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Abstract

Multi-fidelity methods leverage low-cost surrogate models to speed up computations and make oc-
casional recourse to expensive high-fidelity models to establish accuracy guarantees. Because surrogate
and high-fidelity models are used together, poor predictions by surrogate models can be compensated
with frequent recourse to high-fidelity models. Thus, there is a trade-off between investing computational
resources to improve the accuracy of surrogate models versus simply making more frequent recourse to
expensive high-fidelity models; however, this trade-off is ignored by traditional modeling methods that
construct surrogate models that are meant to replace high-fidelity models rather than being used together
with high-fidelity models. This work considers multi-fidelity importance sampling and theoretically and
computationally trades off increasing the fidelity of surrogate models for constructing more accurate bi-
asing densities and the numbers of samples that are required from the high-fidelity models to compensate
poor biasing densities. Numerical examples demonstrate that such context-aware surrogate models for
multi-fidelity importance sampling have lower fidelity than what typically is set as tolerance in traditional
model reduction, leading to runtime speedups of up to one order of magnitude in the presented examples.

1 Introduction
Surrogate models provide low-cost approximations of computationally expensive high-fidelity models and
so are widely used to make tractable a variety of outer-loop applications such as control, optimization, and
uncertainty quantification [34]. Typical examples of surrogate models are simplified-physics models [30, 28, 8],
data-fit and machine-learning models [17, 36], and projection-based reduced models [4, 35, 5, 20, 11]. Multi-
fidelity methods combine surrogate models for speedups and high-fidelity models for accuracy guarantees
[34, 29]. Recourse to the high-fidelity model enables compensation for poor surrogate accuracy, in stark
contrast to traditional single-fidelity methods that use surrogate models alone. The opportunity of multi-
fidelity methods, which we exploit in the following, is that it is unnecessary that surrogate models achieve
tight accuracy guarantees because high-fidelity models are occasionally evaluated to correct results. Rather,
it can be beneficial to use surrogate models with very low accuracy in favor of very cheap training and
evaluation costs. Clearly, there is a limit of how low the accuracy of surrogate models can be in favor of
costs before surrogate models become useless. Thus, in multi-fidelity approaches, there is a trade-off between
increasing the accuracy of surrogate models with expensive training methods versus making more frequent
recourse to the expensive high-fidelity model to compensate less accurate, but cheaper, surrogate models.
Surrogate models that exploit this trade-off are called context-aware models [31]. This work derives context-
aware surrogate models for multi-fidelity importance sampling (MFIS) estimators [32], where the surrogate
model is used for constructing a Laplace approximation as a biasing density. Our numerical results show
that such context-aware surrogate models for MFIS can achieve an error reduction of more than one order
of magnitude compared to using a single model alone.

We review related literature. First, there is work on adaptive discretizations for multi-level Monte Carlo
methods and stochastic collocation methods [21, 22, 23] that adaptively refine meshes and time steps to
obtain a non-uniform hierarchy of surrogate models. Additionally, there is work on continuous multi-level
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Monte Carlo [15] that adapts the model hierarchy in a non-uniform fashion. In contrast to coarse-grid
discretizations, we will consider surrogate models for constructing biasing densities, which incur training
(offline) costs that we trade off with surrogate-model fidelity and frequency of recourse to the high-fidelity
model. The work [12] learns data-fit surrogate models for solving Bayesian inverse problems, without building
on multi-fidelity methods and thus without deriving the trade-off between model accuracy and costs. Second,
the works [31, 16] explore the trade-off between surrogate-model fidelity and number of times to make recourse
to the high-fidelity for multi-fidelity Monte Carlo estimation with control variates, which is in contrast to
using importance sampling for variance reduction as in this work. In [13], the authors consider local, data-fit
approximations and balance the decay rate of the bias due to the approximation with the variance of sampling
with Markov chain Monte Carlo methods. Third, there is a large body of work on using surrogate models
and multi-fidelity methods that build on importance sampling without explicitly exploiting the trade-off
given by surrogate-model fidelity and frequency of recourse to the high-fidelity model. The work [27, 26]
develops a principled strategy to switch between sampling from a surrogate model and from the high-fidelity
model to speedup failure and rare event probability estimation. In [10], the authors build on a posteriori
error estimators to decide if either a surrogate model or the high-fidelity model is evaluated. The authors of
[19, 18] develop a multi-fidelity method for importance sampling to efficiently estimate risk-measures such
as the conditional value-at-risk. Another line of work considers multi-level sequential Monte Carlo methods
such as [6, 24] for reducing the costs of finding biasing densities.

We build on MFIS introduced in [32]. In particular, we develop bounds of the error of MFIS estimator
that depends on the surrogate-model fidelity and then derive a trade-off between surrogate-model fidelity
and computational costs. The first key ingredient is that we use a Laplace approximation computed with
the surrogate model as biasing density. The quality of Laplace approximations has been studied in [14] in
terms of the Kullback-Leibler (KL) divergence and in [39] in terms of the Hellinger distance when the noise
level approaches zero. Instead, we consider the χ2 divergence [42] due to its natural interpretation as the
variance of the importance weights. There is a large body of work on adaptive importance sampling that
studies minimizing the χ2 divergence to derive an optimal biasing density [3, 37, 2], but these works do not
consider the cost of surrogate models during training. The second key ingredient is bounding the error of
the importance sampling estimator such as introduced in [9, 1, 38]. These error bounds take the form of
a probability divergence between the target distribution and the biasing distribution, which we will use to
separate the error due to sampling from the error due to the quality of the biasing density that corresponds
to the surrogate-model fidelity.

This manuscript is structured as follows. In Section 2 we outline importance sampling in the multi-fidelity
setting along with the bound on the mean-squared error (MSE) in terms of the χ2 divergence as presented
in [1]. Section 3 is the main contribution of this work and derives a bound on the χ2 divergence of the
target from the biasing distribution in terms of the surrogate-model fidelity that leads to the formulation
of an optimization problem for finding a trade-off. In Section 4, we apply the results from Section 3 in
the case where the target distribution is a posterior distribution arising from a Bayesian inverse problem.
In Section 5, we demonstrate our method on three numerical examples. The proposed MFIS estimators
with context-aware surrogate models achieve more than one order of magnitude error reduction compared
to traditional importance sampling that uses the high-fidelity model alone with the same costs.

2 Importance sampling and problem formulation
Section 2.1 describes the setup of our problem. Section 2.2 is a brief overview of importance sampling and
Section 2.3 overviews how the quality of a biasing density influences importance sampling estimators in
terms of the χ2 divergence. Section 2.4 illustrates the multi-fidelity approach to importance sampling and
Section 2.5 formulates the trade-off between fidelity and number of samples that we are interested in.

2.1 Notation and problem setting
Let (Θ,B(Θ), p) denote a probability space where Θ = Rd is the domain for parameters θ, B(Θ) is the Borel
σ-algebra of Θ, and p is a probability distribution on Θ. Let p be absolutely continuous with respect to
the Lebesgue measure on Rd and refer to both the measure and the density function as p. Furthermore,
the density p may only be known up to a normalizing constant p = 1

Z p̃, where p̃ ≥ 0 is the un-normalized
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density and Z =
∫
θ
p̃(θ) dθ is the normalizing constant. In the following, we consider situations where the

density p and the un-normalized density p̃ are expensive to evaluate. The goal is to compute quantities of
interest with respect to the target distribution p which take the form of expectations

Ep [f ] =
∫
Θ

f(θ)p(θ) dθ, (1)

where f is a bounded measurable test function, i.e., ∥f∥L∞ < ∞ where ∥f∥L∞ = ess supθ∈Θ|f(θ)| under
the measure p.

2.2 Importance sampling
Let q be another probability distribution on the Borel space
(Θ,B(Θ)) that is absolutely continuous with respect to the Lebesgue measure on Rd and is such that p
is absolutely continuous with respect to q. We let q refer to both the probability distribution and the
density function with respect to the Lebesgue measure. If sampling directly from p is impossible and the
normalizing constant Z is unknown, then self-normalized importance sampling can be used with q as the
biasing distribution to estimate the expectation (1). Draw m independent and identically distributed samples
{θ(i)}mi=1

i.i.d.∼ q from the biasing distribution q and re-weight them with the target distribution p to obtain
the self-normalized importance sampling estimator

f̂m =

∑m
i=1 f(θ

(i))w(θ(i))∑m
i=1 w(θ

(i))
(2)

of Ep [f ], where the importance weights w(θ(i)) are given by evaluating the un-normalized likelihood ratio
w(θ) = p̃(θ)

q(θ) at the samples θ(i). If all w(θ(i)) = 0, then we define f̂m = 0. The estimator (2) is a consistent
estimator of Ep [f ] as the sample size m → ∞.

2.3 Error of the importance sampling estimator
Theorem 2.1 of [1] gives the following bound on the MSE of the self-normalized importance sampling esti-
mator (2): if p is absolutely continuous with respect to q, then

E
[(

f̂m − Ep [f ]
)2]

≤ 4∥f∥2L∞

m

(
χ2 (p || q) + 1

)
(3)

holds, with the χ2 divergence of p from q defined as

χ2 (p || q) + 1 = Varq

[
p

q

]
+ 1 =

∫
Θ

(
p(θ)

q(θ)

)2

q(θ) dθ =

∫
Θ

p(θ)

q(θ)
p(θ) dθ. (4)

Note that the inequality (3) holds if Eq
[
w2
]
= ∞. Since f is bounded, it holds (f̂m − Ep [f ])2 ≤ 4∥f∥2L∞ ,

which means that the bound (3) is only useful if m ≥ χ2 (p || q) + 1. The bound (3) motivates setting the
effective sample size to

meff =
m

χ2 (p || q) + 1
, (5)

so that a large χ2 divergence corresponds to a large variance of the weights, meaning more samples are needed
to reduce the MSE of the estimator (2). The effective sample size (5) motivates finding a biasing density
q that is close to p with respect to the χ2 divergence. The χ2 divergence is related to other probability
divergences such as the Kullback-Leibler (KL) divergence

KL (p || q) =
∫
Θ

log

(
p(θ)

q(θ)

)
p(θ) dθ
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and the Hellinger distance

dH(p, q) =

(
1

2

∫
Θ

(√
p(θ)−

√
q(θ)

)2
dθ

)1/2

.

The relation is a lower bound given by Jensen’s inequality

e2dH(p, q)2 ≤ eKL(p || q) ≤ χ2 (p || q) + 1 ,

see [42] for more general information regarding these probability divergences.

