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Abstract

Operator inference learns low-dimensional dynamical-system models with polynomial nonlinear terms
from trajectories of high-dimensional physical systems (non-intrusive model reduction). This work focuses
on the large class of physical systems that can be well described by models with quadratic and cubic
nonlinear terms and proposes a regularizer for operator inference that induces a stability bias onto
learned models. The proposed regularizer is physics informed in the sense that it penalizes higher-order
terms with large norms and so explicitly leverages the polynomial model form that is given by the
underlying physics. This means that the proposed approach judiciously learns from data and physical
insights combined, rather than from either data or physics alone. Additionally, a formulation of operator
inference is proposed that enforces model constraints for preserving structure such as symmetry and
definiteness in linear terms. Numerical results demonstrate that models learned with operator inference
and the proposed regularizer and structure preservation are accurate and stable even in cases where using
no regularization and Tikhonov regularization leads to models that are unstable.

1 Introduction

With a lack of models and a deluge of data in science and engineering, methods for inferring models from
data become ever more important. At the same time, it is increasingly recognized that relying on data
alone is insufficient to learn accurate, interpretable, and robust models of science and engineering systems.
Instead, a combination of data and physical insights is necessary for learning predictive models [1, 2], which
has led to a surge of interest in physics-informed machine learning and scientific machine learning; see, e.g.,
[3, 4, 5, 6, 7]. In this spirit, we propose a learning method that infers low-dimensional dynamical-system
models from data and induces a stability bias via a regularizer that explicitly exploits the polynomial model
form given by the underlying physics.

There is a large body of literature on learning dynamical-system models from data. We only review those
that are closest to our work. First, there is system identification that originated in the systems and control
community [8]. Antoulas and collaborators introduced the Loewner approach [9, 10, 11], which has been
extended from linear time-invariant systems to parameterized [12], switched [13], structured [14], delayed
[15], bilinear [16], quadratic [17], quadratic bilinear [18], polynomial [19], and parameter-varying [20] systems
as well as to learning from time-domain data [21, 22] and noisy data [23, 24, 25]. There is also dynamic mode
decomposition (DMD) [26, 27, 28, 29] that best-fits linear operators to state trajectories in the L2 norm.
Methods based on Koopman operators have been developed to extend DMD to nonlinear systems [30, 31, 32].
Finally, there are sparse identification methods such as SINDy [3] and the works [33, 34, 35]. The authors of
[36] develop a stability regularizer for SINDy that focuses on quadratic models and is motivated by Lyapunov
theory; see also [37]. Similarly, the work [38] adds a loss term to encourage stability of an equilibrium and so
learns deep-network models that show stable behavior. Closure modeling is another research direction that
recently has seen a surge of interest in data-driven methods [6, 39, 40, 41, 42] and where stabilization plays
an important role [43, 44, 45, 46].
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Our goal is to learn low-dimensional nonlinear dynamical-system models and to penalize unstable models
as well as preserve structure and invariances of the dynamical systems from which data are sampled. We
build on operator inference [47] that infers reduced models with polynomial nonlinear terms from snapshots
data. Operator inference comes with recovery guarantees under certain assumptions [48, 49, 50] and it is a
building block of more general learning methods that go far beyond polynomial nonlinear terms and exploit
additional physical insights [51, 7, 52, 53, 54, 55, 56, 57]. In [58], operator inference is used together with
a physics-informed lifting approach to learn a model of a large-scale combustion system, where it has been
shown that regularization is important for obtaining stable models. A Tikhonov regularizer is proposed
in [58], which has been further investigated in, e.g., [59, 60]. In contrast, we propose a regularizer that
goes beyond Tikohnov regularization and that is explicitly motivated by the nature of the polynomial—in
particular, quadratic and cubic polynomials—model form, which in turn is given by the underlying physics.
Building on the insights from [61, 62, 63], we penalize quadratic and cubic terms with large norms, which
critically and provably influences the stability radius of the learned models and which is also in agreement
with the findings in, e.g., [64, 65]. To formulate the corresponding regularizers for operator inference, we
derive novel upper bounds for the stability radii of cubic and quadratic-cubic models. We present numerical
results that demonstrate improved stability of models learned with the proposed regularization compared
to no regularization and Tikhonov regularization. We expect that similar regularization approaches can be
used when learning reduced models using different non-intrusive model reduction techniques for the same
type of polynomial nonlinear systems.

Section 2 briefly describes learning low-dimensional models with operator inference and motivates this
work with a synthetic example. Section 3 proposes the physics-informed regularizer based on new upper
bounds of stability radii of polynomial models and structure preservation for operator inference. The com-
putational procedure is discussed in Section 4. Numerical results in Section 5 demonstrate that operator
inference with the proposed regularizer learns stable models even when Tikhonov regularization and models
learned without regularization are unstable. Concluding remarks are in Section 6.

2 Non-intrusive model reduction with operator inference

Section 2.1 introduces the dynamical systems of interest and Section 2.2 discusses sampling high-dimensional
state trajectories. Classical, intrusive model reduction [66, 67, 68, 69] requires the availability of a model
of the high-dimensional dynamical system to construct a reduced model and is recapitulated in Section 2.3.
In Section 2.4, non-intrusive model reduction with operator inference is summarized, which learns reduced
models from state trajectories. The problem formulation and a motivating example are given in Section 2.5.

2.1 Dynamical system with high-dimensional states

Consider a parameterized dynamical system with quadratic and cubic nonlinear terms

d

dt
x(t;µ) = A(µ)x(t;µ) +B(µ)u(t;µ) + F (µ)x(t;µ)2 +G(µ)x(t;µ)3 , (1)

where A(µ) ∈ RN×N is the linear operator, and F (µ) ∈ RN×N(N+1)/2 and G(µ) ∈ RN×N(N+1)(N+2)/6 are
the nonlinear operators. There are p ∈ N inputs that enter linearly via the input matrix B(µ) ∈ RN×p. The
system operators depend on a parameter µ ∈ D ⊂ Rd that is independent of time. The state dimension is
N ∈ N and the state at time t ∈ [0, T ] is x(t;µ) ∈ RN . The p-dimensional input at time t is u(t;µ) ∈ Rp.
The initial condition is denoted as x0(µ) ∈ RN . To each state x(t;µ) = [x1(t;µ), . . . , xN (t;µ)]T , we have a
corresponding vector x(t;µ)2 ∈ RN(N+1)/2 defined as

x(t;µ)2 = [x
(1)
2 (t;µ)T , . . . ,x

(N)
2 (t;µ)T ]T (2)

where x
(i)
2 (t;µ) = xi(t;µ)[x1(t;µ), . . . , xi(t;µ)]

T for i = 1, . . . , N . The vector x(t;µ)2 contains all pairwise
products of components of the state vector x(t;µ) up to duplicates; see, e.g., [47]. The vector x(t;µ)3 ∈
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RN(N+1)(N+2)/6 is defined as
x(t;µ)3 = [x

(1)
3 (t;µ)T , . . . ,x

(N)
3 (t;µ)T ]T (3)

where x
(i)
3 (t;µ) = [x

(i,i)
3 (t;µ)T , . . . , x

(i,N)
3 (t;µ)T ]T for i = 1, . . . , N , with

x
(i,j)
3 (t;µ) = xi(t;µ)xj(t;µ)[xi(t;µ), . . . , xj(t;µ)]

T for j = i, . . . , N.

2.2 Collecting data

Discretize the time domain into 0 = t0 < t1 < · · · < tK = T and consider the state trajectory

X(µ) = [x0(µ), · · · ,xK(µ)] ∈ RN×K+1

for a given parameter µ ∈ D, initial condition x0(µ), and for a given input trajectory

U(µ) = [u(t1;µ), · · · ,u(tK ;µ)] ∈ Rp×K .

For example, a trajectory X(µ) can be obtained by numerically integrating the model (1) of a dynamical
system in time. The trajectories

X2(µ) = [x2
0(µ), · · · ,x2

K(µ)] ∈ RN(N+1)/2×K+1

X3(µ) = [x3
0(µ), · · · ,x3

K(µ)] ∈ RN(N+1)(N+2)/6×K+1

can be generated from the state trajectory X(µ) following definitions (2) and (3), respectively.

