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Abstract

Cache replacement policies typically use some form of statis-
tics on past access behavior. As a common limitation, how-
ever, the extent of the history being recorded is limited to
either just the data in cache or, more recently, a larger but
still finite-length window of accesses, because the cost of
keeping a long history can easily outweigh its benefit.

This paper presents a statistical method to keep track of
instruction pointer-based access reuse intervals of arbitrary
length and uses this information to identify the Least Ex-
pected Use (LEU) blocks for replacement. LEU uses dynamic
sampling supported by novel hardware that maintains a
state to record arbitrarily long reuse intervals. LEU is evalu-
ated using the Cache Replacement Championship simulator,
tested on PolyBench and SPEC, and compared with five poli-
cies including a recent technique that approximates optimal
caching using a fixed-length history. By maintaining sta-
tistics for an arbitrary history, LEU outperforms previous
techniques for a broad range of scientific kernels, whose data
reuses are longer than those in traces traditionally used in
computer architecture studies.

CCS Concepts: « Theory of computation — Caching and
paging algorithms; - Computer systems organization
— Processors and memory architectures.
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1 Introduction

If future reuses can be predicted, the optimal solution to
cache replacement, invented by Belady [4], is to replace the
data block that will be reused furthest in time. The algorithm
is also known as MIN [6] and OPT [21].

The phrase “History repeats itself” has been used for cen-
turies to depict the recurrence of events across time, and
has consistently been used for prediction and speculation
in computer architecture. Many cache replacement policies
were designed to emulate Belady by using history to predict
the future. LRU, for example, predicts the order of future
reuse based on the last access time. Many techniques have
improved over LRU by using additional information in the
history beyond the last access time. LIRS [15] uses the last
reuse distance computed from the history of recent accesses
to a data block. To emulate Belady, hardware techniques
including protection distance [8], NUcache [20], and the
Shepherd cache [27], record history for data stored in the
cache. A recent technique, Hawkeye [11], showed superior
performance by recording a window of history that is 8 times
the cache size and using the history to more precisely emulate
Belady.

While Hawkeye results in significant improvements over
LRU, there are important reasons to explore alternative solu-
tions:

o Hawkeye’s time and space costs are linearly proportional
to the length of its history window.

o Hawkeye’s prediction accuracy is limited by the size of its
history window. Important workloads have long-distance
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reuses that may exceed the limit of any constant-size his-
tory window. In particular, scientific kernels such as ten-
sor computations, which are an important component in
widely used machine learning algorithms today, demon-
strate such long reuses.

In this paper, we present a statistical approach to pre-
dicting probable future access times by recording access
Reuse Intervals (RIs) associated with instruction pointers.
Past observed information on reuse intervals is used to deter-
mine expected (rather than precise) future access intervals.
A cache replacement policy can then victimize the data block
with the farthest expected access (least expected use (LEU))
at eviction time.

LEU’s statistical approach enables an implementation that
is independent of the length of the history on which statis-
tics are collected. LEU’s association of reuse distributions
with instruction pointers helps condense the metadata for
multiple data blocks. To reduce implementation overhead,
we leverage multiple techniques to retain statistics for the
common case with finite and low space overhead. Intuitively,
tracking the most frequent reuse interval can provide the best
approximation of expected reuse in constant space. However,
a naive implementation of keeping a record of all distinct
intervals and sorting them requires O (nlog n) time complex-
ity in the worst case and O(n) space, where n is the length
of the history. Instead, we apply a streaming' algorithm[16]
to reduce cost to linear time and constant space, O(n) and
O(1) respectively.

We summarize our contributions below:

e We propose the Least Expected Use (LEU) cache replace-
ment policy, which evicts the cache line expected to be
accessed furthest in the future when replacement is neces-
sary. The next access time for each cache line is predicted
using the reuse interval distribution of past accesses as-
sociated with instruction pointers, resulting in statistical
rather than precise predictions.

e We make LEU practical for hardware implementation us-
ing techniques that include a streaming algorithm to re-
duce the space and time overhead of tracking statistics
to linear time and constant space, O(n) and O(1) respec-
tively, where n is the length of the history.

e We evaluate LEU using the Cache Replacement Champi-
onship Simulator[18] using both crc2 [1] traces (which
are generated from SPEC2006 [2] benchmarks) and Poly-
Bench [25] (which is representative of important scientific
kernels).

e We show that LEU’s ability to capture long reuse inter-
vals allows it to improve performance over both LRU and
Hawkeye for applications that demonstrate such reuses.

INote: LEU uses a streaming technique to store RI distribution, this is
different than the streaming access patterns that benchmarks have.
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e Comparing implementations, we eliminate on average ~
20% of LRU’s MPKI and ~ 6% of Hawkeye’s MPKI for
PolyBench [25].

Section 2 describes the new replacement policy. Section

3 and Section 4 present the hardware design and evalua-

tion, respectively. We discuss related work in Section 5 and

summarize with the discussion of future work in Section 6.

2 LEU Replacement
2.1 Notations

The abbreviation and notation used in the paper can be found
in Table 1.

Table 1. Abbreviations and notations used in the paper.

H Notation ‘ Meaning H
b A particular cache block
t Current logical time
NAT,(t) | Next Access Time of block b relative to time ¢
LAT,(t) | Last Access Time of block b relative to time ¢
NADy(t) Next Access Distance: NAT,(t) - t
teslay (t) t - LAT,(t)

2.2 Least Expected Use

The LEU policy leverages instruction pointer (IP) reuse inter-
val (RI) statistics to select a victim victim. More specifically,
LEU requires as input reuse interval distributions for each
instruction pointer.

LEU incorporates two aspects of dynamic access behavior
into its prediction of future accesses for each block in the
cache.

e Likelihood dynamism The elapsed time, i.e. tesla,
naturally rules out shorter RIs so in predicting the
next reuse, LEU considers only RIs longer than the
current tesla.

e Last-reference-point dynamism A data block may
be accessed by multiple reference points (instruction
pointer (IP) or program counter making the access).
LEU uses the RI distribution of the last reference point.

