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Abstract
We consider spin—spin correlation functions for spins along a row,
R, = (000010), in the two-dimensional Ising model. We discuss a method for
calculating general-n expressions for coefficients in high-temperature and low-
temperature series expansions of R, and apply it to obtain such expressions
for several higher-order coefficients. In addition to their intrinsic interest, these
results could be useful in the continuing quest for a nonlinear ordinary differ-
ential equation whose solution would determine R,, analogous to the known
nonlinear ordinary differential equation whose solution determines the diagonal
correlation function (000 ,,) in this model.

Keywords: correlation, functions, Ising, series, expansions

1. Introduction

Spin—spin correlation functions contain information about the degree of magnetic ordering
in a spin model. The two-dimensional Ising model provides a valuable context in which one
can obtain exact closed-form analytic expressions for these correlation functions. In thermal
equilibrium at temperature 7 on the square lattice, the partition function of the (zero-field,
isotropic, spin-1/2, nearest-neighbor (nn)) Ising model is given by

Z= Ze—ﬁ%, (1.1)
{0}
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where the Hamiltonian is

H=-J) o0 (1.2)

Inequation (1.2), 8 = 1/(kgT); the sum is over nn sites on the lattice; and o7 = +1 is a classical
spin variable defined on each lattice site. Given the well-known mapping on a bipartite lattice
between the ferromagnetic (J/ > 0) and antiferromagnetic (J/ < 0) spin—spin couplings [5], one
can, with no loss of generality, take J > 0, and we will do this. In the following, we assume the
thermodynamic limit. This model has a global Z, symmetry, which is spontaneously broken
with the onset of a nonzero spontaneous magnetization M as the temperature decreases below
the critical temperature, 7.. The system undergoes a continuous, second-order phase transition
at this critical temperature.

The two-dimensional Ising model has the appeal that many of its properties are known
exactly. The free energy was calculated by Onsager [1], and an expression for the magnetization
was first published by Yang [2]. A method for calculating spin—spin correlation functions in
terms of Toeplitz determinants was developed by Kaufman and Onsager [3] and later extended
by Montroll et al [4]. Some reviews of the Ising model include [5, 6]. The critical behavior
is known exactly; the thermal and magnetic exponents are y, = 1 and y, = 15/8, and hence
the critical exponents v, «, (3, y, etc, are known for models in the d = 2, Z, universality class
of second-order phase transitions, of which the nn spin-1/2 Ising model is arguably the sim-
plest example. Generalizations to anisotropic couplings, spin s > 1, and non-nn two-spin and
multi-spin interactions preserving the Z, symmetry that do not cause frustration are in the
same universality class. The critical behavior was elucidated in the context of continuous spa-
tial dimensionality (above the lower critical dimensionality, d = 1) via the momentum-space
renormalization group and € expansion, where € = 4 — d [7-9]. Further insight into the criti-
cal behavior of the d = 2, Z, universality class was obtained by means of conformal algebra
methods [10], which showed that the critical behavior is described by a rational conformal field
theory with central charge ¢ = 1/2 (reviewed, e.g. in [11]). Although the 2D Ising model is
classical, it can be related to a 1D quantum spin chain [12]. In addition to these works, some
other studies relevant to spin—spin correlation functions in the two-dimensional Ising model
include [13-59].

While much is thus known about the two-dimensional Ising model, there are still interesting
aspects to study. Among these are various properties of the spin—spin correlation functions. We
denote the spin—spin correlation function as (o0 ), where Fand 7' are sites on the square lattice
and (O) denotes the thermal average of an operator O. Given the homogeneity of the square
lattice, one can, with no loss of generality, take one spin to be located at the origin and thus
consider

(ogo7) = C(). (1.3)

We write ¥ = (m, n) so that C(¥) = C(m, n). The spin—spin correlation function for two spins
along a row is

Rn = C(n, 0) = <UO,OUn,O>- (14)

From the isotropy of the spin—spin couplings in (1.2), it follows that the correlation functions
for equidistantly separated spins along a row and column are equal: C(n,0) = C(0,n). We
denote the correlation function for spins along a diagonal of the lattice as
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D, = C(n,n) = (0000nn)- (1.5)

