Improved Analytic Model for Eddy Current Force
Considering Edge-Effect of a Conductive Plate

S. Paul, J. Z. Bird

Abstract -- The eddy current induction in a conductive
medium with finite width and thickness due to a moving
magnetic rotor is studied. The presented formulation is based
on the second order vector potential and the magnetic scalar
potential and takes into account the magnetic field interaction
through the edges of the conductive medium. The eddy current
fields as well as thrust, lift and lateral force created by the
rotational motion of the magnetic rotor have been computed
and the accuracy and computation time have been compared
with steady-state and transient finite element analysis results.

Index Terms-- eddy current, edge-effect, Halbach, Maglev

1. INTRODUCTION

ESEARCH has been conducted in the past to find

integrated propulsion and suspension solutions with a

passive guideway for magnetic levitated vehicles
(maglev). The linear inductor motor (LIM) [1], self-excited
linear synchronous motor [2] and electromagnetic river [3]
are some of the ideas that have been proposed. In [4, 5] Fujii
et al. proposed the use of magnetic rotors rotating above a
conductive plate as a means of creating both propulsion and
levitation force. More recently, Bird [6] proposed using an
Electrodynamic Wheel (EDW) concept, as shown in Fig. 1,
in which Halbach magnet rotors rotate and translationally
move above a non-magnetic conductive plate. The induced
eddy currents in the plate interact with the magnetic field of
the Halbach rotor and lift the vehicle. The induced eddy
currents also simultaneously create propulsion or drag force
depending on the slip speed, s;. The slip speed is defined

ass, = w,r, —v,, where wu, v, and 7, are the mechanical
rotational speed [rads™'], translational speed [ms™'] and outer
radius of the rotor [m]. If the slip speed is positive,
propulsion force results and pushes the vehicle forward. But
if it is negative, drag force is generated and slows the vehicle
down. A 3D schematic of a single Halbach rotor above an
aluminum plate is shown in Fig. 2 and schematic of such
vehicle is shown in Fig. 3. A prototype model is shown in
Fig. 4. In addition to lift and drag/thrust force there is a
lateral force that may decenter the vehicle. Thus an accurate
and quick eddy current force modeling is imperative for the
study of the dynamics of such vehicle. Although finite
element models are capable of computing the forces,
analytical models are more appealing because of their
computational efficiency.
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Fig. 1 A 2 pole-pair Halbach rotor rotating above an aluminum plate.
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Fig. 2 A 3-D schematic of a single rotor
above an aluminium plate.
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Fig. 4.View of one Halbach rotor on aluminium plate of experimental
prototype vehicle

A plethora of research has been conducted to calculate
eddy current fields in a conductive medium mostly in the
context of eddy current testing and also for maglev vehicles.
However, very few papers have considered the influence of
the finite conductor plate width on the eddy current force.
Urankar [7] presented a semi-analytic integral solution for the
force acting on a conductive medium of arbitrary shape and
finite width using the magnetic vector potential. However, in
order to compute the force the integral equations need to be
evaluated over the conductive domain as well as the exciter
domain. The eddy current distribution due to the edge effect
of a finite width conductive plate or conductive plate with a
hole has been analytically derived using the second order
vector potential [8, 9] and the magnetic vector potential [10].
Although these publications considered the finite width of the
plate with hole or crack for impedance variation calculations,
they did not consider the finite thickness of plate for force
calculations [9-11]. Recently Pluk et al. [12] used a mirroring
technique [13] to consider the finite length and width of a
conductive plate and provided a semi-analytic solution for
the induced current density. More recently Paul et al. [14]
presented a simple, fast analytic model to compute the eddy
current induced lift and thrust/drag force using only two
components of the magnetic vector potential. However, the



accuracy of this analytic model degrades with increased plate
thickness. To account for the edge effect, in [15] Paul et. al.
modeled the side-air regions using the magnetic vector
potential. This resulted in an improved thrust and lift force
which is applicable to a plate of any thickness. However, the
limitation of the models [14, 15] is explained in Fig. 5 [16] in
which the flux density for a 15mm thick plate and 35mm
lateral offset of the rotor is compared. It is observed that near
the edge (i.e. z=0mm) the error in the analytically calculated
B, and B: field increases which results in inaccurate lateral
force calculation. The 2-component and 3-component
analytic models refer to the models presented in [14] and

