
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Huckvale and Moseley ﻿BMC Bioinformatics (2023) 24:78
https://doi.org/10.1186/s12859-023-05208-0

BMC Bioinformatics

kegg_pull: a software package
for the RESTful access and pulling
from the Kyoto Encyclopedia of Gene
and Genomes
Erik Huckvale1 and Hunter N. B. Moseley1,2,3* 

Abstract 

Background:  The Kyoto Encyclopedia of Genes and Genomes (KEGG) provides
organized genomic, biomolecular, and metabolic information and knowledge that
is reasonably current and highly useful for a wide range of analyses and modeling.
KEGG follows the principles of data stewardship to be findable, accessible, interoper-
able, and reusable (FAIR) by providing RESTful access to their database entries via their
web-accessible KEGG API. However, the overall FAIRness of KEGG is often limited by
the library and software package support available in a given programming language.
While R library support for KEGG is fairly strong, Python library support has been lack-
ing. Moreover, there is no software that provides extensive command line level support
for KEGG access and utilization.

Results:  We present kegg_pull, a package implemented in the Python programming
language that provides better KEGG access and utilization functionality than previ-
ous libraries and software packages. Not only does kegg_pull include an application
programming interface (API) for Python programming, it also provides a command line
interface (CLI) that enables utilization of KEGG for a wide range of shell scripting and
data analysis pipeline use-cases. As kegg_pull’s name implies, both the API and CLI pro-
vide versatile options for pulling (downloading and saving) an arbitrary (user defined)
number of database entries from the KEGG API. Moreover, this functionality is imple-
mented to efficiently utilize multiple central processing unit cores as demonstrated
in several performance tests. Many options are provided to optimize fault-tolerant
performance across a single or multiple processes, with recommendations provided
based on extensive testing and practical network considerations.

Conclusions:  The new kegg_pull package enables new flexible KEGG retrieval use
cases not available in previous software packages. The most notable new feature that
kegg_pull provides is its ability to robustly pull an arbitrary number of KEGG entries
with a single API method or CLI command, including pulling an entire KEGG database.
We provide recommendations to users for the most effective use of kegg_pull accord-
ing to their network and computational circumstances.

*Correspondence:
hunter.moseley@uky.edu

1 Markey Cancer Center,
University of Kentucky,
Lexington, KY 40536, USA
2 Department of Molecular
and Cellular Biochemistry,
University of Kentucky,
Lexington, KY 40536, USA
3 Institute for Biomedical
Informatics, University
of Kentucky, Lexington, KY
40536, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05208-0&domain=pdf

Page 2 of 17Huckvale and Moseley ﻿BMC Bioinformatics (2023) 24:78

Keywords:  KEGG, REST, Application programming interface, Python programming
language, Command line interface

Background
The Kyoto Encyclopedia of Genes and Genomes (KEGG) [1–3] is a collection of data-
bases containing organized biomolecular and metabolic data (information) for over 3000
species with sequenced genomes. A primary component of each KEGG database is a
KEGG entry, a relational table record that represents and describes a specific chemical,
biochemical, or biological entity (e.g. a chemical compound, a biochemical reaction or
pathway, an enzyme, a gene, a species etc.). Each KEGG entry is uniquely identified with
a KEGG ID. The KEGG databases are updated regularly and made publicly available via
the KEGG website [4]. However, the website is designed for manual access through a
web browser. For more automated access, KEGG provides a Representational State
Transfer (REST) web application programming interface (web API). A REST web API is
a predominant software architecture for making uniform interactions between software
components via the World Wide Web. These interactions typically occur as requests in
the form of a uniform resource locator (URL) provided through the http protocol, with
a “GET” http request fetching data from a web server [5]. The KEGG REST web API
(KEGG API) [1] provides a set of operations for accessing most of the organized data in
KEGG as described on the KEGG API web page: https://​www.​kegg.​jp/​kegg/​rest/​kegga​
pi.​html. In particular, the KEGG API enables researchers to retrieve KEGG data, espe-
cially KEGG entries, for use in their own analyses. Operations to obtain KEGG entry IDs
include the “list” and “find” operations, the output of these operations returning meta
data which needs to be parsed out if only the entry IDs themselves are desired. And the
“get” operation provides KEGG entries themselves given their corresponding IDs.

Users can make requests to REST web APIs by providing the correct URL to a variety
of web accessing software, for example a web browser, library packages like the Python
requests module [6], and even command line tools like cURL [7]. However, construction
of these URLs is somewhat cumbersome, requiring specific URL templates for a specific
REST web API with some URL construction expertise, which is even limiting for some
bioinformaticians, let alone biologists with limited computational skills. Library pack-
ages do exist both in R [8] and Python [9] for accessing most of the KEGG API. However,
to our knowledge, none of these packages provide a command line interface (CLI) for
researchers who prefer to use the command line or to write shell scripts. Also missing is
a package that provides a variety of other use cases, for example obtaining KEGG entry
IDs alone with the metadata already parsed out or downloading an arbitrary number of
entries in a single command. Therefore, we introduce a new Python package kegg_pull,
which meets the above use cases and more. We have implemented kegg_pull to a rigor-
ous industrial standard, which includes both unit and integration tests. The kegg_pull
package is installable through the Python Package Index (https://​pypi.​org/​proje​ct/​
kegg-​pull/).

