
RESEARCH ARTICLE

Academic Tracker: Software for tracking and

reporting publications associated with

authors and grants

P. Travis Thompson1, Christian D. Powell1,2,3, Hunter N. B. MoseleyID
1,3,4,5,6*

1 Superfund Research Center, University of Kentucky, Lexington, KY, United States of America,

2 Department of Computer Science (Data Science Program), University of Kentucky, Lexington, KY, United

States of America, 3 Markey Cancer Center, University of Kentucky, Lexington, KY, United States of

America, 4 Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY,

United States of America, 5 Institute for Biomedical Informatics, University of Kentucky, Lexington, KY,

United States of America, 6 Center for Clinical and Translational Science, University of Kentucky, Lexington,

KY, United States of America

* hunter.moseley@uky.edu

Abstract

In recent years, United States federal funding agencies, including the National Institutes of

Health (NIH) and the National Science Foundation (NSF), have implemented public access

policies to make research supported by funding from these federal agencies freely available

to the public. Enforcement is primarily through annual and final reports submitted to these

funding agencies, where all peer-reviewed publications must be registered through the

appropriate mechanism as required by the specific federal funding agency. Unreported and/

or incorrectly reported papers can result in delayed acceptance of annual and final reports

and even funding delays for current and new research grants. So, it’s important to make

sure every peer-reviewed publication is reported properly and in a timely manner. For large

collaborative research efforts, the tracking and proper registration of peer-reviewed publica-

tions along with generation of accurate annual and final reports can create a large adminis-

trative burden. With large collaborative teams, it is easy for these administrative tasks to be

overlooked, forgotten, or lost in the shuffle. In order to help with this reporting burden, we

have developed the Academic Tracker software package, implemented in the Python 3 pro-

gramming language and supporting Linux, Windows, and Mac operating systems. Aca-

demic Tracker helps with publication tracking and reporting by comprehensively searching

major peer-reviewed publication tracking web portals, including PubMed, Crossref, ORCID,

and Google Scholar, given a list of authors. Academic Tracker provides highly customizable

reporting templates so information about the resulting publications is easily transformed into

appropriate formats for tracking and reporting purposes. The source code and extensive

documentation is hosted on GitHub (https://moseleybioinformaticslab.github.io/academic_

tracker/) and is also available on the Python Package Index (https://pypi.org/project/

academic_tracker) for easy installation.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0277834 November 18, 2022 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Thompson PT, Powell CD, Moseley HNB

(2022) Academic Tracker: Software for tracking

and reporting publications associated with authors

and grants. PLoS ONE 17(11): e0277834. https://

doi.org/10.1371/journal.pone.0277834

Editor: Yuji Zhang, University of Maryland

Baltimore, UNITED STATES

Received: April 1, 2022

Accepted: November 3, 2022

Published: November 18, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0277834

Copyright: © 2022 Thompson et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

located at: https://doi.org/10.6084/m9.figshare.

19412165.

Funding: This work was supported in part by

grants NSF 2020026 (PI Moseley - HNBM), NIH

https://orcid.org/0000-0003-3995-5368
https://moseleybioinformaticslab.github.io/academic_tracker/
https://moseleybioinformaticslab.github.io/academic_tracker/
https://pypi.org/project/academic_tracker
https://pypi.org/project/academic_tracker
https://doi.org/10.1371/journal.pone.0277834
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277834&domain=pdf&date_stamp=2022-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277834&domain=pdf&date_stamp=2022-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277834&domain=pdf&date_stamp=2022-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277834&domain=pdf&date_stamp=2022-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277834&domain=pdf&date_stamp=2022-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277834&domain=pdf&date_stamp=2022-11-18
https://doi.org/10.1371/journal.pone.0277834
https://doi.org/10.1371/journal.pone.0277834
https://doi.org/10.1371/journal.pone.0277834
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.19412165
https://doi.org/10.6084/m9.figshare.19412165