Note the symmetry relation C(n, n) = C(n, —n). In studying spin—spin correlation functions of
the two-dimensional Ising model, one acknowledges that these are not universal in the sense
of the renormalization group; that is, modifications of the model (1.1) and (1.2) such as the
generalization to spin s > 1 and/or addition of (nonfrustrating) non-nn spin—spin or multispin
interactions preserving the Z, symmetry would change (00 0,,,) without changing the uni-
versality class of the phase transition. Nevertheless, these correlation functions contain useful
information about the behavior of the model. We define the following notation:

K = 8J, v = tanh K, x =0, z=e¢ K, u=7z"=e ¥, (1.6)

Correlation functions are commonly expressed as functions of the variables

k- = sinh?(2K), ke = i = Wl(ZK) (1.7)
Recall that (as follows from duality) the critical point occurs at v, =z, = v/2 — 1, i.e.
K. = J/(ksT.) = (1/2)In(/2 4 1), at which point k~ = k. = 1. The high-temperature (HT)
series expansions of spin—spin correlation functions are commonly expressed as series in pow-
ers of v, while the low-temperature (LT) expansions on a bipartite lattice such as the square
lattice considered here, are series in powers of u.

In reference [29], Jimbo and Miwa showed that D, can be calculated in terms of solu-
tions to a (nonlinear, second-order) ordinary differential equation (ODE) of Painlevé VI type
(see appendix A). Subsequently, there has been a quest to find an analogous nonlinear ODE
whose solutions would yield the general spin—spin correlation function C(m, n) in this model.
However, as emphasized recently in [59], this is still an open problem. Even for R,, to our
knowledge, such a generalization of the Jimbo—Miwa ODE has not been found. Indeed, in the
absence of an existence proof, it is not clear if such a (nonlinear, second-order) ODE whose
solutions would yield the R,, analogous to the Jimbo—Miwa Painlevé VI ODE for D, (see
appendix A), exists. Investigations into this can make use of exact calculations of correlation
functions. The D, and R, can be expressed as Toeplitz determinants, and this method was used
in [38, 39] to calculate these correlation functions for n up to 6 and to present exact expres-
sions for n up to 5. Exact calculations of some other C(m, n) were given in [41]. It was shown
in [38] that D,, is a homogeneous polynomial of degree n in the complete elliptic integrals K(k)
and E(k), where k = k-~ for T > T, and k = k. for T < T.. The general structure of R, for the
model of equations (1.1) and (1.2) was determined in [39] and is substantially more compli-
cated, as will be reviewed below. As shown in [46], the C(m, n) for this model can be efficiently
calculated recursively using certain quadratic relations [31] together with some initial inputs.
Both of these methods yield specific correlation functions, e.g. Rg, R7, etc for higher n. In
searching for a nonlinear ODE for R, analogous to the Jimbo—Miwa ODE for D,, it would
be convenient to use inputs that are general functions of n, rather than having to recursively
compute R, for successive fixed values of n. For this purpose, HT and LT series expansions
can be useful, if one knows general-n expressions for the coefficients. However, standard pro-
cedures for calculating these series expansions are based on enumeration of graphs for a given
correlation function C(m, n) and, except for the first or second leading terms, do not normally
yield expressions that are general functions of (m, n). Here we focus on R,. The leading term
in the HT series expansion of R, is v", and an elementary graphical enumeration yields the

3
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first higher-order term as n(n + 1)v" 2, but we are not aware of general-n expressions for still
higher-order terms in the literature. Similar comments apply for the LT series expansion of this
correlation function.

In this paper we shall discuss an approach that can yield general-n coefficients of higher-
order terms in HT and LT expansions of the row correlation functions R, for the two-
dimensional Ising model defined by equations (1.1) and (1.2) on the square lattice. Our proce-
dure makes use of exact calculations of individual R,,. We illustrate the approach by computing
general-n coefficients of several higher-order terms in HT expansions of R, and LT expansions
of (R,)conn.- In addition to their intrinsic interest, this method and these results should be useful
in the continuing endeavor to find a nonlinear ODE for R, analogous to the one derived for
D, by Jimbo and Miwa in [29]. Our work here is complementary to studies of form factor
expansions for Ising correlation functions (e.g. [28, 50-52, 55, 56]). It is also complementary
to studies of properties of the Ising model susceptibility x (e.g. [26, 44, 45, 47, 54, 56]), since
the latter involves a sum over all connected spin—spin correlation functions, not just R, via the
relation 571 X = ZF C(F)conn.-

This paper is organized as follows. In section 2 we review the general structural form for
R, obtained in [39]. In sections 3 and 4 we use the exactly calculated R, from [39] to infer
general-n expressions for several coefficients of higher-order terms in HT series for R,, and LT's
series for (R,)conn.. Our conclusions are given in section 5. Some related results are included in
appendices.