[15] respectively.
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Fig. 5 Flux density comparison at x=0mm on the top plate surface. [16]

The contribution of this paper is to accurately model the
edge effect in a conductive plate of finite thickness and width
for the thrust, lift and lateral force computation. The results
will be validated with finite element analysis (FEA). The
assumptions of the proposed model are: (1) The plate length,
1, is infinite but width, w, and thickness, #, are finite; (2) The
plate is continuous, non-magnetic, linear and homogenous
and (3) The magnetic source has only rotational motion.

II. GOVERNING EQUATION FORMULATION

The x-y and y-z view of the problem domain are shown in
Fig. 6. In order to achieve coupling between the fields in the
plate, Qy, and side region, Qyy, in a mathematically elegant
manner the fields in these regions can be modeled as Fourier
series with eigenvalues determined by applying appropriate
boundary conditions at the interface boundary, T..
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Fig. 6 (a) x-y and (b) y-z view of the problem domain showing lateral offset
of magnetic rotor from the plate center.

The field of the magnetic rotor is required only in the
boundary condition of boundary I'; in order to determine the
eddy current fields. Hence, the simplified problem domain of
Fig. 7 can be derived from Fig. 6 by omitting the rotor. In
this paper the induced and reflected fields in the conductive
region Qp and nonconductive region Qv are modeled using
second order vector potential (SOVP) [17] while the fields in
the nonconductive regions € and Qp are modeled using
magnetic scalar potential. Due to such a choice of potentials
the number of unknowns in the problem domain has been
kept to a minimum.
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( lgig. 7. (a) x-y and (b) y-z view of the reduced problem domain, (c) Halbach
rotor enclosed in cylindrical charge sheet on its outer surface [18]
The solution domain (originally infinite) has been truncated
along the x and z-directions with suitable boundary
conditions while it is unconstrained along the y-axis. Thus
the domain extends from 0 to / in the x-direction and from 0
to L. in the z-direction. In this paper, perfect magnetic
conduction (PMC) boundary condition has been applied at
x=0 and perfect electric conduction condition (PEC) has been
applied at x=/

B, =0, i=y,z,atx=0 €))]
B, =0,atx=l )

Along the z-axis, a PMC condition is applied at z=0, L
B, =0, i=umy,atz=0,L. 3)

This choice of boundary conditions yields Fourier series with
respect to x and z axes without zero frequency terms which
greatly simplifies the solution procedure.

A. Conductive Region (Qp)
Magnetic vector potential, A, and flux density, B, are
related to the SOVP, W, as follows [17]
A=VxW,B=VxA )
W can be split into transverse electric (TE), W, and
transverse magnetic (TM), W, scalar potentials with z-
preferred direction as follows
W =:W, + 2x VW, ()
Here Zis the unit vector along the z-direction. A steady state
solution for the scalar TE and TM potentials is assumed as
W, (2,9,2,t) = Wrz,y,2)e ™, i = a,bsk = ILIV  (6)
where w, is the electrical rotational speed of the rotor [rad/s].
The TE and TM potentials satisfy the following

OQWvH OQWvH aZWVII )
T T =W i=ab, @)
o2 12 07*
where & = —jyow,, 0 = plate conductivity[Sm™']. The

normal component of the eddy current or the magnetic vector
potential should be zero at the plate edges i.e. at z=0 and
zZ=w
A =0,atz=0,w ®)
From (4) it can be noticed that with the z-preferred direction
of the SOVP, given by (5), the 4. component is a function of
the W), potential only. Hence the boundary condition (8) can
be satisfied by choosing suitable Fourier representation of
only the W, potential. Equation (7) can be solved using
separation of variable method and boundary conditions (1)-
3. (®)
M N,

I/I/“Il(z,y,z) = Z ZSin(gmz)cos(qnz)(C;me“m"” + Dy e ") (9)

m=1n=1



M N,

Uz, y,2 Z Zco% )sin(r, z)(Cfnne mad | Dsme"m"y) (10)
m=1n=1

where €, = W(ngil_l), 1<m <o (11)

r,=nm/w 1<n<oo (12)

B = NG, + 17+ (14)

The eigenvalues ¢, are determined from the continuity
condition of the magnetic flux density and field intensity at
z=w and will be discussed in section III.A. It must also be
noted that (9) and (10) have different numbers of harmonics
along the z-axis. The logic behind this will also be discussed
in section IIT.A.