2.4 Finding a biasing density
Let (ph)h>0 be a sequence of probability measures on (Θ,B(Θ)), where the distributions ph are approxima-
tions to p and the index h > 0 denotes the fidelity of the approximation. For each h, let ph be absolutely
continuous with respect to the Lebesgue measure on Rd and use ph to denote both the density function and
the distribution. Let the density functions converge pointwise so ph(θ) → p(θ) as h → 0 for every θ ∈ Θ.
Define C > 0 as the cost of evaluating the un-normalized high-fidelity density p̃ and c(h) > 0 as the cost of
evaluating the un-normalized surrogate density p̃h. The un-normalized surrogate densities p̃h can be used
instead of p̃ to find a biasing density qh resulting in the MFIS [32] estimator

f̂h,m =

∑m
i=1 f(θ

(i))wh(θ
(i))∑m

i=1 wh(θ
(i))

where {θ(i)}mi=1
i.i.d.∼ qh, (6)

of Ep [f ] with the importance weights wh(θ
(i)) = p̃(θ(i))/q̃h(θ

(i)) given by the ratio of the un-normalized
densities p̃ and q̃h at θ(i). Note that the un-normalized surrogate densities p̃h are not evaluated in computing
the estimator (6) and are only evaluated when deriving the biasing density qh. The bound (3) shows that the
quality of the biasing density with respect to the MSE is determined by the variance of the weights wh(θ

(i))
and thus that the number of samples needed to achieve an error tolerance depends directly on the fidelity h
of the surrogate density.

2.5 Problem formulation
Multi-fidelity importance sampling gives rise to the following two-step process of estimating Ep [f ] for test
functions f : (i) finding the biasing density qh from p̃h and (ii) evaluating the un-normalized densities q̃h
and p̃ at m samples to obtain an estimate (6) of Ep [f ]. Notice that qh is independent of the test function f
and thus can be re-used for many different test functions. The first step incurs training costs to derive qh
using p̃h, and the second step incurs online costs of evaluating the un-normalized surrogate and expensive
high-fidelity densities. The two steps give rise to a trade-off: investing high training costs to find a good
biasing density that keeps the χ2 divergence low means that fewer evaluations of the expensive high-fidelity
density are required in the online step and vice versa. Traditional model reduction [35, 5] typically targets
computations where the surrogate model replaces the high-fidelity, where such a trade-off does not exist,
instead of combining surrogate and high-fidelity models as in multi-fidelity methods such as MFIS. Thus,
traditional model reduction provides little guidance on the mathematical formulation of this trade-off and
the total costs.

3 Context-aware surrogate models for multi-fidelity importance sam-
pling

We consider the following trade-off: given an error tolerance ϵ, what is the optimal fidelity h of the surrogate
model that minimizes the total computational costs subject to the mean-squared error of the multi-fidelity
importance sampling estimator (6) being below or equal to the tolerance ϵ. We refer to such surrogate models
as context-aware because the fidelity is determined specifically for the online computations of the problem

4



(context) at hand [31], rather than being prescribed without taking the specific context of multi-fidelity
computations into account as in traditional model reduction [35, 5].

Section 3.1 revisits the notion of a sub-Gaussian distribution which is used in Section 3.2 to derive an
upper bound for χ2 (p || qh) that depends on the fidelity h. Section 3.3 introduces a Laplace approximation
qh of the low-fidelity surrogate density ph to be used as the biasing density and discusses its properties.
Section 3.4 uses the bound (9) on the χ2 divergence to formulate an optimization problem that selects a
fidelity h∗ based on the online stage of MFIS and derives the overall cost complexity of the corresponding
estimator. Section 3.5 summarizes the entire computational procedure in algorithmic form.

3.1 Sub-Gaussian distributions
For importance sampling without a fixed test function f , it is imperative that the importance weights
have finite variance (i.e., finite χ2 divergence) which means that the tails of the biasing density cannot be
significantly lighter than the tails of the target density p. Sub-Gaussian distributions are characterized by
their fast tail decay. A useful norm for quantifying the tail decay of a real-valued random variable, X, is the
Orlicz norm defined as

∥X∥ψ2
= inf

{
t > 0 | E

[
exp(X2/t2)

]
≤ 2
}
,

see [43, Sec. 2.5, Sec. 3.4] for other equivalent definitions. For a real random vector x = (x1, . . . , xd), the
Orlicz norm is defined to be

∥x∥ψ2
= sup

v∈Sd−1

∥∥vTx∥∥
ψ2

,

where Sd−1 ⊂ Rd is the unit sphere defined as Sd−1 = {v ∈ Rd : ∥v∥2 = 1}. A probability distribution π
is said to be sub-Gaussian if any random variable x ∼ π has ∥x∥ψ2

< ∞. Two examples of sub-Gaussian
distributions are multivariate Gaussians and distributions with compact support. If x ∼ N(0, σ2I) then
∥x∥ψ2

≤
√
2σ. In the following Lemma 1 we give a characterization of sub-Gaussian distributions that will

be used in the following sections. The lemma is a multi-dimensional version of Proposition 2.5.2 (iv) in [43].
We did not find this specific result in the literature and so we provide a proof in Appendix A, even though
it is a technical auxiliary result for us only.

Lemma 1. A random vector x with density π is sub-Gaussian if and only if there exists a symmetric
positive-definite matrix A such that for all vectors µ ∈ Rd

Eπ
[
exp

(
(x− µ)TA(x− µ)

)]
< ∞ .

Remark 1. In the case where π is a Gaussian with covariance Σ, the matrix A must be such that 1
2Σ

−1−A
is symmetric positive definite, in which case Lemma 1 is closely related to Fernique’s theorem about the tail
decay of Gaussian densities. This constraint on A will translate to a constraint on the biasing density for
non-Gaussian target densities as will be made precise in the next section.

3.2 Bounding the χ2 divergence
In this section we derive the dependence of the MSE of the estimator (6) with respect to Ep [f ] on the fidelity
h used to find the biasing density qh. We bound χ2 (p || qh) with respect to h and we want this bound to
factor into a part depending only on the ratio p/ph and a part depending only on the ratio ph/qh. The
following example demonstrates that such a decomposition is not straightforward: let

p(x) = ae−ax, ph(x) = be−bx, qh(x) = ce−cx x ≥ 0 ,

for a, b, c > 0, be three exponential distributions. Then

χ2 (p || ph) =
∫ ∞

0

a2

b
e−(2a−b)xdx =

a2

b(2a− b)
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if a > b/2 and ∞ otherwise. By taking a = 2, b = 3/2 and c = 1, we have that

χ2 (p || ph) < ∞, χ2 (ph || qh) < ∞,

but that
χ2 (p || qh) = ∞ ,

which means that we cannot directly decompose the χ2 divergence into the product of χ2 divergences with
an intermediate distribution (namely ph). In contrast, the Cauchy-Schwarz inequality gives

χ2 (p || qh) + 1 =

∥∥∥∥ p

qh

∥∥∥∥
L1(p)

=

〈
p

ph
,
ph
qh

〉
L2(p)

≤
∥∥∥∥ p

ph

∥∥∥∥
L2(p)

∥∥∥∥phqh
∥∥∥∥
L2(p)

, (7)

which requires the likelihood ratios p/ph and ph/qh to be in L2(p) as opposed to L1(p), which is required
for the bound (3) to hold and be finite. We note that, while we restrict ourselves to bounded test functions
f in this work, other bounds similar to (3) exist [1, Theorem 2.3] but it remains unclear how to write them
as a probability divergence between the target and biasing distributions and they do not necessarily admit
a clear decomposition between accuracy of the surrogate density and accuracy of the approximation to the
surrogate density as in (7). We also note that we can allow more general test functions f ∈ L2 as long as
we place stronger assumptions on the ratio of densities so that ∥p/ph∥L∞(p), ∥ph/qh∥L∞(p) < ∞ as in [39].
Here we choose to loosen these assumptions at the cost of only considering bounded test functions. The next
four assumptions and the theorem that follows are sufficient for the likelihood ratios p/ph and ph/qh to be
in L2(p) and to decompose the χ2 divergence as in the right-hand side of Equation (7).

Assumption 1 (Exponential form of the densities). The densities p, ph, and qh have the form

p(θ) =
1

Z
e−Φ(θ), ph(θ) =

1

Zh
e−Φh(θ), qh(θ) =

1

Z̃h
e−Φ̃h(θ),

with potentials Φ,Φh, Φ̃h ∈ C2(Θ) that are twice continuously differentiable, normalizing constants Z,Zh, Z̃h,
and Φh(θ) → Φ(θ) for all θ ∈ Θ as h → 0.

Assumption 2 (Decay of the target density). The target density p is sub-Gaussian with matrix A; see
Lemma 1.

Assumption 3 (Error of the surrogate potentials). There exists an error function δ(h) > 0 and a function
τ(θ) ≥ 0, such that

Φh(θ) ≤ Φ(θ) + δ(h)τ(θ)

for all θ ∈ Θ, where δ(h) → 0 as h → 0.

Assumption 4 (Biasing densities). There exists a function γ(h) > 0 and a function ω(θ) ≥ 0 such that for
all h

Φ̃h(θ) ≤ Φh(θ) + γ(h)ω(θ)

for all θ ∈ Θ.

Assumption 2 is independent of the surrogate densities and is necessary to avoid heavy tailed target
distributions for which importance sampling can fail. Note that we make the sub-Gaussian assumption
specifically because we use a Laplace approximation as the biasing density, which is Gaussian, in Section 3.3.
Assumptions 3 and 4 are each controlling one of the terms on the right-hand side of Equation (7): As-
sumption 3 ensures that the surrogate densities are sufficiently accurate with respect to the target density
while Assumption 4 ensures that the choice of approximation to the surrogate density is sufficiently close.
In both cases we only assume the asymmetric inequality of the form Φh(θ) ≤ Φ(θ) + δ(h)τ(θ) as opposed
to |Φh(θ)− Φ(θ)| ≤ δ(h)τ(θ) (and similarly for Assumption 4) because importance sampling can fail if the
tails of the biasing density are lighter than the tails of the target density, but will still converge even if
they are heavier. Note that the restrictions on the tails of the biasing and target distribution are inherited
by importance sampling rather than being a restrictions imposed by the proposed approach of trading off
surrogate fidelity and costs.
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Remark 2. Assumption 4 does not assume that γ(h) → 0 as h → 0. Starting with Section 3.3, we will
choose the density qh to be a Laplace approximation of ph, which does not necessarily converge to ph as
h → 0.

Theorem 1 gives the decomposition and bound depending on the fidelity h.

