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We study the power corrections for electroweak boson production that are implied by threshold
resummation, which we have extended to massive particles produced at measured transverse momentum,
pT , and rapidity. Power corrections in the resulting expressions arise from ambiguities in the low-scale
behavior of the perturbative running coupling. Arguing for the relevance of the eikonal approximation, we
show that such power corrections begin at order 1=p2

T in full QCD, consistent with fixed-order, massive-
gluon analysis. For large-N Mellin moments, the leading behavior is N2=p2

T , which exponentiates along
with the logarithms of threshold resummation.
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I. INTRODUCTION

Leading-power, factorized cross sections are central to
the experimental program at high-energy accelerators, but
the need for precision control over Standard Model
calculations motivates the study of power-suppressed
corrections in these cross sections. In this paper, we study
the production of electroweak bosons, β ¼ γ; γ�;W�; Z,
with large transverse momenta, pT , in hadronic collisions.
For an observed color-singlet particle of momentum p
produced in collisions between hadrons A and B, the
generic, leading-power, factorized form is

p0
dσAB→βþX

d3p
¼
X
ab

Z
dxadxbϕa=Aðxa; μ2Þϕb=Bðxb; μ2Þ

× ωab→βþXðxapA; xbpB; p; μ; αsðμ2ÞÞ
þ power corrections; ð1Þ

where the sum is over parton flavors with distributions ϕa=A

and ϕb=B, and where μ denotes a factorization/renormal-
ization scale. For real photons, we neglect fragmentation
contributions, and for heavy bosons, we take pT ∼m, with
m the mass of the produced particle, to avoid the presence
of large ratios. Corrections to Eq. (1) are suppressed relative

to the leading term by powers in pT , or, generically, a hard
scale Q, and it is these corrections that we study below.
The nature of power corrections to factorized cross

sections of the form of Eq. (1) was discussed in
Refs. [1,2], where arguments were presented that at fixed
orders in perturbation theory, power corrections up to 1=Q2

in the hard scale Q take the form of factorized twist-four
matrix elements. This leaves, however, the possibility of
power corrections associated with resummations of higher-
order leading-power corrections, especially near “partonic
threshold,” defined as the integration region where

ŝ ¼ xaxbS → Q2 ð2Þ

in Eq. (1). (We note that for single-particle cross sections,
the hard scale Q is in general a function of the four-vectors
xaPA, xbPB and p.) Near partonic threshold, real radiation
is suppressed, and although the hard scattering function
ωab→βþX remains infrared finite order-by-order in pertur-
bation theory, the cancellation holds only up to scales that
vanish when Eq. (2) becomes an equality. The threshold-
resummed cross section generates a divergent series in this
limit, which should be reinterpreted as implying the
presence of power corrections to the factorized cross
section [3–7]. As was shown in Refs. [8,9], this approach
also predicts that power corrections to the inclusive Drell-
Yan cross section start at 1=Q2 in full QCD. Extensions of
these ideas to the case of high-pT direct-photon production
for integrated rapidity were carried out in Ref. [10], where
leading power corrections of order 1=p2

T to the cross
section were anticipated, relying on the formalism of
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“joint resummation” [11], which organizes threshold and
transverse-momentum resummations. The analysis we give
below generalizes and extends the treatment of inclusive
Drell-Yan in [8,9] and that of prompt photons in [10],
including systematic treatments of final-state soft radiation
at measured rapidity for the observed particle, and of the
role of the recoiling colored parton in AB → βX.
Our discussion is also inspired by recent arguments for the

absence of nonperturbative 1=Q corrections in the hard
scale for a phenomenologically relevant class of event
shapes [12,13] in lepton pair annihilation and for the
hadronic production of color neutral bosons at large trans-
verse momentum [14,15]. The extensive arguments given to
support this conclusion rely in part on amuch older treatment
of Drell-Yan cross sections in hadronic collisions, based on
renormalon analysis in Abelian theories with large numbers
of flavor in Refs. [4,5]. Related analyses rely on identifying
sensitivity to a finite gluon mass with a nonperturbative
representation of the running coupling [16–18], in the
“dispersive” representation of the QCD running coupling
at low scales [19].
Again, hard-scattering functions ωab→βþX in Drell-Yan

are singular at “partonic threshold,” where the incoming
partons have just enough energy to produce the observed
final state. At each order in the strong coupling αs, the
functions ωab→βþX are characterized by singular plus
distributions whose arguments vanish at partonic threshold.
For example, in the inclusive Drell-Yan cross section the
relevant argument is 1 − z, with z ¼ Q2=ðxaxbSÞ and the
leading distributions are of the form

αns

�
ln2n−1ð1 − zÞ

1 − z

�
þ
: ð3Þ

These singular distributions, in turn, can be controlled by
threshold resummation, which organizes all such loga-
rithms, including those associated with the running of the
coupling. The argument of the running coupling vanishes
as z approaches 1. We will encounter similar behavior
below, extending the analysis for photons in Ref. [20] to
massive electroweak bosons produced at high pT .
The relevant transform for the inclusive production of

color-neutral particles involves, as we review below, the
Mellin or Laplace factor with moment variable, N,

ð1 − βr · k=QÞN ∼ exp½−Nβr · k=Q�ð1þOð1=NÞÞ; ð4Þ

where kμ is the sum of all radiation from a set of two
incoming and one outgoing Wilson line, the latter charac-
terized by velocity βr, which is in the direction of recoil to
the observed photon or color neutral boson at partonic
threshold. The denominator that sets the scale of the
exponent, Q, is the hard scale of the scattering, of order
pT . As N increases, real radiation in the moments is

restricted to energies of order Q=N, which can be of the
order of ΛQCD.

We will carry out our analysis using the eikonal
approximation, which we will argue is appropriate for
both real and virtual radiation at these low scales (see, for
example, Refs. [21,22]). In the discussion that follows, we
show that in full QCD, it is possible to infer the presence of
specific power corrections to color-neutral boson produc-
tion at large pT ∼Q. These corrections appear through
(exponentiating) terms of the form

�
N
Q

�
n
Z

κ

0

dμμn−1Aiðαsðμ2ÞÞ; ð5Þ

for an integer n, with AiðαsÞ a flavor-dependent function of
the strong coupling, and κ an arbitrary cutoff. Such
integrals are ambiguous in perturbation theory because
of the behavior of the perturbative running coupling. If
reexpressed as an inverse Borel transform, the singularity of
the running coupling is mapped onto a singularity on the
positive real axis in the Borel plane [3]. In particular, we
show that threshold resummation implies the presence of
such terms beginning at n ¼ 2 for these cross sections,
consistent with the results of Ref. [14]. We do not, however,
rely on a Borel transform to identify the nature of the
power correction. In Eq. (5) and the expressions we derive,
the Q-dependence is manifest, appearing with a coefficient
that is independent of Q, but that includes an integral
over the Landau pole. We assume that the integral that
includes the Landau pole of the perturbative coupling is
replaced in the full theory by a physical coefficient
that depends on both perturbative and nonperturbative
dynamics. Also, because these contributions are found in
integrals that exponentiate in moment space, we regard
them as implying the presence of nonpertubative shape
functions, very much as in resummed thrust and related
cross sections [23–26].
We also note here that our analysis is not based

directly on the evolution equations that characterize
resummed cross sections in direct QCD or SCET resum-
mations [27,28], although it is consistent with them. In the
eikonal approximation used in our analysis, we will derive
a form for the cross section in which all logarithmic
corrections are organized into integrals over the QCD
coupling evaluated at a well-defined scale. The resulting
expressions generate the same logarithms as in threshold
resummation (in eikonal approximation), but also provide a
unique extension to the far infrared, well defined to any
order in perturbation theory with the coupling reexpanded
in terms of its value at a fixed scale, but otherwise
encountering a Landau pole. In moment space, these
integrals are finite except for the behavior of the running
coupling, precisely as in Eq. (5).
In the following section, we review the double moment

method of [20] for particle production at high pT and
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measured rapidity,1 extending the formalism to the massive
case. Of particular interest is the expression for the cross
section as an inverse Mellin (or Laplace) transform,
from which we infer the exponential suppression of
nonperturbative behavior in the large-moment region.
Section III reviews the construction of the cross section
for color-singlet production in the eikonal approximation,
found from matrix elements of Wilson lines, which will
generate all corrections that behave as powers of N=pT ,
with N the Mellin moment. We go on to show that final-
state interactions cancel in these cross sections. Section IV
reviews salient features of an explicit all-orders resumma-
tion for these processes, in terms of webs [32–36]. We
present results generated by the lowest-order web, verifying
the absence of linear power corrections at this level. We
show, in Sec. V, how general features of exponentiated
webs derived in Sec. IV lead to an expression for the
resummed exponent, and we verify the absence of linear
powers of N=pT to all orders in the web expansion. We
briefly discuss further applications and conclude.