We created kegg_pull to promote the FAIR (Findable, Accessible, Interoperable, and
Reusable) guiding principles of data stewardship [10] with respect to KEGG. While
KEGG is primarily responsible for implementing FAIR, kegg_pull improves on the
accessibility, interoperability, and reusability of the KEGG API. The kegg_pull package

https://www.kegg.jp/kegg/rest/keggapi.html
https://www.kegg.jp/kegg/rest/keggapi.html
https://pypi.org/project/kegg-pull/
https://pypi.org/project/kegg-pull/

Page 3 of 17Huckvale and Moseley ﻿BMC Bioinformatics (2023) 24:78 	

improves the accessibility by making the utilities of the KEGG API accessible to Python
programmers, including those that may have limited knowledge of web development.
Additionally, it makes these utilities accessible to command line users either for shell
scripting or for executing one-time commands without needing to write any script at
all. Interoperability is improved by making the output from the KEGG API available in a
form suitable for other contexts, such as Python objects in a python script, files in the file
system, and console output that can be piped into another command on the command
line. This necessarily allows KEGG data to be used in shell scripts. The improved inter-
operability enables the output to be transferred downstream within a complex workflow
or to be used by a workflow manager. Finally, the kegg_pull package improves reusability
by making KEGG data more easily reused by researchers in a variety of Python-based
data analyses and command line-based data analysis pipelines.

Implementation

The kegg_pull package provides several useful CLI and API features for interacting with
the KEGG API. This includes wrapper methods/commands for all the REST API opera-
tions, pulling lists of KEGG entry IDs, and pulling an arbitrary number of KEGG entries
that are automatically separated and saved into individual files, all with a single function
call or command line execution. Also, the package provides robust multiprocessing pull
functionality specifically designed to mitigate blacklisting from the KEGG API triggered
by a rapid series of REST operations.

The kegg_pull API is implemented in four submodules (Fig. 1): pull, entry_ids, rest,
and kegg_url. See the Additional file 1 for additional implementation details of these
submodules. The kegg_pull CLI reuses this API to provide a higher level of functionality,
conveniently accessible from the command line without needing to write Python scripts.
If more flexibility is necessary, however, researchers with programming expertise can
use the kegg_pull API in their own Python scripts and programs.

The kegg_url submodule constructs URL objects for accessing the KEGG REST API
(See Additional file 1: Fig. S1). The kegg_rest submodule uses these URLs to provide
wrapper methods over each of the KEGG REST API operations via its KEGGrest class
(See Additional file 1: Fig. S2). A user-created Python program could use the kegg_url
submodule to construct the URLs and, if more control over the URLs is needed, pass
them into a Python library such as requests. However, the benefits of using the wrapper
methods of the KEGGrest class include:

Fig. 1  a UML package diagram. b Submodule dependencies

Page 4 of 17Huckvale and Moseley ﻿BMC Bioinformatics (2023) 24:78

1.	 Abstracting the URL strings so less knowledge of web development is needed and
using the requests library under the hood automatically.

2.	 Allowing the caller to specify the number of tries to make a request in case initial
requests fail or time out.

3.	 Allowing the user to specify how long requests should wait for a response before
being marked as timed out.

4.	 Allowing the caller to specify the sleep time in between requests that time out or
are blacklisted to give the KEGG web server time to return to an accessible state.
Blacklisting is when the KEGG web server temporarily blocks further requests when
it deems too many have been made, necessitating waiting until the blacklisting is
repealed.

5.	 Returning a KEGGresponse object (see Additional file 1: Fig. S2) which contains the
information from a response generated from a request to the KEGG API, including
both a text body and binary body if applicable, the URL constructed for the request,
and the status (i.e. SUCCESS, FAILED, or TIMEOUT).

The KEGGrest wrapper methods provide the exact output from the KEGG REST
API, which is the desired outcome in some use cases. However, in many cases, addi-
tional processing is desired. That is why we provide additional submodules including
the entry_ids submodule, which uses the rest submodule to provide methods for get-
ting lists of KEGG entry IDs (See Additional file 1: Fig. S3). A user-created Python
program could use the KEGGrest class directly to get the entry IDs from its relevant
methods. However, the benefits of using the methods in the entry_ids submodule
include:

1.	 The response body comes as a string that contains metadata on top of the entry IDs.
The entry_ids module will additionally parse the string to return a list containing
only the entry IDs themselves.

2.	 The entry_ids submodule also contains a method for loading a list of entry IDs from
a file if the user already has the entry IDs they’d like to retrieve in their local file sys-
tem.

As with the entry_ids submodule, the pull submodule also provides very helpful
post-processing on top of the raw output from the KEGG REST API. The pull sub-
module provides classes that use the “get” method of the KEGGrest class to pull
KEGG entries into individual files in the user’s local file system, a very common use
case of KEGG users. This includes the ability to pull KEGG entries in their default for-
mat or to pull specific entry fields from them (e.g. the mol file of a compound entry,
the JSON file of a KEGG Brite entry, the image file detailing a compound’s molecular
structure, the nucleotide sequence of a gene etc.). The classes in the pull submodule
include the SinglePull class which has a "pull" method (see Fig. 2) that makes just one
request to the KEGG REST API to pull one or more entries. One could use the KEG-
Grest class’s “get” method directly to obtain the entry or entries from the response
body. However, the benefits of using the pull method of the SinglePull class are:

Page 5 of 17Huckvale and Moseley ﻿BMC Bioinformatics (2023) 24:78 	

1.	 The string or bytes response is automatically saved to the file system with the entry
ID as the file name and the entry field as the file extension, the “.txt” extension used if
no entry field is specified (entry is saved in the default format).

2.	 If the response body is binary, the file is automatically saved in binary format.
3.	 If multiple entry IDs are provided, the entries are automatically split by their respec-

tive delimiter in the response body and saved separately in individual files, sparing
the user from needing to perform the same empirical experiments we did during
software development to determine what the delimiters are in the first place and
additionally sparing them from needing to write their own parser functions.

4.	 If multiple entries are requested and the initial request fails or not all requested
entries were returned, each entry is requested one at a time (instead of them all being
requested in a single response) to maximize the number of successful entries pulled.

5.	 The user can specify to save the output file in a regular directory or a zip archive file.
If the provided directory name ends in “.zip”, the file is automatically saved in a ZIP
archive of that name. If either the provided directory or provided ZIP archive doesn’t
already exist, one will be automatically created.

6.	 A PullResult object (Fig. 2) is returned specifying by their ID which of the entries
requested were successfully pulled, which entries failed to be pulled, and which
entries timed out.