B.  Nonconductive Region Qy

The TM potential does not contribute to the magnetic
field in Qv and hence is not modeled. The TE potential
satisfies

62W1V

21171V
6VV“ ; :O,ian (15)

62le
o+ +
O dy? 0z
The following general solution for the TE potential can be
obtained which satisfies (1)-(3)

M N,

W (,9,2)=3_ > sin(€,2) cos(p, (L,=2)) (Cpy ™"+ D1 e ")
m=1n=1

(16)

where @, =& + p? (17)

and eigenvalues p, need to be determined from the boundary
condition at z=w as described in section III.A. However, to
match region Qp with region Qv on a term-by-term basis,
their y-dependency can be chosen to be equal i.e

(18)
=t (19)
Also the TE potential coefficients in Qv can be expressed as
a linear function of the coefficients in Qy

CIV — oo - DIV =a D’a

mn mn mn’ mn mn=_ mn

D = Y

This implies,

(20)
where a,,, is a linear factor and will be determined in section
II1.A. Using (18)-(20), (16) becomes

M N,
WIV Z Zsln T 005 (L )) (Csme“m!/_FDlln “muy)

m=1n=1
(2]

C. Nonconductive Regions Qr and Qi

The fields in Qi Qu are modeled using the magnetic
scalar potential, ¢. In the absence of free current the
magnetic scalar potential satisfies the following Laplace
equation

/LOVQ(/) =0, in QI, Qm (22)
Using the separation of variable method and applying
boundary conditions (1)-(3), (22) can be solved to yield the
fields as

M N,

= 20> A, sin

m=1n=1

(29,2 x)sin(k, z)e” Y (23)

M N,

OM(ay2) = DS AN sin(€,@)sin(k,2)e" T (24)
m=1n=1

where k, =nr /L, (25)

Ko = b + &, (26)

The y-dependency of (23)-(24) is chosen to decay the
reflected and transmitted fields in regions Q; Q; away from
the conductive plate.

D. Source field modeling

The magnetic field of a Halbach rotor has been
analytically modeled in 2D in [19]. In order to compute the
fields in 3D the rotor is assumed to be wrapped in a
cylindrical charge sheet [18], as shown in Fig. 7(c), and the
charge density is assumed to be uniform along the z-axis as
the magnetization is uniform along this direction. The charge
density is related to the Halbach rotor radial flux density at
the charge sheet location by [18]

Pus(110,) = 2B3(r,)e " [uz + w, [ 2) — u(z = w, / 2)] (27)
where, w, is the Halbach rotor width. The radial flux density

at radial distance r from the center of the rotor can be
computed from [19]

e
L+ P g P

i

r 2P 1

° (28)
(L4 P2
where, u,, P, ro, r; and B.., are the relative permeability,
number of pole-pair, outer radius, inner radius and remanent
flux density of the rotor respectively. With the knowledge of
charge density the magnetic scalar potential at any point, M
(x,,2), in space external to the rotor can be calculated [18]
eI

s 27w, /2
2”’“" 0 —w,/2 7

P+1
)

¢ (2,9,2) = (29)

where, r,,,=(z-2, -7, cos0)i + (y-y -7, sin b )j+ (2-2,-2,)z (30)

For generality, the origin of the Halbach rotor is located at
(XeVoze). In (29) the integration with respect to z, is
performed analytically whereas integration with respect to 6,
is accomplished numerically. However, the source field
needs to be represented with a Fourier series with the same
eigenvalues as the scalar potential in regions Qi Qu. A 2D
discrete Fourier Transform is applied on the scalar field
computed using (29) on the top plate surface, I’ i.e. at y=0 to
represent the field as

M N,

Z Z §2 sin(¢
m=1n=1

where, &, and k, are defined in (11) and (25), respectively.

