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We study the ultraviolet (UV) behavior of an O(N) |g;5|6 theory in d = 3 spacetime dimensions, focusing
on the question of the range in NV over which the perturbative beta function exhibits robust evidence of a UV
zero in the \(Z|" coupling, g. The four-loop (4¢) beta function is known to have a (scheme-independent) UV
zero at g = gyy 4¢. Which is reliably calculable for large N. For our analysis we use the six-loop beta
function calculated in the minimal subtraction scheme. We find that this six-loop beta function has a UV
Zero, guv.er> f N > N, where N . ~ 796, and we calculate gyy ¢.. To investigate the reliability of the result
in the region of N 2 N, we apply three methods: (i) calculation of the fractional difference between gyy 40
and gyy ¢¢, (ii) a Padé approximant, and (iii) an assessment of scheme dependence. Our results provide
quantitative measures of the range of N over which the six-loop beta function has a UV zero and of the 1 /N
corrections to the value of ¢ at the UV zero for large but finite N. If one imposes a benchmark requirement
that the fractional difference between gyy 4, and gyy ¢, must be less than 15%, then our results show that
this requirement is satisfied for N > 2 x 10%. The possible role of nonperturbative effects is also noted.
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I. INTRODUCTION

In this paper we study the ultraviolet (UV) behavior of an
O(N) |¢|® quantum field theory in d =3 spacetime
dimensions. This theory, commonly denoted |q75|§ involves

an N-component real scalar field gZ = (¢1,....¢y)7 and is
defined by the path integral Z = []],[d¢;(x)]e’ with
S = [d®xL, and the bare Lagrangian

Laaea-Lwgetigr-9
L=30)- G = 5mBP = o\ = 21gle. (L)

where |¢| = (32N, $?)"/2.Ind = 3 — ¢ (Euclidean) dimen-
sions, the O(N) |¢|6 theory has been extensively analyzed to
obtain expressions for critical exponents describing tricritical
points in condensed matter physics [ 1-4]. Early studies of the
theory as a relativistic quantum field theory in d =3
spacetime dimensions include [5—-10].

Because of quantum corrections, the physical coupling
g = g(u) depends on the Euclidean energy/momentum
scale, i, where it is measured. This dependence is described
by the renormalization group (RG) beta function [11-13] of
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the theory, f, = dg/dInu. The lowest-order [two-loop,
0(g?)] term in P, is positive [1], so this theory is infrared
(IR)-free, i.e., g(u) — 0 as u — 0. An important question is
whether, for a given N, the theory has a UV zero in f, at
some value gyy. If this is the case and if a perturbative
analysis is adequate to describe the physics, then, as the
reference energy/momentum scale y increases from 0 to oo,
g(u) increases from O and approaches gyy from below.
Since the coefficients of the quadratic and quartic terms in
the Lagrangian (1.1) are both dimensionful, and since
lim,,_om?/u* = 0 and lim,_,,A/u = 0, they are expected
to play a negligible role in the ultraviolet limit g — oco. We
denote the UV zero (presuming that it exists) of the n-loop
(n?) beta function as gyy ... The term of order g7 in f,
arises from graphs with a maximum number of loops n
givenby n = 2(p — 1). The O(g?) term in the beta function
is negative, so that at this order, this four-loop (4¢) beta
function, Pgae, has a UV zero [6,7,9]. In the large-N limit,
with the normalization in Eq. (1.1), this occurs at the value
of the coupling gyy 40 = 192. It was noted in [6,7] that the
N-dependence of higher-loop terms in f, is such that for
large N, the inclusion of these higher-loop terms would
produce only a small fractional shift « 1/N in the value of
the coupling at the UV zero, and therefore the calculation of
the value should be reliable in the large-N limit. Such a UV
zero in the beta function is a UV fixed point (UVFP) of
the renormalization group. The existence of a UVFP in an
IR-free theory is of considerable interest, since it means that
one has perturbative control of the theory in both the IR and
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UV limits. A previous example of an IR-free theory with a
UVFP is the nonlinear O(N) ¢ model in d=2+¢
dimensions [14—17]. The early studies [6,7] also cautioned
that at small and moderate N, this formal UV zero at g =
guv .4, Might be an artifact of the perturbative calculation.