2.3 Classical, intrusive model reduction

For each parameter µ ∈ {µ1, . . . , µM} in a set of M ∈ N parameters, consider Mb ∈ N input trajecto-
ries Ub

1(µ), . . . ,U
b
Mb

(µ), initial conditions xb
1,0(µ), . . . ,x

b
Mb,0

(µ), and the corresponding state trajectories

Xb
1(µ), . . . ,X

b
Mb

(µ). The state trajectories for all parameters are concatenated into the snapshot matrix

Xb = [Xb
1(µ1), . . . ,X

b
Mb

(µ1), . . . ,X
b
1(µM ), . . . ,Xb

Mb
(µM )] ∈ RN×KMMb . (4)

A proper orthogonal decomposition (POD) basis of dimension n ≪ N is constructed from the snapshot
matrix Xb. We do not scale and center the snapshots before applying POD. The basis vectors are the
columns of the matrix

V = [v1, . . . , vn] ∈ RN×n . (5)

To construct a projection-based reduced model via Galerkin projection, the reduced operators Ã(µ) ∈
Rn×n and B̃(µ) ∈ Rn×p are obtained via

Ã(µ) = V TA(µ)V , B̃ = V TB(µ) . (6)

The reduced nonlinear operators F̃ (µ) ∈ Rn×n(n+1)/2 and G̃(µ) ∈ Rn×n(n+1)(n+2)/6 are constructed in a
similar fashion via projection as described in, e.g., [48]. Thus, for each parameter µ ∈ {µ1, , . . . , , µM}, one
obtains a reduced model

d

dt
x̃(t, µ) = Ã(µ)x̃(t;µ) + B̃(µ)u(t;µ) + F̃ (µ)x̃2(t;µ) + G̃(µ)x̃3(t;µ) , (7)

with reduced state x̃(t;µ) ∈ Rn. We refer to [66, 67, 69] for more details about classical, intrusive model
reduction.
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2.4 Learning low-dimensional models from data with operator inference

Constructing the reduced operators Ã(µ), B̃(µ), F̃ (µ), G̃(µ) via (6) is an intrusive process because it requires
access to high-dimensional operators A(µ),B(µ),F (µ),G(µ) in either implicit or explicit form. In contrast,
operator inference [47] aims to learn reduced operators from trajectories of dynamical system (1), without
requiring access to the high-dimensional operators.

Let V be a basis matrix. Notice that such a basis matrix V can be constructed purely from the
snapshot matrix (4) in many situations, without having available the high-dimensional operators. Then,
the intrusive projection step (6) is replaced with a non-intrusive least-squares regression problem. First, for
each training parameter µ ∈ {µ1, . . . , µM}, consider Mt training input trajectories U1(µ), . . . ,UMt

(µ) with
initial conditions x1,0(µ), . . . ,xMt,0(µ) and the corresponding training state trajectories X1(µ), . . . ,XMt

(µ).
Second, the training trajectories are projected onto the reduced space via

X̄i(µ) = V TXi(µ)

to obtain the projected training trajectories X̄i(µ) = [x̄i,1(µ), . . . , x̄i,K(µ)] ∈ Rn×K for i = 1, . . . ,Mt. Third,

the operators Â(µ), B̂(µ), F̂ (µ) and Ĝ(µ) are fitted via least-squares regression to the projected training
trajectories

min
Â(µ),B̂(µ),F̂ (µ),Ĝ(µ)

J(Â(µ), B̂(µ), F̂ (µ), Ĝ(µ))

with objective function

J(Â(µ), B̂(µ), F̂ (µ), Ĝ(µ)) =

Mt∑
i=1

K∑
k=1

∥∥∥x̄′
i,k(µ)− Â(µ)x̄i,k(µ)− B̂(µ)ui,k(µ)− F̂ (µ)x̄2

i,k(µ)− Ĝ(µ)x̄3
i,k(µ)

∥∥∥2
2
,

(8)
where ui,k(µ) is the input at time step k of the ith training trajectory U i = [ui,1(µ), . . . ,ui,K ] for i =
1, . . . ,Mt. The quantity x̄′

i,k ∈ Rn denotes a numerical approximation of the time derivative of the projected
state at time k of the ith trajectory, such as a first-order finite difference approximation

x̄′
i,k =

x̄i,k − x̄i,k−1

δt
, (9)

with time-step size δt > 0. The inferred operators Â(µ), B̂(µ), F̂ (µ), Ĝ(µ) are then used to assemble a
low-dimensional model

d

dt
x̂(t;µ) = Â(µ)x̂k(t;µ) + B̂(µ)uk(µ) + F̂ (µ)x̂2

k(t;µ) + Ĝ(µ)x̂3
k(t;µ), (10)

where x̂k(t;µ) ∈ Rn is the state at time t.
The operator inference process is repeated for each parameter in the training set {µ1, . . . , µM} to com-

pute the corresponding inferred operators. For a new parameter µ ∈ D \ {µ1, . . . , µM}, the operators

Â(µ), B̂(µ), F̂ (µ), Ĝ(µ) are obtained via interpolation. We refer to [47] for details and to [70] for interpo-
lating between reduced operators in model reduction in general.

2.5 Motivating numerical example: Stability of inferred models

We demonstrate operator inference on a toy example. Consider the quadratic dynamical system

d

dt
x(t) = A(µ)x(t) +Bu(t) + Fx2(t) , (11)

where B ∈ RN×1 and F ∈ RN×N(N+1)/2 have entries that are realizations of the uniform distribution in
[0, 1]. The dimension is N = 128. The linear operator in (11) is A(µ) = −µ(As +AT

s + 2NI), where I is
the identity matrix and As ∈ RN×N is a matrix that has as entries realizations of the uniform distribution
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(b) test error (13)

Figure 1: Synthetic example: (a) The training error for the model learned via operator inference (OpInf)
matches the error of the model obtained with intrusive model reduction. (b) When tested for a different input
and initial condition at the same parameter, the model learned via operator inference (without regularization)
is inaccurate and unstable in this example.

in [0, 1]. The matrix A(µ) is symmetric negative definite with probability 1. The parameter domain is
D = [0.1, 1] and end time is T = 1. We discretize (11) with time-step size δt = 10−3 and explicit Euler.
For each training parameter µ ∈ {0.1, . . . , 1.0}, we generate a single (Mb = 1) input trajectory Ub

1(µ),
whose entries are random with a uniform distribution in [0, 2], and an initial condition xb

1,0, whose entries

follow a uniform distribution in [0, 1]. The corresponding state trajectories are Xb
1(µ1), . . . ,X

b
1(µM ). A

basis matrix V ∈ RN×n is then constructed from the corresponding snapshots as described in Section 2.3.
The reduced basis is generated for dimension n = 2, . . . , 10. For parameter µ = 0.7, we then construct
Mt = 3 training inputs U1, . . . ,UMt with training initial conditions x1,0, . . . ,xMt,0, which are sampled from
the same distributions as the inputs and initial conditions for the basis construction. The corresponding
training state trajectories are X1, . . . ,XMt

, to which we apply operator inference as described in Section 2.4.
We use a first-order forward difference scheme to approximate the time derivative as in (9). Additionally,
for benchmarking purposes, we also construct a reduced model (7) via the intrusive process described in
Section 2.3.

Figure 1a shows the training error of the operator-inference model

etrain =

Mt∑
i=1

∥V X̂i −Xi∥F
∥Xi∥F

, (12)

which indicates that the operator-inference model achieves a comparable error decay as the reduced model
obtained from intrusive model reduction. However, if we simulate the operator-inference model at a test
input trajectory U test, whose entries are sample uniformly in [0, 10], and test initial condition xtest

0 , with
entries sampled uniformly in [0, 1], and plot the error

etest =
∥V X̂

test
−Xtest∥F

∥Xtest∥F
, (13)

in Figure 1b, then an instability can be observed, compared to the reduced model from intrusive model
reduction. The results indicate that operator inference is prone to overfitting, which can result in unstable
behavior at test inputs as in this motivating example.
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3 A physics-informed regularizer for operator inference

We propose a physics-informed regularizer for operator inference that penalizes unstable dynamical-system
models. In Sections 3.1-3.3, we recapitulate the definition of the stability radius of quadratic models and
derive new bounds for stability radii of cubic and quadratic-cubic dynamical-system models with Lyapunov
stability criteria. We then propose a regularizer that penalizes models with small stability radii in Sec-
tion 3.4. Additionally, in Section 3.5, we propose to combine the physics-informed regularizer with structure
preservation. In the following, for each parameter µ ∈ {µ1, . . . , µM} in the training set, an operator-inference
model is learned separately as discussed in Section 2.4. Thus, in this section, the parameter dependence of
quantities is not explicitly denoted.

3.1 Stability radius of quadratic models of dynamical systems

We closely follow [63] to define the concept of stability radius for quadratic models of dynamical systems.
In fact, the work [63] is the motivation for the proposed physics-informed regularizer.

3.1.1 Stability domain of quadratic models

Consider the autonomous quadratic reduced model

d

dt
x̂(t) = Âx̂(t) + Ĥ(x̂(t)⊗ x̂(t)) (14)

where ⊗ denotes the Kronecker product. Notice that the quadratic term in (14) is denoted with Ĥ instead of

F̂ as in the reduced model (7) and the operator-inference model (10). The term Ĥ is of dimension n×n2 and

acts on the Kronecker product x̂(t)⊗x̂(t), whereas the quadratic operator F̂ is of dimension n×n(n+1)/2 and
acts on x̂2(t) without duplicates due to the commutativity of the multiplication operators, see Section 2.1.
However, one can transform between the two different representations. Thus, the model given in (14) is a
different representation of an autonomous version of the reduced model (7) and the operator-inference model
(10) without a cubic term; cf. Section 3.2. See Section 3.3 for models with cubic terms. Similarly, we can
represent a full model with only a quadratic term given in the form of (1) as (14).

