) obtained an accuracy of 86% using a different feature
extraction technique (spectral entropy). Ortiz et al. (2020)
applied unsupervised clustering to infrasound array detections
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for three volcanoes in Ecuador, finding good agreement with
analyst-derived explosion catalogs.

The aforementioned supervised approaches (Liu ef al., 2014;
Li et al., 2016) were successful but limited by their small, man-
ually created training datasets. This motivates the development
of methods that produce large volumes of training data auto-
matically. Here, we algorithmically generate a labeled dataset
and then apply a supervised learning approach to classify the
subcrater of origin for Strombolian explosion signals recorded
by a local infrasound network at Yasur Volcano, Vanuatu. Yasur
is a basaltic-andesitic scoria cone located on Tanna Island in the
island nation of Vanuatu (Fig. 1a; Iezzi et al., 2019). The volcano
is continuously active, producing thousands of explosions per
day from various vents, and its summit consists of a bifurcated
crater containing two subcraters, termed “S” and “N” for “north”
and “south,” respectively (Jolly et al., 2017; Simons et al., 2020).
There were multiple vents active in the two subcraters during
the deployment whose data we use here (Jolly et al, 2017;
Matoza et al., 2022). In addition to classifying the labeled explo-
sion waveforms, we explore the effects of different extracted
waveform features on classification performance.

Data

We use data from a six-day-long deployment at Yasur that took
place in July-August 2016 (Fee et al, 2016). The infrasound
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Figure 1. Map of the study region. (a) Location of the nation of Vanuatu. The
red box in the globe inset has the same extent as the main map. Yasur
Volcano is indicated with a red triangle. (b) Spatial histogram of 7877
RTM-FDTD locations generated over the six-day-long deployment overlain
on a shaded relief map of Yasur Volcano. Ellipses denote 2—o regions for
the south and north subcraters. Dashed box delineates grid search bounds
for RTM-FDTD. Infrasound stations are denoted by black inverted triangles.

component of the deployment comprised a ground-based
network of sensors surrounding the summit crater of Yasur
(Fig. 1b) as well as sensors connected to a tethered aerostat. For
more deployment information, see Jolly et al. (2017), Iezzi et al.
(2019), and Matoza et al. (2022).

In this work, we use data from ground-based stations YIF1-
YIFS5. Station YIF6 was not online for the entire deployment.
These five Chaparral Model 60 sensors recorded data at 400 Hz
sampling rate for approximately 138 hr from 04:00 on 27 July to
22:00 on 1 August (these and all following times in UTC; Fig. 2a).
We downsample all data to 50 Hz and apply a 0.2-4 Hz band-
pass filter before processing. This filter band proved effective for
locating explosions in a previous study using this dataset (Fee
et al, 2021).

Methods

Our classification goal is to determine whether a given explo-
sion waveform originates from a vent in the south subcrater or
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a vent in the north subcrater. This is therefore a binary clas-
sification problem. To create our labeled dataset, we use a net-
work-based algorithm to generate a catalog of event locations
and associate these locations to a subcrater. We extract vectors
of features from the waveforms in this dataset. Finally, we use
the labeled feature vectors to train and test an ML classifier.

Creation of labeled dataset

Following Fee et al. (2021), we use the Python package rtm (see
Data and Resources) to locate acoustic sources via reverse time
migration with finite-difference time-domain travel-time
removal (RTM-FDTD). RTM-FDTD computes travel times
for acoustic waves propagating over a digital elevation model
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Figure 2. (a) Pressure waveform for station YIF3, filtered as described in the
Data section. (b) Number of labeled S and N subcrater events computed in
hour-long rolling windows. Medians (lines) and 25th and 75th percentiles
(shaded regions) of (c) 25,180 S subcrater waveforms and (d) 12,675 N
subcrater waveforms, plotted by station. Traces are filtered as described
in the Data section and individually normalized to their median.

(DEM) of the complex topography of Yasur, which improves
location accuracy and precision. The source search grid is 350
x 350 m with a grid spacing of 10 m and is centered on the
midpoint between the two DEM minima corresponding to the
lowest points in each subcrater. The grid spacing, chosen pri-
marily for speed, does not allow us to reliably differentiate
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vents within each subcrater. Hence, we assume that inter-
subcrater waveform variability is more significant than intra-
subcrater waveform variability.