(z,0,2) z)sin(k,z) , on I 31

III. FIELD SOLUTION

A. Determination of unknown eigenvalues

In order to determine the unknown eigenvalues p, and g,
the continuity condition of the magnetic flux density and
field intensity is applied at z=w. From the continuity of the
normal component of the flux density, B., one obtains

cos(q,w) = cos(pn(Lz — w))amn (32)
From the continuity of the tangential component (B, and B,)
of the flux density (noting unity relative permeability



throughout in the problem domain)

—sin(g,w)q, = sin(pn(LZ —w))p,a,, 33)
Dividing (33) by (32) gives
tan(g,w)q, + tan(p" L, - w))pn =0 (34)
Using (19), (34) can be written as
\/ﬁtan(u}\/ﬁ) + p, tan(p, (L, — w)) =0 (35)

Equation (35) is solved numerically using Newton-Raphson
iteration scheme to find p,. Equations (19) and (32) are then
used to calculate ¢, and @, respectively. For detailed
discussion on the root finding algorithm the reader can refer
to [8]. Another numerical aspect of this formulation is the
choice of the maximum summation index N. and N,. The
choice of N: depends on the value of L.. Generally the larger
the problem domain, the greater is the number of required
terms [10]. For the simulations presented in this paper N: has
been chosen to be 64 for L,=200mm. It is observed that
choosing N, ~N. may make the system of equations ill-
conditioned. Hence choosing the ratio of N/N. ~ w/L. keep
the condition number sufficiently low [8].

B. Determination of unknown coefficients

In order to determine the unknown Fourier series
coefficients of the fields, the boundary condition is applied at
y=0 and -A. From the continuity of B, at y=0 for each m

N.
_lu()ZSin(knz)gm (ng + A}nn) =

n=1

NZ
72 Sin(qTLZ)£TTLqVI <C::Hl + D;IVHI )

nl

+e ZSm z)ﬁm"(Cgm
Zsm( D,

n=1

Multiplying both sides by sin(k:z) and integrating from z=0 to
L. gives

—11,0.5L.€, (S? +A! )=¢ MY(C? +D? }+*M?b_(C: -D’)) (37)
where,

(36)
- ng),() <z<w

>£Tﬂp7laﬂbﬂ (C:;m + DI‘;LII )7 w < z < LZ

MY = —q, fsm(k’z sin(g,z)dz +
(38)
pnamnfsin(kiz) sin[p, (L, — 2)ldz, [N, x N,]

w

w

f%ln (k,z)sin(r, 2)dz, [N, x N, ]
0

bm, = dlag[ﬁmn]’
o, D,

(39

(40)

are vectors quantities of dimension

[Nr X N7]
§(P s AI s

[N, x 1] whereas C!
From the continuity of By at y=0, for each m

D’ are vectors of dimension [N, x 1].

m?>

—11,0.5L.k, (S0-AL )=MWa_(Cy -Di )+e’¢, MP(C! +D)) (41)
where, k, = diaglk, ], [N, xN,] (42)
a = diaglo,, ], [N, xN,] (43)

From the continuity of B: at y=0, for each m

~1y0.5LK(S) + AL ) = MOI(Ce, + D)

[N, xN,]

(44)

where, K = diag[k, ], (45)
w L,

M(g):-pifcos(kiz)cos(q”z)dz-p;zlanmfcos(ka) cosp, (L,-z)]dz (46)
0 w

Next, boundary conditions are applied at y= -4. Applying the

continuity of the By at y=-h yields

—11,0.5L,6, Al = ¢ MW(C2e ™" 4 D2 e*n") +

A - - (47)
621\/[(2)1_) (Cb efb,"h _ Dl;neb"’h')
where, e ™" = diagle™ "], [N, x N,] (48)
e " = diagle ""), [N, x N,] (49)
From the continuity of B, at y=-h the following is obtained
_11/00'5sz"7,§5!1 = M(l)aﬂl(éfneia" e mh) + (50)
5257711\/[(2)(6?”9*1%” + Db ebmh)
From the continuity of B; field at y=-h
—1,0.5L KA™ = M®)(C2 e " 4 D? e*") (51)