Theorem 1. Let Assumptions 1, 2, 3, and 4 hold and assume there exist constants τ0, ω0 > 0 such that

τ(θ) ≤ ∥θ∥2 + τ0, ω(θ) ≤ ∥θ∥2 + ω0 .

Let hmax be such that for all h ≤ hmax

γ(h) ≤ 1

4
λA
min , (8)

with A being the matrix from Assumption 2 and λA
min being its smallest eigenvalue, then for all h sufficiently

small we have that
χ2(p || qh) + 1 ≤ K0e

K1δ(h)+K2γ(h) (9)

where K0,K1,K2 are all positive constants independent of h.

By the assumption in Theorem 1 that γ(h) ≤ λA
min/4, the bound (9) can be written in the form

χ2(p || qh) + 1 ≤ K̃0e
K1δ(h) (10)

where the constant K̃0 now absorbs the dependency on the approximation qh

K̃0 = K0e
K2λ

A
min/4 ≥ K0e

K2γ(h) . (11)

In the limit as the fidelity h → 0, the upper bound (10) remains bounded by the constant K̃0, which is
determined entirely by the choice of biasing densities qh. Notice that K̃0 > 1 because K0 ≥ 1 (see last line of
proof of Theorem 1) and the argument K2γ(h) > 0 of the exponential function is positive by Assumption 4.

Proof of Theorem 1. By Assumption 2, p is sub-Gaussian with matrix A ≻ 0 so that by Lemma 1

1

Z

∫
Θ

exp
(
θTAθ − Φ(θ)

)
dθ < ∞ .

Recall that Z is the normalizing constant from Assumption 1.
Part 1: Bounding high-fidelity to surrogate ratio

The first term on the right-hand-side of Equation (7) can be bounded using Assumption 3:∥∥∥∥ p

ph

∥∥∥∥2
L2(p)

=
1

Z

(
Zh
Z

)2 ∫
Θ

exp {2 (Φh(θ)− Φ(θ))− Φ(θ)} dθ

≤ 1

Z

(
Zh
Z

)2 ∫
Θ

exp
{
2δ(h)

(
∥θ∥2 + τ0

)
− Φ(θ)

}
dθ .

Re-writing this last line gives∥∥∥∥ p

ph

∥∥∥∥2
L2(p)

≤ 1

Z

(
Zh
Z

)2

exp (2τ0δ(h))

∫
Θ

exp
{
2δ(h)∥θ∥2 − Φ(θ)

}
dθ . (12)

Now the two dependencies of the right-hand side of (12) on the fidelity h are through the ratio Zh/Z and
through δ(h). For now we just bound the integral on the right-hand side of (12), which is finite since
A ≻ 2δ(h)I for all h sufficiently small. Adding and subtracting θTAθ in (12) gives∥∥∥∥ p

ph

∥∥∥∥2
L2(p)

≤ 1

Z

(
Zh
Z

)2

exp (2τ0δ(h))

∫
Θ

exp
{
2δ(h)∥θ∥2 − Φ(θ)

}
dθ

=
1

Z

(
Zh
Z

)2

exp (2τ0δ(h))

∫
Θ

exp
{
−θT (A− 2δ(h)I)θ + θTAθ − Φ(θ)

}
dθ .
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Putting this together with the fact that A− 2δ(h)I ≻ 0 gives∥∥∥∥ p

ph

∥∥∥∥2
L2(p)

≤ 1

Z

(
Zh
Z

)2

exp (2τ0δ(h))

∫
Θ

exp
{
θTAθ − Φ(θ)

}
dθ (13)

to complete the bound of the first term on the right-hand side of Equation (7).
Part 2: Bounding surrogate to biasing density ratio

The second term on the right-hand side of Equation (7) is bounded in a similar fashion. By Assumption 4
we can bound ∥∥∥∥phqh

∥∥∥∥2
L2(p)

=
1

Z

(
Z̃h
Zh

)2 ∫
Θ

exp
{
2
(
Φ̃h(θ)− Φh(θ)

)
− Φ(θ)

}
dθ

≤ 1

Z

(
Z̃h
Zh

)2 ∫
Θ

exp
{
2γ(h)

(
∥θ∥2 + ω0

)
− Φ(θ)

}
dθ

=
1

Z

(
Z̃h
Zh

)2

exp (2ω0γ(h))

∫
Θ

exp
{
2γ(h)∥θ∥2 − Φ(θ)

}
dθ .

Again we add and subtract θTAθ to obtain∥∥∥∥phqh
∥∥∥∥2
L2(p)

≤ 1

Z

(
Z̃h
Zh

)2

exp (2ω0γ(h))

∫
Θ

exp
{
−θT (A− 2γ(h)I)θ + θTAθ − Φ(θ)

}
dθ .

Using this with the fact that A− 2γ(h)I ⪰ 0 for all h ≤ hmax gives∥∥∥∥phqh
∥∥∥∥2
L2(p)

≤ 1

Z

(
Z̃h
Zh

)2

exp (2ω0γ(h))

∫
Θ

exp
{
θTAθ − Φ(θ)

}
dθ . (14)

Multiplying the right-hand sides of the bounds (13) and (14) and then taking the square root gives
together with (7) that∥∥∥∥ p

qh

∥∥∥∥
L1(p)

≤ 1

Z

(
Z̃h
Z

)
exp {δ(h)τ0 + γ(h)ω0}

∫
Θ

exp
{
θTAθ − Φ(θ)

}
dθ (15)

holds. The integral is independent of h, so it remains to bound the ratio of normalizing constants.
Part 3: Bounding ratio of normalizing constants

In general, if ph is not in the family of biasing densities then we may have Z̃h ̸= Zh, and thus,

Z̃h
Z

̸→ 1

as h → 0. Instead we just give a constant upper bound on Z̃h that is independent of the fidelity h. By
Assumption 1, the normalizing constant Z̃h satisfies

Z̃h =

∫
Θ

exp
{
−Φ̃h(θ)

}
dθ

=

∫
Θ

exp
{
−Φ̃h(θ) + Φh(θ)− Φh(θ) + Φ(θ)− Φ(θ)

}
dθ

= Z

∫
Θ

exp
{
−Φ̃h(θ) + Φh(θ)− Φh(θ) + Φ(θ)

}
p(θ)dθ .

Dividing by Z and using Assumptions 3 and 4 we have

Z̃h
Z

≤
∫
Θ

exp
{
−δ(h)(∥θ∥2 + τ0)− γ(h)(∥θ∥2 + ω0)

}
p(θ) dθ ≤ 1 , (16)
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because the term inside the exponential is less than or equal to 0 and p is a density. Finally, combining the
bounds (13), (14), and (16) gives the result

χ2 (p || qh) + 1 =

∥∥∥∥ p

qh

∥∥∥∥
L1(p)

≤ exp {δ(h)τ0 + γ(h)ω0}Ep
[
exp

(
θTAθ

)]
,

where the expectation is independent of h. Here

K0 = Ep
[
exp

(
θTAθ

)]
, K1 = τ0, K2 = ω0

are all independent of the fidelity h.

Remark 3. The assumption that τ(θ) ≤ ∥θ∥2 + τ0 holds is similar to the pointwise Assumption 4.8 in
Theorem 4.6 of [40]. In [40], the pointwise bound can grow faster with respect to θ than in our case because
there the Hellinger distance, which is upper-bounded by the χ2 divergence, is considered. In our case, under
Assumption 2, the potential Φ grows at least quadratically with respect to ∥θ∥. For a similar reason we require
that γ(h) ≤ 1

4λ
A
min, even though γ(h) may not converge to zero. This inherently places restrictions on what

approximations may be used as biasing densities for importance sampling and is analogous to assumptions
made on biasing densities in importance sampling in general such as [1, Theorem 2.1].

3.3 Laplace approximation
In the following, we use a Laplace approximation of a surrogate density ph as a specific choice of biasing
density qh. A Laplace approximation qh is a Gaussian approximation to the density ph whose mean is a
mode of ph

µLAP
h = argmin

θ∈Θ
− log p̃h(θ) = argmin

θ∈Θ
Φh(θ), (17)

and whose covariance is the negative inverse Hessian of the log-likelihood evaluated at the mode

ΣLAP
h = −

[
∇∇T log p̃h

(
µLAP
h

)]−1
=
[
∇∇TΦh

(
µLAP
h

)]−1
. (18)

A Laplace approximation may not exist for certain distributions where the covariance matrix ΣLAP
h or

Hessian at the mode is not full-rank. If the following proposition applies, then a Laplace approximation exists
and is a suitable biasing distribution; we refer to [39] for in-depth discussions about Laplace approximations
as biasing distributions if the covariance matrix is singular. More generally, we are interested in finding
optimal biasing densities and types of biasing densities than Laplace approximations. Two notable examples
are parametrized transport maps and Gaussian mixture models for greater flexibility. While such biasing
densities may result in better approximations than the Laplace approximation, they are computationally
more challenging to fit and we are unaware of results that provide similar guarantees on the potential that
we prove in the following proposition.

Proposition 1. Let Assumption 1 hold and assume there exists a σ2
min > 0, independent of h, such that

θTΣLAP
h θ ≥ σ2

min∥θ∥2 , (19)

for all θ ∈ Θ. Further, assume there exist constants V ∈ R and v > 0 such that

Φh(θ) ≥ V − v∥θ∥2 (20)

for all h. Finally, let BR = {θ : ∥θ∥ ≤ R} be the ball of radius R centered at 0, and assume that for all
D > 0, there exists an R(D) > 0 such that for all θ /∈ BR(D) and all h > 0

Φh(θ) ≥ D . (21)

Then, the Laplace approximation satisfies Assumption 4 for all h sufficiently small.

9



Proof. By Assumption 1, a Laplace approximation

Φ̃h(θ) = Φh
(
µLAP
h

)
+

1

2

(
θ − µLAP

h

)T [∇∇TΦh(µ
LAP
h )

]−1 (
θ − µLAP

h

)
is the second-order Taylor expansion of Φh around one of the modes µLAP

h . The first derivative is zero since
it is expanded around a minimizer. Therefore,

Φ̃h(θ)− Φh(θ) = −Rh(θ) ,

where Rh(θ) is the remainder of higher order terms from the Taylor expansion. The bound (19) implies that

θT
(
ΣLAP
h

)−1

θ ≤ 1

σ2
min

∥θ∥2 ,

and when combined with the bound (20) gives

Φ̃h(θ)− Φh(θ) ≤ Φ̃h(θ)− V + v∥θ∥2

≤ Φh
(
µLAP
h

)
+

1

2σ2
min

∥θ − µLAP
h ∥2 − V + v∥θ∥2 .