We briefly review some further relevant work on this
theory. After the studies in [6-9], a variational calculation
was carried out in the N — oo limit by Bardeen, Moshe,
and Bander (BMB) in [10], who found that for g > g¢,,,
where g, = (4x)? ~ 158, the theory undergoes a transition
to a strongly coupled phase involving dynamical mass
generation for the scalar field and spontaneous breaking
of scale invariance, with the resultant appearance of a
massless Nambu-Goldstone boson (NGB), namely a dila-
ton [10]. Since g., < gyv.4¢. it was concluded in [10] that
in the large-N limit where the BMB calculations were
performed, the physics is described by the properties of this
strong-coupling phase rather than by a UV zero in the
(perturbative) beta function. The properties in the N — oo
limit were further studied in [18-20]. Exploratory lattice
studies to probe the BMB phase were performed in [21,22].
References [23,24] argued that at finite N, the BMB
phase is unstable. More recently, Ref. [25] investigated
the effect of higher-order corrections in 1/N on the BMB
dilaton and found that it becomes a tachyon when one
takes account of these 1/N corrections. On this basis, the
authors of Ref. [25] concluded that at finite N, the BMB
phase with spontaneously broken approximate scale invari-
ance is unstable. Some recent related studies of this theory
include [26-30].

In parallel with these continuing studies of the role_of
possible nonperturbative effects at finite N in the [¢[$
theory, it seems worthwhile to investigate the UV proper-
ties of the (perturbative) beta function further. At the time of
the early studies in [6-10], 8, had been calculated only up
to O(g*). Subsequently, it was calculated to O(g*) in [4],
and this remains the highest order to which it has been
computed. A very basic question that, to our knowledge,
has not been studied yet is whether, for a given N, this
O(g*) beta function exhibits evidence for a (reliably
calculable) UV zero, denoted gyyg,. We address this
question in this paper.

A necessary condition for such evidence is that the
values of the coupling at this UV zero obtained from
calculations of the beta function to successive orders in g
should be close to each other. To determine the region in N
over which this condition is satisfied, we will compare the
values of gyy 4, and gyy e, (for N values where the latter
exists). Furthermore, the terms in the beta function at order
gP with p > 4 depend on the scheme used for regularization
and renormalization. By itself, this property does not render
these higher-order terms unphysical; for example, higher-
order calculations of quark and gluon scattering in quantum
chromodynamics (QCD) are also scheme-dependent but
still play a crucial role in the analysis of experimental data,

and work continues on the construction and application of
optimal schemes for QCD calculations (see, e.g., [31] and
references therein). However, this does mean that one must
assess the effect of this scheme dependence, and we shall
do this as part of our study. In carrying out this study, it
should be stressed that nonperturbative effects may be
important, and we refer the reader to the continuing
analysis of this topic, e.g., in [25,30], as well as earlier
works including [10]. However, bearing this caveat in
mind, one should at least elucidate the predictions from
the beta function calculated to the highest order to which it
is known for general N, and that is the purpose of our
present study.

In passing, it should be mentioned that theories of qﬁg’
type with various global symmetries, representations
of the scalar fields, and sixth-degree interaction terms have
also been of recent interest in the context of large-charge
expansions and conformal field theory, e.g., [32-36]. Here
we will confine our analysis to the simple realization of this
theory in the Lagrangian (1.1).

This paper is organized as follows. In Sec. II we present
the results of an analysis of the evidence, for a given N, of a
UV zero in the six-loop beta function. In Sec. III we apply
the method of Padé approximants to study this question
further. Section IV contains an assessment of the effects of
scheme dependence. Our conclusions are presented in
Sec. V. Some auxiliary relations are given in the Appendix.

II. BETA FUNCTION AND UV ZERO

In this section we analyze the beta function of the O(N)

|($|§ theory. The beta function 8, = dg/dInyu has a series
expansion in powers of the interaction coupling g, starting
with a term of O(g?),

/}g:gajgf, (2.1)
=1

In the literature there are several different normalization

conventions for the |c77|6 coupling; for the reader’s conven-
ience, in the Appendix we list conversion formulas relating
some of these. As noted above, the term in f, of O(g”)
arises from graphs with a maximal number of loops equal
to n = 2(p — 1). We denote the truncation of the infinite
series (2.1) to O(g”), as B, -, where n¢ is short for n-loops.
As is the case with other scalar field theories, although
Eq. (2.1) is an asymptotic expansion [37,38], it can still
yield useful information about the properties of the theory.
With the normalization in Eq. (1.1), the first two
coefficients, b;, j =1, 2, are [6,7,9] (see also [1,2])

3N+ 22

by =% 2.2
L™ 022N? (2.2)

and

096009-2



STUDY OF THE ULTRAVIOLET BEHAVIOR OF AN O(N) ...