Equations (37), (41), (44), (47), (50), (51) can be written as

AX=b (52)
A A B, -B,
A2 : A?d B2 B‘Z
here, A = . 53
where Ale—amh Aleamh Ble—bmh _B ebmh, (53)
AZde*a"Lh AzCea"’h ,Bze*bmh B2ebmh
o
_ T
b=[0 —pLk,S; 0 0 (55)
A, =&, [K'M® - MO B, = —2M®b, ;B, = <%, M® (56)
A2c = [kailM( ) + M a ] Azd - [k K 1M( ) — (1)am] (57)
Matrix A is of dimension [4N, x2(N, + N,)] whereas

vectors X and b have the dimension of [2(N, + N,) x 1] and

[4N, x 1], respectively. Matrix A is asymmetric, but it has

full column rank. Thus its left pseudo-inverse is a fairly
accurate representation of its true inverse and X can be

obtained by solving (58), where A* is the pseudo-inverse of
A and is computed in Matlab.

%= A'D (58)

IV. FORCE CALCULATION

Maxwell stress tensor using the magnetic flux induced in
the conductive medium is used to calculate the forces. Thrust
force is calculated using

I w

- i { { BB

[t
1
4= Blpls
2MU A{*h t
The first two integrals calculate force from top, Iy and
bottom, I', surfaces whereas the third one computes force
from side surface, I.. Lift force is calculated using

I w

0 dzdx — ffB;_'B;* y:7

0 0

i dzdx
(59)
dydz




I w

f BIIBII* BIIBH* BIIBII* ) dede
Y 4u y=0
00 0
I w
f B”B”* BIIBII* BIIBII* ) ded
4y y=—h
Hoo %0
ffB”B”*  dydx (60)

0 —h
Lateral force is calculated using

I w I w
F = f [BUBY|  dede— [ [ BN dede
2“0 U U =0 00 = (61)
L 11 211 1T 11 11 ppIl%
- ffBB — BIB!" - B/B)")| _dyda

o "o “
Detailed expression for each component of the thrust, lift and
lateral force is provided in the Appendix.

V. MODEL VALIDATION

A. Field Validation

The geometric and material properties of the Halbach rotor
and conductive plate are listed in Table 1. The induced
magnetic flux density in the conductive plate has been
compared against a previously developed 3-D FEA steady
state model [6] for 25mm lateral offset of the rotor with flux
density and field intensity continuity condition set at the
interface of the conductive plate and surrounding air region
in the FEA. Fig. 8 shows the flux density comparison on the
top surface of the conductive plate across the z-axis. An
excellent field match has been obtained.

Table 1 Simulation Parameters

Description Value Unit

Outer radius, 7, 26 mm

Inner radius, 7; 9.62 mm

Halbach Width, w, 52 mm
rotor Remanent flux density, Byn 1.42 T
Relative permeability, 4 1.108 -
Pole pair number, P 2 -

Conductivity, o 2.459x107 Sm’!

. Width, w 77 mm

eC(;;li:ctlv Length, / 200 mm

Thickness, / 6.3 mm

Air-gap between rotor and plate, g 9.5 mm

Table 2 Computation time for analytic and FEA models

Model type Computation time
JMAG transient 5 hr 40 min
Current sheet based Comsol steady state model 8 min
Proposed analytic model using SOVP 32s

B. Force Validation

The electromagnetic forces are compared with an FEA
steady state model developed using Comsol and IMAG for
different lateral offset and rotational speed values. The
results are shown in Fig. 9-Fig. 10. A very good match of the
forces has been achieved. The average computation time
using a Dell E5520 workstation for a single rotational speed
by the FEA and analytic models are listed in Table 2. The
computation time of the proposed analytic model is longer
than the model presented in [14]. This is mainly due to the
need for the numerical computation of complex valued
eigenvalues. Hence, if the eigenvalues can be calculated

beforehand and stored in a look-up table, the analytic model
can be made faster. The average accuracy of the developed
analytic model with respect to JMAG and Comsol FEA
models [6] has been compared as shown in Table 3
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Fig. 8 Induced flux density comparison on the top surface of the
conductive plate at (a) x=20mm and (b) x= Omm for 25mm lateral offset of
the rotor at zero translational velocity and 8000 RPM
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Fig. 9 Comparisons of (a) Fy, F, and (b) F. for 25mm lateral offset of the
rotor at zero translational velocity.