Let now without loss of generality x̂e = 0 be an equilibrium point of (14), i.e., Âx̂e + Ĥ(x̂e ⊗ x̂e) = 0.
The domain of attraction A(x̂e) of the equilibrium x̂e is then defined as the set of initial conditions that
lead to the equilibrium point x̂e as a steady state, i.e.,

A(x̂e) = {x̂0 : lim
t→∞

x̂(t) = x̂e} ,

where x̂(t) is the state at time t of (14) with initial condition x̂0. Directly working with the stability domain
is challenging from an analytic and computational point of view and thus one typically resorts to deriving
subsets D ⊆ A(x̂e). To measure a subset D, we build on the Lyapunov theory to derive a stability radius.

If there exists a Lyapunov function ν : RN → R+ that is continuously differentiable and that satisfies

ν(x̂) > 0, ν̇(x̂) < 0, ∀x̂ ∈ A(x̂e) ,

then model (14) is locally asymptotically stable about x̂e. Here, ν̇(x̂) means ν̇(x̂) = dν
dx̂ f̂(x̂), where f̂(x̂) =

Âx̂ + Ĥ(x̂ ⊗ x̂) is the right-hand side function of the corresponding dynamical system. As shown in
[61, 62, 63], given a Lyapunov function ν, an estimate D(ρ) ⊆ A(x̂e) of the domain of attraction A(x̂e) is
given by

D(ρ) = {x̂ : ν(x̂) ≤ ρ2, ν̇(x̂) < 0} ,

where we refer to ρ as the stability radius.
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3.1.2 Estimating stability radius

Consider an autonomous quadratic model (14) with Lyapunov function ν(x̂) = x̂TP x̂, where P ∈ Rn×n is
a symmetric positive definite matrix that satisfies

LLT = −Â
T
P − PÂ , (15)

for an arbitrary matrix L ∈ Rn×n. The derivative of the Lyapunov function along a trajectory is

ν̇(x̂) = ˙̂xTP x̂+ x̂TP ˙̂x .

Building on [63, Proposition 3.1], we obtain the radius

ρ̂ =
σ2
min(L)

2
√

∥P ∥F ∥Ĥ∥F
(16)

and that D(ρ̂) ⊆ A(x̂e) is a subset of A(x̂e), if Â is Hurwitz, i.e., the real parts of all eigenvalues of Â are
negative. Notice that in contrast to the 2-norm ∥ · ∥2 used in [63, Proposition 3.1], we state the radius (16)
with respect to the Frobenius norm ∥ · ∥F , which leads to an operator inference problem that can be solved
more efficiently than when working with the ∥ · ∥2 norm.

We comment on the bound ρ̂ defined in (16) of the stability radius ρ. The same comments apply to the
bounds that are derived in the following sections. We will use the bound ρ̂ to formulate a regularization term.
Thus, what is important for our approach is that penalizing models with a small ρ̂ encourages stabler models
that have a larger stability radius ρ, and our numerical experiments provide empirical evidence of this. This
means that for our approach, it is less critical how close ρ̂ is to ρ in absolute terms and more important that
ρ̂ and ρ follow the same trend in the sense that penalizing a small bound ρ̂ leads to a penalization of small ρ.

3.2 Stability radius of cubic models of dynamical systems

Consider the autonomous cubic reduced model

d

dt
x̂(t) = Âx̂(t) + K̂(x̂(t)⊗ x̂(t)⊗ x̂(t)) (17)

which is an equivalent representation of an autonomous version of the reduced model (7) and the operator-
inference model (10) with no input and no quadratic term.

Proposition 3.2.1. Let ν(x̂) = x̂TP x̂ be a Lyapunov function, where P ∈ Rn×n is a symmetric positive
definite matrix that satisfies (15). Then an estimate of the domain of attraction A(x̂e), of the equilibrium
point x̂e of (17), is given by D(ρ̂) ⊆ A(x̂e), where

ρ̂ =
σmin(L)√
2∥K̂∥F

. (18)

Proof. A bound of the derivative for the Lyapunov function ν(x̂) along a trajectory is given as

ν̇(x̂) = ˙̂xTP x̂+ x̂TP ˙̂x

=
[
Âx̂+ K̂(x̂⊗ x̂⊗ x̂)

]T
P x̂+ x̂TP

[
Âx̂+ K̂(x̂⊗ x̂⊗ x̂)

]
= x̂T [Â

T
P + PÂ]x̂+ (x̂⊗ x̂⊗ x̂)T K̂

T
P x̂+ x̂TPK̂(x̂⊗ x̂⊗ x̂)

= −x̂TLLT x̂+ 2x̂TPK̂(x̂⊗ x̂⊗ x̂)

≤ −σ2
min(L)∥x̂∥2F + 2∥x̂∥4F ∥P ∥F ∥K̂∥F .
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We consider the region where the Lyapunov function gradient is negative, which gives us

ν̇(x̂) < 0 ⇐⇒ ∥x̂∥2F <
σ2
min(L)

2∥P ∥F ∥K̂∥F
.

Thus, for the Lyapunov function, the inequality

ν(x̂) = x̂TP x̂ ≤ ∥x̂∥2F ∥P ∥F <
σ2
min(L)

2∥K̂∥F
= ρ̂2

holds, and thus the stability radius of the cubic system is

ρ̂ =
σmin(L)√
2∥K̂∥F

.

3.3 Stability radius of quadratic-cubic models of dynamical systems

Consider the autonomous quadratic-cubic reduced model

d

dt
x̂(t) = Âx̂(t) + Ĥ(x̂(t)⊗ x̂(t)) + K̂(x̂(t)⊗ x̂(t)⊗ x̂(t)) (19)

which is a different representation of an autonomous version of the reduced model (7) and the operator-
inference model (10).

Proposition 3.3.1. Let ν(x̂) = x̂TP x̂ be a Lyapunov function, where P ∈ Rn×n is a symmetric positive
definite matrix that satisfies (15). Then an estimate of the domain of attraction A(x̂e), of the equilibrium
point x̂e of (19), is given by D(ρ̂) ⊆ A(x̂e), where

ρ̂ =

√
∥P ∥F ∥Ĥ∥2F + 2σ2

min(L)∥K̂∥F
2∥K̂∥F

−
√
∥P ∥F ∥Ĥ∥F
2∥K̂∥F

. (20)

Proof. A bound of the derivative of the Lyapunov function along a trajectory is given as

ν̇(x̂) = ˙̂xTP x̂+ x̂TP ˙̂x

=
[
Âx̂+ Ĥ(x̂⊗ x̂) + K̂(x̂⊗ x̂⊗ x̂)

]T
P x̂+ x̂TP

[
Âx̂+ Ĥ(x̂⊗ x̂) + K̂(x̂⊗ x̂⊗ x̂)

]
= x̂T [Â

T
P + PÂ]x̂+ (x̂⊗ x̂)T Ĥ

T
P x̂+ (x̂⊗ x̂⊗ x̂)T K̂

T
P x̂+

x̂TPĤ(x̂⊗ x̂) + x̂TPK̂(x̂⊗ x̂⊗ x̂)

= − x̂TLLT x̂+ 2x̂TPĤ(x̂⊗ x̂) + 2x̂TPK̂(x̂⊗ x̂⊗ x̂)

≤ − σ2
min(L)∥x̂∥2F + 2∥x̂∥3F ∥P ∥F ∥Ĥ∥F + 2∥x̂∥4F ∥P ∥F ∥K̂∥F .

where the matrix L is as defined in (15). We consider the region where the Lyapunov function gradient
satisfies ν̇(x̂) < 0, which gives us,

−σ2
min(L) + 2∥x̂∥F ∥P ∥F ∥Ĥ∥F + 2∥x̂∥2F ∥P ∥F ∥K̂∥F < 0 . (21)

Roots of the quadratic equation in (21) in ∥x̂∥F are

R1 =
−∥P ∥F ∥Ĥ∥F −

√
∥P ∥2F ∥Ĥ∥2F + 2σ2

min(L)∥P ∥F ∥K̂∥F
2∥P ∥F ∥K̂∥F

,

R2 =
−∥P ∥F ∥Ĥ∥F +

√
∥P ∥2F ∥Ĥ∥2F + 2σ2

min(L)∥P ∥F ∥K̂∥F
2∥P ∥F ∥K̂∥F

.
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Both R1 and R2 are non-complex as ∥P ∥2F ∥Ĥ∥2F + 2σ2
min(L)∥P ∥F ∥K̂∥F ≥ 0.