Combining this with the fact that ∥x− y∥2 ≤ 2∥x∥2 + 2∥y∥2 yields

Φ̃h(θ)− Φh(θ) ≤ Φh
(
µLAP
h

)
+

(
1

σ2
min

+ v

)
∥θ∥2 + 1

σ2
min

∥µLAP
h ∥2 − V .

Now we claim that the terms Φh(µLAP
h ) and ∥µLAP

h ∥2 can be bounded independent of h. Let D = Φ(0)+1
and consider that, by assumption, there exists a ball BR(D) such that

Φh(θ) ≥ Φ(0) + 1 , ∀θ /∈ BR(D) .

By Assumption 1, we know that Φh(0) → Φ(0) and so that for all h sufficiently small, there exist points θ′
h,

such that Φh(θ′
h) ≤ Φ(0) + 1. Hence, the minimizers µLAP

h ∈ BR for all h sufficiently small. Thus, there are
constants B1, B2 > 0 independent of h such that Φh

(
µLAP
h

)
≤ B1 and ∥µLAP

h ∥2 ≤ B2. Thus, by setting

γ(h) =
1

σ2
min

+ v, ω(θ) = ∥θ∥2 + ω0, ω0 =
B1 +B2/σ

2
min − V

σ−2
min + v

Assumption 4 holds.

If Proposition 1 applies, then it is guaranteed that there exists a Laplace approximation and that its
covariance matrix remains non-singular as the fidelity h is reduced: Condition (19) ensures that the covariance
matrix ΣLAP

h is positive definite and hence that a Laplace approximation qh of ph exists for all h > 0. The
requirement that σ2

min is independent of h prevents the sequence of covariance matrices from approaching a
singular matrix in the limit h → 0. Condition (20) is related to Assumption 2.6(i) from [40]. A pointwise
bound is used to satisfy Assumption 4 and ensure the integrability from Theorem 1. Condition (21) implies
that Φh(θ) → ∞ as ∥θ∥ → ∞ uniformly in h, and so we know that a global minimizer exists for each
potential Φh; however, it is not necessarily unique. In the scenario where multiple global minima exist, we
may choose any µLAP

h from the set of global minimizers. In particular, we allow for multi-modal target and
surrogate densities p and ph and allow for the Laplace approximation to be a local approximation of one of
the local optimum as long as the covariance matrix satisfies the assumptions of Proposition 1 so that p, ph, p̃h
all satisfy Assumption 3 and 4, which are necessary for the importance sampling estimator (6) to converge.
In particular we note that we do not need to find all global minimizers.

Remark 4. If Proposition 1 holds, then the Laplace approximation serves as a suitable biasing density for
importance sampling in the sense that Assumption 4 holds, which is needed for Theorem 1. Recall that as the
fidelity h → 0 we may not have γ(h) → 0 and so χ2(p || qh) may not go to zero. We note that Proposition 1
implies the existence of a Laplace approximation and Assumption 4 but not necessarily a γ(h) that satisfies
condition (8) in Theorem 1.
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3.4 Trading off fidelity and costs of surrogate model for MFIS
We now consider the trade-off between selecting a fidelity h to construct a Laplace approximation and the
number of samples m in the MFIS estimator (6).

3.4.1 Offline and online costs of MFIS with Laplace approximation as biasing density

The total computational costs of estimating Ep [f ] with the MFIS estimator f̂h,m defined in Equation (6)
can be decomposed into training (offline) costs to fit the biasing density qh and the online costs to sample
and re-weight; cf. Section 2.5.

In the training phase, the biasing density is constructed. In the following, we consider a Laplace approxi-
mation qh of the surrogate density ph as the biasing density. The Laplace approximation is constructed from
M evaluations of the un-normalized surrogate density p̃h and so the training costs are Mc(h) in our case.
Recall that c(h) is the cost of evaluating the un-normalized surrogate density p̃h. For example, in Section 5,
M will be the total number of surrogate-density evaluations used in Newton’s method until machine precision
is reached, where both the gradient and Hessian are computed using either finite differences or the adjoint
method as well as computing the Hessian at the mode.

In the online phase, the weights of the MFIS estimator are obtained by evaluating the target density and
the biasing density at m samples. We model the online costs as mC, where C denotes the cost of a single
evaluation of the un-normalized target density p̃. No evaluations of the surrogate density are necessary in
the online phase because only the biasing density (Laplace approximation in our case) is evaluated, which
has costs that typically are independent of h and negligible compared to evaluating the target density p̃.
However, notice that the online costs depend implicitly on the fidelity h because the number of samples m
to reach an MSE below a threshold depends on the quality of the biasing distribution in the sense of the
divergence χ2(p||qh); cf. Section 2.3.

We obtain as the total costs of the MFIS estimator

cost(f̂h,m) = mC +Mc(h) , (22)

which depends on the number of samples m and on the fidelity h of the surrogate.

3.4.2 Cost complexity bounds of MFIS

The following theorem provides cost-complexity bounds for the MFIS estimator under assumptions of the
surrogate densities cost and error. We define the context-aware MFIS estimator to be the estimator (6) with
fidelity h∗ and sample size m∗ given by the following theorem.

Theorem 2. Suppose that Theorem 1 and Proposition 1 apply. Consider a tolerance 0 < ϵ ≤ 1 and set
K ′

0 = 4∥f∥2L∞K̃0 + 1, where K̃0 is the constant in Equation (11). If the surrogate density evaluation costs
grow as c(h) = β1/h with the fidelity h and the surrogate error decays as δ(h) = α−1/h in Assumption 3,
with α, β > 1, and we restrict h ∈ [0, log(α)/2], then there exist h∗ ∈ [0, log(α)/2] and m∗ ∈ N such that the
MFIS estimator f̂h∗,m∗ achieves an MSE less than the tolerance ϵ and the costs are bounded as

cost(f̂h∗,m∗) ≤ cost(f̂h∗,m∗) =
CK ′

0

ϵ
eK1ϵ

1/(1+logα β)

+Mϵ−1/(1+logβ α) .

If instead c(h) = h−β and δ(h) = hα with α, β > 0, then the costs are bounded as

cost(f̂h∗,m∗) ≤ cost(f̂h∗,m∗) =
CK ′

0

ϵ
eK1ϵ

α/(α+β)

+Mϵ−β/(α+β) .

Here we use the notation cost to denote the upper bound to cost(f̂h∗,m∗) as in Theorem 2 above.

Remark 5. For δ(h) = α−1/h we require that h ≤ log(α)/2 to satisfy the convexity assumption in Lemma 2.
Note that as ϵ → 0, the fidelity h must also go to zero by Equation (26). In particular, taking ϵ sufficiently
small, smaller than

ϵ ≤ 4∥f∥2L∞K̃0K1C logα

M log β
eK1α

−2/ log α

(αβ)−2/ logα ,

11



will ensure that h ≤ log(α)/2 as required.

The rates on the error δ(h) and the cost c(h) can arise, for example, in the Bayesian inverse problem
setting in Section 4, where surrogate models are used to construct the surrogate densities ph. Several concrete
examples will be given in Section 5. Notice that γ(h) from Assumption 4 influences implicitly the constant
K̃0 as shown in (11), which amplifies Remark 2 that it is unnecessary that γ(h) goes to 0 for h → 0 for
Theorem 2 to hold.

Before we prove Theorem 2, we state the following lemma that solves an auxiliary optimization problem
highlighting the trade-off between the costs and fidelity of the surrogate model.

Lemma 2. Let ĉ(ĥ) and ê(ĥ) be continuous non-negative convex functions, where one of them is strictly
convex. Let further ĉ(ĥ) decrease monotonically and ê(ĥ) increases monotonically as ĥ → ∞. Let ϵ > 0 be
a tolerance and M̂ ∈ N be a constant independent of ĥ. Then, there exists a unique solution (ĥ∗, m̂∗) of

minimize
m̂∈R,ĥ≥0

m̂C + M̂ ĉ(ĥ)

subject to
1

m̂
ê(ĥ) ≤ ϵ .

(23)

Proof of Lemma 2. We proceed as follows: first we show that if a solution exists it cannot occur at zero or
infinity (i.e. too high or low fidelity), then we show that a solution exists over a compact interval, and finally
show its uniqueness. For any ĥ, the optimal m̂ is the one that achieves equality in the constraint

m̂ =
ê(ĥ)

ϵ
.

Plugging this into the objective function gives the minimization problem over ĥ only.

minimize
ĥ≥0

C
ê(ĥ)

ϵ
+ M̂ ĉ(ĥ) . (24)

We first show that the infimum of the objective function cannot occur as ĥ → ∞ or as ĥ → 0. Since
ĉ(ĥ) is non-negative and decreasing we know that ĉ(ĥ) → c0 for some constant c0 ≥ 0. Moreover, ê(ĥ)

is increasing, so we know that there exists an ĥmax < ∞, such that any optimal solution ĥ∗ must satisfy
ĥ∗ ≤ ĥmax. Similarly, since ê(ĥ) is non-negative and decreasing as ĥ → 0 we know that ê(ĥ) → e0 for some
constant e0 ≥ 0 as ĥ → 0. Moreover, ĉ(ĥ) is increasing as ĥ → 0, and since the objective function (24) is
monotonically increasing as ĥ → 0, we know that there exists an ĥmin > 0, such that any optimal solution
ĥ∗ must satisfy ĥ∗ ≥ ĥmin. Hence

minimize
ĥ≥0

C
ê(ĥ)

ϵ
+ M̂ ĉ(ĥ) = minimize

ĥ∈[ĥmin,ĥmax]
C
ê(ĥ)

ϵ
+ M̂ ĉ(ĥ)

Since the objective function is continuous over a compact set, we know that a minimizer exists.
Finally, the sum of a strictly convex function and a convex function is strictly convex, so we know that

this objective function is strictly convex in h, and therefore the minimizer is unique.

Proof of Theorem 2. Combining the result of Theorem 1 in Equation (10) with the bound (3), let

e(h) = 4∥f∥2L∞K̃0e
K1δ(h) .

Because the composition of the convex function δ(h) and the strictly convex and increasing function x 7→ ex

is strictly convex, we know that e(h) must be strictly convex and therefore satisfies the assumptions of
Lemma 2, meaning that a unique solution ĥ∗, m̂∗ ∈ R exists.