The next-access prediction by LEU, shown in Eq. 1, in-
corporates the likelihood dynamism by calculating the pre-
diction using only the RIs longer than tesla, and the last-
reference-point dynamism by using the RI distribution of
the last reference point that accessed b. In order to accom-
plish the latter, we associate RI distributions with instruction
pointers (IP). We keep track of the IP that last accessed a data
block and predicts its reuse behavior by the RI distribution
of this IP.

We now define the policy. Provided with a reuse interval
(RI) distribution for each instruction pointer, denoted Py, for
instruction pointer ip, the cache will victimize a cache block
with the largest expected next access distance (NAD). The
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formula for expected NAD for data block b accessed with
instruction pointer ip at logical time ¢ is

E(NADy(t) = > (Pygy(ri) - (ri— teslay (1))

ri EriS(Pip(b)),
ri >teslap (t)

1)

where ip(b) is the instruction pointer from which the last
access to b was made, and ris(Pjp(,)) is the set of RIs with
support in the distribution Pjy(,). For more formalism, see
the appendix.

To illustrate the workings of the policy, Listing 1 shows an
example program. The loop nest computes a 5-point stencil.
For ease of presentation, we simplify the problem as follows.
In this example, we consider data reuses at element granu-
larity instead of block granularity. There is just one level of
cache. Finally, all a accesses happen in cache, i.e., we do not
use registers.

double a[1026][1026], b[1026][1026];

for (i = 1; 1 <= 1024; i++) {
for (j = 1; j <= 1024; j++) {
b[i][j] = ali][jl+ali][j+1]+a[i][]j-1]
+ali-1][jl+ali+1][j];
}
}

Listing 1. 5-point stencil program

Examining the program code, it can be inferred from the
inner loop that an array element is first accessed by reference
ali][j + 1], reused one iteration later by a[i][j] and then
another iteration later by a[i][j — 1]. The cache should keep
the data element for two iterations and evict it after the last
access.

LEU captures the equivalent knowledge through last-
reference-point dynamism. Table 2 shows the RI distribution
for these references. For the first access, a[i][j + 1], the RI
is 5. For the last access, a[i][j — 1], the RI is 6139 (the next
reuse is a[i — 1][ ] in the next i iteration).

Table 2. The RI distributions P(ri) for 4 references in the
stencil (assuming element granularity to simplify presenta-
tion)

alijljl | ali](j+1] |

alil[j-1] | afi+1][j]

ri P(ri) | ri P(ri) ri  P(ri) ri  P(ri)
8 99.9% | 5 100% | 6139 100% | 6135 99.9%
6147 0.1% - - - - 6140 0.1%

The example also shows how likelihood dynamism im-
proves prediction accuracy. Consider the two RIs of a[i][j].
The last element out of every row of the array, i.e. a[i][1024]
is reused toward the end of the j-loop in the next i-loop.
After its access, LEU uses both RIs and predicts reuse (in
8 accesses). This first prediction is wrong because the next
reuse is a[i— 1] [j] (not a[i][j —1] as is the case for the other
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elements in the same row). After 8 accesses, however, the
next prediction is correct by using only the longer RI 6147
(based on likelihood dynamism).

Likelihood dynamism becomes more important when we
consider cache-block granularity. A 64-byte cache block con-
tains 16 4-byte numbers. In a contiguous traversal, the RI
distribution has a short reuse for 15/16 of all accesses and
a long reuse for 1/16 of the accesses. With likelihood dy-
namism, LEU keeps the data block in cache for the duration
of the (spatial) reuse and evicts it afterward. It is important
to note the use of RIs of the data blocks referenced by an
IP. The usage of IP-based cache block RI tracking helps re-
duce the space overheads which would have been expensive
otherwise.

3 Hardware Design

In this section, we explain the mechanism of Least Expected
Use (LEU) cache replacement policy and its hardware imple-
mentation.

3.1 LEU Implementation

3.1.1 LEU Data. LEU requires two main tables described
below and additional metadata with the cached data:

e Last Access Time Table (LATT) stores a set of sam-
pled data blocks, which may or may not be in the cache,
and is used to record information that allows predic-
tion of reuse intervals. For each data block, LATT stores
the data block address, its last instruction pointer (IP),
and the last access time (LAT). Time is based on logical
time, implemented as a counter incremented on every
access, and is used as the basis for determining the
Reuse Interval (RI).

Reuse Interval Table (RIT) stores the RI distribu-
tions for instruction pointers (IPs). A distribution is
a histogram represented by a set of (RI, Freq) pairs,
where Freq is the number of times the RI has been
added (observed). It is used to calculate the expected
reuse. Each entry in the RIT consists of the instruction
pointer and multiple pairs of RI and their respective
Freq.

Metadata per Cache Block stores the last instruction
pointer (IP) and the last access time (LAT). The IP is
required to use the RI histogram in RIT, and LAT is
required to calculate tesla (time elapsed since the last
access).

3.1.2 LEU Update. The LATT records the time of the latest
access (LAT) and the instruction pointer (IP) for sampled
cache accesses (both HITS and MISSES). On a hit in the LATT,
the stored LAT, along with the current logical access time, is
used to calculate the RI, and the previous IP (stored in the
LATT) is used to insert the calculated RI into the RIT. Both
the IP and LAT are then updated to the current values. On a
miss in the LATT, a new entry for the cache block address is
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CBA: Cache Block Address, IP: Instruction Pointer, CAT: Current Access Time

hit in RIT:
Insert <RI, Freq>

<RI_LFREQ_1>,
<RI_2,FREQ_2,

(CBA, IP, CAT)

LATT

CACHE
BLOCK ADDR

RIT

INSTRUCTION
POINTER

INSTRUCTION
POINTER

LAST ACCESS
TIME

hit in LATT:
Use prev_IP in RIT

v

miss in RIT: Insert entry into RIT
as a new prev_ip entry

miss in LATT: Insert entry into LATT

Figure 1. LEU update operation flow (Algorithm 1)

inserted into the LATT using the current IP and logical access
time. Additionally, the metadata in each cache metadata
block (IP, LAT) is also updated. While the LATT has similar
capabilities of storing IP and LAT as the cache metadata
block, it also contains information about cache lines that are
currently not in the cache. This is useful for calculating RI
of cache addresses that have not been in cache continuously
and helps to keep track of a more accurate (and longer) RI
history. Figure 1 depicts a basic flow diagram of an LEU
Update operation and Algorithm 1 presents the pseudo-code
for the update operation.