For x̂ with R1 < ∥x̂∥F < R2, we get

(∥x̂∥F −R1)(∥x̂∥F −R2) < 0

=⇒ −σ2
min(L) + 2∥x̂∥F ∥P ∥F ∥Ĥ∥F + 2∥x̂∥2F ∥P ∥F ∥K̂∥F < 0

=⇒ ν̇(x̂) < 0

Because ∥x̂∥F ≥ 0 and R1 ≤ 0, we get,
0 ≤ ∥x̂∥F < R2

as the set of x̂ for which the condition ν̇(x̂) < 0 is satisfied. Thus, for the Lyapunov function, the inequality

ν(x̂) = x̂TP x̂ ≤ ∥x̂∥2F ∥P ∥F < R2
2∥P ∥F = ρ̂2

holds, and thus the stability radius of the quadratic-cubic system is

ρ̂ =
√
R2

2∥P ∥F =

√
∥P ∥F ∥Ĥ∥2F + 2σ2

min(L)∥K̂∥F
2∥K̂∥F

−
√
∥P ∥F ∥Ĥ∥F
2∥K̂∥F

.

3.4 Operator inference with physics-informed regularizer

We now formulate a physics-informed regularizer for learning quadratic, cubic, and quadratic-cubic models
with operator inference.

3.4.1 Physics-informed regularizer for quadratic models

For a quadratic nonlinear model, the stability radius ρ̂, which is derived in (16), grows inversely proportional

to the norm ∥Ĥ∥F of the quadratic term Ĥ ∈ Rn×n2

in (14). Notice that other results on stability analysis
for quadratic systems, e.g., [64, 65], also show that a small norm of the quadratic term can increase the
stability radius.

The models that we infer with operator inference have the form (10) and thus the quadratic term F̂ is of

dimension n× n(n+ 1)/2. However, models of the form (14) with Ĥ can be transformed into models with

the quadratic operator F̂ such that F̂ x̂2 = Ĥ(x̂⊗ x̂) holds for any x̂ ∈ Rn and ∥Ĥ∥F ≤ ∥F̂ ∥F holds as well.

We can construct Ĥ such that ∥Ĥ∥F = ∥F̂ ∥F , by filling the additional columns of Ĥ with zeros. Thus, we

obtain that if we regularize the norm ∥F̂ ∥F , we also regularize the norm ∥Ĥ∥F of a corresponding Ĥ, which
in turn means that the denominator of the radius ρ̂ is regularized. This leads to the optimization problem
for inferring model (10) with operator inference and the proposed physics-informed regularizer (PIR-OpInf)

min
Â,B̂,F̂

J(Â, B̂, F̂ ,0, λ) + λ∥F̂ ∥2F , (22)

with J defined in (8), with Ĝ set to the zero matrix because we only infer a quadratic model, and λ > 0

being a regularization parameter. Notice that increasing λ means more severely penalizing the norm ∥F̂ ∥F ,
which in turn leads to a potential increase of the radius ρ̂ and thus a more stable inferred model in the sense
of Lyapunov.

The PIR-OpInf problem (22) imposes no constraints on the linear operator Â. In particular, there is no

guarantee that the inferred Â is Hurwitz and thus there can exist eigenvalues with non-negative real parts.
To ensure a linear operator that is Hurwitz, we apply an eigenvalue reflection as a post-processing step.
Let Â = QAΣAQ

−1
A be the eigendecomposition of Â. If Â is not diagonalizable, we reduce the dimension

n until a matrix Â is inferred that is diagonalizable. Notice that this process stops in a finite number of
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steps because Â is diagonalizable if n = 1 and Â is non-zero. Without loss of generality, let σ1, . . . , σr be
eigenvalues with non-negative real parts and let σr+1, . . . , σn be all other eigenvalues. Denote with R(σ)

and I(σ) the real and imaginary part, respectively, for a complex number σ ∈ C. Then, we replace Â with
the matrix

QA diag(−ϵ+ I(σ1), . . . ,−ϵ+ I(σr), σr+1, . . . , σn)Q
−1
A ,

which replaces the positive real parts of the eigenvalues with a negative real number given by the small
positive threshold ϵ > 0. Note that the post-processing also needs to be applied after interpolating at a new
parameter µ ∈ D outside of the training set; cf. Section 2.4.

In our numerical experiments, when eigenvalues have positive real parts, then they typically have small
magnitude because the underlying systems from which data are sampled are stable and thus the instability
in the learned model is due to, e.g., insufficient data and other shortcomings of the learning. Because we
encounter unstable eigenvalues with small magnitude only, the reflection described in the previous paragraph
is sufficient in our experiments. This is in contrast to other settings where the underlying systems are
unstable and then eigenvalues of learned system matrices have real parts with large magnitudes. In these
cases, other post-processing strategies to obtain Hurwitz linear operators are warranted and we refer to, e.g.,
[71, 72, 73, 74] for additional details.

3.4.2 Physics-informed regularizer for cubic models

For a cubic nonlinear model, the stability radius ρ̂, which is derived in (18), grows inversely proportional to

∥K̂∥1/2F of the cubic term K̂ ∈ Rn×n3

in (17). The models that we infer with operator inference have the

form (10) and thus the cubic term Ĝ is of dimension n×n(n+1)(n+2)/6. Similar to the quadratic model,

(17) with K̂ can be transformed into models with cubic operator Ĝ, such that Ĝx̂3 = K̂(x̂(t)⊗ x̂(t)⊗ x̂(t))

holds for any x̂ ∈ Rn and ∥K̂∥F ≤ ∥Ĝ∥F holds as well. We can construct K̂ such that ∥K̂∥F = ∥Ĝ∥F
by filling the additional columns of K̂ with zeros. Thus, we obtain that if we regularize the norm ∥Ĝ∥F ,
we also regularize the norm ∥K̂∥F of a corresponding K̂, which in turn means that the denominator of the
radius ρ̂ is regularized. For the cubic model, this leads to the optimization problem for inferring model (10)
with PIR-OpInf

min
Â,B̂,Ĝ

J(Â, B̂,0, Ĝ, λ) + λ∥Ĝ∥F , (23)

with F̂ set to the zero matrix because there is no quadratic term. The same post-processing as for quadratic
models in Section 3.4.1 is applied to ensure an Â that is Hurwitz.

3.4.3 Physics-informed regularizer for quadratic-cubic models

For a quadratic-cubic nonlinear model, by taking derivatives of the stability radius ρ̂, derived in (20), with

respect to ∥Ĥ∥F and ∥K̂∥F we get,

∂ρ̂

∂∥Ĥ∥F
=

∥P ∥F ∥Ĥ∥F −
√
∥P ∥2F ∥Ĥ∥2F + 2σ2

min(L)∥P ∥F ∥K̂∥F

2∥K̂∥F
√
∥P ∥F ∥Ĥ∥2F + 2σ2

min(L)∥K̂∥F
,

∂ρ̂

∂∥K̂∥F
=

√
∥P ∥F ∥Ĥ∥2F

√
∥P ∥F ∥Ĥ∥2F + 2σ2

min(L)∥K̂∥F − (∥P ∥F ∥Ĥ∥2F + σ2
min(L)∥K̂∥F )

2∥K̂∥2F
√

∥P ∥F ∥Ĥ∥2F + 2σ2
min(L)∥K̂∥F

.
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For ∂ρ̂/∂∥Ĥ∥F we get

∥P ∥2F ∥Ĥ∥2F + 2σ2
min(L)∥P ∥F ∥K̂∥F > ∥P ∥2F ∥Ĥ∥2F

=⇒
√

∥P ∥2F ∥Ĥ∥2F + 2σ2
min(L)∥P ∥F ∥K̂∥F > ∥P ∥F ∥Ĥ∥F

=⇒ ∥P ∥F ∥Ĥ∥F −
√

∥P ∥2F ∥Ĥ∥2F + 2σ2
min(L)∥P ∥F ∥K̂∥F < 0

=⇒ ∂ρ̂

∂∥Ĥ∥F
< 0 .

For ∂ρ̂/∂∥K̂∥F , squaring the two terms in the numerator gives us(√
∥P ∥F ∥Ĥ∥2F

√
∥P ∥F ∥Ĥ∥2F + 2σ2

min(L)∥K̂∥F
)2

= ∥P ∥2F ∥Ĥ∥4F + 2∥P ∥F ∥Ĥ∥2Fσ2
min(L)∥K̂∥F ,(

∥P ∥F ∥Ĥ∥2F + σ2
min(L)∥K̂∥F

)2

= ∥P ∥2F ∥Ĥ∥4F + 2∥P ∥F ∥Ĥ∥2Fσ2
min(L)∥K̂∥F + σ4

min(L)∥K̂∥2F .

Comparing the two terms, and using the fact that σ4
min(L)∥K̂∥2F and all other terms are non-negative, leads

to the inequality(
∥P ∥F ∥Ĥ∥2F + σ2

min(L)∥K̂∥F
)2

>

(√
∥P ∥F ∥Ĥ∥2F

√
∥P ∥F ∥Ĥ∥2F + 2σ2

min(L)∥K̂∥F
)2

=⇒ ∥P ∥F ∥Ĥ∥2F + σ2
min(L)∥K̂∥F >

√
∥P ∥F ∥Ĥ∥2F

√
∥P ∥F ∥Ĥ∥2F + 2σ2

min(L)∥K̂∥F

=⇒
√

∥P ∥F ∥Ĥ∥2F
√
∥P ∥F ∥Ĥ∥2F + 2σ2

min(L)∥K̂∥F − (∥P ∥F ∥Ĥ∥2F + σ2
min(L)∥K̂∥F ) < 0

=⇒ ∂ρ̂

∂∥K̂∥F
< 0 .