Introduction

Since 2008, the United States government has passed laws and issued directives to promote

public access to peer-reviewed publications resulting from federal funding. These require-

ments started with Division G, Title II Section 218 of the Public Law (PL) 110–161 also known

as the Consolidated Appropriations Act of 2008 [1], which directed the National Institutes for

Health (NIH) to require all peer-reviewed publications supported by NIH funds to be electron-

ically submitted to PubMed [2] within 12 months of the official date of publication [3]. Second

in 2013, the White House Office of Science & Technology Policy (OSTP) mandated that all

federal agencies with research and development budgets over $100 million to develop public

access plans for research publications and data resulting from grants provided by these federal

agencies [4]. Shortly thereafter in 2014, the US Congress passed the FY 2014 Omnibus Appro-

priations Act [5], which required federal agencies under Labor, Health and Human Services,

and Education with research budgets of $100 million or more to provide public online access

to peer-reviewed publications within 12 months of the official data of publication [6]. To com-

ply with federal law, both NIH and NSF have implemented public access policies to make

research supported by funding from these federal agencies freely available to the public. The

enforcement of these policies typically occurs during the submission of annual and final

reporting process for funded grants from NIH and NSF. In these reports, all peer-reviewed

publications must be registered through the required mechanism by the specific federal fund-

ing agency. For NIH, peer-reviewed publications must be registered with PubMed Central and

have a PubMed Central ID (PMCID). For NSF, peer-reviewed publications must be submitted

to the NSF Public Access Repository (NSF-PAR) via Research.gov in the form of an archival

PDF (PDF/A) [7]. Unreported and/or incorrectly reported papers can result in delayed accep-

tance of annual and final reports and funding delays for current and new research grants.

Therefore, timely reporting of every peer-reviewed publication is required. For large collabora-

tive research efforts involving large research teams or even multiple research teams, the track-

ing and proper registration of peer-reviewed publications along with generation of accurate

annual and final reports can create a large administrative burden. With large collaborative

teams, it is easy for these administrative tasks to be overlooked, forgotten, or lost in the shuffle.

In an effort to help researchers and their minders stay up-to-date with the reporting of

peer-reviewed publications, we created the Academic Tracker software package. Written in

the Python 3 programming language, Academic Tracker comprehensively searches major

peer-reviewed publication tracking web portals, gathering relevant publications and useful

tracking characteristics, for example, an indication of whether the publication has been

reported to the NIH (is on PubMed), needs to be reported (is associated with an NIH grant),

or satisfies the NIH’s requirements to have a PMCID. It has the ability to search PubMed [2],

ORCID [8], Google Scholar [9], and Crossref [10], given a list of authors and/or author IDs.

Academic Tracker provides highly customizable reporting templates so information about the

resulting publications is easily transformed into appropriate formats for tracking and reporting

purposes.

ORCID (Open Researcher and Contributor ID) is a non-profit organization dedicated to

uniquely identifying individuals who participate in research [8]. Once an author is registered,

ORCID provides a unique ID that can be used to associate an author with their publications.

These associations can be easily accessed from the ORCID website or through their application

programming interface (API). Google Scholar is a search engine for scholarly literature with

similar API search facilities to ORCID [9]. Authors can create profiles on Google Scholar,

which Google Scholar uses to automatically associate publications with. Crossref is a non-

profit association with both commercial and non-profit publisher members with a primary

PLOS ONE Academic Tracker

PLOS ONE | https://doi.org/10.1371/journal.pone.0277834 November 18, 2022 2 / 15

P42 ES007380 (PI Pennell; co-I HNBM) via the

Data Management and Analysis Core (DMAC), and

NIH U54 TR001998-05A1 (PI Kern; co-I HNBM).

There was no additional external funding received

for this study. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://Research.gov
https://doi.org/10.1371/journal.pone.0277834

purpose of enabling cross-publishing citation linking [10]. Crossref’s stated goal is to make

“research objects easy to find, cite, link, assess, and reuse.” For the purposes of Academic

Tracker, Crossref serves as a database with an easily accessible API for finding relevant

publications.