II. DOUBLE-MOMENT CROSS SECTIONS

To set the stage for our analysis of logarithms associated
with partonic threshold, we discuss the factorized cross
section for the production of an electroweak boson as a
function of transverse momentum and rapidity. In particu-
lar, we will present the moment-space formulation of the
cross section, which is an essential ingredient of our
method for organizing the threshold logarithms and will
subsequently allow us to use the eikonal approximation to
identify power corrections associated with renormalons.
The following derivations follow those in our analysis of
prompt photon production [20]; however, we extend them
here to the case of a massive boson. Although we have
mostly in mind the Drell-Yan process and the W and Z
electroweak bosons, the application to Higgs production is
immediate.
At measured transverse momentum pT and rapidity η,

the factorized form for the cross section for AB → βX, as in
Eq. (1), is given by

p3
TdσAB→βX

dpTdη
¼
X
a;b

Z
1

− U
SþT−m2

dxaϕa=Aðxa; μ2Þ
Z

1

−xaðT−m2Þ−m2

xaSþU−m2

dxbϕb=Bðxb; μ2Þ
p3
Tdσ̂ab
dpTdη

≡X
a;b

Z
1

− U
SþT−m2

dxaϕa=Aðxa; μ2Þ
Z

1

−xaðT−m2Þ−m2

xaSþU−m2

dxbϕb=Bðxb; μ2Þωab

�
x̂T ; η̂; r;

μ2

ŝ

�
; ð6Þ

where the ωab are dimensionless hard-scattering functions.
We have introduced a set of kinematic variables: The mass
of the produced boson β is denoted by m. The hadronic
Mandelstam variables are S¼ðPAþPBÞ2, T ¼ ðPA − pÞ2,
U ¼ ðPB − pÞ2, with p the boson four-momentum. In
terms of the boson’s transverse momentum, mass and
rapidity we have

T ¼ m2 −
ffiffiffi
S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

T

q
e−η;

U ¼ m2 −
ffiffiffi
S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

T

q
eη: ð7Þ

For future reference we also define

xT ≡ pT þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

T

p
ffiffiffi
S

p ≡ pT þmTffiffiffi
S

p : ð8Þ

As indicated, the partonic hard-scattering functions may be
written as functions of

x̂T ≡ xTffiffiffiffiffiffiffiffiffi
xaxb

p ;

η̂≡ η −
1

2
ln
xa
xb

;

r≡ pT

mT
; ð9Þ

and μ2=ŝ, with ŝ ¼ xaxbS.
We now take combined Mellin/Fourier moments of the

hadronic cross section at fixed pT ,

ΣAB→βXðN;M; pTÞ

≡
Z

∞

−∞
dηeiMη

Z
x2T;max

0

dx2Tðx2TÞN−1 p
3
TdσAB→βX

dpTdη
: ð10Þ

Here x2T;max is the kinematic upper limit on x2T , given at
fixed rapidity by

x2T;max ¼
cosh2 η
ð1 − rÞ2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1 − r2

cosh2 η

s !2

: ð11Þ

Applying the moment integrals to the expression in the
second line of Eq. (6) we find, after some straightforward
algebra,

1The use of double moments in threshold resummation was
introduced in [29]. For a related treatment of resummation at
measured rapidity, see Refs. [30,31].
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ΣAB→βXðN;M; pTÞ ¼
X
a;b

Z
1

0

dxax
NþiM=2
a ϕa=Aðxa; μ2Þ

Z
1

0

dxbx
N−iM=2
b ϕb=Bðxb; μ2Þ

×
Z

∞

−∞
dη̂eiMη̂

Z
x̂2T;max

0

dx̂2Tðx̂2TÞN−1ωab

�
x̂T ; η̂; r;

μ2

ŝ

�

≡X
a;b

ϕ̃
Nþ1þiM

2

a=A ðμ2Þϕ̃Nþ1−iM
2

b=B ðμ2Þω̃ab

�
N;M; r;

μ2

p2
T

�
: ð12Þ

Here the Mellin moments of the parton distribution
functions are defined as usual by

ϕ̃n
i=Hðμ2Þ≡

Z
1

0

dxxn−1ϕi=Hðx; μ2Þ; ð13Þ

and we have introduced

ω̃ab

�
N;M;r;

μ2

p2
T

�

≡
Z

∞

−∞
dη̂eiMη̂

Z
x̂2T;max

0

dx̂2Tðx̂2TÞN−1ωab

�
x̂T ; η̂;r;

μ2

ŝ

�
; ð14Þ

with

x̂2T;max ¼
cosh2 η̂
ð1 − rÞ2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1 − r2

cosh2 η̂

s !2

: ð15Þ

As seen in Eq. (11), in moment space the contribution to the
cross section for a given partonic channel factorizes into a
product of the moments of the parton distributions and a
double moment of the partonic hard-scattering function.
We note that in the limit m → 0 (or r → 1) Eq. (12) reverts
to the corresponding expression for the case of prompt
photons discussed in Ref. [20].
In threshold resummation, we organize terms that

become singular at partonic threshold, when the active

partons a and b have just enough energy to produce a boson
at fixed x̂T and η̂. In order to investigate the moment-space
expression near threshold, it is convenient to introduce the
variable

ζ≡ s4
ŝ
≡ ŝþ t̂þ û −m2

ŝ
; ð16Þ

where

t̂ ¼ m2 þ xaðT −m2Þ;
û ¼ m2 þ xbðU −m2Þ: ð17Þ

The invariant s4 provides a natural measure of the distance
from threshold. In terms of x̂T ; η̂ and r we have

ζ ¼ 1þ x̂2T
1 − r
1þ r

−
2x̂T
1þ r

cosh η̂; ð18Þ

which may be inverted to give

x̂TðζÞ ¼
cosh η̂
1 − r

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ð1 − r2Þð1 − ζÞ
cosh2 η̂

s !
: ð19Þ

Using this to replace the integration over x̂2T in (14) we have
for our double moments

ω̃ab

�
N;M; r;

μ2

p2
T

�
¼
Z

∞

−∞
dη̂eiMη̂ 1þ r

ð1 − rÞ2N−1 ðcosh η̂Þ2N−2
Z

1

0

dζ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1−r2Þð1−ζÞ

cosh2 η̂

q �
2N−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1−r2Þð1−ζÞ

cosh2 η̂

q ωab

�
x̂T; η̂; r;

μ2

ŝ

�

¼
Z

∞

−∞
dη̂eiMη̂ 1þ r

cosh η̂

 
cosh η̂
ð1 − rÞ

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1 − r2

cosh2 η̂

s !!2N−1

×
Z

1

0

dζffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1−r2Þð1−ζÞ

cosh2 η̂

q
0
B@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1−r2Þð1−ζÞ

cosh2 η̂

q
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1−r2

cosh2 η̂

q
1
CA

2N−1

ωab

�
x̂T ; η̂; r;

μ2

ŝ

�
: ð20Þ

The form given by the second equality shows that the ζ integrand is exponentially suppressed away from ζ ¼ 0 at large N.
We can therefore expand the fraction raised to the (2N − 1)st power in the ζ integral to find
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ω̃ab

�
N;M; r;

μ2

p2
T

�
¼
Z

∞

−∞
dη̂eiMη̂ 1þ r

cosh η̂

 
cosh η̂
ð1 − rÞ

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1 − r2

cosh2η̂

s !!2N−1

×
Z

1

0

dζffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1−r2Þð1−ζÞ

cosh2η̂

q exp
�
−ð2N − 1Þ ζ

2

�
1þ cosh η̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ sinh2η̂
p ��

ωab

�
x̂T ; η̂; r;

μ2

ŝ

�
þ…; ð21Þ

with corrections that are suppressed by powers of 1=N. In
this form, we can carry out a “standard” resummation of
logarithms of N for ω̃ab, although for nonzero mass m the
effective value of N is linked in a mild way to η̂. The η̂
integrand still decreases rapidly for large η̂, in the same
manner as seen in the massless case [20].
Given any determination of the large-N behavior of ω̃ab,

the behavior of the physical cross section is given in turn by
the inverse of the double transform,

p3
TdσAB→βX

dpTdη
¼ 1

2π

Z
∞

−∞
dMe−iMη

×
1

2πi

Z
C
dNðx2TÞ−NΣAB→βXðN;M; pTÞ;

ð22Þ
where C denotes a suitable contour in the complex-Mellin
plane [20], extending into the left half-plane where the
integrand is exponentially suppressed. For large values of
the moment variable, that is, when N ≥ Q=ΛQCD, the
integrand in this expression is suppressed at least as
exp½ln xTðQ=ΛQCDÞ�. In our arguments below, we will
identify nonperturbative corrections proportional to
ðN=QÞ2 in an exponentiated, resummed hard-scattering
function. Our arguments, however, apply only when
NΛQCD=Q remains order unity or smaller, so that the
large-N behavior of the physical cross section converges as
long as xT < 1 − ΛQCD=Q. This is the case, for example, in
the minimal resummation prescription [6].
The outcome of this analysis is that in the physical cross

section the inverse transform in x̂T will remain exponen-
tially suppressed at large jNj along our inverse contour, as
exp½−N lnð1=xTÞ�. This enables us to argue that the very
large N behavior of the resummed exponent does not
influence the result. That is, we only need to follow N to
order pT=Λ.

III. EIKONAL CROSS SECTIONS

Near partonic threshold, the limit ζ → 0 in Eq. (16), the
underlying processes for electroweak boson production are
quark-antiquark annihilation to gluon plus boson, and (anti)
quark-gluon to (anti)quark plus boson, accompanied by
soft gluons, both of the form

aþ b → β þ r; ð23Þ

where again, β represents the color-singlet particle, and
where we refer to r as the recoil parton, which is taken here
to be a massless quark, antiquark or gluon.
The eikonal cross section is appropriate for soft radia-

tion, and is naturally relevant for partonic threshold. As we
recall below, it is generated from cross sections involving
products of Wilson lines, which act as sources for gluons.
We begin by discussing the kinematics at partonic thresh-
old. This enables us to show that to leading power in N, the
transform of the hard-scattering function in Eq. (21) (in the
general massive case) is determined by an eikonal cross
section with a Laplace transform that depends on the soft
radiation. Here, and in the remainder of the paper, for
brevity of notation, we will replace the value 2N − 1, which
appears in Eq. (21), by simply N.
For large enough N, the moment-space hard scattering

functions, ω̃abðN;MÞ, are well approximated by their
eikonal approximations, in which terms quadratic in soft
radiation are neglected compared to linear powers that are
contracted with hard vectors, k2 ≪ 2p · k. The contribu-
tions of corrections to the eikonal approximation start with
terms that include relative factors of the general form
βμkjk0j=Q, with k0 the energy of the radiation and βk the
velocity vector for k. Contributions of such terms to the
variables s4 in Eq. (16) and ζ in Eq. (18), which measure
the distance to partonic threshold, are suppressed by a
factor of βk · βr=N relative to the leading eikonal behavior.
In the special case of radiation in the recoil direction
(βk ¼ βr), the radiation of momentum kμ will factor into a
partonic jet function. Such jets contribute to the Laplace
transform in Eq. (21) through a factor exp½−Nm2

jet=Q
2�,

with nominal contributions like N=Q2, rather than N2=Q2.
Taking as an assumption that N2=Q2 contributions will be
larger than those of order N=Q2, the eikonal approximation
will give a good first approximation to the pattern of 1=Q2

power corrections. This is the assumption we shall enter-
tain, as motivation to work in eikonal approximation.