2. Structure of row correlation functions

From our analysis in [39], we inferred the following general structural form for the row corre-
lation functions R,. These have different analytic forms R, + and R, _ forT > T, and T < T,
respectively (which are equal at 7¢):

n/2 20
neven: Ry. =Bk "y 7Y RGE (WEGK)K(K)', @2.1)
(=0 5s=0

where k = k- forT > T, and k = k. for T < T, and

nodd, T > T,:
n 4 ,
Ry =B (1 + kD)2 2 S RY, (ko )tke — DY e ) K (k. ) (2.2)
(=0 =0
nodd, T <T,.:

n 14
Ro = BA (L4 k)Y (m) D ORY, (ke — DOV ROEG )R (key. (2.3)

(—s,5
=0 s=0

In equations (2.1)—(2.3), B, is a numerical prefactor; p, is an integer power! and we define the
compact notation

Kk) = (k — DK(). (2.4)

' The quantities B, and p, and the dummy index s were denoted D,, g,,, and r in [39]; here we relabel these to avoid
confusion with our notation D,, for C(n,n) and r = |F|.
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The first five B, were givenin [39], viz, B; = B, = By = 1,B4 = 1/(3%),and Bs = 1/(3*)[39].
The sixthis B = 1/ (3% x 52). The values of the power p, in equations (2.1)—(2.3) were listed
(denoted as g,,) for n up to 5 in [39]. Here we observe that for the known p, with 1 < n <6,
the values are consistent with the general formula

n2
.= 2.
P [ 4 :| floor ( 5)

where for v € R, [V]noor 1S the greatest integer <v. These powers p, are the same as the pow-
ers that occur in the general structural form for the diagonal correlation function D, that we
found in [38]. In the remainder of the paper we will sometimes suppress the subscripts £ in
the notation, with it being understood implicitly that R, = R, 4 for T > T, and R, = R, _ for
T < T.. Note that although K(k) is logarithmically divergent as k " 1, this divergence is
removed by the prefactor (k — 1) in K(k). Indeed,

lim K(k) = 0, (2.6)
k—1

although the derivative (d/dk)K (k) is logarithmically divergent as k — 1.

For a given n, the terms in R, can be divided into sets such that all of the terms in each
set are homogeneous polynomials in E(k) and K(k) of a given degree. We label this degree
as the ‘level’ of the set. For R,. with odd n, as is evident from equations (2.2) and (2.3),
these terms are explicitly of the form E(k)'~*K(k)* with ¢ in the range 0 < ¢ < n and, for
a given /¢, with s in the range 0 < s < ¢, where k = k-~ for T > T, and k = k. for T < T..
The corresponding coefficients R}’?s,s in R, are polynomials in the respective k elliptic
modulus variables. For even n, only even-degree levels occur, running over 2¢ = 0,2, ..., n,
as is evident in equation (2.1). Another difference between the R, with even and odd n
is that for odd n, the same coefficient polynomial R (k) occurs for T> T, and T < T,

(—s,5

with the respective assignments k = k.. and k = k., whereas for even n, the R(z'}’:)’y(kg and
R(Z’Z’:‘g’s(ka are different functions of their respective arguments, k- and k.. A third difference
between the R, for even and odd n is that the R, for odd n contain a square-root prefac-
tor, (1 +k="'? = (1 4 k-)'/?, whereas the R, for even n do not contain such square-root
prefactors?.