Algorithm 1 LEU Update

1: procedure LEU UPDATE(LATT, RIT, addr, IP, clock)
2: if Cache hit then

3: update LAT and IP

4: update MRU

5: end if

6: if access beyond sampling rate then

7: return

8: end if

9: if addr ¢ LATT then

10: LATT.insert({addr, ip, clock})
11: return

12: else

13: RI = clock - LATT[addr].LAT

14: prev_ip = LATT[addr].ip

15: update LATT[addr] = {ip, clock}
16: end if

17: if prev_ip ¢ RIT then

18: ri_freq = {RI, 1}

19: RIT.insert({prev_ip, ri_freq})
20: else

21: if RI € RIT[prev_ip] then

22: update Freq of RI by 1

23: else

24: RIT[prev_ip].insert({RI, 1})
25: end if

26: call KSP(RIT[prev_ipl)

27: end if

28: end procedure

29: procedure KSP(RIT, prev_ip)

30: if RIT[prev_ip].size > HIST_SIZE then
31: for entry ri_freq € RIT[prev_ip] do
32: ri_freq.Freq = ri_freq.Freq - 1
33: if ri_freq.Freq < 0 then

34: RIT[prev_ip].remove(ri_freq)
35: end if

36: end for

37: end if

38: end procedure
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Algorithm 2 LEU Eviction

1: procedure LEU VicTiM(RIT, set, clock)

2: forway € valid ways do

3: IP = block[set][wayl.ip

4: LAT = block[set][way].la

5: tesla = clock - LAT

6: if IP € RIT then

7: for entry RI € RIT[IP] and RI > tesla do
8: exp_dist += RI X Freq[RI]
9: cnt += Freq[RI]

10: end for

11: if cnt # 0 then

12: exp_dist=(exp_dist/cnt)-tesla
13: end if

14: else

15: exp_dist=tesla

16: end if

17: end for

18: victim_way = Max(exp_dist) way

19: call MRU_trend(victim_way)

20: end procedure

21: procedure MRU_TREND(victim_way)

22: if victim_way == mru_way then

23: trend_count = trend_count + 1

24: if trend_count > SET LIMIT then

25: Use MRU victim way

26: end if

27: if trend_count > UNSET LIMIT then
28: trend_count = @

29: end if
30: else
31: confirm_count = confirm_count + 1
32: if confirm_count > CONFIRM LIMIT then
33: confirm_count = @
34: trend_count = @
35: end if
36: end if

37: end procedure

3.1.3 LEU Victimization. When replacement in the cache
is necessary, the least-expected-use way, or equivalently,
the maximum-expected-distance way will be evicted. The
intuition is to evict the way with the furthest expected reuse
based on statistics from the past.

We calculate tesla for each candidate block in the cache set
using the LAT stored in the block’s metadata. We use the IP
stored in each cache block metadata to look up the RIT and
use the RI distribution in conjunction with tesla to calculate
the Expected Next Access Distance (ENAD) using Eq. 2. When
all the ENAD for all the ways has been calculated, the way
with the highest ENAD will be evicted from the cache. Fig-
ure 2 depicts the operation flow of eviction and Algorithm 2
describes the eviction mechanism.

When a reference point has no history data either because
the instruction has not been executed or because it has been
removed from the RIT due to its finite size, we are unable
to compute ENAD. If we are unable to compute ENAD, we fall
back to tesla. We compare tesla with the expected reuse from
other ways and victimize the block with the largest expected
reuse distance. When a comparison is made only based on
teslas then it is equivalent to LRU and hence ensures that
we perform at least as well as LRU in such scenarios. The
eviction procedure is given in Algorithm 2.
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Way 0 Way 1 Way 2 Way 3

P [ta] [P Jta ] [ir Tia P [LA RIT

[0 9 N 0 0 B o e o o s R R
P Jta | [ip [ta ] [P 1A P LA

[TESLA = current clock time — last access time

~max RI n

y xRl et RI-Freq[RI ‘ )

ENAD(b) = A= e | !fw[ ] tesla RIT hit
Y RI= e 1 Freq(R1]

Figure 2. LEU eviction operation flow (Algorithm 2)

Zmax RI

RI=tesla+ 1
max RI
RI=tesla +1

RI - Freq[RI]
Freq[RI]

ENAD (b) = (2

— tesla
3.1.4 MRU Trend. When applications exhibit streaming
behavior, they would benefit from the default use of MRU
replacement rather than LRU replacement when LEU is not
possible. We introduce a single MRU trend bit for the entire
cache, which is set when streaming behavior is detected. In
order to determine when to set the MRU trend bit, we use a
Most-Recently-Used (MRU) bit per cache block to keep track
of the MRU way. We also have an "MRU evict count” counter
for the entire cache that is incremented when the evicted
way matches the MRU way upon victimization. When "MRU
evict count" reaches the SET LIMIT threshold, the MRU
trend bit is set. When the "MRU evict count” reaches the
UNSET LIMIT threshold, the MRU evict count is reset, as
is the MRU trend bit, in order to reevaluate the application’s
need for MRU. Table 3 shows the different MRU threshold
configurations used.