PHYS. REV. D 107, 096009 (2023)

b= = g

1
= — 7 (0791572 X 107)N? + 0.0609195N? + 1.04129N -+ 4.27300],

where floating-point numbers are given to the indicated accuracy. As mentioned before, these first two terms of O(g

N3 + 34N? + 620N + 2720)

8
+— (53N + 858N + 3304)}
T

(2.3)

?) and

O(g*) in B, contain the maximal scheme-independent information in this function. The UV zero in the four-loop beta

function occurs at gyy 40 = —b;/b,, namely
64N2(3N + 22)
Juvar = 7373 5 5 5 . (2.4)
(N + 34N?* 4+ 620N + 2720) + (8/7*)(53N* + 858N + 3304)
This is a monotonically increasing function of N. For large N,
8(159 + 107%)  4(134832 + 14144x> + 21572%) 1
Jovar = 192[1 T 3N 37N o\w
69.62685 4043.0263 1
=192|1 - Ool—=)]|- 2.5
2P o) e

The coefficient b5 of the ¢g* term in B, has been calculated in [4] in the minimal subtraction scheme [39,40]. With the

normalization in Eq. (1.1), it is

1 1
by = ST (1857N3 +45976N? + 367716N + 950576) + 396 (36N* + 1607N? + 33568N? + 273772N + 735392)

31In(2)
— 55 axe (V! N =T00N? —8236N —24816) + Sy (N* + 64N + 1352N7 + 12248N + 36960)
1056(3) ) ) \ ,

~ 58,66 (L LIV? 1 428N? +4228N + 12208) + 25— (245(4) + 7°G) (3IN° + 1126N? + 11876N +37592)

1
= 5 (0:85804 x 107)N* +0.0739318N° + 1.81979N? + 16.3518N + 47.4455).

where the Dirichlet beta function f3(s) is defined as

(2.7)

Z 2n+ )S’

n:O

and G = f(2) is the Catalan constant, with the values
G = 0.915965594 and f(4) = 0.98894455 to the given
floating-point accuracy. As is evident from the numerical
evaluation of b5 in Eq. (2.6), it is positive for all physical N
and is a monotonically increasing function of N. With the
normalization convention in Eq. (1.1), these coefficients
have the large-N behavior by, b, ~1/N, by, by ~1/N?,
with higher-order beta function coefficients having the
large-N behavior ~1 /Nk, k >3, so that in the N — oo
limit, only the b; and b, terms are relevant, yielding the
result ggv = 192 [7].

(2.6)

We now address the question of whether, for a given N, the
six-loop beta function, f ¢, with b3 computed in the
minimal subtraction scheme, has a (perturbatively reliably
calculable) UV zero. Aside from the double IR zero at g = 0,
the zeros of the n-loop beta function f,,., i.e., the beta
function calculated to O(g”), where p = (n/2) + 1, are the
solutions of the algebraic equation Zji b ig/~! = 0. For
Byer» this is the equation by + byg + byg* = 0, with sol-
utions gy = (2b3)7!(=by & /b5 — 4b,b3). With N for-
mally generalized from positive integers to positive real
numbers, b3 — 4b, bs is positive if N > N, = 796.111 and
negative for the rest of the physical range 1 <N < N,.
Hence, for N > N, the six-loop beta function S, ¢, has two
zeros on the positive g axis, and the one nearer to the origin is

the UV Zero, guver = 9- = (2b3)_1(—b2 — v/ b% - 4b1b3)

This has the large-N series expansion
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4(978 4 252% - 2161n2) N 4
32’N 37*N?

Juv.er = 192 [1 =+

1
+ 124416(In2)? — 331927% In2 — 831604 (3)) + 0(%)}

145.230 67847.343 1
=192|1 ol—1].
[+ R A (mﬂ

It follows that

]\y_l)lgogUV,Gf = Alli_l}(}oguv.zw = 192. (2.9)
Note that the 1/N correction to gyy 4, i negative, while the
1/N correction to gyy ¢ is positive. Given the N-dependence
of still higher-order terms O(g”) with p >5 in f,, as
discussed in [7], the result (2.9) can be generalized to

131_{1.}0 Juv.ne = Igi_r)r:ogUVAf =192, (2.10)

where n = 2(p — 1) with p > 4.

12(144 + 572 — 241n2) N 4
n°’N 7*N?