The general structural form that we inferred for R, is considerably more complicated than
the form that we had found in [38] for D,,. These have different expressions D, and D,, _ for
T>T.and T < T, (which are equal at T = T¢):

Dn,i _ Anﬂ_—nk—2pn*[17(71)’l](-)(T—Tc)/Z Z P,foi,z(k)(kz _ 1)6&1(—)(TC—T)E(k)nf.\'[(kZ _ I)K(k)]y, (27)
s=0

where again k = k. if T> T, and k = k. if T < T,; and O(x) is the Heaviside step func-
tion, defined as ©(x) =1 if x > 0 and O(x) = 0 if x < 0. One of the most striking dif-
ferences is that D, is a homogeneous polynomial of degree n in E(k) and K(k), while R,
has the multi-‘level’ structure of equations (2.1)—(2.3). Furthermore, calculations for D,, and
the structural form presented in [38] apply for the general anisotropic case J; # J,, with
ks = k;l = sinh(2K7) sinh(2K5) and K; = (3J;, whereas in the anisotropic case, other corre-
lation functions such as R, would involve not just complete elliptic integrals of the first and

2 We note some misprints in [4, 38, 39]. In equation (A 19) of [4], the expression —% V2[Fonymy + Fnymy—11 should read
— %’Yz[le,mﬁl + le,,,,z,l]. In [38] there was a misprint in the overall sign of PEQS{), which should be reversed. In
[39], the coefficient RS should be multipled by (k. — 1).

5
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second kinds, but also those of the third kind, as was already evident for R; [6, 58]. Our methods
could be applied to this case in future work, although the series expansions would depend on
two variables, e.g. v; = tanh K; where K; = (J;, i = 1,2, or equivalently, s; = sinh(2K;) with
i = 1,2 for the HT expansions, and similarly on 1/s; with i = 1,2 for the LT expansions.

3. General-n coefficients in the high-temperature series expansion of R,

Here we report our new results on general-n coefficients of higher-order terms in the HT Taylor
series expansion of R,. This is analogous to the calculation of general-n coefficients in the HT
expansion of D, in [37] (see appendix A), with the crucial difference that for D, we were able
to make use of the fact that the D, can be determined in terms of solutions of the Painlevé VI
ODE [29], whereas here no analogous (nonlinear) ODE for R, is known. Hence, we make use
of the R, calculated in [39].

The standard procedure for calculating the HT Taylor series expansion for R, = {0000,.0)
enumerates the contributions from paths on the bonds of the lattice of minimal length and
progressively greater lengths joining the points (0, 0) and (7, 0) (e.g. [5]). The number of bonds
in the path is then the power of v in a given term in the series expansion, and the coefficient of
each term is a positive integer. If one factors out an overall factor of v” in the small-v expansion
of R,, the rest of the series is a series in powers of v2. This is an elementary consequence of
the fact that if one reverses the sign of the spin—spin coupling J, and hence the sign of K and
of v = tanh K then R, — (—1)"R,,. The lowest-order term, v", in the small-v series expansion
of R,, arises from the unique graph consisting of a straight path from (0, 0) to (n, 0), of length
n. Thus, the HT expansion for R, has the general form

Ry=v" |14+ rap™|. (3.1)
j=1

where the 7, ,; are positive integers. Aside from the leading v" term, the paths contributing to
all higher-order terms include bonds above the direct, horizontal path, and corresponding paths
that are related to these by reflection about the horizontal axis. That is, for each path including
bonds above the direct route along the horizontal axis joining the sites (0, 0) to (n, 0), there is
a path that is obtained by this reflection process. Therefore, the r,, > ; are even integers.

To begin, we discuss the graphical derivation of the first subleading term in equation (3.1),
namely, r,,,zv"”. This term arises from paths of length n + 2 bonds connecting the sites (0, 0)
and (n, 0). An elementary enumeration counts these paths. The sites (0, £) with 0 < ¢ < ncom-
prise n + 1 vertices on the square lattice. One set of paths of length n 4 2 connecting (0, 0) and
(n,0) involves a 90° turn upwards at one of these n + 1 sites followed by a continuation along
horizontal bonds, and then a 90° turn downward and final continuation to the point (7, 0). For
each such path, there is also a corresponding path obtained by reflecting about the horizontal
axis, so that the first right-hand turn is downward instead of upward. There are (”JZFI) paths in
the first set, and hence 2("1") = n(n + 1) paths of length n + 2 joining the points (0, 0) and
(n,0). This simple combinatoric argument yields the coefficient, r,,, of the v"12 term in the
HT expansion of R,,, namely