Consider c(h) = β1/h and δ(h) = α−1/h with α, β > 1. We can remove the constraint to instead minimize

minimize
h≥0

4∥f∥2L∞K̃0C

ϵ
eK1δ(h) +Mc(h), (25)
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which is analogous to (24). By setting the derivative of (25) with respect to h to zero, the optimal solution
satisfies

4∥f∥2L∞K̃0K1C logα

M log β
eK1α

−1/h

= ϵ(αβ)1/h , (26)

meaning that 1/ĥ∗ ∈ O(logαβ ϵ
−1) as ϵ → 0 since the left-hand-side must approach a constant. Motivated

by this observation, we set 1/h∗ = logαβ ϵ
−1 exactly and then the number of samples needed is

m∗ = ⌈m̂∗⌉ =

⌈
4∥f∥2L∞K̃0

ϵ
eK1ϵ

1/(1+logα β)

⌉
≤ 4∥f∥2L∞K̃0

ϵ
eK1ϵ

1/(1+logα β)

+ 1 .

where we have used that logαβ ϵ =
logα ϵ

1+logα β
=

logβ ϵ

1+logβ α
. Since ϵ ≤ 1 we know that eK1ϵ

1/(1+logα β)

/ϵ > 1, and
so

m∗ ≤ K ′
0

eK1ϵ
1/(1+logα β)

ϵ
.

Plugging this in for m into the objective function, gives an upper bound on the total computational costs

cost(f̂h∗,m∗) ≤ CK ′
0

ϵ
eK1ϵ

1/(1+logα β)

+Mϵ−1/(1+logβ α) .

Now consider c(h) = h−β and δ(h) = hα with α, β ≥ 1. Set again the derivative to zero to find that the
optimal solution satisfies

4∥f∥2L∞CK̃0K1

M

(
α

β

)
eK1h

α

hα+β = ϵ ,

so that ĥ∗ ∈ O(ϵ1/(α+β)) as ϵ → 0. If we set h∗ = ϵ1/(α+β), then the number of samples needed is

m∗ = ⌈m̂∗⌉ =

⌈
4∥f∥2L∞K̃0

ϵ
eK1ϵ

α/(α+β)

⌉
≤ 4∥f∥2L∞K̃0

ϵ
eK1ϵ

α/(α+β)

+ 1 ≤ K ′
0

ϵ
eK1ϵ

α/(α+β)

,

with total computational cost bounded as

cost(f̂h∗,m∗) ≤ CK ′
0

ϵ
eK1ϵ

α/(α+β)

+Mϵ−β/(α+β) .

Remark 6. Although we have assumed that training costs correspond to fitting the Laplace approximation,
Lemma 2 shows that the results will extend more generally to any approximation where the costs of fitting
the biasing density with respect to the fidelity h satisfies the assumption of Lemma 2.

3.4.3 Discussion of cost complexity bounds of context-aware MFIS

We now compare the cost bounds of the context-aware MFIS estimators f̂h∗,m∗ derived in Theorem 2 with
the costs of fixed-fidelity MFIS estimators f̂h̄,m̄, where the fidelity h̄ is fixed independent of ϵ. The number
of samples m̄ is selected depending on the tolerance ϵ as

m̄ = inf

{
m ∈ N :

e(h̄)

m
≤ ϵ

}
,

analogously to the context-aware MFIS estimator. Note that the sample size depends as well on the fidelity
h̄. The costs of the fixed-fidelity MFIS estimator are

cost(f̂h̄,m̄) = m̄C +Mc(h̄) .

If δ(h) = α−1/h and c(h) = β1/h, then the costs of the fixed-fidelity estimator are bounded as

cost(f̂h̄,m̄) ≤ cost(f̂h̄,m̄) =
CK ′

0

ϵ
eK1α

−1/h̄

+Mβ1/h̄ ,
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and if δ(h) = hα and c(h) = h−β then the costs are bounded as

cost(f̂h̄,m̄) ≤ cost(f̂h̄,m̄) =
CK ′

0

ϵ
eK1h̄

α

+Mh̄−β .

We now compare the costs of the context-aware MFIS and the fixed-fidelity MFIS estimators by comparing
their cost upper bounds cost as ϵ → 0. First, consider the case where δ(h) = α−1/h and c(h) = β1/h. As
ϵ → 0, we have that

lim
ϵ→0

cost(f̂h̄,m̄)

cost(f̂h∗,m∗)
= lim
ϵ→0

CK′
0

ϵ eK1α
−1/h̄

+Mβ1/h̄

CK′
0

ϵ eK1ϵ1/(1+logα β)
+Mϵ−1/(1+logβ α)

.

Multiply the numerator and denominator by ϵ to get

lim
ϵ→0

CK ′
0e
K1α

−1/h̄

+ ϵMβ1/h̄

CK ′
0e
K1ϵ1/(1+logα β)

+Mϵ1−1/(1+logβ α)
.

As ϵ → 0, the numerator goes to CK ′
0e
K1α

−1/h̄

and the denominator goes to CK ′
0 since α > 1. Therefore,

the speedup obtained with the context-aware MFIS estimator in the limit of ϵ → 0 is

lim
ϵ→0

cost(f̂h̄,m̄)

cost(f̂h∗,m∗)
= eK1α

−1/h̄

> 1 .

Now consider the other case where δ(h) = hα and c(h) = h−β . We have that

lim
ϵ→0

cost(f̂h̄,m̄)

cost(f̂h∗,m∗)
= lim
ϵ→0

CK′
0

ϵ eK1h̄
α

+Mh̄−β

CK′
0

ϵ eK1ϵα/(α+β) +Mϵ−β/(α+β)
.

Multiplying both the numerator and denominator by ϵ gives

lim
ϵ→0

CK ′
0e
K1h̄

α

+ ϵMh̄−β

CK ′
0e
K1ϵα/(α+β) +Mϵ1−β/(α+β)

.

As ϵ → 0, the numerator converges to CK ′
0e
K1h̄

α

, and since β/(α + β) < 1, the denominator converges to
CK ′

0. Hence, the speedup obtained with the proposed context-aware MFIS estimator in the limit ϵ → 0 is

lim
ϵ→0

cost(f̂h̄,m̄)

cost(f̂h∗,m∗)
= eK1h̄

α

> 1 .

In both cases we observe that as the tolerance ϵ → 0, the dominant term for the MFIS estimator cost
approaches order O(1/ϵ) and the bulk of the cost shifts to the online sampling cf. Section 2.5. We see that
the speedup as ϵ → 0 depends on the rate of the error δ(h̄) going to zero.

3.5 Computational procedure
Algorithm 1 summarizes the context-aware importance sampling procedure. Given constants K̃0,K1, C,M, ∥f∥L∞ ,
and the tolerance ϵ as well as the cost and accuracy functions c and δ, the context-aware importance sam-
pling Algorithm 1 first solves the optimization problem (23) for (ĥ∗, m̂∗). A Laplace approximation to the
surrogate density ph∗ is then computed using Newton’s method. The Hessian at the mode is then inverted
directly to obtain the covariance of the Laplace approximation or can alternatively be stored as a precision
matrix to avoid the matrix inversion. This concludes the offline phase of finding the biasing density. For
the online phase we draw m∗ = ⌈m̂∗⌉ samples from the Laplace approximation qh∗ and re-weight using the
un-normalized high-fidelity density p̃ using the estimator (6).

Algorithm 1 requires the constants K̃0,K1, C,M, ∥f∥L∞ . Similar to other multi-level and multi-fidelity
methods, we propose to first perform a pilot study to estimate these constants before using them in the com-
putational procedure. Such pilot studies may be expensive; however, since the test function f is independent
of the constants, we only need to estimate these constants once and can then re-use them to compute a
variety of statistics with respect to the target distribution p. This makes the context-aware importance sam-
pling procedure appealing for estimating families of expectations or probabilities such as cumulative density
functions or survival functions.
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Algorithm 1 Context-aware importance sampling
1: Constants K̃0,K1, C, ϵ,M, ∥f∥L∞ and functions c, δ
2: Solve the optimization problem (23) for (h∗, m̂∗) using ∥f∥L∞ , K̃0,K1, C,M, ϵ, c, δ
3: Compute a Laplace approximation qh∗ of ph∗ with M evaluations of p̃h∗

4: Draw m∗ = ⌈m̂∗⌉ i.i.d. samples {θ(i)}m∗

i=1 from qh∗

5: Compute f̂h∗,m∗ using (6) return Estimate f̂h∗,m∗

4 Bayesian inverse problems
We now apply the context-aware MFIS estimator for inference in Bayesian inverse problems where the target
p is a posterior distribution and we are interested in expectations Ep [f ] of this distribution. Section 4.1
describes the general setup of a Bayesian inverse problem and Section 4.2 applies the results of Section 3 to
the case where p is a posterior distribution.

4.1 Setup of a Bayesian inverse problem
Let data y ∈ Rd′ be generated by an unknown parameter θtruth ∈ Rd with a Gaussian noise model,

y = F(θtruth) + η,

where η ∼ N(0,Γ), Γ ∈ Rd′×d′ is the covariance matrix (symmetric and positive definite) of the added noise,
and F : Θ → Rd′ is the high-fidelity parameter-to-observable map. Let πpr denote a prior distribution over
the parameter θ, so that the negative log-posterior has the form

− log p(θ) = Φ(θ) =
1

2
∥y −F(θ)∥2Γ−1 − log πpr(θ) .

The norm is defined as ∥v∥2
Γ−1 = ⟨Γ−1v, v⟩. While it is possible to use the prior distribution as a biasing

density, if the posterior contracts around the data then the χ2 divergence of the posterior from the prior
may be very large resulting in a high variance estimator with a low effective sample size.

Let Fh denote the surrogate parameter-to-observable map with fidelity h and let it be such that the
sequence Fh(θ) → F(θ) converges pointwise for each θ ∈ Θ. Additionally, we assume that F ,Fh ∈ C2(Θ).
In many cases the parameter-to-observable map F is a function of an intermediate state variable u, such
as the full solution to a parametrized partial differential equation (PDE) depending on the parameters
θ. The surrogate parameter-to-observable map Fh is given by approximating this state variable u with
an approximation uh. The approximation for the state variable uh could be given by finite elements [7],
finite difference [25], a different time step for an ordinary differential equation [25], finitely many terms in a
Karhunen-Loève expansion [41], and others.

We consider the case where the prior πpr is Gaussian N(µpr,Σpr), so that we can write the potential
from Assumption 1 as

Φ(θ) =
1

2
∥y −F(θ)∥2Γ−1 +

1

2
(θ − µpr)

TΣ−1
pr (θ − µpr). (27)

With a Gaussian prior the resulting posterior distribution is always sub-Gaussian since we can take the
matrix A = 1

4Σ
−1
pr in Lemma 1. The potentials Φh are defined similarly but with the surrogate maps Fh

replacing F .

