
  

Abstract -- The eddy current induction in a conductive 
medium with finite width and thickness due to a moving 
magnetic rotor is studied. The presented formulation is based 
on the second order vector potential and the magnetic scalar 
potential and takes into account the magnetic field interaction 
through the edges of the conductive medium. The eddy current 
fields as well as thrust, lift and lateral force created by the 
rotational motion of the magnetic rotor have been computed 
and the accuracy and computation time have been compared 
with steady-state and transient finite element analysis results.  
 

Index Terms-- eddy current, edge-effect, Halbach, Maglev  

I. INTRODUCTION 

ESEARCH has been conducted in the past to find 
integrated propulsion and suspension solutions with a 
passive guideway for magnetic levitated vehicles 

(maglev). The linear inductor motor (LIM) [1], self-excited 
linear synchronous motor [2] and electromagnetic river [3] 
are some of the ideas that have been proposed. In [4, 5] Fujii 
et al. proposed the use of magnetic rotors rotating above a 
conductive plate as a means of creating both propulsion and 
levitation force.  More recently, Bird [6] proposed using an 
Electrodynamic Wheel (EDW) concept, as shown in Fig. 1, 
in which Halbach magnet rotors rotate and translationally 
move above a non-magnetic conductive plate. The induced 
eddy currents in the plate interact with the magnetic field of 
the Halbach rotor and lift the vehicle. The induced eddy 
currents also simultaneously create propulsion or drag force 
depending on the slip speed, sl. The slip speed is defined 
as l m o xs r vw= - , where ωm, vx and ro are the mechanical 

rotational speed [rads-1], translational speed [ms-1] and outer 
radius of the rotor [m]. If the slip speed is positive, 
propulsion force results and pushes the vehicle forward. But 
if it is negative, drag force is generated and slows the vehicle 
down. A 3D schematic of a single Halbach rotor above an 
aluminum plate is shown in Fig. 2 and schematic of such 
vehicle is shown in Fig. 3. A prototype model is shown in 
Fig. 4. In addition to lift and drag/thrust force there is a 
lateral force that may decenter the vehicle. Thus an accurate 
and quick eddy current force modeling is imperative for the 
study of the dynamics of such vehicle. Although finite 
element models are capable of computing the forces, 
analytical models are more appealing because of their 
computational efficiency. 
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Fig. 1  A 2 pole-pair Halbach rotor rotating above an aluminum plate. 
Isoline plot of the radial flux density and isosurface plot of the eddy 
current density is shown 

 
Fig. 2   A 3-D schematic of a single rotor 
above an aluminium plate. 

 
Fig. 3. The x-z view of a 2D 
schematic of the maglev vehicle  

(a) 

 

(b) 
Fig. 4.View of one Halbach rotor on aluminium plate of experimental 
prototype vehicle 

A plethora of research has been conducted to calculate 
eddy current fields in a conductive medium mostly in the 
context of eddy current testing and also for maglev vehicles. 
However, very few papers have considered the influence of 
the finite conductor plate width on the eddy current force. 
Urankar [7] presented a semi-analytic integral solution for the 
force acting on a conductive medium of arbitrary shape and 
finite width using the magnetic vector potential. However, in 
order to compute the force the integral equations need to be 
evaluated over the conductive domain as well as the exciter 
domain. The eddy current distribution due to the edge effect 
of a finite width conductive plate or conductive plate with a 
hole has been analytically derived using the second order 
vector potential [8, 9] and the magnetic vector potential [10]. 
Although these publications considered the finite width of the 
plate with hole or crack for impedance variation calculations, 
they did not consider the finite thickness of plate for force 
calculations [9-11]. Recently Pluk et al. [12] used a mirroring 
technique [13] to consider the finite length and width of a 
conductive plate and provided a semi-analytic solution for 
the induced current density. More recently Paul et al. [14] 
presented a simple, fast analytic model to compute the eddy 
current induced lift and thrust/drag force using only two 
components of the magnetic vector potential. However, the 

Improved Analytic Model for Eddy Current Force 
Considering Edge-Effect of a Conductive Plate 