Tn2 =nn+1). (3.2)

This is manifestly even, since either n or n 4 1 is even.
Now from HT series expansions of our calculations of R, for n, we determine the following
general-n expression for the next-to-next-leading-order coefficient, r, 4. For reference, we list

6
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these expansions for zn up to 6 in appendix B. Our method is motivated by the structural form
as polynomials in n that we obtained for coefficients of higher-order terms in the HT series for
D,, in [37] (reviewed in appendix A). We thus fit the respective O(v" ™) terms in the HT series
expansions of the exact expressions for R, to a polynomial. This is an overconstrained fit, and
we obtain the result

Fod = Z(:f +20% + 3n + 10). (3.3)

Although there is an extensive literature on series expansions of quantities in the two-
dimensional Ising model, we are not aware of this expression for r, 4 having appeared in this
literature. An alternate approach to determining r, 4 would make use of an enumeration of
all graphs that contribute to the O(v"**) term in the HT expansion of R, for arbitrarily great
n. This result is given to illustrate the method; clearly, one could proceed to calculate coef-
ficients of more higher-order terms, 7,6, etc. Since the r,,; with 2j > 6 are higher-degree
polynomials in n, the procedure for calculating these polynomials via overconstrained fits
requires the input of a larger number of row correlation functions. However, as emphasized,
the value of this method is that the resultant coefficient applies for general n and hence is
directly applicable to the search for a nonlinear differential equation whose solution would
yield R,,.

Despite the prefactor of 1/4, it is easy to show that the expression for r, 4 in equation (3.3)
is an integer, and, furthermore, is even. This is proved by induction, starting from any of the
known r, 4 values for 1 < n < 6, each of which is even. Given that there exists an n such that
4 1S even, to carry out the inductive proof, one must prove that r,, 4 is also even. This can
be done by showing that the difference, 7,414 — 7,4, 1S even, i.e. 1,414 — rya = 2p for some
(positive) integer p. We calculate

Fapid — g = (n+2)(n* +n+2). (3.4)

Since the factor (n + 2) can be even or odd, we thus need to show that n> + n + 2 is always
even. This follows directly by observing thatn> +n + 2 = n(n + 1) + 2. Now n(n + 1) is man-
ifestly even, since either n or n + 1 is even, and hence n(n + 1) + 2 is even. This completes
the proof that the expression for r, 4 in equation (3.3) is an even (positive) integer.

One can also express these results equivalently as series expansions in powers of the variable
Vk=, using the relation (B2). It is convenient to introduce the variable k- = (1/4)k as in
equation (B4). Then equation (3.1) can be written as

R, =k 1+ ?,,jic’;] : (3.5)
/=1
where
ot =n’ (3.6)
and
N 1 2
Tpo = Zn(n — D" —n—28). (3.7)

While the coefficients 7,5, 7, 4, and 7, ; are positive and monotonically increasing as functions
of n in the interval n > 1, the behavior of 7, is more complicated. As a function of n, with n
generalized from integral values to real values in this interval n > 1, 7,,» decreases from zero at
n = 1 through negative values, reaching a minimum of —4 atn = (1/2)(1 + V17) =2.56155

7
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and then increases monotonically for larger n, passing through zero again at
n=(1/2)(1 + v/33) = 3.37228. Thus, 7,,» is negative for n = 2 and n = 3, taking the values
;22 - ?3,2 == _3.

4. General-n coefficients of higher-order terms in the low-temperature series
expansion of (Rp)conn.

In addition to its intrinsic interest, the spin—spin correlation function C(¥) is important because
its limit as » — oo determines the (square of the) spontaneous magnetization:

lim C(A) = M, (4.1)
r—00

where r = |F|. The connected correlation function is then
C(Peonn. = C(7) — M. 4.2)

For T' < T, where the spontaneous magnetization is nonzero, an interesting question concerns
the approach to the limit (4.1), for a given 7, a quantitative measure of this approach is provided
by the ratio

C(7) -1+ C(?)conn.

w T e )

Aciy =

In this section, we present our results on general-n coefficients of higher-order terms in the

LT Taylor series expansions of (R,)conn. = R, — M? and Ag, = R,/M?. In calculating (R,,)conn.»