4.2 Bounding χ2 divergence with model error
We now translate bounds on the model error between F and Fh to the χ2 divergence χ2 (p || qh), where qh
is a Laplace approximation to the surrogate posterior ph. The next two assumptions allow us to make the
transition.
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Assumption 5. The high-fidelity parameter-to-observable map F is globally Lipschitz meaning there exists
a constant B > 0 such that for all θ, θ̃ ∈ Θ

∥F(θ)−F(θ̃)∥ ≤ B∥θ − θ̃∥ .

Assumption 5 is almost the Lipschitz Assumption 2.7(ii) from [40] except there the constant B only
needs to hold for bounded sets of θ. Assumption 5 is satisfied if the map F is linear, for example, or if the
map is the sum of a linear term and a smooth bounded function. Alternatively, we note that Assumption 5
may also be relaxed so that F(θ) grows at most linearly asymptotically as ∥θ∥ → ∞. Such an assumption
will still ensure that the potential does not grow faster than quadratically as needed for the assumptions of
Theorem 1.

Assumption 6. For all θ ∈ Θ and h we have

∥Fh(θ)−F(θ)∥ ≤ δ̃(h)τ̃(θ)

with δ̃(h) → 0 as h → 0 with τ̃(θ) independent of h.

Assumption 6 is similar to Assumption (4.11) in Corollary 4.9 of [40], although the pointwise bound is
also looser there than here for the same reason as given in Remark 3. Theorem 3 is analogous to Theorem 1
from earlier but now is applied specifically to the Bayesian inverse problem.

Theorem 3. If Assumptions 5 and 6 are satisfied with |τ̃(θ)| ≤ ∥θ∥+ τ̃0 for some τ̃0 > 0, then Assumption
3 is also satisfied with

δ(h) =

(
2B + 1

κmin

)
δ̃(h)

and τ(θ) a quadratic function of ∥θ∥ that is independent of h.

Proof. Using the form of the log-posterior (27) we write

|Φh(θ)− Φ(θ)| =
∣∣∥Fh(θ)− y∥2Γ−1 − ∥F(θ)− y∥2Γ−1

∣∣
since the prior terms cancel. To simplify notation, set ∆(θ) = F(θ)− Fh(θ) and ζ(θ) = F(θ)− y, so that
ζ(θ)−∆(θ) = Fh(θ)− y. Now, we can instead write

|Φh(θ)− Φ(θ)| =
∣∣∥ζ(θ)∥2Γ−1 − ∥ζ(θ)−∆(θ)∥2Γ−1

∣∣
=
∣∣∥ζ(θ)∥2Γ−1 −

〈
Γ−1 (ζ(θ)−∆(θ)) , ζ(θ)−∆(θ)

〉∣∣
=
∣∣2⟨∆(θ),Γ−1ζ(θ)⟩ − ∥∆(θ)∥2Γ−1

∣∣ .
Applying the triangle inequality and then the Cauchy-Schwarz inequality to this last line gives

|Φh(θ)− Φ(θ)| ≤ 2∥∆(θ)∥∥Γ−1ζ(θ)∥+ ∥∆(θ)∥2Γ−1 . (28)

Using that y = F(θtruth) + η and the triangle inequality gives

∥Γ−1ζ(θ)∥ = ∥Γ−1(F(θ)− y)∥
≤ ∥Γ−1(F(θ)−F(θtruth))∥+ ∥Γ−1η∥ .

Assumption 5 then gives the bound

∥Γ−1ζ(θ)∥ ≤ B

κmin
∥θ − θtruth∥+ ∥Γ−1η∥, (29)

where κmin > 0 is the smallest eigenvalue of the covariance matrix Γ, i.e., the direction along which the
posterior is most peaked. Similarly, we bound

∥∆(θ)∥2Γ−1 = ⟨Γ−1∆(θ), ∆(θ)⟩ ≤ 1

κmin
∥∆(θ)∥2 . (30)
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Substituting bounds (29) and (30) into (28) yields

|Φh(θ)− Φ(θ)| ≤ 2

(
B

κmin
(∥θ − θtruth∥) + ∥Γ−1η∥

)
∥∆(θ)∥+ 1

κmin
∥∆(θ)∥2,

and the triangle inequality gives

|Φh(θ)− Φ(θ)| ≤ 2

(
B

κmin
(∥θ∥+ ∥θtruth∥) + ∥Γ−1η∥

)
∥∆(θ)∥+ 1

κmin
∥∆(θ)∥2 . (31)

Assumption 6 along with the assumption that |τ̃(θ)| ≤ ∥θ∥ + τ̃0 says ∥∆(θ)∥ ≤ δ̃(h) (∥θ∥+ τ̃0), so we
get that

|Φh(θ)− Φ(θ)| ≤ 2

(
B

κmin
(∥θ∥+ ∥θtruth∥) + ∥Γ−1η∥

)
δ̃(h) (∥θ∥+ τ̃0) +

1

κmin
δ̃(h)2 (∥θ∥+ τ̃0)

2
,

and thus

|Φh(θ)− Φ(θ)| ≤

(
2B

κmin
∥θtruth∥+ 2∥Γ−1η∥+ δ̃(h)τ̃0

κmin

)
δ̃(h)τ̃0

+

(
2B

κmin
τ̃0 +

2B

κmin
∥θtruth∥+

2

κmin
δ̃(h)τ̃0 + 2∥Γ−1η∥

)
δ̃(h)∥θ∥

+

(
2B

κmin
+

1

κmin
δ̃(h)

)
δ̃(h)∥θ∥2 .

Using that δ̃(h) ≤ 1 for all h sufficiently small and ∥θ∥ ≤ 1 + ∥θ∥2 gives

|Φh(θ)− Φ(θ)| ≤ δ(h)τ(θ),

where
δ(h) =

(
2B + 1

κmin

)
δ̃(h)

is as in Assumption 3 and τ(θ) is quadratic in ∥θ∥ and is bounded independent of h.

Corollary 1. Suppose that Theorem 1 applies with Assumption 3 provided by Theorem 3. Then, together
with Proposition 1 this implies that the cost complexity of the context-aware importance sampling estimator
with a Laplace approximation biasing density is given by Theorem 2.

5 Numerical Results
This section demonstrates our context-aware importance sampling approach on three examples. All runtime
measurements were performed on compute nodes equipped with Intel Xeon Gold 6148 2.4GHz processors
and 192GB of memory using a Python 3.6 implementation.

5.1 Steady-state heat conduction
In the first example we consider a steady-state heat diffusion model with constant heat source and infer a
6-dimensional variable diffusivity.

5.1.1 Problem Setup

Let Ω = (0, 1) ⊂ R and Θ = R6 and consider the PDE

− (exp (k(x;θ))ux(x;θ))x = 1, x ∈ Ω

u(0; θ) = 0

k(1;θ)ux(1; θ) = 0

(32)
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where θ = (θ1, . . . , θ6)
T ∈ Θ, k : Ω × Θ → R is the log-diffusivity, and u : Ω × Θ → R is the temperature

function. The log-diffusivity k(x; θ) is a smoothed piecewise constant. In particular, let

I(x, α) =

(
1 + exp

(
−x− α

0.005

))−1

and αi = (i− 1)/6 for i = 1, . . . , 7. Define

k̂i(x;θ) = (1− I(x, αi))k̂i−1(x;θ) + I(x, αi)θi (33)

for i = 2, . . . , 6 and k̂1(x;θ) = θ1. Now set the log-diffusivity k = k̂6. We discretize (32) in the spatial domain
Ω using linear finite elements with mesh width h > 0 (i.e. h−1 many elements) and the corresponding sparse
(tri-diagonal) linear system is solved using a Cholesky factorization. The parameter-to-observable map
Fh : Θ → R120 is the discretized solution uh with mesh width h evaluated at 120 equally-spaced points on Ω

(Fh(θ))i = uh(i/120), i = 1, . . . , 120 .

For the high-fidelity parameter-to-observable map we set H−1 = 256 elements, (i.e. F = FH) and for the
surrogate maps Fh we consider h−1 = 8, 12, 16, . . . , 64 (multiples of 4 for the number of elements).

5.1.2 Setup of the inverse problem

A single observation y = F(θtruth)+η is generated where θtruth = (1, . . . , 1)T ∈ R6 and η ∼ N(0, 10−5I120×120).
The added noise corresponds to approximately 1% of the true solution u at the right endpoint x = 1.
The prior distribution is taken to be a Gaussian with mean µpr = (1, . . . , 1)T ∈ R6 and covariance
Σpr = 10−1I6×6 ∈ R6×6. For the test function let v1 ∈ R6 be the largest eigenvector of ΣLAP and
set

f(θ) = 2 · 1
{
(θ − µLAP) · v1 ≥ 0

}
− 1 (34)

so that f(θ) ∈ {±1} for all values of θ. The idea behind this choice of test function is that the asymptotic
variance of the MFIS estimator (6) is largest whenever f is not tightly concentrated around its expectation
under qh∗ . Here the expectation of f under qh∗ should be close to zero even though f itself is never close to
zero.

5.1.3 Results

A Laplace approximation to each surrogate posterior ph is fit using the Newton-CG method where the
gradient and Hessian matrix are computed using a second-order finite difference scheme with a total of
M = 1150 model evaluations at each fidelity. The cost function has the form c(h) = c0 + c1/h, where c0 is
included to model any baseline cost independent of the fidelity, and accuracy has the form δ(h) = a1h

2 since
we use linear finite elements. The cost is linear in h−1 since the system of linear equations is tri-diagonal.
We estimate the χ2 divergence with Monte Carlo estimator

χ̂2
h,m = m

∑m
i=1

(
p̃(θ(i))/qh(θ

(i))
)2

(∑m
i=1 p̃(θ

(i))/qh(θ
(i))
)2 −→ χ2 (p || qh) + 1, almost surely as m → ∞ (35)

and {θ(i)}mi=1 are i.i.d. samples drawn from qh. Then the curve K̃0e
K1h

2

is fit using the estimated χ2 values
χ̂2
h,103 for each fidelity h−1 = 8, 12, 16, . . . , 64 averaged over N1 = 500 independent trials. The measured χ2

values are

χ̂2
meas,h =

1

N1

N1∑
i=1

(
χ̂2
h,m

)(i)
with the superscript (i) denoting one of the independent trials. The fitted curve along with the measured
values are shown in Figure 1. The χ2 divergence is large for low fidelities but quickly levels off and then is
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Figure 1: (Left) The measured χ2 divergences, χ̂2
meas,h, between the high-fidelity posterior p and the Laplace

approximation qh to each surrogate posterior ph. (Right) The selected fidelity for the number of elements
(h∗)−1 from the optimization (23) as the tolerance ϵ on the MSE changes.

limited by the restriction of the biasing density to be the Laplace approximation rather than the surrogate
density itself.