7.	 The SinglePull class, with the multi_process_lock_save parameter set to True in the
constructor, will block other processes from executing the file saving code block,
making files saved to the same ZIP archive multi-process safe.

Since the SinglePull class makes only one request to the KEGG REST API, its “pull”
method can only pull as many entries as allowed by KEGG for a single request. The
pull submodule provides additional classes, namely SingleProcessMultiplePull and
MultiProcessMultiplePull, which also have a “pull” method (see Fig. 2). These classes
are not limited to the number of entries pulled but rather they can pull an arbitrary

Fig. 2  Class diagram of the pull.py module

Page 6 of 17Huckvale and Moseley ﻿BMC Bioinformatics (2023) 24:78

number of entries in a single function call. A user-created Python program could have
its own loop which calls a SinglePull object’s pull method multiple times, if desired.
However, using the MultiplePull classes has the following benefits:

1.	 The MultiplePull classes already have a loop built into their “pull” method which
makes as many requests to the KEGG REST API as necessary in order to pull all of
the entries requested by the user. This spares the user from needing to implement
their own loop.

2.	 The “pull” method optimizes the requests by splitting the provided list of entry IDs
into a list of lists to take advantage of KEGG’s ability to provide multiple entries
per request. Each individual request is limited to a maximum amount of entries as
described above but since the list of lists contain lists no longer than this maximum
amount, the pulling is optimized without exceeding that limit on a given request. The
user is spared from implementing this complex functionality in order to optimize the
pulling.

3.	 While the SinglePull class returns a PullResult object for an individual request, the
MultiplePull classes provide a comprehensive PullResult detailing the merged results
of all requests made.

4.	 The MultiplePull classes display a progress bar in the console.
5.	 They additionally provide the ability to halt the program if too many of the requests

fail or time out. The user can also specify a failure rate threshold for automatic halt-
ing.

6.	 While both the SingleProcessMultiplePull and the MultiProcessMultiplePull classes
will pull all of the requested entries, the MultiProcessMultiplePull class enables pull-
ing entries across multiple processes to pull more entries in less time when running
on a system with multiple cores. The user can specify the number of processes to
use, the default being the number of cores available.

7.	 Multiprocessing is safe in the case of saving files to a regular directory since each
file is written entirely within its own process rather than multiple processes writing
to that same file. However, it is not safe when writing files to a ZIP archive. While
the processes are writing different files to this ZIP archive, the ZIP archive itself is
technically a single file which multiple processes write to. Having multiple processes
writing to a single ZIP archive creates a race condition, which will corrupt the ZIP
archive when multiple processes open and write to it at the same time. The Multi-
ProcessMultiplePull takes precautions to make writing to ZIP archives safe even in
a multi-processing context (as long as its SinglePull member has its multi_process_
lock_save parameter set to True; see Fig. 2), sparing the user from concern over these
low-level details.

The top-level command line interface usage description in Fig. 3 shows that kegg_
pull has 3 subcommands, namely rest, entry-ids, and pull. These subcommands reuse
the rest, entry_ids, and pull submodules and are analogous to the entities within
them. However, the command line interface provides additional functionality. For the
rest and entry-ids subcommands, the user can choose whether to print the output
to the console or save it in a file. Similar to the pull methods in the API, the user

Page 7 of 17Huckvale and Moseley ﻿BMC Bioinformatics (2023) 24:78 	

can choose to save within a regular directory or within a ZIP archive. Using the pull
subcommand on the command line makes the progress bar visible in the console and
saves the information contained within the PullResult to a file. Not only are the suc-
cessful, failed, and timed out entries specified (by their ID) in this file, but other use-
ful information about the pull is saved as well, including the time it took to pull all the
requested entries, the success percent or percent of entries that succeeded out of the
total number of requested entries, and the amount of each entry ID category, i.e. the
number of entries that succeeded to be pulled, the number that failed, etc. If the user
instructs kegg_pull to abort upon too many entries not succeeding, a file detailing the
results of the aborted pull is created.

The kegg_pull CLI enables shell scripting in addition to python scripting depending on
a user’s needs. This allows for complete reproducibility of data analysis pipelines. How-
ever, providing this functionality in a command line shell enables one-time data retrieval
for prototyping prior to or alongside development of the pipelines. Since researchers
often perform a high amount of experimentation and investigation before generating the
final results, one-time data retrieval can provide immediate data for quick information
or experiments. In such cases, writing a script to do so is unnecessary and premature.
While KEGG itself provides an interactive browser that fills this need to an extent, the
kegg_pull CLI provides the following additional benefits beyond the KEGG browser:

1.	 Those comfortable with the command line may find it more efficient to type in a
single command and readily get the data they need. Even for merely viewing data a
single time (printing to the console), entering a single CLI command can be quicker
than opening another window and navigating to the particular web page they need
which may require navigating to one page after another.

2.	 Again, even if the user merely wants to view data a single time, the KEGG browser
can only display a single KEGG entry at a time via its graphic user interface. The
kegg_pull CLI can print multiple entries at time. One could type in the exact KEGG
REST API URL into their browser’s search bar, but this is hardly more effective than
passing the URL into a command line program like cURL or Postman where the user
has to manually construct the URL. The kegg_pull CLI constructs these URLs for the
user with an intuitive interface.

3.	 While the above benefits are for merely viewing data, if the user wants to actually
save data, not only do they need to navigate to the KEGG browser web page they
need, but they also need to download the data. The kegg_pull CLI can perform that
additional step by simply specifying an—output parameter.

4.	 If the user is working on a remote machine, they’d have to both download the data
from the browser to their local machine and then transfer it to their remote machine.
The kegg_pull CLI can download it directly to the remote machine.

Fig. 3  Top level command line usage of kegg_pull

Page 8 of 17Huckvale and Moseley ﻿BMC Bioinformatics (2023) 24:78

5.	 If the user wants to download multiple entries from the KEGG browser, they’d have
to repeat the above steps for each entry. The kegg_pull CLI can pull an arbitrary
number of entries in a single “pull” subcommand. The “entry-ids” subcommand addi-
tionally parses entry-ids to be displayed in the console or saved in a file.