Academic Tracker has three main use-cases and one supportive use-case. The first main

use-case searches the aforementioned web portals for publications, given a list of authors. The

second main use-case searches PubMed and Crossref for publication information, given a list

of publication citations. Neither ORDID nor Google Scholar can be searched for specific publi-

cation information directly. ORCID is organized around author profiles and not publications

themselves and does not provide a search option by publication characteristics. Google Scholar

cannot be searched by specific publication characteristics, because Google Scholar has limited

the repetitive programmatic use of their web service in this way. However, Google Scholar

does allow repetitive programmatic search by author profile ID. The third main use-case finds

collaborators given a list of authors. This is similar to the first use-case, but focuses on compil-

ing the co-authors from the publications rather than the publications themselves. The fourth

supportive use-case searches ORCID or Google Scholar for authors’ unique IDs for these

sources, given a list of authors.

The main output from the three main use-cases is a Javascript Object Notation (JSON) file

containing information about each publication found. Other outputs vary on user settings.

Customizable summary and project reports can be created with an option of emailing them as

attachments. The collaborator report of the third use-case is also customizable. All emails are

also copied into a JSON file. A configuration JSON file is needed as part of the input to Aca-

demic Tracker and the fourth supportive use-case will update this file with the information

found during the search. A use-case diagram for Academic Tracker is shown in Fig 1.

Fig 1. Academic Tracker use-case diagram. The first and third use-cases, publication search and collaborator search, are illustrated via

the “Publication Search by Author” option. The second use-case, publication information, is illustrated via the “Publication Search by

Reference” option. The supporting use-case, ORCID ID and Google Scholar ID searches, are illustrated by the “Unique ID Search”

option.

https://doi.org/10.1371/journal.pone.0277834.g001

PLOS ONE Academic Tracker

PLOS ONE | https://doi.org/10.1371/journal.pone.0277834 November 18, 2022 3 / 15

https://doi.org/10.1371/journal.pone.0277834.g001
https://doi.org/10.1371/journal.pone.0277834

Methods

3rd party packages

Academic Tracker leverages many third-party Python libraries and packages to accomplish its

major tasks. Academic Tracker uses the docopt library to implement a command line interface

(CLI) from a Python docstring description. Next, Academic Tracker uses the jsonschema

library to validate user JSON input against an expected schema, which is also in JSON format.

JSON Schema is an independently developed vocabulary or framework created for the purpose

of validating and annotating JSON. Other developers have implemented the vocabulary in sev-

eral languages, and the jsonschema library is the Python language implementation. The spe-

cific schema used in Academic Tracker are in the Validation_Schemas directory of the

supplemental materials. Academic Tracker also uses four different packages to query data

sources for publications. Specifically, Academic Tracker uses the pymed, habanero, orcid, and

scholarly libraries to query PubMed, Crossref, ORCID, and Google Scholar, respectively. For

the second use-case, Academic Tracker uses the requests library to make HTTP requests and

the beautifulsoup4 library to parse HTML in the pulled web pages given as the reference file.

Next, Academic Tracker uses the fuzzywuzzy library to fuzzy match publication titles, which is

necessary because publications do not have a universal unique identifier. For general file

input/output, Academic Tracker uses several packages, including: i) the python-docx library

to read Microsoft Word files, specifically for the reference file input; ii) the pandas library to

read and write tabular data, specifically to read in author data and write out reports; and iii)

indirectly the openpyxl library, which is used by pandas to write Excel files. In order to com-

prehensively compare publication information across different runs to see if any information

has changed, Academic Tracker uses the deepdiff library. A list of packages and their versions

are in Table 1.

Use cases

Although there are 3 main use-cases and 1 supportive use-case, Academic Tracker has 2 main

commands and 6 supporting commands (Table 2). The first and third main use-cases are han-

dled by the author_search command, while the second main use-case is handled by the

Table 1. Library dependencies for Academic Tracker.