A. The large-N transform and threshold kinematics

At large values of N in Eq. (21), the integral will be
restricted to a region where ζ ¼ s4=ŝ is of order 1=N. We
would like to relate the integral over ζ to an integral over
the momenta of final states. In general, this is a nonlinear
relation, because both s4 and ŝ depend on these momenta.
We can, however, relate ŝ and s4, and we find that for soft
radiation,
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ŝ ¼ ŝmin þOðs4Þ ð24Þ

where ŝmin, the invariant corresponding to a final state
consisting only of the color-singlet boson and the recoil
parton, is

ŝmin ¼ ðp2
T þm2Þcosh2η̂

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1 − r2

cosh2η̂

s �2
: ð25Þ

As defined in Eq. (9), r ¼ pT=mT . For the region of
interest, we can represent the approximations that connect
the ζ integral to a Laplace transform in s4=ŝmin as,

Z
0

dζð1−ζÞN→
Z
0

dζe−Nζ→
Z
0

ds4
ŝmin

exp

�
−N

s4
ŝmin

�
; ð26Þ

where corrections are suppressed by powers of s4=ŝ ∼ 1=N.
As we have observed above, this is the level of accuracy of
the eikonal cross section.
At partonic threshold, the final state consists of only the

color-singlet boson and the lightlike recoil parton, r. In the
partonic center of mass, the spatial momentum of pr is
back-to-back with the color-singlet particle, and depends
on the rapidity η̂ of that particle through

p0
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T cosh

2 η̂þm2 sinh2 η̂
q

;

p3
r ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

q
sinh η̂;

pr;T ¼ −pT: ð27Þ

The explicit expression of s4 for a state consisting of a
recoil parton of momentum pr and soft radiation k is

s4 ¼ ðkþ prÞ2 ¼ ðkþ p0
rβrÞ2 ∼ 2p0

rβr · k; ð28Þ

where βr is a lightlike velocity, with β0r ¼ 1, and where in
the final relation we invoke the eikonal approximation. In
these terms, we will denote the transform function as

exp

�
−N

s4
ŝmin

�
¼ exp

�
−N

βr · k
Q

�
ð29Þ

where the hard scale Q is defined by

Q≡ ŝmin

2p0
r
; ð30Þ

with ŝmin given by (25) and p0
r by (27). We readily check

that in the massless limit, Q → 2pT cosh η̂.
In summary, we have shown that for large moment

variable N, the total momentum of radiation k in the
hard-scattering function is limited to regions where
s4 ∼ pr · k < 1=N. In this region, up to corrections sup-
pressed by powers of 1=N, the eikonal approximation holds

and the N-dependence in the transform is approximated
by Eq. (29).

B. Eikonal cross sections and Wilson lines

We now turn to the construction of the eikonal approxi-
mation of the hard-scattering function ω̃ab in Eq. (21). For a
generic color-singlet boson production process ab → βr
we have [35]

ω̃ðeikÞ
abr ðN;Q; η̂; μÞ ¼ HabrðpT; η̂; μÞ

×
σ̃ðeikÞabr ðN=Q; η̂; μ; ϵÞ

ϕ̃ðeikÞ
a=a ðNa; μ; ϵÞϕ̃ðeikÞ

b=b ðNb; μ; ϵÞ
;

ð31Þ
where, again, N stands for 2N − 1 in (21), and Q, which is
of order pT, is defined in Eq. (30). It will be convenient here
and in the following to exhibit the label of the recoil parton,
r, on the eikonal cross section and hard-scattering function.
The purely virtual short-distance function Habr is inde-
pendent of N and begins with the partonic Born cross
section, which for convenience we normalize to the zeroth-
order eikonal cross section (see below),

HabrðpT; η̂; μÞ ¼
1

σðeik;0Þabr

p3
Tdσ̂

ðBornÞ
ab→βr

dpTdη̂
ð1þOðαsðμ2ÞÞÞ: ð32Þ

Dependence on N is all in the eikonal cross section, σ̃ðeikÞabr

and eikonal parton distributions ϕ̃ðeikÞ
i=i . As is characteristic

of direct photon and similar single-particle cross sections,
the moment values of the distributions are scaled by
functions of the scattering [35],

Na ¼ N
βb · βr
βa · βb

;

Nb ¼ N
βa · βr
βa · βb

; ð33Þ

where βa;b are the velocity four-vectors of the incoming
particles, and βr of the recoil particle in the final state.
In the same way as in the full partonic calculation, the

eikonal cross sections have uncancelled collinear singular-
ities associated with their incoming eikonal lines. As
indicated in Eq. (31), we regulate collinear singularities
by continuation to D ¼ 4 − 2ϵ dimensions. The resulting
collinear poles in ϵ exponentiate, and are cancelled by the
collinear poles of the eikonal parton distributions in the
denominator of Eq. (31), giving a finite ratio for each
ω̃abr. We will encounter these cancellations below. The
cancellation follows from standard arguments for factori-
zation [37–39], and to leading power in N requires only a
simple ratio in moment space, for each choice of incoming
eikonal lines. This flavor-diagonal cancellation is a general
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feature of threshold resummation at leading power
in N [29,40,41].
Both the eikonal distributions and cross sections are

defined as matrix elements of Wilson lines. For the latter,
we use the notation,

ΦðRÞ
β ðλ2;λ1;xÞ≡P exp

�
−ig

Z
λ2

λ1

dλβ ·AðRÞðλβþxÞ
�

ð34Þ

in color representation R, where “P” denotes path ordering.
For the annihilation channel, qq̄ → βg, we use these to
construct a three-Wilson line product, which represents the
source of radiation near partonic threshold:

½Uqq̄gðxÞ�d;ji ≡ Tð½ΦðgÞ
βg
ð∞; 0; xÞ�

d;e
uðqq̄Þe;ji ðxÞÞ; ð35Þ

where “T” denotes time ordering, and where

uðqq̄Þe;ji ðxÞ≡ ½Φðq̄Þ
βq̄
ð0;−∞; xÞ�

jl
ðTðqÞ

e Þlk½ΦðqÞ
βq
ð0;−∞; xÞ�

ki
;

ð36Þ

with TðqÞ
e the SU(3) generator in the fundamental repre-

sentation. For the Compton channel, qg → βq, the corre-
sponding product is

½UqgqðxÞ�j;di¼Tð½ΦðqÞ
βq
ð∞;0;xÞ�

jk
uðgqÞk;di ðxÞÞ;

uðgqÞk;di ðxÞ¼ ðTðqÞ
e Þkl½ΦðgÞ

βg
ð0;−∞;xÞ�

ed
½ΦðqÞ

βq
ð0;−∞;xÞ�

li
;

ð37Þ

and analogously for the q̄g → βq̄ channel.
In terms of the operators just defined and the transform

of Eq. (29), the eikonal cross sections are given by

σ̃ðeikÞabr ðN=Q; η̂; μ; ϵÞ
¼
X
X

e−Nðβr·pX=QÞh0jU†
abrð0ÞjXihXjUabrð0Þj0i

¼
X
X

h0jU†
abrð0ÞjXihXje−Nðiβr·∂x=QÞUabrðxÞj0ix¼0

¼ h0jU†
abrð0Þe−Nðiβr·∂x=QÞUabrðxÞj0ix¼0: ð38Þ

In computing this quantity, an average over initial-state
colors and a sum over final-state colors (for example, i, j
and d, respectively, in ½Uqq̄g�d;ji) is assumed but suppressed.
The derivative operator in this form is fixed by the velocity
of the outgoing Wilson line in the Uabr operators. We will
use this feature in the following arguments.
Before analyzing the eikonal cross section using a

graphical approach, we observe that at fixed values of
βr · pX, the matrix elements encountered in Eq. (38) for the
eikonal cross section are the same as those in the SCET soft
function analyzed in Ref. [42]. As in that analysis, we make

use of the scaling behavior of the integrands of eikonal
cross section in terms of the velocities, βi → λβi. In the
following, we will show that it is possible to write the
logarithm of this function in an integral form that is the sum
of far-infrared integrals that include the Landau pole times
an explicit power of Q, as in Eq. (5), plus perturbative
integrals that generate logarithms in the moment variation
N of threshold resummation.

C. Cancellation of final-state interactions

The outgoing Wilson line effectively changes the expo-
nential of the derivative to the exponential of a covariant
derivative,

e−
iNβr ·∂x

Q ΦðrÞ
βr
ð∞; 0; xÞ ¼ ΦðrÞ

βr
ð∞; 0; xÞe−iNβr ·DðrÞðAðxÞÞ

Q ; ð39Þ

in terms of the covariant derivative βr ·DðrÞðAðxÞÞ ¼
βr · ð∂x þ igAðrÞðxÞÞ, in the color representation of the
recoil parton. Substituting this basic relation into the
expression in Eq. (38), we readily find the cancellation
of the unitary final-state Wilson lines, giving a form in
which all interactions associated with the recoil line are in
an exponentiated operator localized at the origin,

σ̃ðeikÞabr ðN=Q; η̂; μ; ϵÞ

¼ h0juab†ð0Þ½e−iNβr ·DðrÞðAð0ÞÞ
Q uabð0Þ�j0i

¼ h0juab†ð0Þ
��

1 −
iNβr ·DðrÞðAÞ

Q
þ…

�
uabð0Þ

�
j0i

¼ σðeik;0Þabr ð1þOðαsÞÞ: ð40Þ

In the second equality, we exhibit the expansion in N=Q
that we will employ below. Any truncation to a finite power
of N=Q corresponds to a local operator of dimension N. In

the third equality, we define the normalization factor σðeik;0Þabr
that appears in the definition of the factor Habr in Eq. (32).