Table 3 Accuracy of the developed analytic steady state model

Force Avg. Error with IMAG [%] Avg. Error with Comsol [%]
Thrust 4.32 7.95
Lift 3.04 5.8
Lateral 33 6.23

VI. CONCLUSION

An analytic 3-D steady state model of the eddy current
distribution in a conductive plate has been developed
considering the edge effect of the plate. The accuracy of the
proposed model has been confirmed by comparison with
FEA results. However, the accuracy comes at the cost of
computational burden due to the numerical calculation of the



eigenvalues which can be improved with the use of a look up
table.
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Fig. 10 Comparisons of (a) Fy, F, and (b) F. for 15mm lateral offset of the
rotor at zero translational velocity.

VII. APPENDIX
A. Thrust force

The thrust force from the top plate surface is
M N, M N,
z 721 a a
2‘LL Z Z Z Z ImlI"] 77lq7l (07717l+D77l7!)
0 | m=1n=1i=1 =1
M N, M N,
S S S S I 3,4, (4 D2, E(C DY)

m=1n=1i=1 [=1
M N. M N,

Ftop

T

" (Cii"-Dyi)

- 52 Z Z Zzlﬁulvzzlg mn Cz)rm mn)ql (Cl(; Dl(;*)
m=1n=1i=1 =1
M N, M N,
Y3 S S I8, (Db, )& (Cl DY) | (62)
m=1n=1m=1n=1

where * superscript indicates complex conjugation and

5 1- cos[(fi+§m )l] l-cos[(gi-gm)l} £t
o & +¢,) & -¢€,) ' , .
" eoslE + 6] -
(& +¢&,) 7 ‘ "
I3 = 0.5 sin(q, — )] B sin| (g, + ¢ )w] (64)
(¢, —q") (g, +q")
R (S AR
(@, —n) (0, + 1)
ool ]l san]] o
(r, —a") (r, +q")
24 __ 0’ rn = rl
In,l - {’U} / 27 Tn — 72 (67)

The force from the bottom surface I', can be computed from
(62) by replacing C¢ , D* and D' with C¢ ¢ @m"

mn > mn 2 m n mn rrm

C e Pl and D! P! respectively. The
following computes the thrust force from edge surface I,

D il
mn ’

M N, M N,

Z Zzzlzw sin qnw mqn COS(qZ ’Ll))p]

20y mZinst il =

Fside —

T

1 — et 1 — e (@Oma)h
o owl= ™MD L oo pee (68)
mn- il mn il
( mn, + @; ) ( mn — Yl )
(%n a;")h (@ 0"
Spnowlmet e peloet
T g man) " o)
X Q) mn, il

B. Lift force
The lift force from the top plate surface is calculated from

F;thp — m ff BIIBII* BB _ phpt- ) . dzdz (69)
0
where
I w
f f B;'B;*dzdz
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m 1;[ 1]1\/ 1 N, )
2* X:IXZUZ; lqn mn( mn sz,n )577 (Cfnl + Drbnl) (70)
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Lift force can be computed from the bottom surface I'; by

3 a a b b 3 a ,—a ""h
replaCIHg Cmn ’ ‘Dmn, 2 Cmn and Dmn Wlth Cmn
Dt et OV et and DY ePw! respectively. Lift force
mn mn p y
from the plate edge is given by
M N, N,
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C. Lateral force
The lateral force from the top plate surface is

M N, N,
F=—m LSS S (cn 408, Jasa, (C8,-D0, )
'u() m=1n=1[=1 (75)
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Similarly lateral force from the bottom surface I';, can be
computed The 1ateral force due to side surface is

szside — f BIIBII* BIIBII* BIIBII*) ddeE (78)
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0 —h
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