Package Version Description PyPI URL

docopt 0.6.2 Command line interface creation. https://pypi.org/project/docopt/

pymed 0.8.9 Query PubMed. https://pypi.org/project/pymed/

jsonschema 3.0.1 Validate JSON files. https://pypi.org/project/jsonschema/

habanero 1.0.0 Query Crossref. https://pypi.org/project/habanero/

orcid 1.0.3 Query ORCID. https://pypi.org/project/orcid/

scholarly 1.4.5 Query Google Scholar. https://pypi.org/project/scholarly/

beautifulsoup4 4.9.3 HTML Parsing. https://pypi.org/project/beautifulsoup4/

fuzzywuzzy 0.18.0 Fuzzy match strings. https://pypi.org/project/fuzzywuzzy/
apython-docx 0.8.11 Read docx files. https://pypi.org/project/python-docx/

pandas 0.24.2 Read and write tabular files. https://pypi.org/project/pandas/

openpyxl 2.6.2 Used by pandas for writing Excel files. https://pypi.org/project/openpyxl/

requests 2.21.0 Make HTTP requests. https://pypi.org/project/requests/

deepdiff 5.7.0 Compare publication information. https://pypi.org/project/deepdiff/

aThe python-docx module imports with the name docx (original package name).

https://doi.org/10.1371/journal.pone.0277834.t001

PLOS ONE Academic Tracker

PLOS ONE | https://doi.org/10.1371/journal.pone.0277834 November 18, 2022 4 / 15

https://pypi.org/project/docopt/
https://pypi.org/project/pymed/
https://pypi.org/project/jsonschema/
https://pypi.org/project/habanero/
https://pypi.org/project/orcid/
https://pypi.org/project/scholarly/
https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/fuzzywuzzy/
https://pypi.org/project/python-docx/
https://pypi.org/project/pandas/
https://pypi.org/project/openpyxl/
https://pypi.org/project/requests/
https://pypi.org/project/deepdiff/
https://doi.org/10.1371/journal.pone.0277834.t001
https://doi.org/10.1371/journal.pone.0277834

reference_search command. The supportive use-case is handled by the find_ORCID and

find_Google_Scholar commands. The remaining four commands help users experiment with

the tokenization and reporting systems in Academic Tracker and make it a little easier to con-

vert author information into JSON format. The commands are listed in Table 2. The input and

output files for each command are further described in Table 3.

Module description

Although Academic Tracker is primarily designed to be a command line tool, it does provide

an equivalent API, which can be utilized if so desired. The CLI and highest-level API for each

command are implemented in the __main__.py file, but other submodules break down the

steps into smaller pieces. Utilizing the API, reference_search and author_search are almost

Table 2. Description of Academic Tracker commands.

Command Use-

Case

Input Files Output Files Optional Files

author_search 1 & 3 Configuration JSON Publications JSON Summary Report Project Reports Collaborator

Reports Emails JSON

reference_search 2 Configuration JSON Reference File Publications JSON Tokenized

Reference JSON

Summary Report Emails JSON

find_ORCID S Configuration JSON Configuration JSON

find_Google_Scholar S Configuration JSON Configuration JSON

add_authors S Configuration JSON Author CSV Configuration JSON

tokenize_reference S Reference File Tokenized Reference JSON

Tokenization Report

gen_reports_and_emails_auth S Configuration JSON Publication

JSON

Summary Report Project Reports Collaborator

Reports Emails JSON

gen_reports_and_emails_ref S Configuration JSON Reference File

Publication JSON

Tokenized Reference JSON Summary Report Emails JSON

� “S” stands for supportive use case.

https://doi.org/10.1371/journal.pone.0277834.t002

Table 3. Description of input and output file formats.