Note that σðeik;0Þabr is a pure color factor.
In Eq. (40), the cancellation of IR singularities associated

with the final state is manifest at any order in the expansion.
The eikonal cross section is an infinite sum of insertions of
the covariant derivative in the βr direction on the incoming
lines of uab at the origin. After an order-by-order sum over
final states, there are no singularities at any point where
lines are parallel to the outgoing eikonal βr, simply because
there are no eikonal propagators in the perturbative
expansion of the right-hand side of Eq. (40). Collinear
singularities associated with the incoming eikonals remain,
of course. As discussed following Eq. (31) all collinear
singularities will be eliminated in the ratios that define the

eikonal hard functions ω̃ðeikÞ
abr in that equation. We will see

how this occurs below.
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Logarithms of the moment variable, N in σ̃ðeikÞabr , organ-
ized by threshold resummation, are generated in the usual
fashion by an incomplete cancellation of real and virtual
emissions. This mismatch between real and virtual con-
tributions requires all orders in the expansion of the
exponent in Eq. (40), and we will not base our analysis
below on this particular form. The essential conclusion that
we employ from this expression is the absence of singular
behavior associated with the outgoing eikonal in an
alternative expression for the eikonal cross section, which
is fully equivalent to (40) point-by-point in momentum
space. This is the web expansion, to which we now turn.

IV. GRAPHICAL EXPONENTIATION
AND RESUMMATION

We now recall the representation of eikonal cross
sections as exponentials of web functions, and go on to
review some of the relevant properties of web functions,
in particular their renormalization-scale independence
and absence of subdivergences. We explain the relation
between perturbative resummation and web exponentia-
tion, and compute the exponent at lowest order in the
running coupling. Using the renormalization group inde-
pendence of webs, we see already at this order that power
corrections induced by the running coupling, or finite
gluon mass, are characterized by even powers of N=pT .
In the following section, we go on to extend this result to
all orders.

A. Graphical exponentiation and web functions

The value of the expression for the cross section, Eq. (40)
is that it shows that all infrared singularities associated with
couplings to the outgoing line cancel in the eikonal cross
section. This result follows because the moment variable is
defined by the same velocity vector, βr that defines the
single outgoing Wilson line for the eikonal cross sections.
In this section, we will exploit this cancellation, using the
exponentiated web representation of these eikonal cross
sections based on three eikonal lines. A specific discussion
of exponentiation for products of three Wilson lines at the
amplitude level can be found in [36], and an eikonal cross
section written as in Eq. (38) or (40) falls into the general
arguments of [43] as long as the integral over phase space is
symmetric for all final-state partons. This is the case for the
cross section defined by Eq. (38). It may therefore be
written in the form

σ̃ðeikÞabr ðN=Q; η̂; μ; ϵÞ ¼ σ̃ðeik;0Þabr eEabrðN=Q;η̂;μ;ϵÞ; ð41Þ

where

EabrðN=Q; η̂; μ; ϵÞ

¼
Z

dDk
ð2πÞD

�
e−N

βr ·k
Q − 1

�
θ

�
Qffiffiffi
2

p − kþ
�
θ

�
Qffiffiffi
2

p − k−
�

× wabr

�	
βi · kβj · k

βi · βj



; k2; μ2; αsðμ2Þ

�
: ð42Þ

For this three-eikonal case, the web function wabr is a scalar

in group space, and the overall factor σ̃ðeik;0Þabr is the zeroth-
order eikonal cross section. The dependence of the web
function on momentum k is fixed by the invariance of
straight Wilson lines under rescalings of their defining
velocities βi. The explicit Laplace transform corresponds to
contributions of all diagrams with at least one parton in the
final state, weighted as in Eqs. (29) and (38). The step
functions cut off final momenta at the scale of the partonic
threshold center-of-mass energy [9]. Dependence of this
cutoff on Q is exponentially suppressed for real radiation.
For brevity of notation, we will suppress these theta
functions below. The contributions of purely virtual dia-
grams are summarized by the term with “1” that is
subtracted in the integrand. The form of the virtual
contributions is fixed by imposing that the eikonal cross
section vanish at N ¼ 0, that is, for the fully inclusive
eikonal cross section.
The perturbative expansion of the cross section in

Eq. (42) is, of course, collinear-singular, and requires
collinear subtractions for its incoming eikonals, as in
Eq. (31). In computing the ratio of eikonal cross sections
to eikonal parton distributions in Eq. (31), we use the
exponential form for the latter [9], given in D ¼ 4 − 2ϵ
dimensions by

ϕ̃i=iðN;μ; ϵÞ ¼ exp

�Z
μ2

0

dk2T
k2ð1þϵÞ
T

Aiðαsðk2TÞÞ
Z

1

0

dz
zN − 1

1− z

�
;

ð43Þ

in terms of the familiar anomalous dimension AiðαsÞ ¼
Ciðαs=πÞ þ � � � with Cq ¼ CF ¼ 4=3 and Cg ¼ CA ¼ 3.
Here, we exhibit the N-dependence of the full anomalous
dimension [−AðαsÞ lnðNeγEÞ þOð1=NÞ, with γE the Euler
constant] as an integral over a variable z. This form will be
convenient in Sec. IV D.
Substituted into Eq. (31), the eikonal cross section (41)

and subtractions (43) give for the eikonal hard-scattering
cross section,

ω̃ðeikÞ
abr ðN;Q; η̂;μÞ¼HabrðpT; η̂;μÞσðeik;0Þabr eÊabrðN=Q;η̂;μÞ; ð44Þ

where
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ÊabrðN=Q;η̂;μÞ

¼
Z

dDk
ð2πÞD

�
e−N

βr ·k
Q −1

�
wabr

�	
βi ·kβj ·k

βi ·βj



;k2;μ2;αsðμ2Þ

�

−
X
i¼a;b

Z
μ2

0

dk2T
k2ð1þϵÞ
T

Aiðαsðk2TÞÞ
Z

1

0

dz
zNi−1

1−z
: ð45Þ

In this form, the cancellation of collinear singularities
appears in the exponent, the logarithm of the cross section,
which as we have seen is given at each order by a sum of
web diagrams. The integrals of the web diagrams will thus
automatically generate a single collinear-singular integral,
exactly matching the collinear integrals of the eikonal
parton distributions, specified by the anomalous dimen-
sions Aa. We will organize these integrals below in a
manner that exhibits collinear-finite power corrections in
N=Q, but the cancellation of leading-power collinear
singularities is guaranteed by factorization, as discussed
below Eq. (31).
Leading powers in Q come from the range of k where

Nβr · k=Q > 1 and real-gluon emission is exponentially
suppressed. Potential contributions at nonleading powers in
N=Q arise from the region Nβr · k=Q < 1, and can be
isolated by expanding the exponential, as in Eq. (40), for
the full eikonal cross section. We will analyze this
expansion in Sec. V, after discussing relevant properties
of the web functions.

B. Webs, their renormalization and absence
of subdivergences

The web functions in Eq. (42) can be defined recursively,
in perturbation theory, with a general form given by [43]

wðNþ1Þ ¼
X
DðNþ1Þ

DðNþ1Þ

−
�XNþ1

m¼2

1

m!

XN
im¼1

…
XN
i1¼1

wðimÞwðim−1Þ…wði1Þ
�ðNþ1Þ

;

ð46Þ

where the DðNþ1Þ make up the full set of eikonal diagrams
at the (N þ 1)st order in αs, and the web function wðMÞ is
the sum of web diagrams at Mth order. The square bracket
with superscript (N þ 1) indicates that the (N þ 1)st order
only is kept in the multiple sum over lower-order webs. At
first order, the webs are given by the sum of single-gluon
exchanges between Wilson lines, and Eq. (46) determines
all higher orders. We have suppressed momentum depend-
ence, integrations and parton labels, but we emphasize that
this form applies to any eikonal cross section with
symmetric phase space, not simply to the three-eikonal
case at hand. In the general case, with four or more
eikonals, the web functions are group space matrices,
which have been studied to high order [44–46].

The webs for electroweak boson production cross
sections in our case are given by diagrams with three-
eikonal irreducibility, which differ from their standard
forms by the subtraction of certain color factors [17,36]
(maximally non-Abelian configurations are left). Their
propagators are the usual causal free Green functions for
quarks and gluons, and the usual eikonal denominators for
Wilson lines. Because the propagators are standard, web
diagram integrals over the components opposite to βr can
be carried out in light-cone perturbation theory, and the
cancellation of final states holds diagram-by-diagram in the
inclusive cross section [38]. The scale invariance of eikonal
diagrams implies the homogeneous dependence on the
variables involving the Wilson line velocities, βμi shown
in Eq. (42).
The integral of the virtual web function over momentum

k in Eq. (45) requires ultraviolet renormalization, which is
additive, and corresponds to the renormalization of the
composite three-eikonal vertex that defines the cross
section. At fixed momentum k, however, the web functions
are unrenormalized, that is, renormalization scale invariant,

μ
d
dμ

wabr

�	
βi · kβj · k

βi · βj



; k2; μ2; αsðμ2Þ

�
¼ 0: ð47Þ

This is a consequence of the lack of an analog of wave
function renormalization forWilson lines [47]. Equation (47)
holds for both massive and massless Wilson lines.
In addition to their renormalization properties, webs also

have the important property that they are free of subdi-
vergences, aside from logarithms that can be absorbed into
the running coupling through Eq. (47). This means that IR
divergences in the integral over k arise only when both k2

and one of the combinations βi · kβj · k vanish. For the
cross section at hand, these are soft and collinear limits of
web diagrams.
To make the discussion specific, let us consider a

subspace SL of the loop momenta of web wðNÞ in an
Lth-order subdiagram, L < N. We denote by “SL → 0” a
configuration where all of the loop momenta of the
subdiagram are soft or collinear. We want to show that

wðNÞ ⟶
SL→0

0; ð48Þ

where the zero on the right-hand side refers to the absence
of an infrared subdivergence. The lack of subdivergences,
Eq. (48), certainly holds at N ¼ 1, which is the case of a
single gluon. We next assume that it applies for webs up to
order N.
Extending Eq. (48) to order N þ 1 is readily seen as a

consequence of the order-by-order factorization properties
of cross sections in such limits. We consider the L-loop on-
shell, soft or collinear limit of wðNþ1Þ as given by Eq. (46).
For the first term on the right-hand side of (46), general
factorization properties give
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X
DðNþ1Þ

DðNþ1Þ ⟶
SL→0X

DðLÞ
DðLÞ X

DðNþ1−LÞ
DðNþ1−LÞ; ð49Þ

where corrections are again nonsingular. To treat the second
term, consisting of sums of lower-order webs, we use our
assumption that up to order N, web functions only diverge

when the entire web becomes collinear or soft altogether.
Thus, the limit SL → 0 can only be realized when a single
web in order L has loop momenta all in SL, or when a set of
web functions whose union is a diagram in the sum over
DðLÞ have loop momenta that together are in SL. Factoring
these webs algebraically from the sum in (46), we find

wðNþ1Þ ⟶
SL→0X

DðLÞ
DðLÞ X

DðNþ1−LÞ
DðNþ1−LÞ −

	
wðLÞ þ

�XL
m0¼2

1

m0!