For RTM-FDTD, we process the waveforms from stations
YIF1 to YIF5 by decimating to 20 Hz for computational speed
and applying a 60 s long adaptive gain control, which reduces
the dominance of large-amplitude signals on the stack function
(Walker et al., 2010). The stack function comprises the sums of
the amplitude envelopes of the processed, normalized, and time-
shifted waveforms of all five stations. To pick peaks in the stack
function, we set a threshold of 4 (i.e., 80% of total possible stack
value) and require a 30 s gap between adjacent peaks. This pro-
duces a catalog of 7877 events over six days, which is plotted as a
spatial histogram in Figure 1b. Multiple explosions may occur
within a single 30 s time window.

We fit a regularized two-component Gaussian mixture
model to the collection of catalog locations to define a 2—¢
confidence ellipse around each subcrater (see colored ellipses
in Fig. 1b). Located waveforms are associated with either the S
or N subcrater if they fall within that subcrater distribution’s
ellipse. After this association step, we arrive at a labeled catalog
of 7571 events: 5036 S subcrater events and 2535 N subcrater
events. The temporal evolution of the labeled catalog is plotted
in Figure 2b. We window waveforms from the continuous
time-series data using the catalog time ¢, (from RTM-FDTD)
as the start time and f, + 5 s as the end time. Because each
labeled event in the catalog is recorded on five stations, we have
a total of 37,855 labeled waveforms (of which 25,180 are S sub-
crater and 12,675 are N subcrater). These labeled waveforms,
summarized in Figure 2c,d, show impulsive initial transients
followed by 1-2 s of coda.

Feature extraction

We extract features from the 250-sample-long labeled wave-
forms to input to our ML classifier. We remove the instrument
response and normalize waveforms prior to feature extraction,
and for two of the three extracted feature sets we apply a random
time shift. These steps minimize the effect of distance from the
source on the feature signature of the waveforms by removing
amplitude and travel time information, respectively.

A common issue with feature engineering is that one does
not usually know which features are optimal for a given classi-
fication problem. A more rigorous approach is to use a large
number of features and let an algorithm determine which
are the most relevant. We use the TSFRESH Python package
(Christ et al., 2018) to automatically extract over 700 time-
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and frequency-domain features from the labeled waveforms.
The full list of features is outlined on the TSFRESH website
(see Data and Resources). TSFRESH has been used in a volcanic
context on seismic data from Whaakari/White Island, New
Zealand (Dempsey et al., 2020).

The collection of hundreds of features likely includes many
that are irrelevant for the classification task. To improve clas-
sification results, as well as make the algorithm more efficient,
we select an optimal subset of 10 TSFRESH features: We apply
sequential feature selection (SES; Ferri et al, 1994) on data
from the entire deployment across all stations. SFS is a greedy
algorithm that iteratively picks the best-performing feature
(evaluated using classification accuracy scores) from the avail-
able pool of features. These 10 features are listed in Table S1,
available in the supplemental material to this article. They are
specific to the context of Yasur Volcano and the timeframe of
the 2016 deployment, and most do not have a clear physical
meaning.

We additionally produce a full set of TSFRESH features from
non-time-shifted waveforms (i.e., travel time is preserved), and,
for comparison to the 10 SFS-selected TSFRESH features—a set
of 10 features which have been employed for unsupervised ML
classification on volcano infrasound (see, e.g., Watson, 2020;
Witsil and Johnson, 2020). These previously used features
comprise statistical moments and measures of the time- and fre-
quency-domain amplitude distributions, as well as four addi-
tional frequency-domain features (for more information, see
table 1 in Witsil and Johnson, 2020). We refer to these features
as the “manual” features, and note that they have been successful
in previous unsupervised clustering analyses (Watson, 2020;
Witsil and Johnson, 2020).

Support vector classification

We train a linear SVM classifier, as implemented in scikit-learn
(Pedregosa et al., 2011), for each of the three extracted feature
sets mentioned earlier. SVMs find the optimal hyperplane in
feature space that maximizes the margin between the two
classes of the training dataset. We initially chose SVMs over
the myriad other options available, because (1) they have been
applied to infrasound data before (Cannata et al., 2011; Albert
and Linville, 2020), and (2) they are a simple and easily inter-
pretable classifier.