More details on the kegg_pull API and CLI is available in the online package docu-
mentation: https://​mosel​eybio​infor​matic​slab.​github.​io/​kegg_​pull/.

Results
Sleep time performance

The kegg_pull CLI enables the user to pull all the entries in a specified KEGG data-
base with a single command. We discovered that the time it takes to accomplish
this varies based on the—sleep-time option (the time to wait in between timed out
requests and blacklisted requests). This option also affects the success percentage, the
percentage of entries that succeed rather than fail. When we performed the execution
time experiments (Tables 1 and 2), we found that none of the requests timed out, so
the results most likely reflect the percentage of successfully pulled entries as com-
pared to those that were blacklisted for all three tries. Since each request only tried
3 times, waiting for 0 s in between tries would not give enough time to wait for the
KEGG web server to repeal the blacklisting. This is most likely why we see an increase
in the success percentage as the sleep time increases. After reaching 100%, increasing
the sleep time unsurprisingly no longer affects the success percentage. Our results in
Table 1 also show a negligible increase in pull time after increasing sleep time past
reaching 100% success in the case of the KO database. In the case of the larger VG
database shown in Table 2, we actually see a continued decrease in pull time after
reaching 100% success. See the Additional file 1 for the single process version of this
experiment (ko database only). From that table, we see that even a sleep time of 0.0
can result in 100% success when pulling in a single process.

Table 1  Pull success percentage and time spent pulling by sleep time—KO database (25,439
entries)

Number of minutes spent attempting to pull all the entries in the KO KEGG database. Percent success is the percentage
of the entries in the KO database that were successfully pulled while the others failed. Difference in pull time and percent
success varies by the—sleep-time option on the kegg_pull CLI. All other options remained the same, including the use of
multiprocessing. Values were collected on a 12 core (hyperthreaded) machine using 12 processes

Sleep time (seconds) 0.0 0.5 1.0 2.0 3.0 5.0 10.0

Percent success 94.68 94.89 96.78 99.78 100.0 100.0 100.0

Pull time (minutes) 12.99 16.03 14.69 10.82 8.51 8.44 8.7

Table 2  Pull success percentage and time spent pulling by sleep time—VG database (595,443
entries)

Same as Table 1 except for the VG KEGG database

Sleep TIME (seconds) 0.0 0.5 1.0 2.0 3.0 5.0 10.0

Percent success 82.04 86.98 94.6 98.21 100.0 100.0 100.0

Pull time (minutes) 555.51 663.17 416.35 366.88 215.66 204.96 194.71

https://moseleybioinformaticslab.github.io/kegg_pull/

Page 9 of 17Huckvale and Moseley ﻿BMC Bioinformatics (2023) 24:78 	

In the case of the Brite KEGG database, 20 entries consistently failed despite increases
in sleep time. We can conclude that these 20 entries are simply unavailable rather than
resulting from indeterministic blacklisting. The “list” KEGG REST operation provides
the entry IDs of an entire KEGG database. After attempting to pull the entries corre-
sponding to the Brite IDs returned by the “list” operation, not all of the entries were
available as tabulated in Table 3. See the Additional file 1 for the list of the Brite entry
IDs that fail.

Multiprocessing performance

When making multiple requests to the KEGG REST API to pull an arbitrary number
of entries, a kegg_pull user can specify in both the API and CLI to use one process or
multi-processing. As illustrated in Tables 4 and 5, we see that the pull time for whole
KEGG databases can be dramatically reduced when using multi-processing.

We see that pulling KEGG entries into a ZIP archive significantly increases pull time as
compared to pulling into a regular directory. However, multi-process pulling into a ZIP
archive is still substantially faster than single process pulling into a ZIP archive, despite
process locking the code block that accesses the ZIP file, which is required to prevent
corrupting the ZIP archive file.

Table 3  Failed entries in the brite database regardless of sleep time

The number of entries in the Brite database that are successfully pulled compared to the number that are not available.
The failed entries fail despite increasing sleep time to wait for a blacklist to be overturned. This means they are truly
unavailable, despite being output from the list operation for the corresponding database, and they did not merely fail due
to a temporary blacklisting during run time

Database name Number Of successful
entries

Number Of failed
entries

Total entries Success rate (percent)

Brite 118 20 138 85.51

Table 4  Multi-process pull time versus single process pull time (minutes) into a regular directory

The amount of time to pull and save all the entries of a given database on a single process (one core) compared to pulling
across multiple processes (multiple cores). The above values result from running kegg_pull on a 12 hyper-threaded core
machine using 12 processes for multiprocessing and one process for single-processing. The sleep time and all other options
for each were also constant. Files were saved in a regular directory

Database name Multi-process pull time Single process pull time Number
Of
entries

Pathway 0.1 1.05 558

Compound 6.4 73.62 19,004

KO 8.32 74.0 25,458

Table 5  Multi-process pull time versus single process pull time (minutes) into a ZIP archive

Same as Table 4 except files were saved in a ZIP archive

Database name Multi-process pull time Single process pull time Number
Of
entries

Pathway 0.42 1.13 558

Compound 38.09 73.62 19,004

KO 66.74 138.44 25,458

Page 10 of 17Huckvale and Moseley ﻿BMC Bioinformatics (2023) 24:78

Multiple entry request performance

Table 6 demonstrates the substantial increase in pull efficiency from the KEGG API’s
ability to request multiple entries within a single response body. The success percent-
age can also decrease slightly when only pulling one entry per request, necessitating
increased sleep time.