XL
jm0¼1

…
XL
j1¼1

wðjm0 Þwðjm0−1Þ…wðj1Þ
�ðLÞ


×
X

DðNþ1−LÞ
DðNþ1−LÞ

¼ 0; ð50Þ

where we have also used Eq. (46) to identify the full set of
ðN þ 1 − LÞth order diagrams as a sum of webs. Referring
above to Eq. (46), the definition of the web function at
(N þ 1)st order, we see that the term in curly brackets
cancels the sum over the DðLÞ, by the definition of the web
function wðLÞ for L ≤ N. The subdivergences ofwðNþ1Þ thus
also cancel in the sum over webs, which is what we set out
to show.

C. Perturbative resummations and eikonal
power corrections

Before studying power corrections, we return to the full
form of the eikonal cross section in Eq. (42) and the hard-
scattering function (45), and remark that perturbative and
nonperturbative contributions separate naturally in the
integral over k. Perturbative resummation of logarithms
in N can be derived from the range of momenta k for which
βr · k ≥ Q=N. In this region, the term due to real emission
is exponentially suppressed, and logarithms in N arise
entirely from the contributions of virtual diagrams, given
by the function wabr, with subtractions specified as in
Eq. (45) in the range 1 − z > 1=N, where zN ≪ 1. The
results for direct photons, developed from this point of
view, are found in Ref. [9]. Alternative (and more familiar)
approaches to resummation for single-particle production
are based on refactorizations of the hard scattering function,
leading to evolution equations [48–54], and on related
analyses in soft collinear effective theory [55]. These
analyses go beyond the eikonal approximation that we
are discussing here. From a practical point of view, a purely
eikonal analysis of resummation would miss contributions
associated with partonic spin and kinematics starting at
next-to-leading logarithms. For the reasons discussed at the
beginning of Sec. III, however, we believe that the eikonal
approximation captures the leading nonperturbative behav-
ior that appears in powers of N=Q.

In what follows, we take this viewpoint, and concentrate
on the range of k where βr · k ≤ Q=N, and hence for which
an expansion of the exponential exp½−Nβr · k=Q� converges
rapidly in Eqs. (42) and (45). In this range, which is not

normally included in perturbative resummation, there is an
interplay between real and virtual corrections at lowmomen-
tum scales. To study the integral in this region, the properties
of the web functions derived above will be useful.

D. The lowest order web

We illustrate these considerations with the lowest-order
web function for qq̄ → β þ g, given by the interference
terms between gluon emission from each of the three
Wilson lines. The CF part of the calculation proceeds in
much the same way as the one for the inclusive Drell-Yan
cross section in Ref. [8]. It is natural to specialize to the
frame where βμa and βμb are incoming along the 3 axis. We
continue to normalize velocities as β0a;b ¼ 1, so that

βμa ¼
ffiffiffi
2

p
δμþ;

βμb ¼
ffiffiffi
2

p
δμ−; ð51Þ

giving βa · βb ¼ 2 and

βa · kβb · k
βa · βb

¼ k2 þ k2T
2

: ð52Þ

It is now convenient to project the recoil velocity in the
following way:

βμr ¼ βr · βb
βa · βb

βμa þ βr · βa
βa · βb

βμb þ βr;T: ð53Þ

A bit of algebra then gives for the first-order web function
in the qq̄ channel:

wð1Þ
qq̄g ¼ 4πg2μ2ϵδðk2Þ

×
�
CF

βa · βb
βa · kβb · k

þ CA

2

βa · βb
βa · kβb · k

βr;T · kT
βr · k

�

≡ CFu
ð1Þ
qq̄g þ CAv

ð1Þ
qq̄g: ð54Þ

The term uð1Þqq̄g, multiplied by CF contains all collinear
singularities in the web contribution to Eq. (45). It is easy to
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see that with AðαsÞ ¼ CFαs=π þ � � �, these singularities are
cancelled by the collinear subtraction, as they must be. The

term wð1Þ
qq̄g, proportional to CA is by itself collinear singular

when k is collinear to βr, but this singularity cancels
between real and virtual corrections in Eq. (45). We may

thus substitute the web function wð1Þ
qq̄g of Eq. (54) in Eq. (45)

and evaluate the resulting integral with D ¼ 4. In the large-
N limit, we can approximate the z integrals in the
subtraction term of (45) by lnNieγE ≡ ln N̄i. We then have,
at lowest order in αs,

Êð1Þ
abrðN=Q; η̂; μÞ ¼ CF

Z
d4k
ð2πÞ4

�
e−N

βr ·k
Q − 1

�
uð1ÞabrðkÞ

þ
Z

μ2

0

dk2T
k2T

CF
αsðk2TÞ

π
ln

�
N̄βr;T
2

�

þ CA

Z
d4k
ð2πÞ4 ðe

−Nβr ·k
Q − 1Þvð1ÞabrðkÞ

≡ CFU
ð1Þ
qq̄gðN=Q; η̂; μÞ

þ CAV
ð1Þ
qq̄gðN=Q; η̂; μÞ; ð55Þ

where we have used the choices of moment variables for
single-particle cross sections given in Eq. (33) and that, in
the normalization of Eq. (51), β2r;T ¼ βb · βrβa · βr.

It is straightforward to reduce the resulting expression
for the CF term in Eq. (55) to a single integral over kT, in
the limit that N ≫ 1 for values of kT small enough that
NkT=Q ≤ 1. We begin by expressing the mass-shell delta
function in the web as ð1=2kþÞδðk− − k2T=2k

þÞ to do the k−
integral, imposing the limits on the kþ and k− integrals
shown explicitly in Eq. (42). In the large-N limit, we can
then perform the kþ integral to get a Bessel function, up to
terms that are exponentially suppressed in N, using the
relation

Z
Q=
ffiffi
2

p

k2T=
ffiffi
2

p
Q

dkþ

2kþ
�
e−

N
Qðβ−r kþþβþr

k2
T

2kþÞ − 1
�

¼ K0

�
Nβr;TkT

Q

�
þ ln

�
kT
Q

�
þOðe−NÞ: ð56Þ

We note that this approximation holds for any kT less than
Q, and that, in fact, the function K0ðzÞ behaves as z−1=2e−z
for large z. For the function Uð1Þ

qq̄gðN=Q; η̂; μÞ, we then find

Uð1Þ
qq̄gðN=Q; η̂; μÞ

¼ 2

Z
Q2

0

dk2T
k2T

αsðk2TÞ
π

�
I0

�
Nβr;TkT

Q

�
K0

�
Nβr;TkT

Q

�

þ ln

�
N̄βr;TkT
2Q

��
; ð57Þ

where I0ðxÞ is a standard Bessel function, for which
I0ð0Þ ¼ 1. In the range for which kT is small enough that
NkT=Q < 1, standard expansion formulas for the functions
K0 and I0 show that power corrections involve only even
powers of N=Q. As noted above, for large N and kT , the
Bessel function K0 decreases exponentially. In Eq. (57),
this leaves the exponentiating double-logarithmic correc-
tions of threshold resummation. In summary, as anticipated
in the discussion of the eikonal cross section at the end of
Sec. III B, we have shown that at lowest order the logarithm
of the cross section additively generates both the logarithms
of threshold resummmation and power corrections. We find
the perturbative logarithms for large NkT , and inverse,
even powers of Q2, times integrals with a Landau pole. In
the next section, we extend this result to arbitrary order in
the exponent.
For the second, CA, term in Eq. (55), it is easier to

compute the derivative with respect to N, which cancels the
βr · k denominator in Eq. (54). We find that

d
dN

Vð1Þ
qq̄gðN=Q; η̂; μÞ ¼ 2βr;T

Q

Z
Q2

0

dk2T
kT

αsðk2TÞ
π

I1

�
Nβr;TkT

Q

�

× K0

�
Nβr;TkT

Q

�
: ð58Þ

Although N is large, in the region of interest we can still
expand the Bessel functions in terms of their arguments,
leading to an expression that begins at power N=Q times
even powers of N=Q. Such an expansion is legitimate since
the integrand in Eq. (55) vanishes at N ¼ 0 for any kT. This
also means that there is no term constant in N in this
expansion. Assuming Vð1Þ has an expansion in the same
variables, it must start at N2=Q2, just as for Uð1Þ. In
summary, the lowest-order behavior in N=Q for the func-
tions Uð1Þ and Vð1Þ in the region N ≫ 1, NkT=Q ≤ 1 is

Uð1Þ
qq̄gðN=Q; η̂; μÞ ¼ 1

2

�
Nβr;T
Q

�
2
Z
0

dk2T
αsðk2TÞ

π

�
1 − 2 ln

�
N̄βr;TkT
2Q

��
þOðN4=Q4Þ;

Vð1Þ
qq̄gðN=Q; η̂; μÞ ¼ −

1

2

�
Nβr;T
Q

�
2
Z
0

dk2T
αsðk2TÞ

π
ln

�
N̄βr;TkT

Q

�
þOðN4=Q4Þ: ð59Þ
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Here we see explicitly the absence of linear powers. The
part with Uð1Þ

qq̄g is very similar to the result for inclusive
Drell-Yan obtained in [8]. As noted, the expansions of the
relevant Bessel functions generate even powers to all orders
in this expansion. Although we are not able of course to do
the kT integrals in (57) and (58) in closed form, this feature
is completely general. We have checked that it equally
applies in the case of qg scattering, despite the fact that the
collinear subtraction here contains two separate terms, one
with CF and one with CA.