File Format Source Description

config JSON Input/

Output

Main input to direct the behavior of the program. Can also be an output for some commands.

publications JSON Input/

Output

Main output from most commands that contains information about the publications found. Can also be an input for

commands that generate reports.

reference JSON Input Main input to search for publications by a reference. It can be an already tokenized reference JSON file, a URL to a

webpage, a Word docx file, a txt file, or a MEDLINE formatted file.URL

docx

txt

MEDLINE

emails JSON Output A copy of any emails sent or would be sent if ran in test mode.

project_report txt Output Depending on the settings in the config JSON file either a report summarizing information about publications found

for the project or a report summarizing information about publications found for each author individually.

summary_report txt Output A report summarizing information about all publications found for all projects and authors.

collaborators_report csv Output A report summarizing information about co-authors for an author.

authors csv Input A tabular csv file with authors to add or modify in the config JSON file.

tokenized_reference JSON Input/

Output

A tokenized version of a reference. Can be an input to commands that work with reference sources.

https://doi.org/10.1371/journal.pone.0277834.t003

PLOS ONE Academic Tracker

PLOS ONE | https://doi.org/10.1371/journal.pone.0277834 November 18, 2022 5 / 15

https://doi.org/10.1371/journal.pone.0277834.t002
https://doi.org/10.1371/journal.pone.0277834.t003
https://doi.org/10.1371/journal.pone.0277834

Table 4. Submodules of Academic Tracker.

Submodule Description

__main__.py Contains the CLI and top-most API.

athr_srch_emails_and_reports.py Contains functions for constructing the reports and emails.

athr_srch_modularized.py Contains compartmentalized pieces of author_search.

athr_srch_webio.py Contains the functions for querying the 4 data sources.

citation_parsing.py Contains the functions for parsing and tokenizing reference sources.

fileio.py Contains functions for reading and writing files.

helper_functions.py Contains functions for common operations such as regex and data transformation.

ref_srch_emails_and_reports.py Contains functions for constructing the reports and emails.

ref_srch_modularized.py Contains compartmentalized pieces of author_search.

ref_srch_webio.py Contains the functions for querying PubMed and Crossref, and some special case reference URLs.

tracker_schema.py Contains the JSON schema used for validating user input.

user_input_checking.py Contains functions for validating user input.

webio.py Contains functions to interface with the internet.

https://doi.org/10.1371/journal.pone.0277834.t004

Fig 2. Academic Tracker module diagram. Submodule and module dependencies are illustrated by connecting lines, except for helper_functions

which is utilized by most other submodules.

https://doi.org/10.1371/journal.pone.0277834.g002

PLOS ONE Academic Tracker

PLOS ONE | https://doi.org/10.1371/journal.pone.0277834 November 18, 2022 6 / 15

https://doi.org/10.1371/journal.pone.0277834.t004
https://doi.org/10.1371/journal.pone.0277834.g002
https://doi.org/10.1371/journal.pone.0277834

completely separated into their own submodules. The athr_srch_modularized.py submodule

compartmentalizes the steps of author_search, while the athr_srch_webio.py and athr_srch_e-

mails_and_reports.py submodules contain the functions to interface with the internet and

generate reports and emails respectively. reference_search is organized the same way with the

ref_srch_modularized.py, ref_srch_webio.py, and ref_srch_emails_and_reports.py submo-

dules. The user_input_checking.py submodule contains the functions to validate user input

for errors, and the tracker_schema.py submodule works in tandem with it to store the JSON

schema being used for validation. The fileio.py submodule contains all the functions for read-

ing and writing files. The webio.py submodule contains functions to interface with the internet

that are more general purpose or common to multiple commands. It is where the functions to

interface with the internet for find_ORCID and find_Google_Scholar are. The helper_func-

tions.py submodule contains functions with common operations across all commands that

don’t classify well into any other submodule, such as regex operations and data transforma-

tion. The citation_parsing.py submodule contains all the functions used to tokenize the refer-

ence sources for reference_search. Table 4 lists the submodules of Academic Tracker, and Fig

2 shows a module diagram.