When pulling entries from KEGG, there is a maximum number of entries that can be
pulled in a single request due to KEGG API response limitations. While the entries of all
the KEGG databases, except for Brite, support requesting this maximum amount, that
is not necessarily the case when a user desires to pull particular fields from the entries.
For example, a user might want to pull an amino acid sequence from a gene entry or a
mol file from a compound entry. Some entry fields allow this maximum number while
others do not. While this is not currently specified in the KEGG REST documentation,
we empirically discovered which entry fields allow this and which only allow a single
entry to be pulled at a time. With this information shown in Table 7, we implemented
kegg_pull such that it will pull only one entry at a time if the user wants an entry field
that does not support multiple for a single request. Likewise, if the user specifies to pull
all the entries from the Brite database, kegg_pull will only pull one entry at a time in that
case as well. That convenience for the Brite database, however, is only available in the
CLI when the database name is specified. When pulling Brite entries in all other cases,
there isn’t a way to tell which database the entries are coming from, necessitating the
force_single_entry parameter for the API and the—force-single-entry option for the
CLI. Even if the user neglects to set this parameter/option, however, kegg_pull is robust
enough to retry on each requested entry individually if not all of the requested entries
are pulled initially. Forcing a single entry at a time is for efficiency rather than successful
pulls.

While the KEGG REST API documentation explicitly states a 10-entry limit for the
"get" operation, it does not specify such a limit for any other operations that accept a
sequence of parameters (e.g. the keywords for the "find" operation, the entry IDs for the
"ddi" operation, etc.). Such operations include "find", "conv", "link" and "ddi". We experi-
mented with increasing the number of parameters with such operations and found no
evidence of limits to the parameters themselves as with the "get" operation. What we

Table 6  Pull Time (minutes) and percent success with one entry at a time versus ten entries at a
time and different sleep times

The amount of time (minutes) to pull all the entries from a given database and the success percentage when pulling
one entry at a time (with the—force-single-entry flag set) compared to pulling ten entries (maximum allowed by KEGG)
per request. Each of these are compared to a lower sleep time vs. a higher sleep time. Results were collected on a 12
(hyperthreaded) core machine on 12 processes with all other options consistent

Database
name

One entry at a time Ten entries at a time

Sleep time 5 S Sleep time 20 S Sleep time 5 S Sleep time 20 S

Percent
success

Pull time Percent
success

Pull time Percent
success

Pull time Percent
success

Pull time

Module 98.69 1.34 100.0 1.59 100.0 0.06 100.0 0.07

Pathway 98.75 1.6 100.0 1.67 100.0 0.11 100.0 0.09

Compound 99.24 63.62 100.0 61.36 100.0 6.77 100.0 7.21

KO 99.39 83.91 100.0 90.4 100.0 8.42 100.0 9.22

Page 11 of 17Huckvale and Moseley ﻿BMC Bioinformatics (2023) 24:78 	

did discover, however, was there is a limit to the number of characters in the request
URL itself. We noticed that requests with a URL length of above 4000 characters con-
sistently failed with a non-200 status code and we suspect that KEGG is using an older
Apache webserver (or configuration) as part of the KEGG REST API implementation,
which often limits http(s) requests to 2^12 = 4096 bytes including the headers with the
LimitRequestLine parameter in the server configuration file. As a result of these experi-
ments, we added a check to the AbstractKEGGurl class (and necessarily those classes
that extend it) which ensures the URL is no more than 4000 characters long, otherwise
it raises an exception informing the user that the URL is too long. We recommend that
kegg_pull users, who find themselves in this edge case, break up their overly long URL
into multiple requests.

API and CLI examples

Since the CLI builds off of the API, a kegg_pull user can write API code that’s analogous
to corresponding CLI commands. We say analogous rather than synonymous because
the CLI can do more than the analogous API commands (e.g. saving the output to a file
or printing to standard output rather than merely returning a Python object). When a
user chooses to use the API over the CLI, they sacrifice potential convenience for higher
control, if needed. Table 8 has examples of prominent API usage followed by their analo-
gous CLI commands in Table 9.

Discussion
Other projects were also considered for the comparison done in Table 10. These pro-
jects include KEGG-Crawler with the home page of https://​github.​com/​menta​tpsi/​
KEGG-​Crawl​er, KEGGtools with the home page of https://​github.​com/​FlyPy​thons/​
KEGGT​ools, and django-rest-kegg with the home page of https://​pypi.​org/​proje​ct/​

Table 7  Entry fields that allow multiple entries to be pulled versus those that only allow one per
request

One can pull up to 10 entries with a single request to the KEGG REST API. Pulling more entries per request can dramatically
reduce pull time and increase the success percentage (see Table 6). However, this option is not available for all pulls. While
this is not specified in the KEGG REST API documentation, nor do their requests fail if we request ten entries when only
one is supported for a given entry field/database (they simply return the first entry in the request and exclude the other
requested entries without any notification), we empirically determined which entry fields allow multiple entries per request
and those that don’t. One can specify the field of an entry to pull rather than the standard “flat file format” (not available for
Brite entries). While the flat file format pulls can pull multiple entries per request, some of the field entries can while others
can’t. In addition to what’s displayed in this table, entries from the Brite database cannot be pulled more than one at a time
per request, as Brite entries are not available in flat file format

Entry field Can pull multiple
entries in one
request

aaseq ✓
ntseq ✓
mol ✓
kcf ✓
image  × 

conf  × 

kgml  × 

json  × 

https://github.com/mentatpsi/KEGG-Crawler
https://github.com/mentatpsi/KEGG-Crawler
https://github.com/FlyPythons/KEGGTools
https://github.com/FlyPythons/KEGGTools
https://pypi.org/project/django-rest-kegg/

Page 12 of 17Huckvale and Moseley ﻿BMC Bioinformatics (2023) 24:78

django-​rest-​kegg/. They were considered for comparison since they contain code
for accessing the KEGG API and downloading KEGG data. However, they give the
user no control over which KEGG entries to download but rather choose for the user
which entries/data to download, suggesting they are for a more specific purpose than
our general purpose kegg_pull package and the other projects compared in Table 10.
Additionally, some of these projects are not installable packages but can only be
cloned as git repositories, making importing entities into user projects or running
scripts on the command line more cumbersome. So we did not deem them appropri-
ate for comparison to kegg_pull.