We have used kT as the scale of the running coupling in
all of these expressions. This is a consistent choice, given
the scale invariance of web functions, Eq. (47) and the lack
of subdivergences in webs discussed above. The ambiguity
present in resummed perturbation theory is then evident
in Eq. (59), due to the Landau singularity in αsðk2TÞ. These
singularities may be organized, for example, in Borel
form [3], by using the representation

αsðk2TÞ ¼
Z

∞

0

dσ

�
k2T
Λ2

�−σβ0=4π
; ð60Þ

in Eq. (59), where β0 ¼ 11 − 2Nf=3 (with Nf the number
of flavors) is the lowest-order coefficient of the QCD β
function. In any case, the absence of a linear N=Q
correction is the main result, familiar from Ref. [4]. We
extend this result to all orders in the following section.
In closing this section, we can check that analogous

exponentiating power corrections appear at lowest order
and fixed coupling if we provide the gluon with a mass, as
in Ref. [15]. This can be done by making the simple
replacement

δðk2Þ→ δðk2−λ2Þ ð61Þ

in the lowest-order web, Eq. (54), also modifying k2T to
k2T þ λ2 in the subtraction term. The resulting corrections
also involve only even powers of λ.

V. INFRARED MOMENTA
AND POWER CORRECTIONS

It is our goal in this section to demonstrate that the lack
of linear powers in N=Q extends to all orders in the web
expansion. The web expansion includes information on
power corrections, derived by expanding the exponent in
the region βr · k ≤ Q=N in Eq. (42) for the eikonal cross
section. We have seen in Eq. (40) that in the full moment
integral all final-state interactions generated by the out-

going Wilson line ΦðrÞ
βr

can be replaced by an expansion in
terms of operators that are local at the three-eikonal vertex
(the “origin”). These operators are generated from the
exponential of the covariant derivative βr ·DðrÞðAð0ÞÞ
multiplied by N=Q. Hence, each inverse power of Q in

the expansion comes with a polynomial of the same order
in the vector βμr.
We will begin our general study of power corrections

with contributions that are linear in the vector βμr. We will
see that despite its overall factor of N=Q the Nβr · k=Q
term is actually leading power and collinear singular. These
singular terms, however, are cancelled in the eikonal hard-

scattering function ω̃ðeikÞ
abr , leaving a residue that is free of

linear, 1=Q corrections, and which begins at order N2=Q2.
We will then go on to show that this is the case for any
power in the expansion in Nβr · k=Q. In the following
arguments, we use our ability to identify possible sources of
logarithmic singularities with well-characterized regions in
web loop momenta. We will find power corrections
beginning at N2=Q2 associated with the low-scale behavior
of the QCD running coupling at all orders.

A. Web functions in the power expansion

Perturbative resummations that are sensitive to the
Landau singularity at power 1=Q must come from momen-
tum integrals that are pinched at on-shell configurations in
Eq. (42). The web function itself is finite order-by-order at
fixed nonvanishing values of its arguments. It is only when
a subset of the invariants vanish that there is the possibility
of generating logarithms of these invariants.
We begin our discussion of power corrections with those

associated with the first power in the expansion of the
exponential Eabr in Eq. (42) in Nβr · k=Q, which we
consider to all orders in the strong coupling. In view of
our observation that dependence on the outgoing velocity
βμr is local at the three-eikonal vertex in our cross section to
any fixed power in 1=Q, all true final-state interactions,
associated with the outgoing Wilson line, cancel in the web
function just as in the full moment of the eikonal cross
section. We denote this result as follows:

E½1�
abrðN=Q; η̂; μ; ϵÞ≡ −N

Z
dDk
ð2πÞD

�
βr · k
Q

�

× wabr

�	
βi · kβj · k

βi · βj



; k2; μ2; αsðμ2Þ

�

≡ −N
Z

dDk
ð2πÞD

�
βr · k
Q

�

× ρ½1�abr

�	
βi · kβj · k

βi · βj



; k2; μ2; αsðμ2Þ

�
;

ð62Þ

where in the second form, the function ρ½1�abr represents the
sum of contributions to the full web function wabr that
remain after the sum over final states, that is, when
integrated over final-state momentum k, weighted by
βr · k. The superscript ½1� in square brackets for the web
integrand and the exponent refers to first order in the power
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expansion, and remains to all orders in the coupling
expansion. We note that at this point, we are working with
the exponent of the full cross section rather than the
subtracted exponent Êabr of Eq. (45). We will return to
the role of the initial-state collinear subtractions that relate
the two below.
Given the expression for the cross section in (42), in

which final-state interactions have cancelled, we can
conclude that the function ρ½1�abr in Eq. (62) is much simpler

than the full web function. Indeed, because E½1�
abr can

depend on βr only through a single linear factor, we can

write the residual web function ρ½1�abr in the form

βr · kρ
½1�
abr

�	
βi · kβj · k

βi · βj



; k2;μ2;αsðμ2Þ

�

¼ βr · kgab

�
βa · kβb · k
βa · βb

; k2;μ2;αsðμ2Þ
�

þ βr · βaβb · k
βa · βb

gar

�
βa · kβb · k
βa · βb

; k2;μ2;αsðμ2Þ
�

þ βr · βbβa · k
βa · βb

gbr

�
βa · kβb · k
βa · βb

; k2;μ2;αsðμ2Þ
�
; ð63Þ

where the functions gij have the samemass dimension as the
webs, −D in D dimensions. Note that the renormalization

group invariance of the full web, Eq. (47), is inherited by
these functions individually. This is because the local
subtractions involved in renormalization are independent
of the expansion in Nβr · k=Q. We therefore have

μ
d
dμ

gij ¼ 0; ð64Þ

which we will use below.

B. Web structure at lowest order and beyond

Before turning to the identification of power corrections,
we would like to see how the decomposition of the web
functions ρ½1�abr in Eq. (63) happens in perturbation theory.
To this end, we return to the lowest order addressed in
Sec. IV D where the web is a single gluon, exchanged
among the three Wilson lines. This time, we only keep the
linear term in the expansion in Nβr · k=Q.
To illustrate the lowest order, we considerqþ q̄ → β þ g,

represented here, of course, by eikonal lines in the appro-
priate color representations. There are six terms (two pairs of
three) corresponding to the interference between gluon
emission from pairs of different webs. Factoring out the
zeroth-order color factor (CFNc), which is not part of the
web, we find, in D ¼ 4 − 2ϵ dimensions,

βr · kρ
½1�;ð1Þ
qq̄g ¼ 2ð2πÞg2μ2ϵδþðk2Þβr · k

	�
CF −

CA

2

�
βa · βb

βa · kβb · k
þ CA

2

�
βr · βa

βa · kβr · k
þ βr · βb
βb · kβr · k

�


¼ 2ð2πÞg2μ2ϵδþðk2Þ
βa · βb

βa · kβb · k

	
βr · k

�
CF −

CA

2

�
þ CA

2

�
βr · βaβb · k

βa · βb
þ βr · βbβa · k

βa · βb

�

; ð65Þ

where the superscript with square brackets, ½1�, refers to the
power expansion in N=Q, and the parentheses in super-
script (1) refer to the order in αs. In the second equality in
Eq. (65), we match the kinematic factors involving βr to the
form in Eq. (63). This enables us to read off the functions
gij at lowest order. In this case, two functions are equal,

gð1Þqq̄ ¼ 2

�
CF −

CA

2

�
ð2πÞg2μ2ϵδþðk2Þ

βa · βb
βa · kβb · k

;

gð1Þqg ¼ gð1Þq̄g ¼ 2
CA

2
ð2πÞg2μ2ϵδþðk2Þ

βa · βb
βa · kβb · k

: ð66Þ

All of these functions show collinear singularities at
kT ¼ 0, with kT defined relative to the scattering axis of
the initial state. After the cancellation of final states,
however, collinear singularities at order αs occur only with
color factor CF, corresponding to the incoming eikonals in

the quark pair representations, which are present in gð1Þqq̄ .
The CA terms must be free of collinear singularities, which

in fact they are, since we can readily check that the terms
proportional to CA in (65) cancel when k is in the a or b
direction. These observations are consistent with what we
found in Sec. IV D; see Eq. (55).
For completeness, we present the corresponding results

for the quark-gluon channel,

gð1Þqq ¼ 2

�
CF −

CA

2

�
ð2πÞg2μ2ϵδþðk2Þ

βa · βb
βa · kβb · k

;

gð1Þgq ¼ gð1Þqg ¼ 2
CA

2
ð2πÞg2μ2ϵδþðk2Þ

βa · βb
βa · kβb · k

: ð67Þ

Here, we readily verify that collinear singularities again
appear in the a and b directions with color factors
consistent with collinear factorization.
We now show how the same structure is preserved in the

function E½1�
abr to arbitrary orders in the coupling. For any

final state, the moment function can be thought of as a sum
of two contributions,
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βr · k ¼ βr · kab þ βr · kr; ð68Þ

where kab is the total momentum flowing out of all vertices
on the incoming eikonals, and kr is the total momentum
flowing out of the composite vertex at which the outgoing
eikonal couples to the incoming eikonals. The sum over
final states can be taken at fixed kab, and the resulting sum
vanishes after integration. The βr · kr term on the right-
hand side of Eq. (68) is the inverse of the first outgoing
eikonal propagator, corresponding to the gauge field term
in the covariant derivative in the expansion of Eq. (40). This
new vertex, with field βr · AðrÞ associated with the three-
eikonal vertex, appears for every remaining final state, for
which the sum over final states again cancels.
The cancellation can be made manifest by integrating

over loop and phase space momentum components pro-
jected by βr, including βr · k, in light-cone ordered pertur-
bation theory. This cancellation corresponds to the
statement that inserting a complete set of states between
the two local operators of Eq. (40), both of which are fixed
at the origin, does not change the value of the matrix
element. The exact cancellation assumes that we integrate
over all values of the final-state quantity βr · k. In the
expressions we consider below, this integration will only be
carried out to the order ofQ=N. Induced corrections will be
suppressed by additional powers of N=Q, which we
consider to be small. In this approximation, all final state
interactions cancel in the resulting sum over final states,
and the result is an expression in which the velocity βr
appears only in products with k and/or the incoming
velocities, times functions that are boost invariant on the
βa − βb axis and invariant under scalings of βa, βb, just as
in Eq. (63).