Table 3. MRU configurations

H Config ‘ SET LIMIT ‘ UNSET LIMIT ‘ CONFIRM LIMIT H

MRU1 5000 10000 None
MRU2 18000 20000 100
MRU3 20000 21000 100

In order to escape out of MRU trend mode early, another
counter called "confirm count” is incremented when in MRU
trend mode and the evicted (LEU) way is not equal to the
MRU way. When the value reaches the CONFIRM LIMIT
threshold, both counters and “MRU trend" are reset.

The victim way is selected as follows:

LEU way, if 3b, for which ENAD(b) exists,
where b is a cache block
victim way = { LRU way, if 7 b, for which ENAD(b) exists,
and MRU trend has NOT been set
MRU way, ifﬂ b, for which ENAD (b) exists,

and MRU trend has been set
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3.2 Keeping the Histogram Small

RIT is responsible for storing the reuse interval histogram
specific to a reference. To reduce the space overhead we
only keep track of the most frequent RIs. In fact, LEU keeps
track of a history of any length with a constant space cost.
We use a modified version of the algorithm given by Karp,
Shenker, and Papadimitriou [16], which we refer to as the
KSP algorithm.

3.2.1 KSP Algorithm. The KSP algorithm is an online
algorithm for identifying elements that occur in the stream
at arate that is higher than a specified rate. For a general case,
let 6 be the threshold and the goal to find all the elements
whose occurrences are over 6. It is easy to see there will be
1/6 such elements at most, so we only need a size of 1/6 + 1
dictionary d. With the arrival of every element, we check
whether the element is in d or not. If yes, we increase the
count of occurrence by one; otherwise, we insert it into d
with count 1. Then we check whether the size of d is beyond
the threshold. If yes, the occurrence count will decrease by
one for every element in the dictionary and the entry will
be erased if the count reaches zero. Therefore, we can detect
frequent symbols efficiently in both space and time.

3.2.2 Our Modifications. We modify the algorithm to
directly keep a fixed number of histogram sizes (HIST_SIZE)
instead of a relative rate, shown in line 30 of Algorithm 1.

The array starts empty, then iterates through the stream. If
the current RI is not in the array, it is added with a counter of
1in line 24. If the current RI is in the array, the RI’s counter
is increased by 1 in line 22. When the size of the histogram is
larger than the threshold in line 30, we decrease the counter
of every RI entry by one (lines 31-32). When the counter of a
RI reaches zero, we remove that RI entry from the histogram
(lines 33-34). This linear algorithm allows us to identify and
store the top hist_size-th frequent RI’s for every IP entry in
RIT while limiting space overhead.

We also apply approximation on the RIs to further reduce
space overhead. Rather than recording the exact RI, values
are stored within the closest bin given a fixed bucket size.
For example, if the bucket size is 5, the RIs of 7 and 10 will
be collocated with 8. Based on our evaluation, the resulting
approximation of the ENAD calculation is not likely to have
a significant impact on the selection of a victim.

4 Evaluation

We evaluate LEU on the Cache Replacement Championship
simulator (CRC [1]). CRC simulates a 4-wide out-of-order
processor with an 8-stage pipeline, a three-level cache hi-
erarchy, and a 128-entry reorder buffer. The configuration
parameters are shown in Table 4. We choose 50 million in-
structions as warmup and measure the performance of an-
other 250 million instructions. We compare against LRU and
other state-of-the-art replacement policies: Hawkeye [11],
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SRRIP, DRRIP [13], and SHiP [30]. We change the ways from
16 to 8 ways for a fair comparison.

Table 4. Baseline Configuration

L1 I-Cache 32 KB 4-way 1-cycle latency
L1 D-Cache 32 KB 4-way 1-cycle latency
L2 Cache 256KB 8-way 10-cycle latency
Last-level Cache | 2MB 8-way 20-cycle latency
DRAM 200 cycles

The benchmarks we test include PolyBench [10, 26] and
SPEC2006 traces that come with the 2nd Cache Replacement
Championship (CRC2) [1]. We use Intel PIN tool version
3.11 [19] to collect the traces for PolyBench. The SPEC2006
traces are collected on an Intel XEON E5-2420 CPU with 16
registers. According to CRC2, the traces are collected using
the following command for perl, one of the benchmarks:
"valgrind —tool=exp-bbv —interval-size=1000000000 —bb-out-
file=perlbench_bbv.out —pc-out-file=perlbench_bbv.pc.out
./perlbench -Ilib checkspam.pl 2500 5 25 11 150 1 1 1 1"2,
PolyBench is collected on an i7-3960X CPU with 16 registers
and the compile command is: "g++ -std=c++11 -g -O3".

PolyBench is a collection of polyhedral benchmarks for
scientific computing. We include all tests in the current ver-
sion except for 2mm and doitgen (for which we were not
able to collect traces). We also include a test from an earlier
version of Polybench, convolution_3d, because it is the only
case that our technique shows a degradation.

Modern hardware cache studies use trace samples with a
limited length, e.g. 2 billion instructions, because of the high
cost of architectural simulation. The methodology, however,
imposes a limit on the type of reuses we see in these traces.
In particular, we see only reuses no longer than the length of
the trace sample. We call this the simulation bias for cache
studies. As a result, past techniques may not fully address the
problem of long reuses, while LEU is designed to use (limited
statistics of) an unlimited history. PolyBench allows us to
examine these techniques without the potential simulation
bias.

Section 4.1 outlines the different implementation configu-
rations we evaluate. Section 4.2 investigates the reuse inter-
val characteristics of PolyBench and CRC2 and then explain
some insights from our evaluation. We compare LEU’s rela-
tive performance in Section 4.3 and show that LEU can de-
tect and capture longer RIs and access pattern which include
complicated stride patterns and global streaming patterns
better than other replacement policies and hence outper-
form them in such scenarios (PolyBench). We analyze the
space overheads introduced by this policy in Section 4.4.
Sections 4.5 and 4.6 analyze the additional power, area, and
overall (including computational) latency introduced by LEU.

2Complete information can be found at: https://crc2.ece.tamu.edu/
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Section 4.7 evaluates the impact of providing LEU’s addi-
tional metadata storage as excess data storage capacity in
the LRU cache. We also analyze the sensitivity of our results
to different parameters configurations in Section 4.8.