Temporal and station-wise subsets of the labeled catalog
form our training and validation datasets. We formulate
two classification problems to evaluate the performance of
the SVM. We refer to these as the “generalization case” and
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the “same-station” case. The generalization case trains an SVM
on a subset comprised of all but one day and all but one station
of the total labeled dataset. The validation subset consists of
data from the excluded station on the excluded day. The same-
station case uses the same temporal subsetting as the generali-
zation case, but for station-wise subsetting we train and test on
one station at a time, including training and testing on the
same station. We only show results from a temporal subset
of 27-31 July (train) and 1 August (test). For each classification
problem, we balance classes, after temporally subsetting, by

downsampling the majority class.

Results

Trends in labeled catalog

The labeled catalog of events shows clear trends that correlate
with waveform characteristics (Fig. 2a,b). The relative contri-
bution of events from the S and N subcraters is balanced, and
the total number of events per hour is steady, until just before
29 July. The contribution from the S subcrater diminishes, and
the total rate of events and average explosion amplitudes
decline, until 30 July. At that time, the event rate returns to
baseline, and the contribution from the S subcrater varies from
20% to 80%. Finally, just before 1 August, as explosion ampli-
tudes increase dramatically, the contribution from the N sub-
crater shrinks to near zero.

Classification accuracy

We evaluate all classification problems using the classification
accuracy score, which is the fraction of correct classifications
out of the total number of classifications. For the generalization
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Figure 3. Accuracy scores for “generalization case” train—test subsets
using (@) 10 manual features and (b) 10 sequential-feature-selected (SFS)
TSFRESH features. Each cell’s score is obtained by training on all available
data excluding the given day (column) and station (row) of the cell. For
example, in panel (b), training on waveforms from stations YIF1 to YIF4
between 28 July and 1 August results in 85% accuracy on validation
waveforms from YIF5 on 27 July.

case, we achieve mean classification accuracies of 73% (maxi-
mum 87%) for time-shifted manual features (Fig. 3a) and
77% (maximum 89%) for SFS-selected time-shifted TSFRESH
features (Fig. 3b). The SFS-selected TSFRESH features have more
uniform accuracy scores across the matrix, but especially during
1 August, when compared to the manual features.

Classification accuracies for the same-station case are shown
in Figure 4a. We obtain a mean same-station (diagonal in
Fig. 4a) classification accuracy of 96% using all non-time-shifted
TSFRESH features, averaging over all six temporal train-test
partitions. The maximum single-station score, 99%, occurs for
station YIF1 when testing on 1 August, the final day of the
deployment (top-left entry in Fig. 4a). Figure 4a shows the accu-
racies for a problem where we test on 1 August. The off-diagonal
entries in Figure 4a, which represent the classifier’s generaliza-
tion to different stations, generally show progressively poorer
performance for stations that are farther away from each other.
However, a correlation between the accuracies for stations YIF4
and YIF5 is evident.

Discussion
We show here that starting with a large collection of features
and employing an automated feature selection scheme can
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yield superior classification results when compared to using
domain knowledge-derived (“manual”) features (Fig. 3). This
automated feature extraction and selection scheme is superior,
because it makes fewer assumptions about the system.
However, we are still limited by the features built into
TSFRESH. There are perhaps additional features that are rel-
evant for a classification problem not contained within the
TSFRESH feature set. This is where a deep learning approach
may deliver a superior classification results, because such an
approach avoids explicit feature specification altogether.
One important trade-off, however, is interpretability; though
outside the scope of this article, with linear SVMs we can
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Figure 4. Accuracy scores and subcrater-station geometry and profiles.
(a) Accuracy scores for various “same-station case” train-test pairings using
non-time-shifted TSFRESH features. The training time window is

27-31 July; we test on 1 August. (b) Map view showing horizontal distances
from each station to the bottom of each subcrater (subcrater locations are
estimated from digital elevation model [DEM] minima). Vertical profiles from
() the south subcrater and (d) the north subcrater to each station. Spatial
scale is identical to (b). For station legend, see colors in (a).

examine the weights (hyperplane coefficients) of each feature
to understand how the classifier is behaving. Furthermore, one
can explore eruptive source processes and propagation effects
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through the feature importances. This is more challenging,
though not impossible, with deep learning algorithms.