A (gUV,Mv gUV,6f) =

1
+41472(In2)% — 1298472 In 2 — 277292 (3) + 714248(4)) + O <—>

~ 214.8566 N 78764.106
N N2

o)

This fractional difference vanishes as N — oo, in agree-
ment with the conclusion reached in [6,7,9] (before b3 had
been calculated). The new information obtained here is the
calculation of the series expansion in powers of 1/N in
Eq. (2.12), which provides a quantitative measure of the
accuracy and reliability of the perturbative calculation
of the value of the coupling at the UV zero for a given
large N. In Table I we list gyy 47, guv.es»> and the fractional
difference A(gyy 4¢. guv.er) for some illustrative values of
N. As N increases well beyond N, this fractional difference
decreases reasonably quickly. Forexample, for N = 2 x 10°,
N =4x 103, and N = 104, A(gUV,4f’gUV.6f) has the
approximate values 13%, 6%, and 2%, respectively. Thus,
if one imposes a requirement that the fractional difference
A(guv.as. guv.er) mustbe less than, say, 15%, in order for the
calculation of the value of the UV zero to be reasonably
reliable, then our results show that this criterion is satisfied
for N =2 x 103.

III. ANALYSIS WITH PADE APPROXIMANTS

One can gain further insight into the behavior of the beta
function by the use of Padé approximants. Given a series

(3232704 + 21261272 + 45657* + 89287%G — 12182491n2

(2.8)

A necessary condition for a credible zero of a beta
function is that when one calculates it to successive orders
of perturbation theory, one obtains values that are close to
each other, 1.e., values with small fractional differences. We
define the fractional difference as

guv.n'e = Juv.ne

A(gUV,mfv gUV,rL’f) = (2 1 1)

guv.ne

In the large-N limit, the fractional difference between
guv.ar and gyy er 18

(1215792 + 8403672 + 18507* + 29762°G — 436608 In 2

N3

(2.12)

TABLE I. From left to right, the columns of this table list
(i) N; (ii) the UV zero, gyy 4z, of the four-loop beta function,
Pgar; (iii) the UV zero, gyy gz, of the six-loop beta function, f,6.;
(iv) the UV zero, gyy [1,1),, of the [1,1] Padé approximant to the
reduced six-loop beta function, f;.q6s; and the fractional
differences, denoted for short as (V) Ayzer=A(guvassJuver)s
Vi) Auzfra, = Alguvas guviy,)s and (Vi) Agepry, =
A(guv.ees Guvii), ). The last row lists the limiting values as
N — . We use the standard notation —0.331e-2 for
—(0.331 x 1072), etc. The symbol “n” means that the entry is
unphysical or not relevant.

N guvar  9uver 9uviil, Dyrer A4f.[1.1]6f Agy, 1,1]¢,
1 0.2356 n n n n n

10 12.21 n n n n n
100 108.09 n n n n n
300 154.71 n 378.17 n 1.44 n
900 178.05 268.07 229.16 0.506 0.287 —-0.145
1.0e3 179.37 24949 22479 0.391 0.253 —0.0990
2.0e3 185.505 210.34 207.07 0.134 0.116 —0.0156
4.0e3 188.71 199.90 199.24 0.0593 0.0558 —0.331e-2
1.0e4 190.67 19493 194.83 0.0223 0.0218 —0.513e-3
00 192 192 192 0 0 0
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expansion f(z) = > ™ a,z", the [r, s] Padé approximant
(PA) is the rational function with numerator and denom-
inator polynomials in z of degree r and s, respectively,
where r 4+ s = np,, such that the Taylor series expansion
of this rational function matches the series expansion for
f(2) to its highest order, n,,,. The Padé method can be
considered to be semiperturbative, since it uses as input a
perturbative series expansion but produces a closed-form
rational function, whose higher-order terms of order z”* with
n > N, are thus determined. Since the double IR zero in
B, at g =0 is not relevant here, it will be convenient to
consider the reduced (red.) beta function normalized so that
it is equal to 1 for g = O:

By By I & .
Poed=-r=—1=14+—Y big='. (3.1
gued ﬂg,zf b192 by ,Z; ! ( )
From the beta function calculated to O(g”), one thus obtains
the reduced beta function of degree (p — 2) in g. In particular,
from 6., we have By reaer = 1 + (bo/b1)g + (b3/by)g>.
We denote the Padé approximants to 3, cq,, Simply as
7, 5],¢- The PA [2, 0], is this function itself, which we have
already analyzed; the PA [0, 2], has no zero, so we study

4(978 4 252% — 2161n2) N 4
37°N 37*N?

gUV,[l,l]“ =192|1 +

[ 145230 21683.974 1
=192]1 — |-
o214 2520 B 1 o)