C. Organizing collinear singularities

We adopt the frame introduced in Sec. IV D, specifically
Eqs. (51) and (52). In the following, we will relabel the
arguments of the web functions as gabðk2T; k2; μ2; αsðμ2ÞÞ,
and so forth, or for succinctness, simply gabðk2T; k2Þ.
With these choices, the first term in the power expansion,

using (63) for ρ½1�abr in Eq. (42) for the exponent, is given by

E½1�
abrðN=Q; η̂; μ; ϵÞ ¼ −

N
Q

Z
dDk
ð2πÞD

�
βr · kgabðk2T; k2Þ

þ βr · βaβb · k
βa · βb

garðk2T; k2Þ

þ βr · βbβa · k
βa · βb

gbrðk2T; k2Þ
�
: ð69Þ

Because we are at the level of the cross section, the gij are
collinear divergent when k is parallel to either βa or βb.
Because they appear in the web function, however, these

singularities appear additively, and require that all lines
associated with the web become collinear at the same time.
The collinear singularities of E½1�

abr associated with the
incoming eikonals are to be removed by eikonal collinear
subtractions, as in Eq. (45), and it is the subtracted form that
must be analyzed for renormalon or finite-mass power
corrections. The analysis is closely related to that for the
Drell-Yan cross section [9].
We next use the expansion of βμr given in Eq. (53) for the

factor βr · k in Eq. (69). The term proportional to βr;T · kT
vanishes because the integrand is otherwise azimuthally
symmetric. It is then natural to combine the terms propor-
tional to βa · k, and those proportional to βb · k, defining

Ga ≡ gab þ gar;

Gb ≡ gab þ gbr; ð70Þ

in terms of which (69) becomes

E½1�
abrðN=Q; η̂; μ; ϵÞ

¼ −
N
Q

Z
dDk
ð2πÞD

�
βr · βaβb · k

βa · βb
Gaðk2; k2TÞ

þ βr · βbβa · k
βa · βb

Gbðk2; k2TÞ
�

≡ E½1�
a ðN=Q; η̂; μ; ϵÞ þ E½1�

b ðN=Q; η̂; μ; ϵÞ; ð71Þ

where we exhibit only the momentum arguments for Ga
and Gb, and introduce a notation for their integrals. All

singularities for k collinear to βa are in the E
½1�
a term, and all

singularities for k collinear to βb are in the E½1�
b term.

We are now ready to analyze the k integrals of E½1�
abr, to all

orders. Because we are interested in singularities in the
running coupling at small μ, we limit ourselves to the region
where k2T ≤ κ2 ∼ Λ2

QCD.An expansion in βr · k is then similar
to an expansion in energy for gluons emitted at low transverse
momentum relative to the incoming directions.

D. Infrared momenta and the absence
of linear power corrections

We recall that to identify the power corrections that
emerge in the cross section, we have expanded the Laplace
transform exponential, expð−Nβr · k=QÞ, in the exponent
Eabr of Eq. (42) in collinear and soft regions. This gives rise
to the following conditions on the energy of soft radiation:

k0 ≤
1

βa · βr

Q
N
; for k collinear to βa;

k0 ≤
1

βb · βr

Q
N
; for k collinear to βb: ð72Þ

In these terms, the eikonal cross section will depend on the
overall scale Q and the invariants βa · βr and βb · βr.
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Correspondingly, in the subtraction terms in Eq. (45), we
split the integral over z into two regions,

Z
1

0

dz
zN − 1

1 − z
¼
Z

1−1
N

0

dz
zN − 1

1 − z
þ
Z

1

1−1
N

dz
zN − 1

1 − z
: ð73Þ

The first region produces the familiar perturbative loga-
rithm of N in the moments of the anomalous dimension
for the eikonal parton distributions, whose role is to
cancel a similar term in the eikonal hard-scattering func-

tions σ̃ðeikÞabr [9], as in Eq. (31). We will not consider the
integration over this region further. The second term,
with the integration over 1 − 1=N ≤ z ≤ 1, is relevant for
our analysis of power corrections. Making the approxima-
tion zN ∼ exp½−Nð1 − zÞ�, which has corrections sup-
pressed by additional powers of N, and considering the
region k2T ≤ κ2 ∼ Λ2

QCD, we have

X
i¼a;b

Z
κ2

0

dk2T
k2ð1þϵÞ
T

Aiðαsðk2TÞÞ
Z

1

1−1
N

dz
e−Nð1−zÞ − 1

1 − z

¼ −
X
i¼a;b

Z
κ2

0

dk2T
k2ð1þϵÞ
T

Aiðαsðk2TÞÞ
�
1 −

X∞
P¼2

ð−1ÞP
P!P

�
: ð74Þ

This is a leading-power and collinear-singular correction,
sensitive to low momentum scales, which will precisely
cancel the singularities of the eikonal cross section, for
1 − 1=N < z < 1. We have isolated the first power, P ¼ 1

in the sum, which will cancel collinear singularities in E½1�
abr,

Eq. (71), the first term in the eikonal cross section expanded
in powers of Nβr · k=Q. We will return to the higher values
of P in the following subsection.
Equation (71) and the P ¼ 1 term of (74) specify the full

integral that includes the nonperturbative corrections that
we are after. Identifying these terms as they appear in
Eq. (45) we obtain

Ê½1�
abrðN=Q; η̂; μÞ ¼ E½1�

a ðN=Q; η̂; μ; ϵÞ

þ
Z

κ2

0

dk2T
k2ð1þϵÞ
T

Aaðαsðk2TÞÞ

þ E½1�
b ðN=Q; η̂; μ; ϵÞ

þ
Z

κ2

0

dk2T
k2ð1þϵÞ
T

Abðαsðk2TÞÞ: ð75Þ

We look first at the terms from the cross section that contain
the collinear singularities in the a direction, again restrict-
ing to the range k2T ≤ κ2:

E½1�
a ðN=Q; η̂; μ; ϵÞ ¼ −

N
Q
βa · βr
βa · βb

Ω1−ϵ

Z
κ2

0

dk2Tk
−2ϵ
T

2ð2πÞD
Z

Q2=ðβa·βrNÞ2−k2T
0

dk2Gaðk2; k2TÞ

×
Z

Q=ðβa·βrNÞffiffiffiffiffiffiffiffiffiffi
k2þk2T

p dk0

Z
dk3
2jk3j

βb · k
h
δ
�
k3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k2T − k2

q �
þ δ
�
k3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k2T − k2

q �i
; ð76Þ

where Ω1−ϵ ¼ 2π1−ϵ=Γð1 − ϵÞ is the result of the angular integral that generalizes the azimuthal integral in dimensional
regularization. Because of the boost invariance of the web functions along the 3 axis, the energy integral can by carried out
explicitly. With βb · k ¼ k0 þ k3 we find

E½1�
a ðN=Q; η̂; μ; ϵÞ ¼ −

N
Q
βa · βr
βa · βb

Ω1−ϵ

Z
κ2

0

dk2Tk
−2ϵ
T

2ð2πÞD
Z

Q2=ðβa·βrNÞ2−k2T
0

dk2Gaðk2; k2TÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

Q
βa · βrN

�
2

− k2 − k2T

s

¼ −
Ω1−ϵ

2π

Z
κ2

0

dk2Tk
−2ϵ
T

Z
Q2=ðβa·βrNÞ2−k2T

0

dk2

4ð2πÞD−1 Gaðk2; k2TÞ
�
1 −

ðk2 þ k2TÞðβa · βrÞ2N2

2Q2
þ…

�
; ð77Þ

where in the second equality, we have used βa · βb ¼ 2,
in the normalization of Eq. (51). In the expansion, we
identify a leading-power term, corrections beginning
at the N2=Q2 level, as anticipated. As discussed after
Eq. (45), factorization ensures that the singularities
associated with the leading-power term from the web
function integrals are cancelled by the subtraction in
Eq. (75) from the eikonal parton distribution [9]. This
implies that

Z
Q2=ðβa·βrNÞ2−k2T

0

dk2

4ð2πÞD−1 Gaðk2; k2TÞ

¼ Aaðαsðk2TÞÞ
k2T

þAaðk2T; Q2Þ; ð78Þ

where the function Aa is collinear finite. In fact, because
Aa can depend only on k2T andQ

2, it must be suppressed by
a power of Q=N. More importantly, by the properties of
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web functions, it has no logarithmic scales except for
Q=ðNμÞ. The scale of the running coupling is thus naturally
chosen asQ=N in this term. This is still a perturbative scale,
and does not imply a nonperturbative power correction
from the integral over kT. We assume, therefore, that it can
be neglected. A result completely analogous to Eq. (78)
holds for collinear radiation in the b direction, with sub-
script b everywhere. Since collinear singularities now
cancel, we can return our full expression in Eq. (75)
to D ¼ 4.