Yasur Volcano is a dynamic system, and notable changes in
the intensity of activity are observed even on the six-day-long
timescale of this study (Fig. 2a,b). These are consistent with seis-
moacoustic analyses of Matoza et al. (2022). Furthermore,
Yasur’s bifurcated summit crater and its associated topographic
features have a large impact on the character of recorded infra-
sound (Iezzi et al., 2019; Fee et al., 2021). Both of these volcano-
specific factors pose challenges for classification, because a useful
classification workflow inherently involves generalization either
to new time periods or new station locations at the same volcano
(or at a different volcano altogether). Furthermore, our catalog is
automatically labeled, so there are likely misclassified events or
noise (however, manual inspection of labeled waveforms did not
indicate that such misclassifications were common). It is critical
that these challenges can be addressed through clever training,
design, and application of the classification algorithm. For
example, training on a diverse collection of waveforms or lever-
aging data augmentation (Witsil et al, 2022) can improve
generalization.

The same-station classification results shown in Figure 4a
demonstrate excellent generalization in time and poor gener-
alization to other stations. Plots like Figure 4a produced for
different test days show similar or superior results; this is
because, by testing on the final day of the deployment when
the eruptive pattern was different (Fig. 2a,b), we are challeng-
ing the algorithm to work on an eruptive period unlike what it
encountered during training. Generalization to other stations
is poor due to vast differences in topographic path between
source and receiver. Figure 4b—d shows map and profile views
of the paths from each subcrater DEM minimum to each sta-
tion. Source-receiver distances and topographic complexity
vary considerably. This has profound effects on generalization,
which we illustrate with two examples:

1. Consider training on YIF1 and testing on YIF5 (Fig. 4a).
The model learns to associate a smaller travel time with the
N subcrater, as that subcrater is closer to YIF1. When we
test this model using data from YIF5, the classification accu-
racy is 10%, that is, the algorithm picks the wrong subcrater
90% of the time. Examining Figure 4b we see that the
smaller travel time for YIF5 is associated with the S sub-
crater, not the N subcrater.

2. There is a strong correlation between YIF4 and YIF5 accu-
racies (Fig. 4a). This is explained by the relative similarity of
the path lengths between each subcrater and YIF4 and YIF5,
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and the similar topographic profiles seen in Figure 4c,d.
This similarity allows a model trained using YIF4 data to
perform well on YIF5 data and vice versa; the topographic
effect on the waveforms is similar for these similar paths.

Both of these examples suggest that the features used for this
problem—non-time-shifted TSFRESH features—are strongly
path dependent. (See Fig. S1 for a version of Fig. 4a made using
time-shifted TSFRESH features.) These examples showcase the
importance of feature extraction on classification results. This
has implications for future ML studies in which feature engi-
neering is necessary. Randomly time-shifting waveforms is a
basic step toward removing the effect of path; a more rigorous
approach could involve deconvolving the full numerically com-
puted Green’s function from each labeled explosion waveform.
Such an approach would allow a classifier to train directly on
features more closely linked to the explosion source, as opposed
to path, and would help the classifier generalize to new network
geometries. However, we note that to maximize classifier accu-
racy for a fixed path, waveform path information should be
retained, because it provides additional information useful for
determining the correct location (e.g., modification of waveform
spectra by vent-proximal topography, Johnson et al., 2018).

Using an SVM, we achieve classification accuracies on par
with Cannata et al. (2011), who used a single station to achieve
95% accuracy classifying explosive events to either of Etna’s
southeast and northeast craters. Cannata et al. (2011) used a
3D feature space composed of frequency and quality factor
and peak-to-peak amplitude. We discard amplitude information
by normalizing each labeled waveform, but for same-station
classification we retain travel-time information. Albert and
Linville (2020) used SVMs to obtain 75% accuracy for a binary
source-type classification (volcano vs. earthquake) problem.
Large path differences between the globally recorded waveforms
used in their study reduced the generalization performance of
their algorithm. Although our study is not directly comparable
due to its local scale and classification type, we also see a sig-
nificant reduction in accuracy when we force the algorithm
to generalize to new paths (e.g., compare Fig. 3 to Fig. 4a diago-
nal). Future improvements in ML-based volcano infrasound
research could account for path effects through waveform mod-
eling, as has been done in seismology (Kuang et al, 2021) or
through synthetic training data such as in Witsil et al. (2022).