S. Paul, J. Z. Bird 
 

R



  

accuracy of this analytic model degrades with increased plate 
thickness. To account for the edge effect, in [15] Paul et. al. 
modeled the side-air regions using the magnetic vector 
potential. This resulted in an improved thrust and lift force 
which is applicable to a plate of any thickness. However, the 
limitation of the models [14, 15] is explained in Fig. 5 [16] in 
which the flux density for a 15mm thick plate and 35mm 
lateral offset of the rotor is compared. It is observed that near 
the edge (i.e. z=0mm) the error in the analytically calculated 
By and Bz field increases which results in inaccurate lateral 
force calculation. The 2-component and 3-component 
analytic models refer to the models presented in [14] and 
[15] respectively. 
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Fig. 5 Flux density comparison at x=0mm on the top plate surface. [16] 

The contribution of this paper is to accurately model the 
edge effect in a conductive plate of finite thickness and width 
for the thrust, lift and lateral force computation. The results 
will be validated with finite element analysis (FEA). The 
assumptions of the proposed model are: (1) The plate length, 
l, is infinite but width, w, and thickness, h, are finite; (2) The 
plate is continuous, non-magnetic, linear and homogenous 
and (3) The magnetic source has only rotational motion.  

II. GOVERNING EQUATION FORMULATION 

The x-y and y-z view of the problem domain are shown in 
Fig. 6. In order to achieve coupling between the fields in the 
plate, ΩII, and side region, ΩIV, in a mathematically elegant 
manner the fields in these regions can be modeled as Fourier 
series with eigenvalues determined by applying appropriate 
boundary conditions at the interface boundary, Γe. 

 
(a) 

 
(b) 

Fig. 6 (a) x-y and (b) y-z view of the problem domain showing lateral offset 
of magnetic rotor from the plate center. 

The field of the magnetic rotor is required only in the 
boundary condition of boundary Γt in order to determine the 
eddy current fields. Hence, the simplified problem domain of 
Fig. 7 can be derived from Fig. 6 by omitting the rotor. In 
this paper the induced and reflected fields in the conductive 
region ΩII and nonconductive region ΩIV are modeled using 
second order vector potential (SOVP) [17] while the fields in 
the nonconductive regions ΩI and ΩIII are modeled using 
magnetic scalar potential. Due to such a choice of potentials 
the number of unknowns in the problem domain has been 
kept to a minimum. 

 
(a) 

 

 
 
 (c) 

 
(b) 

Fig. 7. (a) x-y and (b) y-z view of the reduced problem domain, (c) Halbach 
rotor enclosed in cylindrical charge sheet on its outer surface [18] 

The solution domain (originally infinite) has been truncated 
along the x and z-directions with suitable boundary 
conditions while it is unconstrained along the y-axis. Thus 
the domain extends from 0 to l in the x-direction and from 0 
to Lz in the z-direction. In this paper, perfect magnetic 
conduction (PMC) boundary condition has been applied at 
x=0 and perfect electric conduction condition (PEC) has been 
applied at x=l  
 iB i y z  0, ,= = , at x=0 (1) 

 xB 0= , at x=l (2) 

Along the z-axis, a PMC condition is applied at z = 0, Lz 
 iB i x y  0, ,= = , at z = 0, Lz (3) 

This choice of boundary conditions yields Fourier series with 
respect to x and z axes without zero frequency terms which 
greatly simplifies the solution procedure. 

A. Conductive Region (ΩII) 

Magnetic vector potential, A, and flux density, B, are 
related to the SOVP, W, as follows [17]  
 A W= ´ , B A= ´  (4) 
W can be split into transverse electric (TE), Wa, and 
transverse magnetic (TM), Wb, scalar potentials with z-
preferred direction as follows  
 a bzW z WW ˆ ˆ= + ´  (5) 

Here ẑ is the unit vector along the z-direction. A steady state 
solution for the scalar TE and TM potentials is assumed as  

 ej tk
i iW x y z t W x y z e i a b k II IV  ( , , , ) ( , , ) , , ; ,w-= = =  (6) 

where ωe is the electrical rotational speed of the rotor [rad/s]. 
The TE and TM potentials satisfy the following  
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where ej2
0e m sw= - , σ = plate conductivity[Sm-1]. The 

normal component of the eddy current or the magnetic vector 
potential should be zero at the plate edges i.e. at z=0 and 
z=w  
 zA 0= , at z=0, w (8) 