That the partial derivatives are negative, ∂ρ̂/∂∥Ĥ∥F < 0 and ∂ρ̂/∂∥K̂∥F < 0, motivates that decreasing

∥Ĥ∥F and ∥K̂∥F can increase ρ̂, which in turn motivates regularizing with respect to both ∥Ĥ∥F and

∥K̂∥F . As described in Sections 3.4.1 and 3.4.2, by regularizing ∥F̂ ∥F and ∥Ĝ∥F , we also regularize ∥Ĥ∥F
and ∥K̂∥F respectively. For the quadratic-cubic model, this leads to the optimization problem for inferring
model (10) with PIR-OpInf

min
Â,B̂,F̂ ,Ĝ

J(Â, B̂, F̂ , Ĝ, λ) + λ(∥F̂ ∥2F + ∥Ĝ∥F ) . (24)

The same post-processing as for quadratic models in Section 3.4.1 is applied to ensure an Â that is Hurwitz.
A similar approach as described in sections 3.1-3.3 can be used for models with higher order nonlinear

terms, to derive the expression for the estimated stability radius and to use it for regularization.

3.5 Operator inference with structure preservation

Structure can be imposed on the linear operator by adding hard constraints to the operator inference problem.
We focus on problems that lead to symmetric negative definite linear operators, which are present in, e.g.,
Hamiltonian systems [54]. We consider the constrained problem

min
Â,B̂,F̂ ,Ĝ

J(Â, B̂, F̂ , Ĝ) + λ(∥F̂ ∥2F + ∥Ĝ∥F ) ,

such that Â+ ϵI ⪯ 0 ,

(25)
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where Â + ϵI ⪯ 0 means that Â + ϵI is symmetric negative semi-definite. The matrix I is the identity
and ϵ > 0 is a margin that guarantees that Â is definite, rather than semi-definite. We refer to (25) as
the SPIR-OpInf problem, where the S stands for “structure.” Problem (25) is in the class of semi-definite
programs, which typically are computationally more expensive to solve than linear least-squares problems
as (22) with the same number of unknowns. However, efficient numerical algorithms and software exist
for solving semi-definite programs [75]. Additionally, we are seeking low-dimensional models that have few
degrees of freedom, which means that we focus mostly on optimization problems with a manageable number
of unknowns.

Instead of imposing a margin ϵ to guarantee definiteness of Â in (25), one can solve problem (25) with

the constraint Â ⪯ 0 and subsequently apply an analogous post-processing step as in Section 3.4. The
post-processing described in Section 3.4 preserves symmetry and thus the result is a symmetric negative
definite matrix after the post-processing; see also [71]. However, in the following, we will impose a margin ϵ
and therefore do not need a post-processing step.

Other structures in the linear operator can be preserved in an analogous way. For example, another
common structure is skew-symmetry of Â which can be formulated as a linear constraint; we leave such
other constraints to future work. Recall that it is required to interpolate between inferred operators when a
model at a parameter µ outside of the training set is required; cf. Section 2.4. In case of structure-preserving
operator inference, the corresponding operator interpolation schemes have to preserve the operator structure.
We discuss such an interpolation scheme for symmetric negative definite matrices in Section 4.1.

4 Computational procedure of physics-informed operator infer-
ence

In Section 4.1, we briefly recapitulate an interpolation scheme that preserves symmetric definiteness of
matrices, which is critical for constructing operators at new parameters outside of the training set in SPIR-
OpInf. To select a regularization parameter for PIR-OpInf (22)–(24) and SPIR-OpInf (25), we propose a
parameter-selection scheme in Section 4.2 and Section 4.3. Section 4.4 presents Algorithm 1 that summa-
rizes the computational procedure for operator inference with physics-informed regularization and structure
preservation.

4.1 Interpolation of structure-preserving operator-inference models

In SPIR-OpInf introduced in Section 3.5, the definiteness and symmetry constraints in the optimization
problem (25) ensure that for each training parameter µ1, . . . , µM a model is obtained with a linear operator
that is symmetric negative definite. When we interpolate the trained models at a new parameter µ ∈
D\{µ1, . . . , µM} outside of the training set, however, we have to ensure that the interpolated linear operator
is symmetric negative definite as well. There are various interpolation schemes in model reduction that
preserve such structure, see, e.g., [76, 77]. We build on the Log-Cholesky averaging method presented in
[70].

Given are M symmetric negative definite matrices Â(µ1), . . . , Â(µM ) at parameters µ1, . . . , µM . We

compute the Cholesky factors L̂(µi) such that Â(µi) = −L̂(µi)L̂(µi)
T for i = 1, . . . ,M . The Cholesky

factors L̂(µi) are then split into

L̂(µi) = ⌊L̂(µi)⌋+ diag(L̂(µi)) , i = 1, . . . ,M ,

where diag(L̂(µi)) is the diagonal matrix with the same the diagonal as L̂(µi) and ⌊L̂(µi)⌋ is its remaining

strictly lower triangular part. The interpolated matrix Â(µ) at a new parameter µ is

Â(µ) = −L̂(µ)L̂(µ)T ,
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where the Cholesky factor L̂(µ) is obtained as

L̂(µ) = I(µ; ⌊L̂(µ1)⌋, . . . , ⌊L̂(µM )⌋) + exp
(
I
(
µ; log

(
diag

(
L̂(µ1)

))
, . . . , log

(
diag

(
L̂(µM )

))))
.

The operator I denotes linear interpolation of the matrix entries at µ and exp(·) and log(·) are the matrix
exponential and logarithm, respectively.

4.2 A regularization parameter-selection scheme for PIR-OpInf and SPIR-OpInf

Let µ1, . . . , µM be the training parameters and recall that X1(µi), . . . ,XMt
(µi) are the training trajectories

with input trajectories U1(µi), . . . ,UMt(µi), respectively, for i = 1, . . . ,M ; cf. Section 2.3. Define the
minimum λmin and maximum λmax of the regularization parameter and discretize the interval [λmin, λmax] ⊂
R with m points

λmin = λ1 < · · · < λm = λmax. (26)

For each λi, we learn a model Σ̂ij with PIR-OpInf (22) for µj , with i = 1, . . . ,m and j = 1, . . . ,M . In

our case, when Σ̂ refers to a model, then we mean the corresponding matrices that define the model. For
example, in the case of a cubic model as in (10), the notation Σ̂ refers to the matrices Â, B̂, F̂ and Ĝ, which
is different from the way the symbol Σ is typically used in system and control literature where it refers to
the system rather than a realization (model) of the system. Then, for j = 2, . . . ,M − 1 and for i = 1, . . . ,m,
we derive Π̂ij by interpolating between models

Σ̂i,1, . . . , Σ̂i,j−1, Σ̂i,j+1, . . . , Σ̂i,M (27)

corresponding to parameters µ1, . . . , µj−1, µj+1, . . . , µM , i.e., the parameter µj corresponding to model Σ̂ij is
left out from the interpolation process. The interpolation is structure preserving if necessary; cf. Section 4.1.
Notice that all models in (27) are trained with the same regularization parameter λi. The interpolated model
Π̂ij is integrated in time with the input trajectories U1(µj), . . . ,UMt

(µj) corresponding to parameter µj to

obtain the trajectories X̂
(i)

1 (µj), . . . , X̂
(i)

Mt
(µj) and the error

evalij =

Mt∑
ℓ=1

∥V X̂
(i)

ℓ (µj)−Xℓ(µj)∥F
∥Xℓ(µj)∥F

(28)

is assigned to the pair of regularization parameter λi and parameter µj , where V is the basis matrix. We
then pick λ∗ by solving

argmin
i=1,...,m

1

M − 2

M−1∑
j=2

evalij . (29)

The same procedure is applied in case of SPIR-OpInf (25).
Notice that error due to interpolating between models enters the validation error (28) and thus the

selection criterion (29) for λ∗. This is in contrast to other parameter-selection schemes for operator inference
that are either formulated in parameter-independent settings or ignore the parameter dependency in the
selection process [58, 59].