Testing

The Academic Tracker package was originally developed in a Linux operating system (OS)

environment, but has been directly tested on Linux, Windows, and MacOS operating systems.

Fig 3. Example execution of the author_search use-case. Example configuration file, command-line execution, API execution, and file output of

the author_search for publications use-case shown.

https://doi.org/10.1371/journal.pone.0277834.g003

PLOS ONE Academic Tracker

PLOS ONE | https://doi.org/10.1371/journal.pone.0277834 November 18, 2022 7 / 15

https://doi.org/10.1371/journal.pone.0277834.g003
https://doi.org/10.1371/journal.pone.0277834

All use-cases have been tested on these operating systems; however, Academic Tracker relies

on sendmail or an emulator being installed and configured on the machine for its email func-

tionality. In addition, each submodule includes unit-tests that test all critical functions of the

submodule. Every function in every module is tested to make sure it gives the expected output

when it should and errors when it should. All requests to web portals are replaced with mock

data. The user_input_checking.py submodule has the largest number of tests, since it tests sev-

eral error states for each element of the input JSON files. Every command line option is tested,

for example, silent and not searching ORCID options. Various ways of creating reports are

Fig 4. Output file contents for the author_search use-case. Example JSON publications output and plain-text summary report from the

author_search for publications use-case shown.

https://doi.org/10.1371/journal.pone.0277834.g004

PLOS ONE Academic Tracker

PLOS ONE | https://doi.org/10.1371/journal.pone.0277834 November 18, 2022 8 / 15

https://doi.org/10.1371/journal.pone.0277834.g004
https://doi.org/10.1371/journal.pone.0277834

also tested, such as creating a tabular report versus a text report, Excel versus CSV format, and

renaming the report from the default name. Several different citation styles and sources are

also tested to make sure they are tokenized correctly, such as MEDLINE, a MyNCBI bibliogra-

phy URL, and an NSF Award page.

Results

Academic Tracker can be utilized in many different ways and was designed with a great deal of

flexibility, anticipating users’ desire to use it in unpredictable ways. However, the three main

and one supportive use-case are presented here. Note that the figures here are general exam-

ples with mostly dummy data. There are full examples with real data and run commands in

the supplemental materials (Example_Runs subdirectory). The first main use-case involves

searching for publications given author information. Fig 3 shows an example input configura-

tion JSON file, the command line for its execution, the API execution equivalent, and the

resulting output files. Fig 4 shows the contents of these resulting output files. Authors without

unique ORCID or Google Scholar IDs are identified by matching first name, last name, and at

least one affiliation.

The second main use-case involves looking for publications based on a given reference. Fig

5 shows an example input configuration JSON file, the command line for its execution, the

API execution equivalent, and the resulting output files. Figs 6 and 7 show the contents of the

resulting output files.

The third use-case is basically identical to the first, but a collaborator report attribute needs

to be added to an author. Fig 8 is essentially the same as Fig 3, but with a collaborator report

attribute added to Author1 and the report in the output directory. Fig 4 already shows the

Fig 5. Example execution of the reference_search use-case. Example configuration file, reference file, command-line execution, API execution,

and file output of the reference_search use-case shown.

https://doi.org/10.1371/journal.pone.0277834.g005

PLOS ONE Academic Tracker

PLOS ONE | https://doi.org/10.1371/journal.pone.0277834 November 18, 2022 9 / 15

https://doi.org/10.1371/journal.pone.0277834.g005
https://doi.org/10.1371/journal.pone.0277834

Fig 6. Publication JSON and tokenized reference contents for the reference_search use-case.

https://doi.org/10.1371/journal.pone.0277834.g006

PLOS ONE Academic Tracker

PLOS ONE | https://doi.org/10.1371/journal.pone.0277834 November 18, 2022 10 / 15

https://doi.org/10.1371/journal.pone.0277834.g006
https://doi.org/10.1371/journal.pone.0277834