From (4) it can be noticed that with the z-preferred direction 
of the SOVP, given by (5), the Az component is a function of 
the Wb potential only. Hence the boundary condition (8) can 
be satisfied by choosing suitable Fourier representation of 
only the Wb potential. Equation (7) can be solved using 
separation of variable method and boundary conditions (1)- 
(3), (8)  
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The eigenvalues qn are determined from the continuity 
condition of the magnetic flux density and field intensity at 
z=w and will be discussed in section III.A. It must also be 
noted that (9) and (10) have different numbers of harmonics 
along the z-axis. The logic behind this will also be discussed 
in section III.A. 

B. Nonconductive Region ΩIV 

The TM potential does not contribute to the magnetic 
field in ΩIV and hence is not modeled. The TE potential 
satisfies  
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The following general solution for the TE potential can be 
obtained which satisfies (1)-(3) 
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where mn m np
2 2v x= +  (17) 

and eigenvalues pn need to be determined from the boundary 
condition at z=w as described in section III.A. However, to 
match region ΩII with region ΩIV on a term-by-term basis, 
their y-dependency can be chosen to be equal i.e 
 mn mnv a=  (18) 

This implies, n np q2 2 2e= +  (19) 

Also the TE potential coefficients in ΩIV can be expressed as 
a linear function of the coefficients in ΩII  

 IV IVa a
mn mn mn mn mn mnC a C D a D   ;= =  (20) 

where amn is a linear factor and will be determined in section 
III.A. Using (18)-(20), (16) becomes  
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C. Nonconductive Regions ΩI and ΩIII 

The fields in ΩI, ΩIII are modeled using the magnetic 
scalar potential, φ. In the absence of free current the 
magnetic scalar potential satisfies the following Laplace 
equation 

 2
0 0m f = ,     in ΩI, ΩIII (22) 

Using the separation of variable method and applying 
boundary conditions (1)-(3), (22) can be solved to yield the 
fields as  
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where   n zk n L/p=  (25) 

 mn n mk2 2k x= +  (26) 

The y-dependency of (23)-(24) is chosen to decay the 
reflected and transmitted fields in regions ΩI, ΩIII away from 
the conductive plate.  

D. Source field modeling 

The magnetic field of a Halbach rotor has been 
analytically modeled in 2D in [19]. In order to compute the 
fields in 3D the rotor is assumed to be wrapped in a 
cylindrical charge sheet [18], as shown in Fig. 7(c), and the 
charge density is assumed to be uniform along the z-axis as 
the magnetization is uniform along this direction. The charge 
density is related to the Halbach rotor radial flux density at 
the charge sheet location by [18] 

 ojPs
ms o o r o o or B r e u z w u z w( , ) 2 ( ) [ ( / 2) ( / 2)]qr q = + - -  (27) 

where, wo is the Halbach rotor width. The radial flux density 
at radial distance r from the center of the rotor can be 
computed from [19] 
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where, µr, P, ro, ri and Brem are the relative permeability, 
number of pole-pair, outer radius, inner radius and remanent 
flux density of the rotor respectively. With the knowledge of 
charge density the magnetic scalar potential at any point, M 
(x,y,z), in space external to the rotor can be calculated [18] 
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where,  r = - - - - - -ˆˆ ˆ( cos ) ( sin ) ( )MA c o o c o o c ox x r x y y r y z z z zq q+ + (30) 

For generality, the origin of the Halbach rotor is located at 
(xc,yc,zc). In (29) the integration with respect to zo is 
performed analytically whereas integration with respect to θo 
is accomplished numerically. However, the source field 
needs to be represented with a Fourier series with the same 
eigenvalues as the scalar potential in regions ΩI, ΩIII. A 2D 
discrete Fourier Transform is applied on the scalar field 
computed using (29) on the top plate surface, Γt i.e. at y=0 to 
represent the field as 
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where, ξm and kn are defined in (11) and (25), respectively. 