4.3 Selecting regularization parameters based on initial conditions

In case the operators are independent of a parameter µ, we select the regularization parameter based
on trajectories generated with multiple initial conditions. For initial conditions x1

0, . . . ,x
Mt
0 , and inputs

U1, . . . ,UMt
, the training trajectories are X1, . . . ,XMt

. Define the minimum λmin and maximum λmax of
the regularization parameter and discretize the interval [λmin, λmax] ⊂ R with m points

λmin = λ1 < · · · < λm = λmax.
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Algorithm 1: Operator inference with physics-informed regularizer and structure preservation

Input: basis V , inputs U1(µj), . . . ,UMt
(µj) and trajectories X1(µj), . . . ,XMt

(µj) for
j = 1, . . . ,M

Output: inferred operators Â(µj), B̂(µj), F̂ (µj), Ĝ(µj) for j = 1, . . . ,M
1 for i = 1, . . . ,m do
2 for j = 1, . . . ,M do

3 Infer operators Â
(i)
(µj), B̂

(i)
(µj), F̂

(i)
(µj), Ĝ

(i)
(µj) with either PIR-OpInf (22) or

SPIR-OpInf (25) and regularization parameter λi defined in (26) and training parameter µj

4 Compute validation error (28) for i = 1, . . . ,m and j = 2, . . . ,M − 1
5 Pick λ∗ = λi∗ with index i∗ as in (29) that minimizes validation error

6 Set Â(µj) = Â
(i∗)

(µj), B̂(µj) = B̂
(i∗)

(µj), F̂ (µj) = F̂
(i∗)

(µj), Ĝ(µj) = Ĝ
(i∗)

(µj) for j = 1, . . . ,M

7 return Â(µ1), . . . , Â(µM ), B̂(µ1), . . . , B̂(µM ), F̂ (µ1), . . . , F̂ (µM ), Ĝ(µ1), . . . , Ĝ(µM )

We split the training data into L different folds, with the data in each fold being

Xf
l =

{
[X(l−1)fl+1 . . . X lfl ], for l = 1, . . . , L− 1

[X(l−1)fl+1 . . . XMt
], for l = L

(30)

with the rounded value fl =
⌊
Mt

L

⌉
. For fold l, define the validation data as

X̄
f
l =


[Xfl+1 . . . XMt

], for l = 1

[X1 . . . X(l−1)fl X lfl+1 . . . XMt
], for l = 2, . . . , L− 1

[X1 . . . X(l−1)fl ], for l = L .

For each λi, we learn the model Σ̂il with PIR-OpInf (22), using the data X̄
f
l , with i = 1, . . . ,m and

l = 1, . . . , L. The learned model Σ̂il is integrated in time with input trajectories and initial conditions

corresponding to Xf
l , to obtain trajectories X̂

f

l (λi), and the error

evalil =
∥V X̂

f

l (λi)−Xf
l ∥F

∥Xf
l ∥F

(31)

is assigned to the pair of regularization parameter λi and fold l, where V is the basis matrix. We then pick
λ∗ by solving

argmin
i=1,...,m

1

L

L∑
l=1

evalil . (32)

4.4 Algorithm of operator inference with physics-informed regularizer and struc-
ture preservation

Algorithm 1 summarizes the computational procedure of the proposed approach. Inputs are the basis
matrix V , which is constructed from trajectories as described in Section 2.3, and the training trajectories
X1(µi), . . . ,XMt

(µi) and inputs U1(µi), . . . ,UMt
(µi) for the training parameter µi with i = 1, . . . ,M . In

the nested for loop, models are generated with either PIR-OpInf (22) or SPIR-OpInf (25) for all pairwise
combinations of regularization parameters defined in (26) and training parameters µ1, . . . , µM . Then, the
validation error (28) is computed and the index i∗ of the regularization parameter λi∗ that minimizes the
validation error is determined. The corresponding inferred models are returned.
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5 Numerical experiments

In this section, we compare operator inference with the proposed physics-informed regularizer (PIR-OpInf)
and structure preservation (SPIR-OpInf) to Tikhonov regularization and operator inference without regular-
ization. Section 5.1 revisits the synthetic example from Section 2.5. Sections 5.2–5.5 show experiments with
the Burgers’ equation, a reaction-diffusion problem in a pipe, phase separation described by an Allen-Cahn
model, and a FitzHugh-Nagumo model. The proposed approach depends on a small, positive threshold
ϵ > 0, e.g., for the post-processing in PIR-OpInf (cf. Section 3.4) and for the margin in SPIR-OpInf (25),
which we set to ϵ = 10−10 in all of the following experiments.

5.1 Synthetic example

Consider again the synthetic example introduced in Section 2.5. We now apply PIR-OpInf with the parameter
selection procedure discussed in Section 4.2. For each dimension n ∈ {2, 4, 6, 8, 10}, we sweep over m =
51 regularization parameters that are log-uniformly distributed in the interval [10−15, 105]. The selected
regularization parameters are λ∗ = 10−10, 1.58 × 10−7, 10−8, 3.98 × 10−9, 1.58 × 10−9 for dimensions n =
2, 4, 6, 8, 10, respectively. We choose the test parameter set {µtest

1 , . . . , µtest
Mtest

} of Mtest = 7 test parameters
that are equidistantly chosen in D, where for each test parameter a test input trajectory is constructed
with entries sampled uniformly in [0, 10] and a test initial condition with entries sampled uniformly in [0, 1],
cf. Section 2.5.

Figure 2a shows the test error

etest =

Mtest∑
i=1

∥V X̄
test

(µtest
i )−Xtest(µtest

i )∥F
∥Xtest(µtest

i )∥F
, (33)

where X̄
test

(µtest
i ) is the trajectory obtained at test parameter µtest

i with the corresponding test input
trajectory and test initial condition with either PIR-OpInf, OpInf without regularization, or intrusive model
reduction. In contrast to OpInf without regularization, PIR-OpInf shows stable behavior and yields accurate
predictions even for dimensions n > 6 in this example. Figure 2b shows the stability radius ρ̂ defined in
(16) for PIR-OpInf, OpInf without regularization, and intrusive model reduction. To compute the bound
(16) of the stability radius, we draw matrices L with entries uniformly distributed in [0, 1] and repeat the
calculation 100 times. We then show the median and the 25% and 75% quantile in Figure 2b. The median
of the stability radius of the model obtained with PIR-OpInf is larger than the median of the stability
radius of OpInf without regularization, which numerically demonstrates that the proposed physics-informed
regularizer indeed induces a stability bias.

5.2 Burgers’ equation

We consider the parameterized Burgers’ equation

∂x

∂t
(ω, t;µ) = µ

∂2x

∂2ω
(ω, t;µ)− x(ω, t;µ)

∂x

∂ω
(ω, t;µ)

with spatial coordinate ω ∈ (0, 1), time t ∈ [0, 1], and viscosity µ ∈ [10, 100]. Dirichlet boundary conditions
x(0, t;µ) = u(t), x(1, t;µ) = 0 are imposed, with input u : [0, 1] → R. The equation is discretized in space
with finite differences on an equidistant grid in [0, 1] with N = 128 grid points. Time is discretized with the
explicit Euler method with time-step size δt = 10−4.

5.2.1 Problem setup

For each of the M = 10 training parameters µ = {10, 20, 30, . . . , 100}, we derive a single input trajectory
Ub

1(µ), with entries uniformly sampled in [0, 2], and an initial condition x1(µ) = 0. Thus, Mb = 1. The
corresponding state trajectories are Xb

1(µ1), . . . ,X
b
1(µM ). A basis matrix V ∈ RN×n is then constructed
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Figure 2: Synthetic example: The model obtained with the proposed PIR-OpInf shows stable behavior, in
contrast to OpInf without regularization, and achieves a comparable test error as intrusive model reduction.
The estimated stability radius (16) of the PIR-OpInf model is orders of magnitude larger than the estimated
stability radius of the OpInf model without regularization, which is in agreement with the aim of the proposed
regularizer to penalize models with low stability radii.

from the corresponding snapshots as described in Section 2.3. Furthermore, we sample Mt = 10 training
inputs U1(µ), . . . ,UMt(µ) for each training parameter µ ∈ {10, . . . , 100}. To generate the initial conditions
x1,0(µ), . . . ,xMt,0(µ) for each training parameter µ ∈ {10, . . . , 100}, we sample n-dimensional random vectors
r1(µ), . . . , rMt

(µ) with independent entries uniformly distributed in [0, 1] and set xi,0(µ) = V ri(µ) for i =
1, . . . ,Mt. We apply parameter selection as in Section 4.2 to find regularization parameters for each dimension
n ∈ {2, . . . , 10}. Furthermore, we construct an operator-inference model obtained without regularization and
a reduced model with intrusive model reduction.

For comparison purposes, we also construct from the same training data an operator-inference model with
the regularization proposed in [59, 58], which is Tikhonov regularization that regularizes the Frobenius norms
of linear, quadratic, and input operators together, rather than only the norm of the quadratic operator as
in the proposed PIR-OpInf. We refer to this approach as T-OpInf in the following. The same regularization
parameter-selection procedure is applied as for PIR-OpInf.