To compare our ML-based classification to a more traditional
method, we use the stacked waveforms shown in Figure 2¢,d as
templates for a correlation analysis (e.g., Green and Neuberg,
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2006). Details on this method and results are available in the
supplemental material. We obtain a mean same-station classi-
fication accuracy of 91%, which is lower than the accuracy of
96% obtained using ML. The key benefit of the ML application
arises in situations in which generalization to other stations is
desired, because this is not possible using waveform correlation
methods.

Conclusions

We assemble a large, multistation, labeled dataset for a binary
classification problem tasked with locating the source of explo-
sive volcano infrasound signals within multiple subcraters
using a crater rim infrasound network at Yasur Volcano.
We experiment with three different strategies for extracting
features from the labeled waveforms: 10 “manual” features,
10 automatically selected TSFRESH features, and a full set
of non-time-shifted TSFRESH features. For each of these strat-
egies, we explore SVM classification performance, and evaluate
generalization potential for different time periods and different
station combinations.

“Shallow learners” such as SVMs are readily interpretable,
but they require explicitly defined features that are often
obtained from domain knowledge; this can be arbitrary and
can introduce bias. The choice of features depends on the clas-
sification goal (generalization, Fig. 3; or single-station perfor-
mance, Fig. 4). The 10 SFS-selected, time-shifted TSFRESH
features are better suited for studying source processes and
their variation over time (Witsil and Johnson, 2020), whereas
the full set of non-time-shifted TSFRESH features are more
useful for reliable location of explosive activity using a single
station. Feature engineering is the most important aspect of
classification workflow design for these problems.

Our very high single-station performance could be
exploited to locate explosions to a subcrater or vent using data
from a single permanent infrasound station (once an SVM was
trained with data from, e.g., a larger temporary network). The
addition of a noise class would allow the algorithm, if running
on rolling windows, to detect explosions as well as locate them.
These applications are limited, however, in that any substantial
change in crater morphology or atmosphere may violate the
assumptions of the trained model.

This entire workflow (labeled dataset creation, training, and
classification on new data) could be applied to other volcanoes
or sources producing frequent explosions. Workflows such as
this will only become more feasible and relevant, as infrasound
data volumes increase and more readily labeled events are
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observed. A more ambitious goal would involve the application
of this automatic labeled dataset generation technique to a
source type classification problem; for example, image process-
ing on video data to create a catalog of event source types. This
approach would then be feasible even for single-vent systems.
Future work should additionally assess the performance of
deep learners such as convolutional neural networks on large,
labeled infrasound datasets such as the one we introduce here.

Data and Resources

The data from this deployment are available through the
Incorporated Research Institutions for Seismology Data
Management Center (IRIS DMC) as network code 3E and sta-
tion codes YBAL, YIB2, YIF1, YIF2, YIF3, YIF4, YIF5, and YIF6
(Fee et al., 2016). The Python code written to perform this work,
including labeled dataset creation, is publicly available on
GitHub at https://github.com/liamtoney/yasur_ml; the code
relies heavily upon the Python seismological framework ObsPy
(Beyreuther et al., 2010). Figure 1 was made using PyGMT
(v0.6.0; Wessel et al., 2019; Uieda et al., 2021). Figures 2-4
and Fig. S1 were made using Matplotlib (Hunter, 2007). The
rtm Python package is available at https://github.com/
uafgeotools/rtm. An outline of the features calculated by the
TSFRESH Python package is available at https://tsfresh.read
thedocs.io/en/latest/text/list_of_features.html. The supplemen-
tal material contains the methods for our cross-correlation
analysis, supporting Table S1, and supporting Figure S1. All
websites were last accessed in July 2022.
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