+62208(In2)% — 831604(3) + 214272p(4)) + O (iﬂ

the [1, 1], Padé approximant. In terms of the coefficients b,
j=1,2, 3, this is

b2-b\b
(R

(1, 1], = TIo(yg (3.2)
b,

We label the zero of this [1, 1]¢, PA as gy [1,1),,- This is

bk, ()
VAN =y — b3 1 (k)
2

(3.3)

We list illustrative values of gyy 11, in Table I. As is

evident from the last term in Eq. (3.3), guv 1.1, 1s related to
the value of the UV zero of the four-loop beta function,
guvae = —by /by, via division by the factor 1 — (b,b3/b3).
Now (byb3/b3) > 0, s0if (byb3/b3) < 1, then gyy 1.1, >

guv.ae- Since byby /b3 ~ O(N7') as N — oo, it follows that

Igi_r}c}ogUV,[l.l]“ = ;EEOQUV.M- (3.4)
For N > 1, gyy 1.1, has the expansion
|
(993216 + 570927% + 18657 + 89287%G — 471744 1n2
N3
(3.5)

As is evident from Egs. (2.8) and (3.5), gyves and gyy1.1),, have the same leading 1/N correction terms. This can be
understood as a consequence of the fact that the [1, 1], Padé approximant incorporates information from the b3g* term in

, or equivalently, the term in .
.60 quivalently, the (b3/b; 92 i g.red,6¢

For large N, the fractional differences A(guy.az» guv,i.1),,) and A(guv.aes guviii,,) are

12(144 + 5722 — 241n 2) N 4
n°’N 7*N?

A(guyaes gUV,[l,l]M) =

1
+20736(In2)? — 434477 In2 — 27729¢(3) + 714245(4)) + 0< >

 214.857 N 32600.74
N N2

o

and

A(gUV,f)f’gUV,[l,l]y) == N2 N3

46163.369 1
= _T+ 0] F .

144(144 4572 —241n2)? 1
(144457 n2) +0< )

(3.7)

67

(469296 + 321967 + 9507* + 29767°G — 187776 1n2

N3

(3.6)

[
Since gyyes and gyy [1,1),, have the same 1/N correction
terms in the large-N limit, as observed above, it follows that
A(guv.e¢» 9uv.1.1),,) vanishes like 1/ N? in this limit. This is
in contrast to A(guyae Juv.er) and A(guy.as, Juv,ii, )s
which both vanish like 1/N for large N.

In order for gyy |11, to be acceptable as a UV zero, it is

67

necessary that there should not be a pole in the [1, 1]4, PA
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on the positive real axis closer to the origin. The pole in this
approximant occurs at

by

91,1)4,,pole = b_3 . (3-8)

Since b, < 0 and b5 > 0 for all physical N, this pole occurs
on the negative real axis, thereby fulfilling the above
necessary condition. As N — oo, the value of g at this
pole behaves as

1622N
144 + 572 — 241n2
= —0.8936N + O(1).

91,1)4,.pole = + 0(1)

(3.9)

In general, in the large-N limit, the 1/N expansions
given above show that

Juvar < Guv Ll < Juver (3.10)

and

|A(guv.6rs Juviing )| < Alguvae guviy,)  (3-11)

with equality at N = oo.

As N decreases from large values, b b3/b3 increases,
and as N decreases below a value N, ~ 150.799, this ratio
increases through 1, producing a pole in gyy (1.1, Clearly,
this method of obtaining an estimate of a UV zero in ¢,
via a zero in the [1, 1]s, approximant at gyy [1,1],, is only
reliable for values of N well above N,.

Thus, the [1, 1]s, Padé approximant to f .46, yields a
UV zero over a larger range of N than the beta function
itself, extending below N,~796 to the vicinity of
N, ~151. However, as noted above, as N approaches
the vicinity of N, from above, the value of gyy 1,
deviates substantially from the scheme-independent value,
guv 4¢- For example, at an illustrative value below N, but
above N, namely N = 300, although the [I,1] Padé
approximant has a UV zero, gyy 1), = 378.17, this is
not close to gyy 40 = 154.71. Consequently, in this vicinity,
the method does not satisfy the requirement that different
perturbative or semiperturbative methods of calculating this
UV zero should yield values in approximate agreement
with each other. Among the entries in Table I, in addition
to the values of gyy 1), themselves, we list the frac-
tional difference between gyys, and gyv i),,. denoted