Table 8  API examples

Example method calls from the API, executable in a python script or python console. The above lines of code are analogous
to the corresponding terminal commands in Table 9. While the API requires more lines of code than the CLI, it allows users to
use kegg_pull functionality in their own python scripts. There is also no CLI commands for URL creation but those using the
API can use this functionality if they just want KEGG REST URLs. Finally, there is no analogous distinction between SinglePull
and AbstractMultiplePull in the CLI but rather there is only a pull command

Action Examples

Pull Entries with a single request import kegg_pull.pull as p
single_pull = p.SinglePull(output = ’kegg-entries/’)
single_pull.pull(entry_ids = [’cpd:C00001’, ’cpd:C00002’])

Pull Entries with multiple requests import kegg_pull.pull as p
import kegg_pull.entry_ids as ei
single_pull = p.SinglePull(
output = ’kegg-entries.zip’, entry_field = ’mol’
)
multi_pull = p.MultiProcessMultiplePull(
single_pull = single_pull, n_workers = 4
)
entry_ids: list = ei.from_file(file_path = ’entry-ids.txt’)
multi_pull.pull(entry_ids = entry_ids)

Pull entry IDs import kegg_pull.entry_ids as ei
ei.from_database(database_name = ’hsa’)

REST operation import kegg_pull.rest as r
kegg_rest = r.KEGGrest()
kegg_response: r.KEGGresponse = kegg_rest.molecular_find(
database_name = ’drug’, exact_mass = (200, 220)
)

URL creation import kegg_pull.kegg_url as ku
conv_url = ku.DatabaseConvKEGGurl(
kegg_database_name = ’hsa’,
outside_database_name = ’ncbi-geneid’
)

Table 9  CLI examples

Example terminal commands from the CLI. The above terminal commands are analogous to the corresponding lines of code
in Table 8. Notice that the analogous CLI commands can do in one line what took the API several lines of code. Also note
that there is no distinction between a multiple pull or single pull in the CLI. Under the hood, the CLI uses a concrete class of
AbstractMultiplePull for all pulls since it can handle any number of entries, including only one entry

Action Examples

Pull Entries cat entry-ids.txt | kegg_pull pull entry-ids -
–multi-process –n-workers = 4 –out-
put = kegg-entries.zip
–entry-field = mol

Pull entry IDs kegg_pull entry-ids database hsa

REST operation kegg_pull rest find drug –exact-mass = 200
–exact-mass = 220

https://pypi.org/project/django-rest-kegg/

Page 13 of 17Huckvale and Moseley ﻿BMC Bioinformatics (2023) 24:78 	

The new kegg_pull python package makes available the features of the popular R
package known as KEGGREST [11] in that it provides an API that wraps the KEGG
REST interface, making it easier to make REST requests and doing so in a way that
can be automated within user-created Python scripts. While other Python packages
(Table 10) [12–14] have replicated some of the functionality of KEGGREST, kegg_pull
provides a more functional API than all of these packages (Table 11), a complete CLI
with a superset of the API functionality (Table 11), and is written to an industrial
software engineering standard. Perhaps the most significant feature introduced with
kegg_pull is its ability to make multiple requests such that it can pull an arbitrary
number of entries with a single command, including the ability to do so in a multi-
processing manner. This ability, however, is not without caveats. If a user requests an
especially high number of entries in a single call, such as tens of thousands or more,
the frequency of blacklisting increases with the number of requested entries. While
we cannot prevent blacklisting, the sleep time can be optimized to maximize the suc-
cess percentage while keeping the overall pull time low. The best sleep time to choose
evidently must be higher when requesting a higher number of entries. While there
isn’t a mechanism to predict what the best sleep time ought to be ahead of time, we’ve
fortunately observed that an overly high sleep time can have negligible effect on the
total pull time and pull time can also continue to decrease even after reaching 100%
success. Therefore, we recommend users lean towards a higher sleep time (e.g. 5.0 or
10.0 s for multiprocessing pulling) as a sleep time that’s too high has negligible effect
while still obtaining 100% success, but a sleep time that’s too low can both increase
the total pull time and lower the success percentage. Extra sleep time is needed when
pulling only one entry at a time (e.g. greater than 5 s). We recommend that users take
advantage of this ability of the KEGG API unless that option is not available for the
entries they’d like to pull (i.e. Brite entries and entry fields that don’t support multi-
ple entries within the response body). Considering the increase in success rate when
pulling multiple entries per request as well as the significant decrease in pull time,
it could be helpful for both users of kegg_pull and users of the KEGG API in gen-
eral if KEGG both enabled support for pulling multiple entries for all entry and entry
field types and even allowing more than 10 entries to be requested. All this applies to
multi-processing, whereas the sleep time is not as important in single processing. As

Table 10  Package information about kegg_pull and related packages

Package name Home page Python version Available both
On GitHub And
PyPi

Last updated

kegg_pull https://​pypi.​org/​proje​ct/​
kegg-​pull/

≥ 3.8 Yes 2022

KEGGutils https://​pypi.​org/​proje​ct/​
KEGGu​tils/

≥ 3.8 Yes 2022

biopython (Bio.KEGG.REST) https://​pypi.​org/​proje​ct/​
biopy​thon/ (https://​biopy​
thon.​org/​docs/​latest/​api/​
Bio.​KEGG.​REST.​html)

≥ 3.6 Yes 2021

keggrest https://​pypi.​org/​proje​ct/​
keggr​est/

2.7 Yes 2013

https://pypi.org/project/kegg-pull/
https://pypi.org/project/kegg-pull/
https://pypi.org/project/KEGGutils/
https://pypi.org/project/KEGGutils/
https://pypi.org/project/biopython/
https://pypi.org/project/biopython/
https://biopython.org/docs/latest/api/Bio.KEGG.REST.html
https://biopython.org/docs/latest/api/Bio.KEGG.REST.html
https://biopython.org/docs/latest/api/Bio.KEGG.REST.html
https://pypi.org/project/keggrest/
https://pypi.org/project/keggrest/