4.1 Configurations

We use multiple LEU configurations in our experiments to
provide a holistic view of how changes in parameters and
dimensions affect the performance of our policy. The config-
urations depicted in Table 6 read in conjunction with Table 5
give us an idea about the size of entries in each configuration
and the size of structures and metadata used.

Our configurations can be segregated based on dimensions
of precision (size of entries, for example, IP, LAT) for the
LATT, RIT, and per cache-line metadata record, the number
of entries in the LEU structures, and the MRU capabilities.
The configurations can be categorized based on the precision
due to assigned storage overheads of the LATT, RIT, and
Metadata components as depicted by overheads O1, 02, and
03. Thus, we showcase the impact of the various dimensions
(sometimes orthogonal) of the LEU policy and how it impacts
performance.

Table 5. Structures size overhead, CBA = Cache block ad-
dress, HIST SIZE =1

Overhead Structure Entry (Bytes) Entry Size (Bytes)
LATT <CBA(4),1P(4), LAT(8) > 16
o1 RIT <IP(4), (HIST_SIZE * (RI(2), Freq(1))) > 7
Metadata <IP(4),LAT(8)> 12
LATT <CBA(4),1P(1),LAT(3) > 3

02 RIT
Metadata
LATT
RIT

Metadata structure

<IP(1), (HIST_SIZE * (RI(2), Freq(1))) >
<IP(1),LAT(3) >
<CBA(a),1P(1), LAT(3) >
<IP(1), (HIST_SIZE = (RI(2), Freq(1))) >
<IP(1), LAT(3), way + set(2), Iru(2) >

03

0 & oo

Table 6. LEU Configurations, RIT, LATT, and HIST
(HIST_SIZE) are the number of entries, Sampling Ratio =
100% for all configurations, for MRU config refer table 3.

RIT
256
256
256
256
512
256

HIST | Bucket | Overhead
1 01
10

1
7
64 1 1
1
7
1

Total Table Size
2.75 KB

7.25 KB

1.5KB

1.5KB

12KB

1.5KB

Metadata overhead
384KB

384KB

128KB

128KB

128KB

8KB

Configuration
LEU configl

LEU config2-MRU1
LEU configd

LEU config5-MRU3
LEU config6

LEU config7

1 02
10
1 03

4.2 Reuse Interval and Access Pattern
Characteristics

We use two methods to understand the characteristics of
PolyBench and CRC2 (SPEC2006) and their impact on our
replacement policy. First, we break down the Reuse Interval
of PolyBench and CRC2 benchmark suites. Computation of
RI in our policy is based on the LAT entry in LATT (Algorithm
1). Figures 3 and 4 show the breakdown of RIs gathered from
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LLC accesses. From the figures, it is clear that there are more
benchmarks in PolyBench that have longer Rl as a percent-
age of occurrence (dominant) compared to SPEC2006. There
are at least 8 benchmarks that have 60%+ non-shortest RI
(longer than 9) in PolyBench (Figure 4) compared with only
2 in SPEC2006 (gcc_56B and povray_711B in Figure 3). In
particular, roughly all the RIs for gemm is the longest group
(190+). On the other hand, the majority RIs of SPEC2006
are extremely short. Most of the programs have more than
90% short (0-9) RIs. LEU as a policy is able to capture the
more dominant longer RIs (apart from dominant shorter RI)
and make accurate predictions. Using these predictions, LEU
helps in reducing the MPKI and thus improves performance
for PolyBench compared to other policies.
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Figure 3. RI breakdown on CRC2 (SPEC2006).
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Figure 4. RI breakdown on PolyBench.

Second, we analyze the access pattern with instruction
pointer (IP) based classification on most of the benchmarks
from the two suites®. We adopt the techniques from Bou-
quet [23] , which is the state-of-the-art IP-classifier based
prefetcher. Figure 5 and 6 show the IP classification results
on LLC. It is clear from the figures that the memory behavior

3We couldn’t get all traces run with the tool
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of CRC2 (SPEC2006) is more complicated, including much
higher portion of unclassified and complex stride patterns.*
An instruction is classified as complex stride if it has multiple
frequent strides. Such pattern, however, can be recognized
by LEU since it captures the most frequent reuse intervals.
In comparison, PolyBench contains a greater portion of reg-
ular accesses including constant stride and global streaming.
LEU captures these patterns by identifying the most frequent
reuse intervals and is able to outperform LRU.
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Figure 5. Access pattern breakdown on CRC2 (SPEC2006).
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4.3 Relative Performance

In this section, we discuss the performance relative to LRU
(on single-core simulation) of state-of-the-art replacement
policies (including Hawkeye, SRRIP, DRRIP, and SHiP) and
LEU on CRC2 (SPEC2006) and PolyBench. We use "LEU-
config5-MRU3" for our comparison against other replace-
ment policies. Details about this configuration can be found
in Table 6 read in conjunction with Tables 5 and 3. Ta-
ble 7 compares the overheads of the policies. We observe
4Complex strides can be a mixed stride pattern like 1, 2, 1, 2, 1, 2. A simple

constant stride cannot cover all the cases. For the details about each IP class,
please refer to the Bouquet paper.
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Figure 7. Geometric Means on PolyBench over LRU.

that LEU performs much better on PolyBench compared to
SPEC2006. LEU reduces MPKI by up to ~75% for nussinov in
PolyBench traces over LRU and improves IPC up to ~71% for
ludcmp in the same benchmark suite. We can reduce MPKI
for CRC2/SPEC2006 up to ~58% and improve IPC by ~17%
for sphinx3, but with a higher overhead LEU configuration.
We show the geometric means for both MPKI reduction and
IPC improvement for both PolyBench and CRC2/SPEC2006
in Figures 7 & 8 respectively.
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Figure 8. Geometric Means on SPEC2006 over LRU.