A(guv a¢s guv,11),,)» @nd the fractional difference between
Juv.er and gyy 1.1),,» denoted A(guy.es, Juv, i1, )-

IV. ASSESSMENT OF SCHEME
TRANSFORMATIONS

Since b3 and gyy ¢, are scheme-dependent, one should
assess the effect of this scheme dependence in a study of a
UV zero of the beta function for this theory. A scheme
transformation can be expressed as a mapping between g
and ¢/, which we write as g = ¢'f(¢), where f(¢) is
the scheme transformation function, satisfying f(0) = 1.
We will consider functions f(¢') that have a Taylor series
expansion

J max

fl) =14 kg, (4.1)
=

where the k, are constants, where j,.. may be finite or
infinite. The Jacobian of the transformation is J = dg/d¢,

Jmax

J=1+ Z(j+ 1)k;g/. (4.2)

After the scheme transformation is applied, the beta
function in the new scheme has the form (2.1) with ¢
replaced by ¢’ and b, replaced by b'. Expressions for the b’
in terms of the b; and k; were derived in [41,42]. Aside
from b} = by and b, = b,, these relations include

by =by+2k by +k3by + (=2k3 + 4k ky —2k3)by,  (4.4)
and so forth for b, with higher j.

As was discussed in [41,42] and studied further
in [43-46], in order to be physically acceptable, a scheme
transformation must satisfy several necessary conditions,
which were denoted C; to C,4. The first two conditions, C;
and C,, are that the scheme transformation must map a real
positive g to a real positive ¢ and should not map a
moderate value of g, for which perturbation theory may be
reliable, to a value of ¢ that is so large that perturbation
theory is unreliable. The third condition, Cj, is that the
Jacobian should not vanish in the region of g and ¢ of
interest or else the transformation would be singular. A
fourth condition given in [41,42] is that, since the existence
of a UV zero of the beta function is a physical property, a
scheme transformation should satisfy the property that j3,
has a UV zero if and only if S, has a UV zero. These
conditions can easily be satisfied by scheme transforma-
tions applied in the vicinity of a zero of the beta function at
sufficiently small coupling, but they are not automatically
satisfied, and are a significant restriction, on a scheme
transformation applied in the vicinity of a generic zero of
the beta function away from the origin. These results on
scheme transformations have been applied to the study of
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an IR zero in the beta function of an asymptotically free
theory, such as a non-Abelian gauge theory with a certain
content of massless Dirac fermions in d =4 dimen-
sions [42-49] and the Gross-Neveu model [50] in
d =2 [51]. They have also been applied to assess scheme
dependence in probing for a possible UV zero in the beta

function of an IR-free theory such as O(N) |¢|* theory in
d = 4 [52,53] (reviews include [54,55]).

Since ¢, does not have a UV zero if N < N, whereas
B4 has, at least formally, a UV zero for all physical N, a
natural method to use to study the effects of scheme
dependence is to construct a scheme transformation that
eliminates the O(g*) term in f; ¢, and thus yields a
beta function consisting of just the first two (scheme-
independent) terms. Since the beta function in the trans-
formed scheme always has a UV zero, this scheme
transformation would not satisfy condition C,. However,
by applying it, one can at least gain some information about
the degree of scheme dependence in the evidence for or
against the property that, at a given N < N, the six-loop
beta function in a particular scheme has a UV zero.

To carry out this procedure, we will use the results of
Refs. [42-44], which presented scheme transformations
that can be used to set b, = 0 for £ > 3, thereby reducing
the beta function to its two scheme-independent terms (the
’t Hooft scheme). The simplest way to do this is to set
ky = 0in Eq. (4.1) and then solve the equation b = O for
k,, obtaining

_bs

=—. 4.
b= 3)

Although we will only need to apply the procedure here to
set by = 0, since this is the highest-order coefficient that
has been calculated for this theory, we briefly review how
the procedure works if one has a beta function calculated to
higher order. One next substitutes the value of k, from
Eq. (4.5) into the equation for b/, Eq. (4.4), and solves the
equation b}, = 0 for k3. This procedure is applied iteratively
to solve for k; with j > 4 so as to render b’ | = 0. At least
formally, a solution is guaranteed, since the condition that
b} +1 = 0is a linear equation for kj for all j > 2. However,
while this procedure can be carried out for sufficiently
weak coupling, e.g., in the deep UV limit of a UV-free
theory such as QCD, as originally noted by ’t Hooft [56],
Refs. [42-44] showed that it can be more difficult to do this
with a physically acceptable scheme transformation when
studying a zero of the beta function away from the origin in
coupling constant space (an IR zero in a UV-free theory or a
UV zero in an IR-free theory).