Page 14 of 17Huckvale and Moseley ﻿BMC Bioinformatics (2023) 24:78

Table 11  Feature comparison of packages with a similar purpose as kegg_pull

Package name Can test requests
before sending
them

Both CLI and
API included

Validates KEGG URLs Wraps All KEGG API
operations

kegg_pull Includes a test method
in the API and –test
option in the CLI for
testing a URL without
requesting it

Yes If the URL is not valid,
does not make the
request and provides
specific feedback

Provides wrapper meth-
ods and CLI commands
for all the KEGG REST API
operations

KEGGutils No test method API only If the URL is not valid,
does not make the
request and provides
specific feedback

Yes (some methods raise
a file-not-found error)

biopython (Bio.KEGG.
REST)

No test method API only Makes request
without checking
the URL first

Missing the “ddi”
KEGG REST operation

keggrest No test method API only Makes request
without checking
the URL first

Missing “ddi” and
“info” KEGG REST
operation

Package Name Makes a user-
specified number
of attempts per
request

Pauses in between
requests for a
user-specified
time to prevent
blacklisting

Multiple output
choices

User-specified
timeout time

kegg_pull Tries making each
request a number of
times specified by the
user, i.e. retries upon
failure or time out

User specifies sleep
time in between
blacklisted requests
to wait for access to
the REST API to be
restored

Pulled KEGG entries
can either be saved
in a regular directory
or ZIP archive. Other
output can be printed
to the console, stored
in a regular file, or
stored in a ZIP file

User can specify how
long a request can take
until being considered
timed out

KEGGutils Attempts request
once

Does not check
for blacklisted
requests

User does not
choose output
type

Time outs are not
considered

biopython (Bio.
KEGG.REST)

Attempts request
once

Only allows 3
requests per second
but user cannot
specify wait time

N/A Does not save
output as a file

Time outs are not
considered

keggrest Attempts request
once

Does not check
for blacklisted
requests

User does not
choose output
type

Time outs are not
considered

Package Name Separates entries and
stores them individually

Saves binary KEGG
entries in an appropriate
format

Parses KEGG entry IDS

kegg_pull When making requests
with multiple KEGG entries,
separates and stores them
in their individual files

Saves the binary image
entries as binary files

For requests returning Entry
IDs, parses them out such
that only the entry IDs them-
selves are returned

KEGGutils Can only pull one entry
per request

Saves the image entries as
image files (PNG OR GIF)

No command nor func-
tion for parsing entry IDs

biopython (Bio.KEGG.
REST)

Neither saves nor sepa-
rates entries

N/A Does not save
entries

No command nor func-
tion for parsing entry IDs

keggrest Can only pull one entry
per request

Saves all output in the
same format

No command nor func-
tion for parsing entry IDs

Page 15 of 17Huckvale and Moseley ﻿BMC Bioinformatics (2023) 24:78 	

we’ve seen, even a sleep time of 0.0 can result in 100% success, likely because the time
in between requests is already necessarily higher, preventing black listing.

Since it’s still possible for entry requests to fail, we recommend users re-run kegg_pull
on the failed entries after doing their best to initially select a good sleep time. This is not
just because of blacklisting, but entries can inadvertently fail for other reasons such that
they may succeed the second time. Entries that continuously fail to be pulled may be con-
sidered no longer available, as with the 20 consistently failed Brite entries. In such cases
generally and in the case of the Brite database specifically, we recommend that KEGG
either remove the IDs of these unavailable entries from the output of the “list” REST
operation or that they troubleshoot to see whether these entries can be made available.
We also recommend the—force-single-entry flag (CLI) or force_single_entry parameter
(API) to be set if brite entry IDs are included in the call. While if a user chooses to pull
the entire brite database, kegg_pull is smart enough to only pull one entry at a time. But
it can’t know to do this if a file containing KEGG entries is provided.

Pulling KEGG entries into a ZIP archive is significantly slower both when multi-
processing and when single processing. Likewise, single process pulling is significantly
slower than multi-process pulling, both when pulling into a ZIP archive and when pull-
ing into a regular directory. This means that multi-processing is still worth performing
for ZIP archives despite locking multi-process unsafe code. Table 12 specifies the best
decisions between multi-processing versus single processing and ZIP archives versus
regular directories depending on the circumstances.

Software feature descriptions highlighted in italic description fully reflect the feature, those highlighted in bold italic
description partially reflect the feature, and those highlighted in bold description do not provide the feature at all

Table 11  (continued)

Package Name User can choose
between multi-process
and single process
pulling

Can pull an arbitrary
amount of entries

Specifies which entries
succeeded, failed, or
timed out

kegg_pull User can pull KEGG entries
in a single process or a
specified number of sepa-
rate processes

Can pull an arbitrary
number of user-specified
entries with a single CLI or
API command

When pulling KEGG entries,
specifies by their entry ID
which succeeded, failed, or
timed out

KEGGutils Single process only Can only pull one entry
in a function call

N/A only pulls one entry
at a time

biopython (Bio.KEGG.
REST)

Single process only Can only pull as many
entries as allowed in a
KEGG REST “get” opera-
tion

Does not check for failure
or time out of entries
at all

keggrest Single process only Can only pull one entry
in a function call

N/A only pulls one entry
at a time

Table 12  Recommendation for multi-processing and storage options

The recommended manner of pulling based on the circumstance, with the need for a ZIP archive on the left side and the
amount of cores available on the top

Circumstance Multiple cores available Only one core available

Must store In ZIP archive Multi-processing pull into a ZIP archive Single processing pull into a ZIP Archive