Fig 7. Summary report contents for the reference_search use-case.

https://doi.org/10.1371/journal.pone.0277834.g007

Fig 8. Example execution of collaborator report generation use-case. Example configuration file, command-line execution, API execution, and

file output of the author_search for collaborators use-case shown.

https://doi.org/10.1371/journal.pone.0277834.g008

PLOS ONE Academic Tracker

PLOS ONE | https://doi.org/10.1371/journal.pone.0277834 November 18, 2022 11 / 15

https://doi.org/10.1371/journal.pone.0277834.g007
https://doi.org/10.1371/journal.pone.0277834.g008
https://doi.org/10.1371/journal.pone.0277834

contents of the publications JSON and summary report. Table 5 shows the contents of the

resulting collaborator report table.

The supportive use-case is broken into 2 commands: find_ORCID for finding ORCID IDs

and find_Google_Scholar for finding Google Scholar IDs. Fig 9 shows an example input con-

figuration JSON, how to accomplish this using the command line and API, and the resulting

output files for finding ORCID IDs. Fig 10 shows the contents of the resulting configuration

JSON file. Figs 11 and 12 are the same as Figs 9 and 10 but for finding Google Scholar IDs.

Discussion and conclusions

Academic Tracker is a useful tool for querying major scientific publication web portals for

publications, given a list of authors or references and for creating highly customizable reports

from the list of publications found. The software package provides assistance in repetitive

tracking and reporting of peer-reviewed publications associated with specific authors, projects,

and grants. Specifically, the JSON configuration file supports batch execution, directing Aca-

demic Tracker to perform multiple related author searches and report generations. The JSON

configuration file has many optional parameters to customize searching and report generation,

including a cutoff_year for searching. Academic Tracker is also designed for repetitive tracking

by comparing current search results to prior search results to limit reporting to changes in

publications detected and in publication attributes. Academic Tracker also provides facilities

for generating lists of co-author collaborators, which has several uses in grant proposal submis-

sion. But given the number of major use-cases and versality of the software, there is some intel-

lectual overhead required to initially setup the JSON configuration file and customize reports.

Additional supportive commands are included to make learning and troubleshooting the tool

Table 5. Contents of the output collaborator report as a table.

Name Affiliations

Christian, W Jay University of Kentucky College of Public Health.

Hoover, Anna G University of Kentucky College of Public Health.

Koempel, Annie University of Kentucky Department of Dietetics and Human Nutrition.

Tumlin, Kimberly I University of Kentucky College of Public Health.

https://doi.org/10.1371/journal.pone.0277834.t005

Fig 9. Example execution of the ORCID ID search use-case. Example configuration file, command-line execution, API execution, and file output

of the author ORCID ID search use-case shown.

https://doi.org/10.1371/journal.pone.0277834.g009

PLOS ONE Academic Tracker

PLOS ONE | https://doi.org/10.1371/journal.pone.0277834 November 18, 2022 12 / 15

https://doi.org/10.1371/journal.pone.0277834.t005
https://doi.org/10.1371/journal.pone.0277834.g009
https://doi.org/10.1371/journal.pone.0277834

easier for new users. Also, there is extensive documentation available to help with the learning

curve: https://moseleybioinformaticslab.github.io/academic_tracker/

In addition, when installed via the Python package management system pip, a console

script “academic_tracker” is created automatically for the user, providing easy access to the

CLI.