III. FIELD SOLUTION  

A. Determination of unknown eigenvalues  

In order to determine the unknown eigenvalues pn and qn, 
the continuity condition of the magnetic flux density and 
field intensity is applied at z=w. From the continuity of the 
normal component of the flux density, Bz, one obtains 
 ( )n n z mnq w p L w acos( ) cos ( )= -  (32) 

From the continuity of the tangential component (Bx and By) 
of the flux density (noting unity relative permeability 



  

throughout in the problem domain) 
 ( )n n n z n mnq w q p L w p asin( ) sin ( )- = -  (33) 

Dividing (33) by (32) gives  
 ( )n n n z nq w q p L w ptan( ) tan ( ) 0+ - =  (34) 

Using (19), (34) can be written as  

 ( ) ( )n n n n zp w p p p L w2 2 2 2tan tan ( ) 0e e- - + - =  (35) 

Equation (35) is solved numerically using Newton-Raphson 
iteration scheme to find pn. Equations (19) and (32) are then 
used to calculate qn and amn respectively. For detailed 
discussion on the root finding algorithm the reader can refer 
to [8]. Another numerical aspect of this formulation is the 
choice of the maximum summation index Nz and Nr. The 
choice of Nz depends on the value of Lz. Generally the larger 
the problem domain, the greater is the number of required 
terms [10]. For the simulations presented in this paper Nz has 
been chosen to be 64 for Lz=200mm. It is observed that 
choosing Nr ~Nz may make the system of equations ill-
conditioned. Hence choosing the ratio of Nr/Nz ~ w/Lz keep 
the condition number sufficiently low [8].  

B. Determination of unknown coefficients 

In order to determine the unknown Fourier series 
coefficients of the fields, the boundary condition is applied at 
y=0 and -h. From the continuity of Bx at y=0 for each m 
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Multiplying both sides by sin(kiz) and integrating from z=0 to 
Lz gives 

I(S +A )= M C +D + M b C -D(1) 2 (2)
00.5 ( ) ( )a a b b

z m m m m m m m m mL fm x x e-  (37) 

where, 
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 diagm mn r rN Nb   [ ], [ ]b= ´  (40) 
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From the continuity of By at y=0, for each m 
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where, diagm mn z zN Nk   [ ], [ ]k= ´  (42) 

 diagm mn z zN Na   [ ], [ ]a= ´  (43) 

From the continuity of Bz at y=0, for each m 
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Next, boundary conditions are applied at y= -h. Applying the 
continuity of the Bx at y= -h yields 
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where, diagm mnh h
z ze N Nae   [ ], [ ]a- -= ´  (48) 

 diagm mnh h
r re N Nbe   [ ], [ ]b- -= ´  (49) 

From the continuity of By at y= -h the following is obtained 
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From the continuity of Bz field at y=-h 
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Equations (37), (41), (44), (47), (50), (51) can be written as 
 Ax = b  (52) 

where, 
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Matrix A is of dimension z z rN N N[4 2( )]´ +  whereas 

vectors x  and b  have the dimension of z rN N[2( ) 1]+ ´  and 

zN[4 1]´ , respectively. Matrix A is asymmetric, but it has 

full column rank. Thus its left pseudo-inverse is a fairly 
accurate representation of its true inverse and x  can be 

obtained by solving (58), where A+ is the pseudo-inverse of 
A and is computed in Matlab. 

 x = A b+  (58) 

IV. FORCE CALCULATION  

Maxwell stress tensor using the magnetic flux induced in 
the conductive medium is used to calculate the forces. Thrust 
force is calculated using 
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The first two integrals calculate force from top, Γt and 
bottom, Γb surfaces whereas the third one computes force 
from side surface, Γe. Lift force is calculated using 
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Lateral force is calculated using 
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Detailed expression for each component of the thrust, lift and 
lateral force is provided in the Appendix.  