5.2.2 Results for PIR-OpInf

We test the models at Mtest = 7 test parameters that are equidistantly distributed in the parameter
domain D. For each test parameter µ ∈ {µtest

1 , . . . , µtest
Mtest

}, we generate M ′
test = 5 input trajectories

U test
1 (µ), . . . , U test

M ′
test

(µ) and the corresponding test state trajectories Xtest
1 (µ), . . . ,Xtest

M ′
test

(µ). The test

initial conditions are the same as the training initial conditions, i.e, xtest
i,0 (µ) = xi,0(µ), for i = 1, . . . ,M ′

test.
The test error is then given by

etest =

Mtest∑
i=1

M ′
test∑

j=1

∥V X̄
test
j (µtest

i )−Xtest
j (µtest

i )∥F
∥Xtest

j (µtest
i )∥F

, (34)

where the trajectories X̄
test
j (µtest

i ) for i = 1, . . . ,Mtest and j = 1, . . . ,M ′
test are obtained from either operator

inference without regularization, PIR-OpInf, T-OpInf, or intrusive model reduction.
Figure 3a, Figure 3c, and Figure 3e show the test error (34) for test inputs with entries sampled uniform

from the domains [0, 2], [0, 3], and [0, 4], respectively. In all cases, PIR-OpInf shows stable behavior, whereas
OpInf without regularization leads to numerical instabilities. Even T-OpInf with Tikhonov regularization
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(a) input domain (0, 2)
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(b) input domain (0, 2), T-OpInf with post-processing
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(c) input domain (0, 3)
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(d) input domain (0, 3), T-OpInf with post-processing
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(e) input domain (0, 4)
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(f) input domain (0, 4), T-OpInf with post-processing

Figure 3: Burgers’ equation: The proposed PIR-OpInf leads to models that are stable for a large range of
inputs, which is in contrast to OpInf without regularization and OpInf with Tikhonov regularization (T-
OpInf). The results also show that applying the same post-processing as for PIR-OpInf (cf. Section 3.4) to
T-OpInf has little effect on the stability of the learned models, which indicates that indeed the proposed
regularizer in PIR-OpInf is responsible for obtaining more stable models.
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(b) T-OpInf with post-processing

Figure 4: Burgers’ equation: The validation error (objective of (29)) of T-OpInf grows quickly with the
regularization parameter, which means that the regularization has a negative effect on the model accuracy. In
contrast, the validation error corresponding to the proposed PIR-OpInf is less sensitive to the regularization
parameter, which means that large regularization parameters can be chosen—imposing a stronger stability
bias—without deteriorating the model accuracy.

shows unstable behavior for many dimensions n. To separate the effect of the regularization from the effect
of the post-processing (cf. Section 3.4), we apply the same post-processing as for PIR-OpInf to T-OpInf.
The corresponding results in Figure 3b, Figure 3d, and Figure 3f show that post-processing helps to stabilize
T-OpInf as well; however, as the range of the inputs increases, a similarly unstable behavior as in the case
without post-processing is obtained. Thus, the results indicate that penalizing the quadratic term via the
proposed regularizer is responsible for achieving stabler models, rather than the post processing or penalizing
both the linear and the quadratic term together as in Tikhonov regularization, which is in agreement with
the theoretical motivation outlined in Section 3.1.

Consider now Figure 4 that shows the validation error, i.e., the objective of (29), of the parameter-
selection procedure versus the regularization parameter for dimension n = 8 for PIR-OpInf and T-OpInf.
Independent of whether post-processing is applied to T-OpInf (Figure 4b) or not (Figure 4a), the error of
T-OpInf grows quickly as the regularization parameter is increased. Thus, if a small regularization parameter
is chosen, the validation error of T-OpInf is small but it also means that no regularization is induced. If
instead the regularization parameter is large, then there might be a stability bias but at the same time it
leads to a distinct increase of the model error. In contrast, the curves corresponding to PIR-OpInf show that
the validation error is small for moderately sized regularization parameters, where a stability bias is induced
without leading to a deterioration of the model accuracy.

Figure 5a shows the estimated stability radius (16) for various models. The results indicate that PIR-
OpInf achieves a larger stability radius than the models obtained with T-OpInf and OpInf without regu-
larization. At dimension n = 2, the stability radius of PIR-OpInf is large because only large regularization
parameters lead to stable behavior; see Figure 5b. The regularization parameter is chosen so large that the
norm of the quadratic term is close to zero, which explains the high estimated stability radius.

5.2.3 Results for SPIR-OpInf

We now apply SPIR-OpInf to learn a symmetric and definite linear operator, which is in contrast to PIR-
OpInf that does not impose any structure on the linear operator; see Figure 6a. Figure 7 shows the test error
(34) corresponding to SPIR-OpInf. Stable behavior is obtained in all cases; however, a leveling off of the
error as the dimension increases indicates that restricting to symmetric operators in this example is limiting
the accuracy. Operator inference, independent of the used regularizer, is fitting operators to projected
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(a) estimated stability radius

1e-02

1e-01

1e+00

1e-08 1e-04 1e+00 1e+04 1e+08

va
li
d
at
io
n
er
ro
r

regularization parameter

PIR-OpInf
T-OpInf

(b) validation error for n = 2

Figure 5: Burgers’ equation: The models learned with the proposed PIR-OpInf have larger estimated stability
radii than models obtained without regularization and with Tikhonov regularization (T-OpInf). The stability
radius for n = 2 is high for PIR-OpInf models because only large regularization parameters λ∗ = 106 lead to
stable behavior (see (b)), which forces the norm of the quadratic term to be close to zero and thus increases
the stability radius by a large amount. Notice that the PIR-OpInf model at n = 2 achieves a similar accuracy
as intrusive model reduction; cf. Figure 3.

trajectories of the high-dimensional systems. Projected trajectories are different from reduced trajectories
that are generated with the corresponding reduced model obtained with intrusive model reduction; see [48].
The difference between the projected and reduced trajectories is the closure error. This means that operator
inference aims to find operators that well predict the projected trajectories, and the best operators (in the
sense of the objective of operator inference) do not necessarily have the same structure as the intrusive
operators. Thus, allowing operator inference to break structure can help in terms of accuracy, as can be
seen by comparing Figure 3 with Figure 7. Additional constraints such as symmetry that are imposed by
SPIR-OpInf on the linear operator mean that the optimization search space is smaller and thus SPIR-OpInf
can lead to models that have a larger error than having no structure as in PIR-OpInf. However, breaking
structure also means that predictions can become unphysical. Preventing such unphysical behavior is the
motivation for structure preservation with SPIR-OpInf.

The estimated stability radii of the SPIR-OpInf models are compared to the stability radii of T-OpInf
models in Figure 8a. For large dimensions n > 4, the estimated stability radii of the SPIR-OpInf models
is larger than the stability radii of the T-OpInf models. For small dimensions n ≤ 4, the stability radii of
SPIR-OpInf and T-OpInf models is large. This is reflected by the small regularization parameter selected
by the proposed parameter selection procedure, which selects λ ≈ 3× 10−7 for n = 2.

5.3 Reaction-diffusion problem

Consider the parameterized reaction-diffusion equation

∂

∂t
x(ξ, t;µ) = ∆x(ξ, t;µ) + s(ξ)u(t) + g(x(ξ, t;µ)) , (35)

with the spatial coordinate ξ = [ξ1 ξ2]
T ∈ [0, 1]2. We impose homogeneous Neumann boundary conditions.

The parameter domain is D = [1, 1.5] and end time is T = 20. The source is s(ξ) = 10−1 sin(2πξ1) sin(2πξ2).
The nonlinear term is

g(x(ξ, t;µ)) = −(a sin(µ) + 2) exp(−µ2b)

(
1 + (µc)x+

(µc)
2

2!
x2

)
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Figure 6: Structure such as symmetry in the matrix Â can be imposed via SPIR-OpInf.
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(a) input domain (0, 2)
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(b) input domain (0, 3)
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(c) input domain (0, 4)

Figure 7: Burgers’ equation: Imposing symmetry and definiteness onto the linear operator with the proposed
SPIR-OpInf (25) leads to stable models in this experiment; however, the additional constraints lead to a lower
accuracy than PIR-OpInf that include the proposed regularizer but no constraints on the linear operator
(cf. Figure 3).

which is the second-order Taylor approximation of the source term used in [48], with a = 0.1, b = 2.7 and
c = 1.8. We discretize in space with a mesh width of h = 1/12 and finite difference and in time with explicit
Euler with time-step size δt = 10−2. The dimension of the high-dimensional model is N = 144.

The training parameter set contains the M = 10 equidistant points in the parameter domain D. To
construct the reduced space, we take a single Mb = 1 input trajectory for each training parameter, where
the inputs are sampled uniformly in [0, 1]. The initial condition is zero. The corresponding trajectories
Xb

1(µ1), . . . ,X
b
1(µM ) are used to construct a POD basis. For each of the M training parameters, we sample

Mt = 10 input trajectories with entries uniformly in [0, 1]. The regularization parameters are selected via
our selection procedure described in Section 4.2 by sweeping over the 51 logarithmically equidistant points
in [10−10, 1010]. We test models for Mtest = 7 test parameters that are equidistantly distributed in the
parameter domain D. For every test parameter µtest

1 , . . . , µtest
Mtest

, we generate a single input trajectory U test,
whose entries randomly selected via a uniform distribution in [0, 1], and initial condition xtest

0 = 0. The test
error is then

etest =

Mtest∑
i=1

∥V X̄
test

(µtest
i )−Xtest(µtest

i )∥F
∥Xtest(µtest

i )∥F
, (36)

where X̄
test

(µtest
i ) is the predicted trajectory at parameter µtest

i by either the PIR-OpInf, T-OpInf, OpInf
without regularization, or intrusive model reduction.
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(b) validation error for dimension n = 2

Figure 8: Burgers’ equation: Models learned with SPIR-OpInf have a larger estimated stability radius than
models learned with Tikhonov regularization for dimensions n > 4 in this example. The stability radius of
the SPIR-OpInf model is similar to the stability radius of the T-OpInf model for n = 2 because a small
regularization parameter is chosen as shown in plot (b).