LEU has a better performance for benchmarks with longer
dominant RIs. For lu, ludemp, mvt, symm, and syr2d in Poly-
Bench, LEU can generate 58%, 72%, 56%, 14%, and 19% IPC im-
provement and 64%, 63%, 15%, 14% and 24% MPKI reduction
correspondingly. It is clear that LEU performs well over LRU
on PolyBench and generates considerable improvement on
SPEC2006. Combining the performance on both benchmark
suites, LEU can achieve a similar performance compared
with the state-of-the-art replacement policies, generating
about 14% MPKI reduction and 6% IPC improvement. We
show the combined geometric means for PolyBench and
SPEC2006 in Figure 9.In summary, LEU’s performance is
comparable to that of Hawkeye and other state-of-the-art

131

Sayak Chakraborti, Zhizhou Zhang, Noah Bertram, Chen Ding, and Sandhya Dwarkadas

cache replacement policies across both benchmark suites,
and can outperform in specific workloads like PolyBench.
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Figure 9. Geometric Means on SPEC2006 and PolyBench
over LRU.

4.3.1 LEU Performance Discussion. The filtering effect
by higher-level caches most of the time eliminates small
reuse intervals. LEU is able to capture long reuse intervals at
the LLC and predict those accesses well. We don’t get similar
performance benefits for the SPEC2006 traces, because of
their short reuses[8], and the phase and other temporal vari-
ation in access, which is difficult to capture at the LLC with
constant-size data structures. For SPEC2006 traces, evicted
lines have a very low reuse percentage at LLC[12]. Thus it
is quite evident that the outer reuse for these benchmarks
doesn’t exist. As discussed at the beginning of this Section 4,
this may be a result of sampling bias.

Most PolyBench benchmarks have O(n?) and O(n*) mem-
ory operations[33]. For example, gemver, a kernel from the
basic linear algebra subprograms (blas), does multiple matrix-
vector multiplications, lu performs lower and upper trian-
gular decomposition of a matrix without pivoting. ludcmp
is a solver for a system of linear equations that uses lu for
decomposition. mot is a matrix-vector multiplication kernel
that uses two matrices, one of which is transposed. nussinov
is used for predicting RNA folding and uses dynamic pro-
gramming with data being stored in tables that are computed
based on adjacent cells. All of these benchmarks have the
commonality of either matrix multiplication operations, or
vector operations and use nested loops. LEU at LLC can cap-
ture the outer reuse of the outer loops. The extent of being
able to capture these long RIs also depends on the number
of entries in our finite structures and the benchmark char-
acteristics. By limiting its overhead to constant, LEU loses
information either by the KSP algorithm or the approxima-
tion using buckets which may cause adverse effects in some
cases.
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Table 7. Comparison of hardware overheads for a 8-way
2MB LLC.

Policy Predictor Cache Hardware
Structure Meta-data | Budget
LRU None 12KB 12KB
DRRIP 8 bytes 8KB 8KB
. 4KB SHCT
SHiP 2KB PC tags 8KB 14KB
12KB sampler
Hawkeye 1KB OPTgen 12KB 28KB
3KB predictor
24KB sampler
Hawkeye 16x 1KB OPTgen 12KB 40KB
3KB predictor
1.5KB LATT+RIT
LEU config5-MRU3 4KB MRU 128KB | 133.5KB
LEU config7 1.5KB LATT+RIT 8KB 9.5 KB

4.4 Space Overhead

To reduce the space overhead of our structures, we use mul-
tiple techniques. Some of these techniques are trade-offs
between space and precision. Apart from the space overhead
of our LATT and RIT structures, we have a constant overhead
per cache block.

4.4.1 Signature Based Metadata. We use 8-bit, 24-bit,
and 32-bit signatures generated from a shift and multipli-
cation operation-based hash function to reduce the cost of
storage of 64-bit components such as the IP, LAT, and cache
block address. This reduces the space required in the RIT,
LATT, and the cache metadata.

4.4.2 Reducing the Number of Bits Required. The size
of entries for RI and Freq depends on how quickly they
are saturated. We use only a few bits to represent RI and
Freqin our method. The longer an IP entry stays in RIT, the
more likely it is that the reuse frequency and reuse intervals
are saturated to maximum values. In our configurations, we
assume a higher probability of entries getting evicted before
getting saturated, which reduces the chances of inaccuracies.

Table 7 shows the space overheads of the replacement
policies. Though our predictor structures have low overhead
compared to other policies, our cache metadata incurs higher
overhead. We observe that for LEU config 7 the overheads
are lower than LRU and on average we reduce MPKI by 5%
over LRU on PolyBench.

4.4.3 Comparison with Hawkeye. The original Hawk-
eye [11] design for SPEC2006 uses eight times the cache size
as the window length. To capture longer reuse history (for
PolyBench), we double the window size to 16x. However,
LEU can still outperform Hawkeye by a noticeable margin,
around 2% in MPKI reduction and in IPC improvement, as the
statistical approach captures reuse intervals whose length is
not limited by the window size.
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4.5 Power, Area, and Latency Overheads

We use CACTI[22] to estimate the power, area, and latency
overheads for the three additional storage structures intro-
duced by our policy: LATT, RIT, and per-cached line Meta-
data (IP, LAT). We use three different per-entry configura-
tions in our experiments: O1, 02, and O3, where O1 is the
most expensive and O3 is the least expensive in terms of
storage requirements. Table 5 shows the size of a single en-
try in each structure for each configuration. O1 and O2 store
per-cached line Metadata with each cache block, while O3
uses a separate Metadata structure (with 1024 entries) to
cache a subset of the Metadata that is maintained using full
associativity and LRU.

For the configurations outlined in Table 6, we show the
area and power overheads in Table 8. We discuss the latency
overheads in Section 4.6. We evaluate and discuss whether
adding the significant overhead of the cache metadata to the
cache itself helps improve the miss ratio or not in Section 4.7.