While the package accesses multiple major peer-reviewed publication tracking web portals,

it is fundamentally limited to the information provided by these web portals and must assume

the information provided is accurate. One possibility is to download a PDF of the publication

itself for analysis. However, this is pragmatically infeasible, since there is wide variation in how

journals organize the splash page of their publications. One way to alleviate this issue is for

Fig 10. Contents of the output configuration JSON file for the ORCHID ID search use-case.

https://doi.org/10.1371/journal.pone.0277834.g010

PLOS ONE Academic Tracker

PLOS ONE | https://doi.org/10.1371/journal.pone.0277834 November 18, 2022 13 / 15

https://moseleybioinformaticslab.github.io/academic_tracker/
https://doi.org/10.1371/journal.pone.0277834.g010
https://doi.org/10.1371/journal.pone.0277834

Fig 11. Example execution of the Google Scholar ID search use-case. Example configuration file, command-line execution, API execution, and

file output of the author Google Scholar ID search use-case shown.

https://doi.org/10.1371/journal.pone.0277834.g011

Fig 12. Contents of the output configuration JSON file for the Google Scholar ID search use-case.

https://doi.org/10.1371/journal.pone.0277834.g012

PLOS ONE Academic Tracker

PLOS ONE | https://doi.org/10.1371/journal.pone.0277834 November 18, 2022 14 / 15

https://doi.org/10.1371/journal.pone.0277834.g011
https://doi.org/10.1371/journal.pone.0277834.g012
https://doi.org/10.1371/journal.pone.0277834

journals to adopt a DOI extension like “.pdf” which would link directly to the PDF version of

the publication, if the PDF version is accessible. This is similar to the versioning “.v#” DOI

extension that FigShare uses to provide access each version of a public FigShare repository. If a

practical way to directly access the PDF is implemented either by journals or the publication

tracking web portals, we would extend Academic Tracker to utilize it. Still in its current imple-

mentation, we believe Academic Tracker can significantly reduce the stress and hassle of

reporting publications to federal funding agencies, reducing the chance for accidental non-

compliance and resulting delay in funding.

Acknowledgments

We also thank Jennifer Moore for feedback during the development of the report generation

capabilities.

Author Contributions

Conceptualization: Christian D. Powell, Hunter N. B. Moseley.

Funding acquisition: Hunter N. B. Moseley.

Methodology: P. Travis Thompson, Christian D. Powell, Hunter N. B. Moseley.

Project administration: Hunter N. B. Moseley.

Software: P. Travis Thompson.

Supervision: Hunter N. B. Moseley.

Validation: P. Travis Thompson.

Writing – original draft: P. Travis Thompson, Hunter N. B. Moseley.

Writing – review & editing: P. Travis Thompson, Christian D. Powell, Hunter N. B. Moseley.

References

1. Consolidated Appropriations Act of 2008, H.R. 2764, Editor. 2008: Congressional Record.

2. Roberts R.J., PubMed Central: The GenBank of the published literature. Proc Natl Acad Sci U S A,

2001. 98(2): p. 381–2. https://doi.org/10.1073/pnas.98.2.381

3. Rosenzweig M., et al., National Institutes of Health public access policy and the University of Michigan

Libraries’ role in assisting with depositing to PubMed Central. Journal of the Medical Library Associa-

tion: JMLA, 2011. 99(1): p. 97.

4. Dylla F., CHORUS–A solution for public access. Information services & use, 2014. 34(3–4): p. 195–

199.

5. Consolidated Appropriations Act, 2014, H.R. 3547, Editor. 2013: Congressional Record.

6. Kimbrough J.L. and Gasaway L.N., Publication of government-funded research, open access, and the

public interest. Vand. J. Ent. & Tech. L., 2015. 18: p. 267.

7. Lappen H. and Creamer A.T., Complying with the NSF’s New Public Access Policy and Depositing a

Manuscript in NSF-PAR. 2016.

8. Haak L.L., et al., ORCID: a system to uniquely identify researchers. Learned publishing, 2012. 25(4): p.

259–264.

9. Jacsó P., Google Scholar: the pros and the cons. Online information review, 2005.

10. Lammey R., CrossRef text and data mining services. Insights, 2015. 28(2).

PLOS ONE Academic Tracker

PLOS ONE | https://doi.org/10.1371/journal.pone.0277834 November 18, 2022 15 / 15

https://doi.org/10.1073/pnas.98.2.381
https://doi.org/10.1371/journal.pone.0277834