Figure 9a shows the test error (36). The results indicate that OpInf without any regularization becomes
unstable quickly. In contrast, T-OpInf and PIR-OpInf provide stable approximations. However, whereas
the Tikhonov regularization in T-OpInf leads to a loss of accuracy at higher dimensions, the proposed
physics-informed regularizer used by PIR-OpInf achieves errors that are comparable to intrusive model
reduction. This is in agreement with the estimated stability radius shown in Figure 9b, where PIR-OpInf
achieves an orders of magnitude larger stability radius at higher dimensions n than T-OpInf and OpInf
without regularization. Similar results are obtained with SPIR-OpInf, where symmetry and definiteness are
imposed, as shown in Figure 10; see also Figure 6b.

5.4 Phase separation described by Allen-Cahn equation

Consider the cubic nonlinear Allen-Cahn model that is used, for example, for describing phase transitions:

∂

∂t
x(ω, t) =

∂2

∂2ω
x(ω, t)− x(ω, t)3 + u(t) , (37)

with spatial coordinate ω ∈ (0, 1) and time t ∈ [0, 0.1]. The boundary conditions are

x(0, t) = u(t),
∂x

∂t
(1, t) = 0 ,

with input u(t) : [0, 1] → R. The equation is discretized in space with finite differences on an equidistant
grid in [0, 1] with N = 128 grid points. Time is discretized with the explicit Euler method with time-step
size δt = 10−5.

To construct the basis of a reduced space, we take a single Mb = 1 input trajectory, where the inputs
are sampled uniformly in [0, 10]. The initial condition is zero. The corresponding trajectory Xb is used to
construct a POD basis. For training the model, we use Mt = 10 input trajectories, with entries uniformly
sampled in [0, 10]. The regularization parameters are selected via our selection procedure described in
Section 4.3 by sweeping over the 51 logarithmically equidistant points in [10−10, 1010], where the validation
data consists of the training trajectories and the trajectory obtained with input Uval = 10(sin(πt) + 1), t ∈
[0, 0.1]. We test models for the test input trajectory U test = 25(sin(πt) + 1), t ∈ [0, 0.1], which is motivated
by the work [64]. The reduced model is simulated for the test input and the generated state trajectory is
compared against the corresponding full model trajectory.
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(a) test error (36)
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Figure 9: Reaction-diffusion problem: The PIR-OpInf model shows stable behavior in this experiment. In
contrast to Tikhonov regularization (T-OpInf), the PIR-OpInf model achieves an accuracy close to intrusive
model reduction even for larger n > 6 dimensions. The estimated stability radius of the PIR-OpInf model is
orders of magnitude higher than the stability radius of the T-OpInf model in this experiment.
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(a) test error (36)
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(b) estimated stability radius (16)

Figure 10: Reaction-diffusion problem: Constraining the linear inferred operator to be symmetric and def-
inite with SPIR-OpInf leads to models with comparable accuracy and stability radius as PIR-OpInf in this
example.
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Figure 11: Allen-Cahn model: The PIR-OpInf model shows stable behavior in this experiment, whereas
Tikhonov regularization is unstable for all dimensions except 2. The estimated stability radius of the PIR-
OpInf model is higher than the stability radius of the T-OpInf model.

Figure 11a shows the test error (36). The results indicate that OpInf without any regularization and T-
OpInf are unstable for most dimensions, whereas PIR-OpInf provides a stable solution for all dimensions. Our
parameter selection scheme for PIR-OpInf selects the regularization parameters λ∗ = 1012, 1.58× 109, 1.58×
1010, 3.98 × 105, 3.98 × 106, 3.98 × 106, 2.51 × 105 for dimensions n = 2, 4, 6, 8, 10, 12, 14, respectively. The
selected regularization parameters show that a strong regularization is necessary in this example. At the
same time, the large values of the selected regularization parameter results in PIR-OpInf to have a higher
test error compared to the intrusive model. As seen in Figure 11b, PIR-OpInf achieves a larger stability
radius at all dimensions n than both T-OpInf and OpInf without regularization.

5.5 FitzHugh-Nagumo equation

Consider the FitzHugh-Nagumo equation with quadratic and cubic nonlinear terms:

ϵ
∂v

∂t
(ω, t) = ϵ2∇2v(ω, t)− v(ω, t)(v(ω, t)−R)(1− v(ω, t))− w(ω, t) + c,

∂w

∂t
(ω, t) = bv(ω, t)− γw(ω, t) + c

(38)

with spatial coordinate ω ∈ (0, 1), time t ∈ [0, 8]. The equation is discretized in space with finite differences on
an equidistant grid with N = 128 grid points for both v(ω, t) and w(ω, t). In time, we use as discretization the
the semi-implicit Euler method with time-step size δt = 10−3. The parameter values for FitzHugh-Nagumo
equation are ϵ = 0.05, R = 1, c = 0.05, b = 5 and γ = 20. Parameter values are not varied when learning the
model but different initial conditions (see below) and different inputs are used that enter via the boundary
conditions:

vω(0, t) = −i0t
3 exp(−i1t), vω(1, t) = 0, t ≥ 0 ,

where i0 is uniformly sampled in [49500, 50500], and i1 is uniformly sampled in [14, 16], when generating data
trajectories for basis generation and training, while constant values i0 = 50000, i1 = 15 is used for testing.

To construct the reduced space, we take Mb = 5 input trajectories, and zero initial condition. The cor-
responding trajectory Xb is used to construct a POD basis. For training the model, we use Mt = 10 input
trajectories, and initial conditions with entries uniformly sampled in [−0.1, 0.1]. The regularization parame-
ters are selected via our selection procedure described in Section 4.3 by sweeping over the 51 logarithmically
equidistant points in [10−10, 1010]. We test models for the test input trajectory given above and zero initial
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Figure 12: FitzHugh-Nagumo: PIR-OpInf learns stable models, while OpInf without regularization gives
unstable models for dimensions > 2, and T-OpInf is unstable for dimensions > 4. Of all the inferred models,
PIR-OpInf learns the reduced model with the largest estimated stability radius (ρ̂), and for dimensions 6
and 8, ρ̂ for PIR-OpInf is considerably larger compared to the models learned via T-OpInf.

condition, which is different from the training initial conditions. The reduced model is simulated for the
test input and the generated state trajectory is compared against the corresponding full model trajectory.
Figure 12a shows the test error (36). The results indicate that OpInf without any regularization is unstable
for all dimensions > 2. For PIR-OpInf, the solution is stable for all dimensions, and the test error is close to
the error of the intrusive model. T-OpInf is unstable for dimensions > 4. Figure 12b shows that among all
of the inferred models, PIR-OpInf gives the model with the largest stability radius. For dimensions 6 and 8,
our parameter selection scheme selects regularization parameters λ∗ = 102 and λ∗ = 10 for PIR-OpInf and
λ∗ = 108 and λ∗ = 1.58 × 109 for T-OpInf. T-OpInf regularizes all parameters with a large regularization
parameter, which results in a model with a small ∥Â∥F . As the equation (15) computes the Lyapunov matrix

P , a model with a small ∥Â∥F , leads to a model with a large ∥P ∥F . A large ∥P ∥F results in a smaller
ρ̂ (20), and consequently, a less stable model, which is in agreement with the numerical results shown in
Figure 12b.

6 Conclusions

Learning models from data is an ever more important task in science and engineering. It is increasingly
recognized that physical insights need to be incorporated together with data to learn truly predictive mod-
els [1, 2]. In this spirit, we proposed a regularizer that explicitly leverages the quadratic-cubic model form,
which in turn is imposed by the underlying physics, to penalize unstable models learned with operator in-
ference. We also showed that additional physical insights in the form of structure of the linear dynamics can
be imposed on the operator-inference models via constraints. In our experiments, operator inference with
the proposed physics-informed regularizer and structure preservation outperforms operator inference without
regularization and operator inference with Tikhonov regularization in terms of stability and accuracy. Thus,
our results provide evidence of the importance of combining physical insights and data for deriving predictive
models in science and engineering. There are many avenues for future research. We highlight one immediate
research direction, which is combining the physics-informed regularizer proposed in this work with lifting
maps that lift cubic, high-order polynomial, and more generally nonlinear systems into quadratic systems,
see [78, 64, 7]. There typically are multiple lifting maps and we expect that the stability properties depend
on the specific map that is used. It thus would be interesting to determine which maps are favorable over
other maps in terms of stability.
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