No need For ZIP archive Multi-processing pull into a regular direc-
tory

Single processing pull into a regular
directory

Page 16 of 17Huckvale and Moseley ﻿BMC Bioinformatics (2023) 24:78

Conclusions
The kegg_pull Python package provides the richest programmatic and command line
access to the KEGG API to date. The clean object-oriented implementation provides
robust multiprocessing KEGG entry retrieval (pull) functionality that is designed to
mitigate blacklisting by the KEGG API. The kegg_pull API can be used in user-cre-
ated Python scripts, while the CLI enables its use in data analysis pipelines and work-
flow managers, thus improving the FAIRness of KEGG. Furthermore, the CLI enables
the creation of shell scripts that can fully document KEGG access for computational
scientific reproducibility purposes. For users that prefer the command line, the CLI
makes pulls from KEGG quick and easy, especially when organizing the pulled entries
within a directory structure or utilizing other command line tools for search and
analysis. The package is implemented to a high industrial software engineering stand-
ard, which includes both unit and integration tests that provides 100% code cover-
age. The code base is revision controlled and managed on GitHub, documentation is
auto-updated onto associated GitHub Pages, and the package is distributed through
the Python Package Index. Feedback is greatly appreciated. Any potential bugs or
requests for new features can be submitted on our GitHub repository issues page
here: https://​github.​com/​Mosel​eyBio​infor​matic​sLab/​kegg_​pull/​issues.

Abbreviations
API	� Application programming interface
CLI	� Command line interface
KEGG	� Kyoto Encyclopedia of Genes and Genomes
REST	� Representational state transfer
URL	� Uniform resource locator

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​023-​05208-0.

Additional file 1. Supplemental Material.

Acknowledgements
Not applicable.

Author contributions
EH and HNBM created the objected oriented design in multiple prototype-redesign cycles. EH implemented the soft-
ware, automated unit and integrative testing, automated end-user documentation generation, and automated package
distribution via PyPI. EH wrote the package documentation. HNBM reviewed both the implementation and package
documentation. EH wrote the initial draft of the manuscript. HNBM and EH revised the manuscript in multiple revision
rounds. HNBM provided support via funded grants. Both authors read and approved the final manuscript.

Funding
This work has been supported by the National Science Foundation [NSF 2020026 to H.N.B.M.] and the National Institute
of Health [NIH CF R03OD030603 to H.N.B.M.].

Availability of data and materials
GitHub repository: https://​github.​com/​Mosel​eyBio​infor​matic​sLab/​kegg_​pull. Python Package Index (PyPi): https://​pypi.​
org/​proje​ct/​kegg-​pull/. Documentation: https://​mosel​eybio​infor​matic​slab.​github.​io/​kegg_​pull/. Figshare containing this
manuscript’s table results and the scripts to produce them: https://​doi.​org/​10.​6084/​m9.​figsh​are.​21471​990.

Availability and requirements
Project name: kegg_pull. Project home page: https://​github.​com/​Mosel​eyBio​infor​matic​sLab/​kegg_​pull. Operating
system(s): Platform independent. Programming language: Python. Other requirements: Python3.8 or higher. License:
Modified BSD 3 License. Report Bugs And Feature Requests Here: https://​github.​com/​Mosel​eyBio​infor​matic​sLab/​kegg_​
pull/​issues.

https://github.com/MoseleyBioinformaticsLab/kegg_pull/issues
https://doi.org/10.1186/s12859-023-05208-0
https://github.com/MoseleyBioinformaticsLab/kegg_pull
https://pypi.org/project/kegg-pull/
https://pypi.org/project/kegg-pull/
https://moseleybioinformaticslab.github.io/kegg_pull/
https://doi.org/10.6084/m9.figshare.21471990
https://github.com/MoseleyBioinformaticsLab/kegg_pull
https://github.com/MoseleyBioinformaticsLab/kegg_pull/issues
https://github.com/MoseleyBioinformaticsLab/kegg_pull/issues

Page 17 of 17Huckvale and Moseley ﻿BMC Bioinformatics (2023) 24:78 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

Declarations

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 5 November 2022 Accepted: 24 February 2023

References
	1.	 Kawashima S, Katayama T, Sato Y, Kanehisa M. KEGG API: a web service using SOAP/WSDL to Access the KEGG

System. Genome Inform. 2003;14:673.
	2.	 Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28:1947–51.
	3.	 Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms.

Nucleic Acids Res. 2021;49:D545–51.
	4.	 The kyoto encyclopedia of genes and genomes—kegg. Yeast. 2000;1:48–55.
	5.	 Fielding RT. Representational state transfer. Architectural Styles and the Design of Network-Based Software Architec-

tures. Doctoral dissertation. University of California Irvine, Irvine, CA, USA; 2000.
	6.	 Reitz K. requests. Computer software. Pypi; 2013.
	7.	 Christudas B. cURL and Postman. In: Practical Microservices Architectural Patterns: Event-Based Java Microservices

with Spring Boot and Spring Cloud. Berkeley, CA: Apress. 2019;847–55.
	8.	 R Core Team, editor. R: A Language and environment for statistical computing. 2018.
	9.	 Rossum GV, Drake FL. Python 3 Reference Manual. CreateSpace; 2009.
	10.	 Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, et al. The FAIR guiding principles for

scientific data management and stewardship. Sci Data. 2016;3:160018.
	11.	 Tenenbaum D, Volkening J. KEGGREST. Computer software. Bioconductor Package Maintainer; 2022.
	12.	 Castelli FM. KEGGutils v04.1. Computer software. 2022. Zenodo. https://​doi.​org/​10.​5281/​zenodo.​74825​23.
	13.	 Cock PJA. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Com-

puter software. PyPi; 2009.
	14.	 Giampieri E. keggrest. Computer software. PyPi; 2013.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.5281/zenodo.7482523

	kegg_pull: a software package for the RESTful access and pulling from the Kyoto Encyclopedia of Gene and Genomes
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation

	Results
	Sleep time performance
	Multiprocessing performance
	Multiple entry request performance
	API and CLI examples

	Discussion
	Conclusions
	Anchor 15
	Acknowledgements
	References