The leading correction that remains after the cancellation
of collinear singularities is then obtained from (75) as [we
recall from (70) that the flavor index r for the recoil parton
is implicit in the functions Ga;b]

Ê½1�
abrðN=Q; η̂; μÞ

¼ ðβa · βrÞ2N2

2Q2

Z
κ2

0

dk2T

Z
Q2=ðβa·βrNÞ2−k2T

0

dk2

4ð2πÞ3 ðk
2 þ k2TÞ

× ½Gaðk2; k2T;αsðk2TÞÞ þ Gbðk2; k2T; αsðk2TÞÞ�: ð79Þ

In this expression, we have reintroduced dependence on the
running coupling in the functions Ga;b, using their renorm-
alization-scale independence, Eq. (64). We note that by the
general properties of the web functions discussed in
Sec. IV B, all logarithmic behavior is associated with k2

and k2T vanishing at the same time. Then, choosing μ2 ¼ k2T
absorbs all perturbative logarithms into the running cou-
pling. The ambiguities in the low-scale behavior of the
coupling induce the power corrections to perturbation
theory.
On the basis of this discussion, we see that the term

nominally power-suppressed by N=Q includes a leading
power contribution from values of k0 of orderQ=N, which,
however, is cancelled by the collinear subtraction.
Nevertheless, the next power corrections appear at order
N2=Q2, with no linear, N=Q contribution. To complete our
argument on the absence of linear power corrections, we
return now to higher orders in the expansion in Nβr · k=Q.

E. Higher orders in the power expansion

We know that higher powers in the expansion of the
exponent Eq. (45) contribute at leading and nonleading
powers in N=Q, because they are necessary to match to the
full collinear subtraction, beyond the first term in the
expansion shown in Eq. (74).
The treatment of these terms closely follows that of the

lowest order, N=Q, just described in detail. We consider
order P in the expansion of the exponent, and note that the
arguments of Sec. V B apply to arbitrary powers of the
weight βr · k. The general form is [see Eq. (62)]

E½P�
abrðN=Q; η̂; μ; ϵÞ≡ −

1

P!

�
N
Q

�
P
Z

dDk
ð2πÞD ðβr · kÞP

×ρ½P�abr

�	
βi · kβj · k

βi · βj



; k2; μ2; αsðμ2Þ

�
;

ð80Þ

where ρ½P�abr is the web function that remains after the
cancellation of final state interactions. Generalizing the case

ofP ¼ 1, the product ðβk · kjÞPρ½P�abr is proportional to thePth
power of βr and of dot products of k and the βi, i ¼ a, b, r,
and is otherwise a function of boost-invariant factors of k2

and k2T , using the frame chosen above. We may thus write

ðβr · kÞPρ½P�abr ¼
XP
A¼0

XP−A
B¼0

ðβr · kÞP−A−B
�
βr · βaβb · k

βa · βb

�
A

×

�
βr · βbβa · k

βa · βb

�
B
gðPÞAB ðk2; k2TÞ; ð81Þ

where by comparison to the P ¼ 1 case, (63) we can
identify

gð1Þ00 ¼ gab;

gð1Þ10 ¼ gar;

gð1Þ01 ¼ gbr: ð82Þ

Expanding factors of βr · k as in Eq. (53), we derive a set of
terms that are polynomials in βa · k, βb · k, and in even
powers of βr;T · kT .

2

At Pth order in the power expansion, we want to identify
terms in the integral over k that can compensate for the
overall power of ðN=QÞP in Eq. (80), and to confirm that
there are no corrections at linear, 1=Q, order. As in the case
of P ¼ 1, contributions that grow with Q can come only
from the k0 integral. Although for large P there are many
terms in Eq. (81), powers Q0 andQ−1 can come about only
from factors ðβb · kÞP, which give collinear singularities in
the βa direction, or ðβa · kÞP, which give collinear singu-
larities in the βb direction. In particular, any factor
βa · kβb · k ¼ ðk2 þ k2TÞ=2 or ðβr;T · kTÞ2 gives corrections
that suppress the integral by 1=Q2.
In summary, the only possible sources of 1=Q correc-

tions are integrals of the type

E½P�
a ðN=Q; η̂;μ; ϵÞ ¼ −

1

P!

�
N
Q

�
P
Z

dDk
ð2πÞD

�
βr · βaβb · k

βa · βb

�
P

×G½P�
a ðk2; k2TÞ; ð83Þ

2We have simplified Eq. (81) somewhat by neglecting terms
with invariants βr · βaβr · βb=βa · βb times k2 or k2T. In such terms,
the leading contributions begin at order 1=Q2.
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where G½P�
a generalizes Ga in Eq. (70),

G½P�
a ¼

XP
A¼0

XP−A
B¼0

g½P�ABðk2; k2TÞ: ð84Þ

Expanding the integrals, this is

E½P�
a ðN=Q; η̂; μ; ϵÞ

¼ −
1

P!

�
N
Q

�
P
�
βa · βr
βa · βb

�
P
Ω1−ϵ

Z
κ2

0

dk2Tk
−2ϵ
T

2ð2πÞD

×
Z

Q2=ðβa·βrNÞ2−k2T
0

dk2G½P�
a ðk2; k2TÞ

Z
Q=ðβa·βrNÞffiffiffiffiffiffiffiffiffiffi
k2þk2T

p dk0

×
Z

dk3
2jk3j

ðβb · kÞP
h
δ
�
k3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k2T − k2

q �

þ δ
�
k3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k2T − k2

q �i
: ð85Þ

It is not difficult to show that although this integral
produces exactly the leading power in the Pth terms of
the collinear subtraction Eq. (74), its corrections linear in
N=Q vanish, leaving corrections that begin at ðN=QÞ2. To
verify this claim, we can consider the class of integrals,

Im;nðQ=NÞ≡
�
N
Q

�
mþnþ1

Z
Q=N

l0

dk0km0 ðk20 − l20Þn=2; ð86Þ

with l20 ¼ k2 þ k2T . The case P ¼ 1 is realized by m ¼ 1,
n ¼ −1 or by m ¼ n ¼ 0, but only the former is relevant
here since for m ¼ n ¼ 0 the k3 integral in Eq. (85)
vanishes by antisymmetry of the integrand. The P > 1

integrals provide mþ n ≥ 1. Adding and subtracting kmþn
0

in the integrand, and changing variables to x ¼ k0=l0,
we find

Im;nðQ=NÞ ¼
�
N
Q

�
mþnþ1

	
1

mþ nþ 1

��
Q
N

�
mþnþ1

− lmþnþ1
0

�
− lmþnþ1

0

Z
Q=ðNl0Þ

1

dxxmþn

�
1 −

�
1 −

1

x2

�
n=2
�


¼ 1

mþ nþ 1
þO

�
N2

Q2

�
: ð87Þ

Substituting this result into Eq. (85), the Q0 contribution
leads to a collinear-singular integral over k2T. This is just
that part of the standard initial-state collinear singularity of
the eikonal cross section that shows up in the ðN=QÞP term
of the expansion of the exponential in Eq. (45). As such, the
collinear finiteness of the eikonal hard-scattering function

ω̃ðeikÞ
abr again ensures that the dimensional poles of this

integral will match the corresponding term in the expansion
of the eikonal collinear subtraction, Eq. (74). This implies a

relation between the function G½P�
a and the anomalous

dimension AaðαsÞ, analogous to Eq. (78).
It will be of interest for future work to study the

systematics of the full set of ðN=QÞ2 nonperturbative
contributions, in terms of their low-order expansions in
the running coupling, using methods related to those in
Refs. [3,19], and perhaps the all-order structure of these
contributions.

VI. CONCLUSIONS AND OUTLOOK

We have shown in full QCD the absence of coupling-
induced linear power corrections in the eikonal appro-
ximation, for electroweak boson production at fixed
transverse momentum and rapidity. This result is consistent
with the recent detailed analysis at order g2 based on
models with a massive gluon [15] and in particular the use
of azimuthal symmetry for isolated terms proportional to a

single power of kT . It is worth noting that the set of integrals
considered in Ref. [15] includes several that reflect the
recoil of hard partons to soft radiation. These terms are not
included in our analysis because they are suppressed by a
power of the soft gluon energy, and hence by 1=N in the
Laplace moment, before expansion of the exponential.
Such terms are independent of the resummation of thresh-
old logarithms.
Looking ahead, it may be possible to generalize our

analysis beyond the eikonal approximation, relying on the
“next to eikonal” structure of these cross sections inves-
tigated in recent years [56–59]. We also expect our results
to have valuable ramifications for phenomenology, given
the vast body of experimental measurements for single
electroweak boson production that have been carried out.
Prompt photons produced in fixed-target scattering have
presented a long-standing challenge to theory [60–62],
which makes an improved treatment of power corrections
highly desirable. Similarly, recent studies [63,64] have
found that fixed-order and even threshold-resummed per-
turbation theory for semi-inclusive deep-inelastic scattering
and the Drell-Yan process at large transverse momentum do
not describe the available experimental data well in the
fixed-target regime. Equipped with a more robust under-
standing of power corrections, one may now attempt to
resolve the discrepancies between data and theory for these
reactions, perhaps using models of the strong coupling, as
for example, in Ref. [19].
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Finally, it will clearly be very interesting to extend our
study to the case of “pure QCD” processes, that is,
replacing the produced electroweak boson by a QCD
parton that subsequently fragments into a hadron or
produces a jet. In this way, one can address power
corrections for a larger class of single-particle reactions,
where the eikonal approximation involves the full complex-
ity of QCD. Here the question as to whether power
corrections start at order 1=pT or 1=p2

T is still open. Its
resolution will likely impact the description of fixed-target
scattering data for single-hadron production, as well as the
fragmentation contribution to the prompt-photon cross

section. In this context, it is interesting to note that recent
Phenix photon data [65] are in better agreement with NLO
theory for the isolated case than for the nonisolated one at
pT ≲ 10 GeV, the latter having a much larger fragmenta-
tion component.
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