Given that we take k; = 0 in f(¢'), the procedure for
constructing and applying this scheme transformation here
requires only the determination of a single parameter, k,,
since we only have to eliminate b} to reduce the six-loop
beta function to its minimal scheme-independent first

two terms in the transformed scheme. Thus, we construct
a scheme transformation with j... =2, k; =0, and
ky = b3/by, as in Eq. (4.5), so as to render by = 0. This
is the transformation with f(¢') = 1 + (b3/b,)g?, namely

by
:/1 ) 12‘
g g[ +<b1)g]

Then, since by = 0, the beta function in the transformed
scheme is

(4.6)

Byer = b1g? + byg". (4.7)
Note that b3/b; ~1/N for large N, so as N — oo, the
scheme transformation (4.6) approaches the identity
mapping.

To check whether, for a given N, this scheme trans-
formation satisfies at least the first three conditions for
acceptability, one then calculates how close g and the
corresponding ¢ are to each other. For a given N and
resultant UV zero of the four-loop beta function, gyvy 4,
one thus solves the cubic equation (4.6) for ¢ with
g = guv.ae, using the minimal positive real root as ¢'. In
Table II we list illustrative values of N and gyy 4¢, together
with the solution for ¢ from Eq. (4.6) with g = gyy 4, and
the fractional difference A(gyy4s.¢'). Since the scheme
transformation (4.6) approaches the identity as N — oo, it
follows that limy_, ¢ = limy_ ¢ for all ¢. In particular, as
is evident from Table II, in the region N = 103, if one sets
g = guv4s, then the corresponding value of ¢ is close to
this value. For example, for N = 2 x 103 and N = 104, the
respective fractional differences between gyy 4, and the
corresponding ¢ are approximately 8% and 2% in magni-
tude. Furthermore, since b; and b5 are both positive, the
condition that the Jacobian J should not vanish is satisfied.
However, we find that in the region of N < N, although

TABLEII. From left to right, the columns of this table list (i) N;
(i) the UV zero, gyy 4, of the four-loop beta function, f 4
(iii) ¢, the value of g in the transformed scheme with 0% =0
obtained via the solution of Eq. (4.6) with g set equal to gyy 4¢3
and (iv) the fractional difference between these values, denoted
for short as Ay, = A(guv.ae, ). The last row lists the limiting
values as N — oco. We use the standard notation 1.0e3 for
1.0 x 103, etc.

N Juv 4¢ g Agan
100 108.09 69.901 —-0.353
300 154.71 116.09 —-0.250
900 178.05 152.90 —-0.141
1.0e3 179.37 155.67 -0.132
2.0e3 185.505 170.50 —0.0809
4.0e3 188.71 180.04 —0.0459
1.0e4 190.67 186.84 —-0.0201
&%) 192 192 0
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one can formally apply this scheme transformation, thereby
switching to a scheme in which the six-loop beta function
has a UV zero, the value of the coupling at this UV zero, ¢/,
is substantially different from gyv 4. Hence, in the region
N < N,, this theory does not satisfy a necessary require-
ment for a reliably calculable UV zero of the beta function,
namely that the values calculated in different schemes
should be close to each other. In this region of N, the
scheme transformation obviously also fails to satisfy the
fourth condition, C4, for acceptability discussed above.
These results are consistent with the conclusion that if
N < N,, then the beta function, calculated to O(g*), does
not exhibit evidence for an ultraviolet zero.