Table 8. Power and Area consumption as percentage of 2MB
LLC for LEU configurations

Config RIT LATT metadata
Area ‘ Power | Area | Power | Area ‘ Power

LEU configl 0.3% | 0.6% 0.3% | 0.5% 16.7% | 18%
LEU config2-MRU1 | 0.5% | 1.5% 0.3% | 0.5% 16.7% | 18%
LEU config4 0.3% | 0.5% 0.2% | 0.4% 6.7% 7.4%
LEU config5-MRU3 | 0.3% | 0.5% 0.2% | 0.4% 6.7% 7.4%
LEU configé 0.7% | 1.7% 0.3% | 0.5% 6.7% | 7.4%
LEU config7 0.3% | 0.5% 0.2% | 0.4% 2% 1.57%

4.6 Computational Overheads

We envision the addition of computational logic in the cache
controller of the desired cache hierarchy (at LLC) and use
off-the-shelf latency overheads[9] of generic ALU operations
to estimate the latency of our operations.

Latency for Victimization/Eviction and Update. The
computation can be broken down into logical operations as
shown in Figure 10. For configurations LEU config2-MRU1,
and LEU config6, where the histogram size is greater than 1
as indicated in Table 6, these overheads are justified. For the
rest of the configurations, only the subtraction operation is
required, which reduces the latency and power consumption
for operations tremendously. Taking into account the longest
sequential and dependent path, the computation overhead
is around 36-37 cycles (considering histogram size greater
than 1). We expect to hide the maximum ENAD computation
latency for victimization within the DRAM latency (LLC
Miss penalty lower bound) of 200 cycles.

Look up operations for the RIT, LATT, and the cache meta-
data can take from 1-2 cycles depending on the size of the
structures as suggested by experiments performed on
CACTI[22]. Updating the cache metadata block on a cache
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Figure 10. LEU operations required for a single way

hit happens in parallel without adding any extra latency
overhead to the hit latency. For the KSP [16] algorithm, oc-
casional iterative decrement of frequencies can occur in the
non-critical path without affecting the LLC hit latency.

4.7 Space Overhead Amortization

The most significant chunk in our space overhead is the 12
Bytes for O1 overheads and 4 Bytes for O2 (see Table 5) of
cache block metadata for each cache block, which amounts to
384KB for O1 and 128KB for O2 for a 2 MB cache. For O3 over-
head, the size of the metadata structure is 8 KB (considering
1024 entries in the structure, used in LEU config7). In order
to make a fair comparison, we add this extra space overhead
as an additional cache to the LRU policy as a comparison
point. We compared the reduction in MPKI against our LEU
implementation and over LRU for a 2MB LLC. We observed
that for both PolyBench[25] and CRC2 [1], an LLC cache size
of 2MB+384KB with LRU replacement policy didn’t show
any improvement over LRU with 2MB LLC or over LEU with
2MB LLC (which outperforms LRU with 2MB LLC).

4.8 Sensitivity to Histogram and Bucket Size,
Sampling Ratio, and Number of Ways

We perform sensitivity experiments on PolyBench to under-
stand the impact of the number of entries in the histogram,
the bucket size, the sampling ratio, and the set associativity
of the cache (the number of ways).

Histogram and Bucket size. We observe that the perfor-
mance impact is not huge (within two decimal places) and
saturates after a point when we increase the number of his-
togram entries. Thus, we have limited histogram size in
our configurations which also saves space and latency over-
heads. Regarding the bucket size, a smaller bucket size leads
to higher precision but occupies more slots in the histogram.
A larger bucket size compromises precision but can accom-
modate more entries. We set the bucket size based on our
experiments.

Sampling ratio and associativity. The major factors con-
tributing to the sensitivity of the sampling ratio for our policy
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are the benchmark memory access pattern, the memory foot-
print, the size of higher-level caches, and the filtering effect
introduced by higher-level caches. The inclusivity/exclusiv-
ity property of the caches in the hierarchy also affects the
access pattern to the LLC and is benchmark/trace specific.
A lower sampling ratio doesn’t worsen the performance of
PolyBench and it also saves energy and cost. Cache associa-
tivity affects the performance of our policy given the size of
our structures. For our cache configuration, 8 ways lead to
the best performance for LEU with the given LEU structure
configurations. We henceforth perform all our experiments
with 8-way cache associativity.

4.9 Other Results

4.9.1 Comparison among Configurations. Figure 11
shows the effect of different LEU configurations on overall
improvement.
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Figure 11. Geometric Means on PolyBench across different
configurations.

4.9.2 Multi-Core Results. We run a 4-core simulation
of LEU and LRU with a shared 8MB LLC and report the
accumulated LLC misses. We choose 4 groups of benchmarks
from PolyBench and the settings can be found in Table 9. We
choose LEU-config6 from Table 6 as the parameter settings.
LEU can significantly reduce the number of misses and miss
ratios for multi-core systems. The number of misses can be
reduced by 3%, 1.5%, 24%, and 5% respectively.

4.9.3 Prefetching Effect. Prefetching is widely used to
hide memory latency. To test the compatibility of prefetch-
ing, we evaluate LEU configl and LRU with next line and PC
stride as L1D and L2C prefetchers respectively on PolyBench.
Compared with LEU without prefetchers, LEU with prefetch-
ers further reduces 4% in terms of MPKI over LRU from
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Table 9. 4-core group setting for PolyBench.

[Group [P1 [ P2 [p3 [ P4 |
Group 1 | covariance | gramschmidt | convolution_3d | convolution_3d
Group 2 | adi nussinov fdtd _2d trmm
Group 3 | jacobi_2d | seidel_2d symm syr2d
Group 4 | adi syrzk syrzk seidel_2d

17.33% to 20.02%. The IPC improvement also rises slightly
from 7.64% to 7.77%. The reason can be that prefetchers filter
out some accesses to LLC and allow LEU to better analyze
stride patterns and predict the expected usages more pre-
cisely.