V. MODEL VALIDATION  

A. Field Validation 

The geometric and material properties of the Halbach rotor 
and conductive plate are listed in Table 1. The induced 
magnetic flux density in the conductive plate has been 
compared against a previously developed 3-D FEA steady 
state model [6] for 25mm lateral offset of the rotor with flux 
density and field intensity continuity condition set at the 
interface of the conductive plate and surrounding air region 
in the FEA. Fig. 8 shows the flux density comparison on the 
top surface of the conductive plate across the z-axis. An 
excellent field match has been obtained. 

Table 1 Simulation Parameters 

 Description Value Unit 

Halbach 
rotor 

Outer radius, ro 26 mm 
Inner radius, ri 9.62 mm 
Width, wo 52 mm 
Remanent flux density, Brem

 1.42 T 
Relative permeability, r 1.108 - 
Pole pair number, P 2 - 

Conductiv
e plate 

Conductivity, σ 2.459107  Sm-1 
Width, w 77 mm 
Length, l 200 mm 
Thickness, h  6.3 mm 
Air-gap between rotor and plate, g 9.5 mm 

Table 2 Computation time for analytic and FEA models 
Model type Computation time 

JMAG transient 5 hr 40 min 
Current sheet based Comsol steady state model  8 min 
Proposed analytic model using SOVP 32 s 

B. Force Validation 

The electromagnetic forces are compared with an FEA 
steady state model developed using Comsol and JMAG for 
different lateral offset and rotational speed values. The 
results are shown in Fig. 9-Fig. 10. A very good match of the 
forces has been achieved. The average computation time 
using a Dell E5520 workstation for a single rotational speed 
by the FEA and analytic models are listed in Table 2. The 
computation time of the proposed analytic model is longer 
than the model presented in [14]. This is mainly due to the 
need for the numerical computation of complex valued 
eigenvalues. Hence, if the eigenvalues can be calculated 

beforehand and stored in a look-up table, the analytic model 
can be made faster. The average accuracy of the developed 
analytic model with respect to JMAG and Comsol FEA 
models [6] has been compared as shown in Table 3 
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Fig. 8 Induced flux density comparison on the top surface of the 
conductive plate at (a) x=20mm and (b) x= 0mm for 25mm lateral offset of 
the rotor at zero translational velocity and 8000 RPM  
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Fig. 9 Comparisons of (a) Fx,  Fy and (b) Fz for 25mm lateral offset of the 
rotor at zero translational velocity. 

Table 3 Accuracy of the developed analytic steady state model 
Force  Avg. Error with JMAG [%] Avg. Error with Comsol [%] 

Thrust 4.32 7.95 
Lift 3.04 5.8 
Lateral 3.3 6.23 

VI. CONCLUSION 

An analytic 3-D steady state model of the eddy current 
distribution in a conductive plate has been developed 
considering the edge effect of the plate. The accuracy of the 
proposed model has been confirmed by comparison with 
FEA results. However, the accuracy comes at the cost of 
computational burden due to the numerical calculation of the 



  

eigenvalues which can be improved with the use of a look up 
table. 
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Fig. 10  Comparisons of (a) Fx, Fy and (b) Fz for 15mm lateral offset of the 
rotor at zero translational velocity. 

VII. APPENDIX 

A. Thrust force  

The thrust force from the top plate surface is  
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where * superscript indicates complex conjugation and 
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The force from the bottom surface Γb can be computed from 

(62) by replacing a
mnC , a

mnD  , b
mnC  and b

mnD with mnha
mnC e a- , 

mnha
mnD ea , mnhb

mnC e b-  and mnhb
mnD eb  respectively. The 

following computes the thrust force from edge surface Γe 
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B. Lift force  

The lift force from the top plate surface is calculated from  
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Lift force can be computed from the bottom surface Γb by 

replacing a
mnC , a

mnD  , b
mnC  and b

mnD with mnha
mnC e a- , 

mnha
mnD ea , mnhb

mnC e b-  and mnhb
mnD eb  respectively.  Lift force 

from the plate edge is given by  
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C. Lateral force 

The lateral force from the top plate surface is  
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Similarly lateral force from the bottom surface Γb can be 
computed. The lateral force due to side surface is  
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