V. CONCLUSIONS

In this paper we have investigated the ultraviolet behav-

ior of the |g13]§’ theory, focusing on the question of whether,
for a given N, this theory exhibits robust evidence of an
ultraviolet zero in the beta function, as calculated to the six-
loop [i.e., O(g*)] order. We make use of the result for the
six-loop beta function calculated in the minimal subtraction
scheme in [4]. Early work [6,7,9] established that this
theory has a UV zero gyy 4, in the four-loop beta function,
which is reliably calculable for large N. We find that the
six-loop beta function from [4] has a UV zero if N > N,
where N, ~796. From studying the fractional difference
between gyy 4 and gyy e, as a function of N, we conclude
that this zero in the six-loop beta function is robust for N
well above N.. To study the properties of the theory for
finite N further, we have analyzed the Padé approximant to
the (reduced) six-loop beta function, [1, 1],. Although this
approximant does have a UV zero for a range of N below
N, the value of the coupling at this UV zero, gyy 1,1, 18
not close to the value gyy 4, obtained from the four-loop
beta function, so this does not constitute evidence that the
theory actually has a reliably calculable UV zero in this
range of N. Our application of a scheme transformation to
the minimal two-term beta function ('t Hooft scheme)
yields the same conclusion. Quantitatively, if one imposes
the criterion that the fractional difference between gy 4
and gyye, should be smaller than, say, 15% for the
calculation of the UV zero in the beta function to be
reasonably reliable, then our results show that this criterion
is satisfied for N = 2 x 103, Clearly, there is some arbitra-
riness in this benchmark value of 15% for the relative
agreement of these couplings; imposing a more (less)
stringent requirement on the relative agreement of gyy 4,
and gyy ¢, would shift the estimated minimal value of N for
a reliable calculation to a higher (lower) value than 2 x 103.
A property of our result is that it is derived from a
perturbative expansion of the beta function up to O(g*)
(six-loop) order; further valuable information could be
obtained by calculating the O(g’) (eight-loop) term in
the beta function. We again note that nonperturbative

effects may be important for this theory. However, we
believe that it is useful at least to investigate the basic
perturbative question of the range in N for which the beta
function, calculated to the highest order to which it is
known, yields robust evidence for an ultraviolet zero. We
have addressed this question in the present paper.
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APPENDIX: CONVERSIONS BETWEEN
DIFFERENT NORMALIZATION CONVENTIONS

In the literature, several different normalization con-
ventions have been used for the interaction coupling in |¢|g
theories. We list some conversion relations here and remark
on the consequences of these normalizations for the
respective beta functions. All of the works included here
used a real N-component scalar field ¢ except for [8,9],
which used a complex N-component scalar field, equiv-
alent to a 2N-component real field. Aside from numerical
prefactors, there have been two general classes of nor-
malization conventions. The first class of normalizations
involves division of the coupling by N? in the interaction
term L., while the second does not. We list the interaction
terms below, in the notation used in the original papers,
with superscripts added for clarity. Reference [6] by
Townsend (T) used the interaction term

(T) 1

ﬁim :W’ﬂflﬂﬁ, (Al)

Ref. [9] by Appelquist and Heinz (AH) used the interaction
term (with a complex field ¢)

(AH) _

1 o =
Li —WQ((,b"Qﬁ)}’ (A2)

and Ref. [10] by Bardeen, Moshe, and Bander (BMB) used

BMB L=
Lo = gl (A3)

Among the second class of normalizations, Ref. [7] by
Pisarski (P) used

2
T -
Lol =Z AP, (A4)
while Ref. [4] by Hager (H) used
1 -
Lo = g wIdl°. (AS)

and also the rescaling
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w

V=30

(A6)

[The reader should not confuse the sextic coupling A(")
used in [7] with the quartic coupling A that we have used in
Eq. (1.1).] We have employed the BMB normalization
convention in our Eq. (1.1) but with the symbol g rather
than 7. These couplings are related to each other as follows,
where we use the notation in the original papers:

2 A72
n(BMB>:%gMH):%n(T):zﬂzNzl(P):4”1év B (A7)

These different normalizations affect the definition_of
the respective beta functions. In general, consider two |¢|°
interaction couplings ¢ and ¢’ that are related to each other
according to

¢ =re, (A8)
where r is a multiplicative factor. The corresponding beta

functions are .= dc/dIny and B, = dc'/dInu, with
respective series expansions

Pe=cY b (A9)
j=1

and

Po=1c"> byl (A10)
j=1

Then, since b, ¢/ = by ;¢ = by ;(re)/, it follows that
these expansion coefficients are related according to

bej=rib.. (Al1)

cj
Consequently, as is evident in Eqgs. (2.2), (2.3), and (2.6),
with the T, AH, or BMB normalizations of the coupling, the
corresponding beta function vanishes in the limit N — oo.
Hence, if m? and ] are tuned to zero, in this limit the theory
is scale-invariant, and it is this scale invariance that was
found in [10] to be spontaneously broken if the BMB
coupling is larger than (47). In contrast, with the nor-
malization used in [7.4], the respective beta functions
B, =dA/dIny and f; = dw/dInp do not vanish for large
N. Note that a ratio such as b, b3 /b3 is invariant under these
changes in normalizations.

For reference, the conversion relations for the UV zero of
the four-loop beta function in the large-N limit are

A
M) =192 & ginh, = 384 &
96 ~ 720
/1(P) =4 WUV,41,” = W . (A12)

uv.4r ”2 N2
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