Since we only consider finitely many surrogate models h−1 = 8, 12, 16, . . . , 64, we approximate the solution
of the optimization problem (23) with a brute force search to find the best fidelity h∗ from the list of fidelities
that we consider and set m∗ = ⌈m̂∗⌉ with m̂∗ corresponding to h∗. Figure 1 shows the selected fidelity as
a function of the tolerance ϵ. As the tolerance shrinks we require a higher-fidelity model to fit a Laplace
approximation. Using the pair (h∗,m∗), Figure 2 shows the theoretical optimal trade-off between cost in
seconds and the MSE (tolerance) of the estimator f̂h∗,m∗ . We estimated the true value Ep [f ] using f̂H,105
and averaged the results over N2 = 500 independent trials (again denoted by the superscript (i))

f̄ =
1

N2

N2∑
i=1

f̂
(i)
H,105 . (36)

Next we estimated the MSE of f̂h∗,m∗ using N3 = 1000 trials

M̂SEϵ =
1

N3

N3∑
i=1

(
f̂
(i)
h∗,m∗ − f̄

)2
. (37)

Here the subscript ϵ denotes the dependence of the pair (h∗,m∗) on the tolerance ϵ. Figure 2 shows the
averaged MSE over N3 = 1000 trials for different tolerances ϵ as well as the MSE for the estimators f̂H,mH

and f̂h0,mh0
where the number of samples is

mh =

⌈
K̃0

ϵ
exp

(
K1h

2
)⌉

and h0 = 8 is the lowest fidelity we consider (for the surrogate only estimator we average only N3 = 500
trials). For moderate error tolerances we can achieve an order of magnitude speedup since most of the
cost comes from fitting a Laplace approximation; using a very accurate model is not necessary, but using a
very cheap surrogate model is insufficient. As the tolerance shrinks, most of the computation shifts to the
online sampling phase which begins to dominate and little speedup is obtained. This matches the theoretical
speedup derived in Section 3.4.
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Figure 2: (Left) The theoretical error tolerance ϵ against the total cost (seconds of CPU time) to fit the
Laplace approximation qh∗ of ph∗ and draw m∗ samples. (Right) The actual measured M̂SEϵ against the
total cost. Note that the results shown in the left plot is an upper bound for the results shown in right plot
by the bound (3).

5.2 Euler Bernoulli Problem
In the second example we infer the effective stiffness of an Euler Bernoulli beam. The forward-model code
is available on GitHub1 and was developed by Matthew Parno as a part of the 2018 Gene Golub SIAM
Summer School on “Inverse Problems: Systematic Integration of Data with Models under Uncertainty”. The
rest of the setup of this problem is taken from Section 4.2 of [33].

5.2.1 Problem Setup

Let Ω = (0, 1) ⊂ R and Θ = R6 and consider the PDE

∂2

∂x2

(
E(x;θ)

∂2

∂x2
u(x;θ)

)
= g(x), x ∈ Ω (38)

with boundary conditions

u(0; θ) = 0,
∂u

∂x
(0;θ) = 0,

∂2u

∂x2
(1; θ) = 0,

∂3u

∂x3
(1; θ) = 0

where u : Ω × Θ → R is the displacement and E : Ω × Θ → R is the effective stiffness of the beam. The
applied force g(x) is taken to be g(x) = 1. The effective stiffness E(x;θ) is a smooth piecewise constant
defined in the same way as the log-diffusivity (33) but with θi replaced by |θi| for i = 1, . . . , 6. We discretize
(38) in the spatial domain Ω with a mesh width h > 0 (i.e. h−1 + 1 grid points) using a second-order finite
difference scheme and solve the resulting linear system of equations for the discretized solution uh at the
grid points.

The parameter-to-observable map Fh : Θ → R40 is the linear interpolant of the h−1 + 1 grid points
evaluated at 40 equally spaced points in the spatial domain (0, 1)

(Fh(θ))i = uh

(
i− 1

39

)
, i = 1, . . . , 40

Note that we exclude the left end-point at x = 0 since it is fixed by the boundary conditions. We set the
high-fidelity map to be F = FH with H−1 + 1 = 256 grid points and for the surrogate maps we again
consider h−1 + 1 = 8, 12, 16, . . . , 64.

1https://github.cim/g2s3-2018/labs
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Figure 3: (Left) The measured χ2 divergences, χ̂2
meas,h, of the high-fidelity posterior p from the Laplace

approximation qh to each surrogate posterior ph. (Right) The selected fidelity for the number of grid points
(h∗)−1 + 1 from the optimization (23) as the tolerance ϵ on the MSE changes.

5.2.2 Setup of the inverse problem

A single observation y = F(θtruth)+η ∈ R40 is generated where θtruth = (1, . . . , 1)T ∈ R6 and η ∼ N(0, Γ)
with noise covariance Γ = 5.623×10−4I40×40. The added noise now corresponds to approximately 5% of the
true solution u at the right endpoint x = 1. The prior is again a Gaussian with mean µpr = (1, . . . , 1)T ∈ R6

and covariance Σpr = 1.778 × 10−2I6×6 ∈ R6×6. For the test function we use the same test function (34)
from the steady-state heat problem.

5.2.3 Results

We again fit a Laplace approximation to each surrogate posterior ph using Newton-CG with the gradient and
Hessian computed by second-order finite difference approximations. The total number of model evaluations
is M = 1800 at each fidelity. The cost function has the form c(h) = c0 + c1/h (linear in h−1 because
the system of linear equations from the discretization is sparse) and the surrogate accuracy has the form
δ(h) = a1h

2 from the second-order finite difference spatial discretization.
We use the χ2 divergence estimator χ̂2

h,105 from (35) and average the results over N1 = 100 independent
trials to obtain the measured value χ̂2

meas,h as in (35) for each surrogate map h−1 + 1 = 8, 12, 16 . . . , 64. We
then use these measured values to fit the curve K̃0e

K1h
2

. Figure 3 shows the results. Observe that the χ2

divergence quickly levels off again.
The fidelity and sample size (h∗,m∗) are found using a brute-force search and Figure 3 shows the selected

number of grid points (h∗)−1 + 1 as a function of the MSE tolerance ϵ. When the tolerance is small the
selected fidelity is the highest fidelity since we do not consider any surrogate models with h−1+1 between 64
and 256. Figure 4 shows the theoretical optimal cost and error trade-off for f̂h∗,m∗ . We estimated the true
value Ep [f ] using f̂H,105 with N2 = 100 independent trials using equation (36) and the MSE was estimated
with N3 = 2500 independent trials using equation (37). Here the lowest-fidelity surrogate model corresponds
to h0 = 16. From the plot we can observe an order of magnitude speedup for moderate tolerances where
we do not need to use a high-fidelity model to fit the Laplace approximation. Also note that the theoretical
trade-off is an upper bound but the shape matches closely with the measured results.

5.3 Advection-Diffusion Problem
In this example, we infer the initial center of a concentration of gas that diffuses throughout a domain with
advection. The forward model is a slightly modified version of what is shipped with hIPPYlib 2 [44, 45, 46].

2https://hippylib.github.io/tutorials_v3.0.0/4_AdvectionDiffusionBayesian/
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Figure 4: (Left) The theoretical error tolerance ϵ against the total cost (seconds of CPU time) to fit the
Laplace approximation qh∗ of ph∗ and draw m∗ samples. (Right) The actual measured M̂SEϵ against the
total cost. Note that the results in the left plot are upper bounding the results in the right plot by the bound
(3).

5.3.1 Problem Setup

Following the setup in hIPPYlib [44, 45, 46], consider the domain

Ω = [0, 1]2 \ ([0.25, 0.5]× [0.15, 0.4] ∪ [0.6, 0.75]× [0.6, 0.85]) ⊂ R2 ,

with two rectangular holes, which is also the parameter domain Θ = Ω in this example. Let u : Ω×[0, 1]×Θ →
R denote the concentration of a gas at position x ∈ Ω and time t ∈ [0, 1] and let it be the solution of the
following PDE

∂tu(x, t;θ)− κ∆u(x, t;θ) + v(x) · ∇u(x, t;θ) = 0, (x, t) ∈ Ω× [0, 1] ,

u(x, 0;θ) = e−10(x1−θ1)2−10(x2−θ2)2 , x ∈ Ω ,

κ∇u(x, t;θ) = n, (x, t) ∈ ∂Ω× [0, 1] ,

(39)

where κ = 10−3 is the diffusion coefficient, n is the outward unit normal vector from the boundary, and the
velocity field v : Ω → R2 is the solution of the steady-state Navier-Stokes equation with the left and right
walls driving the flow (see Figure 5)

− 1

Re
v(x) +∇q(x) + v(x) · ∇v(x) = 0, x ∈ Ω ,

∇ · v(x) = 0, x ∈ Ω ,

v(x) = g(x), x ∈ ∂Ω .

(40)

Here Re = 102 is the Reynold’s number of the gas, q : Ω → R is the pressure field, and g : ∂Ω → R2 is an
external force field acting only on the boundary of the domain. In particular, g(x) = e2 if x1 = 0 on the
left wall, g(x) = −e2 if x1 = 1 on the right wall, and g(x) = 0 otherwise, where e2 = (0, 1)⊤ is the second
standard basis vector. Note that the parameter dependence is only through the initial condition u(x, 0;θ),
where θ ∈ Ω corresponds to the center of the initial concentration. Also note that the velocity field v is
independent of the parameters and determined ahead of time.

Because the parameter domain Θ = Ω is bounded, Assumptions 2-4 are satisfied. Moreover, the forward
model that maps the initial condition to the solution u is differentiable, and so the parameter-to-observable
map F is differentiable as well. Because it is differentiable on a compact domain, F is also globally Lipschitz
and hence the assumptions needed for Theorem 3 apply.

We follow the setup in [44, 45, 46] and discretize (39) in the spatial domain Ω using first order Lagrange
finite elements and solve in time using the implicit Euler method to obtain an approximate solution uh.
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Figure 5: (Left) The velocity field v throughout the domain with the two rectangular barriers. (Middle) The
initial concentration u(x, 0;θ) centered at θ ∈ Θ. (Right) The concentration u(x, 1;θ) at time t = 1 when
we observe the solution. In both middle and right plots the observation points are shown as the four black
dots in the bottom-right corner.