5 Related Work

There have been a series of techniques developed to imitate
Belady. RRIP [14] classifies the reuse as near, long, or distant.
Protection Distance (PD) [8] identifies a time to keep a data
block in cache so that the cache does (1) not evict it too early,
and (2) not keep it too long to cause cache pollution. NU-
cache [20] sets aside part of the cache for delinquent loads
(load instructions responsible for a significant fraction of
cache misses) and selects one or more delinquent loads to
use the extra cache based on their next-use histogram. Shep-
herd Cache [27] uses FIFO replacement to record accesses so
it can simulate Belady in the main cache. A common theme
is the efficient representation of the access history, by quan-
tizing the reuse into a few categories, limiting the analysis
to a data subset (data in the cache) or an execution window
bounded by the cache size. SHiP [30] adopts a heuristic pre-
dictor to identify instructions that load streaming accesses.
Hawkeye [11] uses a backward window 8 times in length the
cache-size window, which accesses the amount of data equal
to the cache size. It simulates Belady, records the decision at
each reference, and replays the decision.

Hawkeye is limited in its ability to simulate Belady by
the size of the past access trace it uses. To record arbitrarily
long RIs, LEU uses sampling and records RlIs for all data
accessed from a specific IP, thereby increasing the sample
size. Sampling has been used by Keramidas et al. [17, 24],
based on the success of effective sampling in techniques such
as StatCache [5]. To manage the cache, Keramidas et al. used
a single RI for all references. However, the single RI for each
PC cannot capture patterns with complex stride. Instead, LEU
uses an RI distribution for each reference, which is necessary
for its dynamism discussed in Section 2.2.

Both Hawkeye and LEU are designed to imitate MIN. The
crucial difference is that Hawkeye keeps an ordered his-
tory and incurs a linear cost, while LEU uses statistical (un-
ordered) history and can record unlimited history (however
partial) under a constant cost.

Reuse intervals have been extensively used in offline anal-
ysis, including recent models Higher Order Theory of Local-
ity [31] and the one by Beckmann et al. [3]. PRP [7] predicts
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the hit probability and prioritizes lines with higher probabil-
ity. Reuse intervals were routinely used in the working-set
theory as discussed recently [32]. Shi et al.[29] proposed a
Support Vector Machine (SVM) like mechanism for online
prediction based on observations from LSTM. Unlike offline
modeling, the entire process of LEU prediction is on-the-fly
and does not require expensive offline training.

Shah et al. [28] present Mockingjay, which uses a sampled
history of past accesses to predict future reuse intervals per
PC. Their solution predicts the reuse time of accesses from
a given PC based on its previously observed Rls and evicts
the cacheblock which is the furthest from its predicted reuse.
Mockingjay updates its RI predictions differently from LEU.
In Mockingjay, when a new sample has a different RI than its
previously predicted value, the new RI prediction is a linear
interpolation of the old prediction and the new sample RI,
which is biased towards the old prediction.

6 Summary

We introduce a novel method of using instruction pointer-
based reuse interval histograms to mimic Belady’s algorithm
for cache replacement by victimizing the cache line with
the least expected use in the future when replacement is
necessary. LEU’s use of statistical information about past
reuses on an instruction pointer basis eliminates the lim-
itations of fixed history windows and in-cache residence
of prior approaches. LEU is able to capture dominant long
reuse intervals and can achieve up to 71% improvement for
IPC and 75% for MPKI reduction for a single benchmark and
6% IPC improvement and 14% MPKI reduction of the two
benchmark suites combined. Our results show that LEU has
better performance over Hawkeye for PolyBench but that
the reverse is true for SPEC2006, resulting in similar average
overall performance. The choice of replacement prediction
is therefore workload dependent.
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Appendix
A Formal Policy Definition

Let S be a cache set and let T be the length of a memory
access trace.

Definition 1. A cache state, Cf, is the set of cache blocks
in S, at time ¢, where t € {1,2,...,T} = [T], in which each
cache block is a tuple (b, I, (t)), where b is the block address
and I, is some usage information about b at time ¢.

For example, LRU cache stores the last access time (LAT),
ie. I(t) = LATy(t), which is the logical time of the most
recent access of data block b before time .

Definition 2. A cache replacement policy is a ranking pol-
icy if for a current cache state C3, there exists a function,
rank : Cf X [T] — R, such that the victim of the cache,
byictim is:
byictim € arg min rank(b, t)
beCy

The rank function for LRU replacement is the reciprocal

of the time since the last access:
1

—_— 3
t — LATy (1) ®)

Another example is Belady or MIN, which evicts the block
with the furthest future reuse [4]. MIN uses the next access
time (NAT), i.e. I, = NATy(t). The ranking function is then

! 4
NAT,(t) — t “)

LEU imitates MIN and attempts to evict the block with the
furthest future access. The key is to approximate NADj (t) =
NAT,(t) — t (in Eq. 4), the next access distance.

LEU maintains I, = {Pip) (i), teslay ()}, where Pipg,) (i)
is the distribution of Rls of all accesses made from the instruc-
tion pointer used for the last access to block b and tesla is the
time elapsed since last access, i.e. tesla,(t) = t — LAT,(1).

Since there are multiple possible RIs, NAD is probabilistic.
We compute its expectation. This expectation depends on
two factors: the distribution of RIs and the current tesla:

rankLRU(b, t) =

mnkM]N(b, t) =

E [NAD,, (1)

Py (1), teslay, (t))]

RIs may range from 1 to T-1. At time t for block b, RIs
less than or equal to teslay (t) are not possible. Therefore, the
expectation calculation considers only RIs that are longer
than tesla, ().

T-1
E [NAD, ()] = Z [Pipo) (ri) * (ri— teslay (1))]
ri=tesla (¢)+1
T-1 T-1

2.

ri=teslap (¢)+1

2.

ri=teslag (¢)+1

[Pip(b) (ri) = teslay, (t) ]

®)

[Pip(b)(ri) * ri] -
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The ranking function is then:

1

rankigy(b, t) = E [NAD, ()]

(6)

Comparing the above with MIN in Eq. 4, we see that LEU
uses a statistical prediction of MIN.
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