For the high-fidelity model, the total number of degrees of freedom after discretizing in space is 14,313
and we use a time step size of 10−3. For the surrogate models the total number of degrees of freedom
in the discretized system ranges from 20 to 3,661 and we use a time step size of 10−2. The fidelity h here
corresponds to the maximum width of a cell in the mesh, which decreases as the number of degrees of freedom
(cells) is increased. The parameter-to-observable map is the pointwise observation of the concentration at
the final time at four points in the bottom-right quadrant of the domain as in Figure 5, which means that
Fh(θ) = (uh(x1, 1;θ) . . . , uh(x4, 1;θ))

⊤ ∈ R4 with x1 = (2/3, 1/6)⊤, x2 = (5/6, 1/6)⊤, x3 = (2/3, 1/3),
and x4 = (5/6, 1/3)⊤.

5.3.2 Setup of the inverse problem

We generate a single observation y = F(θtruth) + η ∈ R4, where θtruth = (0.8, 0.2)⊤ and η ∼ N(0, σ2I4×4)
with noise variance σ2 = 8.876 × 10−3; cf. Figure 5. The noise corresponds to 10% of the true solution
u(x, 1;θ). The prior is Gaussian with mean µpr = (0.75, 0.25)⊤ and covariance Σpr = 10−2I2×2.

5.3.3 Results

A Laplace approximation to each surrogate posterior ph is fit using Newton’s method where the gradient and
Hessian matrix are computed using the chain rule combined with the adjoint method. We select a random
initial point in the bottom-right quadrant θ0 ∈ [0.5, 1]× [0, 0.5] and find that 10 Newton iterations, but not
fewer, is sufficient for the norm of the gradient of the log posterior to achieve machine precision. Computing
the Hessian at each iteration involves 4 linear solves including the forward solve, the adjoint solve, and the
forward and adjoint incremental equations. Note that although the PDE (39) is linear, the dependence
through the parameters θ is nonlinear, and thus we must recompute the Hessian at every iteration (i.e. it
is not constant). We also note that the forward and adjoint solves are re-used for the computation of the
gradient, so that the total number of linear solves needed across the entire offline phase is 40.

To obtain the cost function c(h), we measure the runtime of each surrogate and high fidelity model and
average over 10,000 trials. We finally fit a curve of the form c(h) = c0h

−β . Similarly for the surrogate error
we fit a curve of the form δ(h) ∝ hα. We measure the chi-squared divergence using 500,000 samples and then
fit the curve of the form K̃0e

K1δ(h) as shown in Figure 6 to be input into the optimization problem (25). Note
that the online phase of sampling and re-weighting according to the high-fidelity posterior p is embarrassingly
parallel, and so to reduce the computational cost we parallelize over nproc = 64 processors. The optimal
fidelity or number of degrees of freedom in this case is given by the solution to the optimization problem

minimize
h≥0

4∥f∥2L∞K̃0C

ϵnproc
eK1δ(h) +Mc(h) , (41)
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Figure 6: (Left) The measured and fitted values of χ2(qh || p) + 1 for each Laplace approximation to
a surrogate model ph. (Right) The optimal number of degrees of freedom as given by (41) for different
tolerances ϵ.
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Figure 7: (Left) The upper bound on the mean-squared error vs. the theoretical cost of the entire compu-
tational procedure. (Right) The measured mean-squared error of the context-aware importance sampling
estimator with the optimal surrogate model vs. cost. For the context-aware estimator the mean-squared
error is computed by averaging over 100 independent trials. For the high and low-fidelity estimators the
mean-squared error is estimated by averaging over 50 independent trials.

and shown in Figure 6.
Figure 7 shows the speedup predicting by the optimization problem versus the speedup measured nu-

merically after sampling with the computed biasing density and the context-aware importance sampling
estimator. The reference value used to compute the mean-squared error was computed using 106 samples
from the high-fidelity Laplace approximation and then re-weighted. Initially, the context-aware estimator
selects a much cheaper surrogate model to achieve a large initial speedup of several orders of magnitude
compared to the high-fidelity model for high error tolerances. For smaller tolerances, more accurate sur-
rogate model are selected to optimize the cost-error trade-off. In this regime the context-aware estimator
outperforms the estimators that use low-fidelity surrogate models alone due to the chi-squared divergence
being lower, allowing for fewer necessary samples. Note that the results in plot on the left correspond an
upper bound and are independent of the choice of test function, and that for different test functions the
actual MSE may be lower. However, the trend of how the cost-error ratio behaves for different tolerances is
comparable, which demonstrates the viability of the proposed approach.
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Figure 8: (Left) The measured and fitted values of χ2(qh || p) + 1 for each Laplace approximation to
a surrogate model ph. (Right) The optimal number of degrees of freedom as given by (41) for different
tolerances ϵ.
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Figure 9: (Left) The upper bound on the mean-squared error vs. the theoretical cost of the entire compu-
tational procedure. (Right) The measured mean-squared error of the context-aware importance sampling
estimator with the optimal surrogate model vs. cost. For the context-aware estimator the mean-squared
error is computed by averaging over 100 independent trials. For the high and low-fidelity estimators the
mean-squared error is estimated by averaging over 50 independent trials.

5.3.4 Extension to 12-dimensional parameter

Instead of inferring the origin of a single initial concentration of gas, here we infer the origin of six initial
concentrations giving rise to a 12-dimensional parameter. We now have

u(x, 0;θ) =
6∑
i=1

e−10(x1−θ2i−1)
2−10(x2−θ2i)2 , x ∈ Ω .

The forward model is the same except that we add four additional sensors in the top corner of the domain for
observing data so that F : Ω6 ⊂ R12 → R8. We also increase the relative noise in the observations to 20%.
We again take a Gaussian prior with covariance Σpr = 4 × 10−3I. A reference value of the posterior mean
was computed using 106 importance-weighted samples from the Laplace approximation to the high-fidelity
posterior. The rest of the setup is the same as in previous subsections. Figures 8 and 9 show that the
context-aware estimator outperforms both the estimator that uses the high-fidelity alone and the estimator
that only uses the low-fidelity model for constructing the biasing density.
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A Proof of Lemma 1
Proof. Suppose that x is a sub-Gaussian random vector and consider the matrix to be a multiple of the
identity, A = αI with α > 0. We now only need to show that there exists an α > 0 such that for all µ ∈ Rd

Eπ
[
exp

(
α∥x− µ∥2

)]
= Eπ

[
exp

(
(x− µ)TA(x− µ)

)]
< ∞ .

Since ∥v +w∥2 ≤ 2∥v∥2 + 2∥w∥2 by the triangle inequality and the fact that (a + b)2 ≤ 2a2 + 2b2, we get
the upper bound

Eπ
[
exp

(
α∥x− µ∥2

)]
≤ Eπ

[
exp

(
2α∥µ∥2 + 2α∥x∥2

)]
= exp

(
2α∥µ∥2

)
Eπ
[
exp

(
2α∥x∥2

)]
.

Therefore, we only need to find α > 0 such that

Eπ
[
exp

(
2α∥x∥2

)]
< ∞ .

We now use the assumption that x is sub-Gaussian by taking the marginals

Eπ
[
exp

(
2α∥x∥2

)]
= Eπ

[
exp

(
2α

d∑
i=1

x2
i

)]

= Eπ

[
exp

(
2α

d∑
i=1

|eTi x|2
)]

= Eπ

[
d∏
i=1

exp
(
2α|eTi x|2

)]
,
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where ei is the i-th canonical unit vector. We proceed by induction on the dimension d and repeatedly
use the Cauchy-Schwarz inequality to show that this expectation is finite. When d = 1, take α1 such that

1√
2α1

> ∥x∥ψ2
so that

Eπ
[
exp

(
2α1|eT1 x|2

)]
= Eπ

[
exp

(
|eT1 x|2

(1/
√
2α1)2

)]
≤ 2 .

Note that since x is sub-Gaussian ∥x∥ψ2
< ∞ we can indeed find an α1 > 0 to satisfy the inequality. Now

suppose that for dimension d− 1 there exists an αd−1 such that

Eπ

[
d−1∏
i=1

exp
(
2αd−1|eTi x|2

)]
= Cd−1 < ∞ .

By using the Cauchy-Schwarz inequality, we get that

Eπ

[
d∏
i=1

exp
(
2αd|eTi x|2

)]
≤ Eπ

[
d−1∏
i=1

exp
(
4αd|eTi x|2

)]1/2
Eπ
[
exp

(
4αd|eTd x|2

)]1/2
.

Taking αd ≤ αd−1/2 gives

Eπ

[
d−1∏
i=1

exp
(
4αd|eTi x|2

)]1/2
≤ Eπ

[
d−1∏
i=1

exp
(
2αd−1|eTi x|2

)]1/2
= C

1/2
d−1 .

Taking αd such that 1√
4αd

> ∥x∥ψ2
gives

Eπ
[
exp

(
4αd|eTd x|2

)]1/2 ≤ Eπ
[
exp

(
|eTd x|2

(1/
√
4αd)2

)]1/2
≤

√
2 .

Thus, take αd <
1
4 min{2αd−1, ∥x∥−2

ψ2
}, so that

Eπ

[
d∏
i=1

exp
(
2αd|eTi x|2

)]
≤
√
2Cd−1 < ∞ .

Since the dimension is finite, we know that we will always be able to take αd > 0. Setting α = αd, shows
the first direction of the lemma.

For the converse suppose that there exists a symmetric positive-definite matrix A ≻ 0 so that for all
vectors µ

Eπ
[
exp

(
(x− µ)TA(x− µ)

)]
< ∞ .

In particular, for µ = 0
Eπ
[
exp

(
xTAx

)]
= C < ∞ .

For any v ∈ Sd−1, we have that

Eπ
[
exp

(
|vTx|2

t2

)]
≤ Eπ

[
exp

(
∥x∥2

t2

)]
,

since |vTx| ≤ ∥v∥∥x∥. Also, since the minimum eigenvalue satisfies λA
min ≤ xTAx

∥x∥2 for all x ̸= 0, we get

Eπ
[
exp

(
∥x∥2

t2

)]
≤ Eπ

[
exp

(
xTAx

λA
mint

2

)]
= Eπ

[{
exp

(
xTAx

)}1/λA
mint

2
]
.

If λA
mint

2 > 1, then the function
g(x) = x1/(λA

mint
2)
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is concave and increasing in x. By Jensen’s inequality, we obtain

Eπ
[{

exp
(
xTAx

)}1/λA
mint

2
]
≤ Eπ

[
exp

(
xTAx

)]1/λA
mint

2

= C1/λA
mint

2

.

Setting C1/λA
mint

2 ≤ 2 and solving for t gives

t ≥

√
logC

λA
min log 2

.

Since this inequality holds for every v ∈ Sd−1 we know that ∥x∥ψ2
< ∞ and hence x is sub-Gaussian.
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