we make use of the result first published by Yang [2] for the spontaneous magnetization in the
two-dimensional Ising model on the square lattice,

(1 + w41 — 6u+ud)'/8

M=(1-k)"= =i 4.4
The quantity M? has the resultant LT Taylor series expansion
M?* =1 — 4 — 16u° — 64u* — 272u° — 1228u° — 5792u" — 28 19218
— 1404481 — 712276u'" — 3663 664u'" — O(u'?). 4.5)

The property (4.1), together with the property that M and R, are continuous functions of u,
implies that as n increases, the LT (i.e. small-u) Taylor series expansion of R, must coincide
with the small-u expansion of M? to an increasingly high order, and the order of the first term
in the small-u expansion of R, — M? must go to infinity as n — oo. From general arguments,
for an Ising ferromagnet on (the thermodynamic limit of ) a given lattice, R,, is a monotonically
decreasing function of n for fixed temperature 7, i.e. R, > R, and hence R, > M>. (The
two points at which this inequality is realized as an equality are (i) 7 = O for any n, where
R, =M? =1, and (ii) T = oo, where forn > 1,R, = M> = 0.)

The LT Taylor series expansions of the R, in powers of u or k. match the corresponding
expansions of M? to O(u" ") = O(K“™") inclusive. Thus, the LT series expansion of R, has the
general form

(Rn)connA = 4un+2 1+ Z pn,juj = 4]2’?'_2 1+ Z ﬁn,jici . (46)

j=1 j=1
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Here it is convenient to use the rescaled variable I%< = (1/4)k (as defined in equation (B4)),
since this yields integral coefficients p, ;. Using LT expansions of the R, that we have calculated
exactly, we apply the same polynomial fitting procedure that we used for the HT expansions.
For reference, we list these LT expansions in appendix C. We obtain the following general-n
expressions for the #"+3 and " ** terms in equation (4.6):

pui =0 +2n+4, 4.7)
and

1
Py = E(”4 + 4n° + 13n% 4 26n + 32). (4.8)

Equivalently, for the expansion of (R,)conn. in terms of IA<< in equation (4.6), we have
Pn = n* (4.9)
and

1
pra = 5+ 2)(n® — 21 + n+6). (4.10)

By combining the LT expansion for M? with these results, one can thus obtain the corre-
sponding general-n LT expansion for R, up to O(u"+*) = 0(12’?4). We are not aware of the
expressions (4.7)—(4.10) having appeared before in the literature. These results are given to
illustrate the method and could be extended to higher order using additional R, correlation
functions as input.

Note that, despite the prefactor of 1/2, the expression for p, , is an integer. We give an
inductive proof of this. First, this integral property holds for the LT series for R;. Hence, it is
necessary and sufficient to show that with p, , being integral, so is p,,, | ,. To do this, we show
that the difference p, , — p,, is integral. This difference is

Put1z — pna = (n+ 1)2n" + 5n+ 11), (4.11)

which is obviously integral. The same inductive method shows that p, » is an integer.
Combining these results with the definition Az, = R, /M2 yields

Ag, =1+ 4" (1 + pju+ (pup + D + O?)]
=1 —|—4u"+2[1 +(n® +2n+ du+ %(n4 + 4n®
+ 130 4 26n + 40)u” + 0(u3)] : (4.12)
Equivalently, in terms of the k. variable,
Ap, = 1442 |1+ Duike + (o + DR + 0]

~ ~ 1 ~ ~
=14 4k=" {1 + n*k< + E(n4 — 3n% + 8n + 20)k2 + O(ki)] . (413)
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5. Conclusions

In this paper we have discussed a method for obtaining general-n expressions for coefficients of
higher-order terms in the HT and LT series expansions of the spin—spin correlation function R,
in the two-dimensional Ising model on the square lattice and have applied it to obtain general-
n coefficients of several higher-order terms in these series. This method is complementary to
the standard method for calculating these coefficients, which is via enumeration of graphs that
contribute in a given order of expansion. It is also complementary to another method that was
used in [37] for the HT expansions of diagonal correlation functions D,, which was based
on the property that the D, can be computed in terms of solutions to the Painlevé VI ODE
of [29]. In addition to the intrinsic interest in the general-n coefficients discussed here, they
provide further inputs to the continuing quest to find a nonlinear ODE whose solution would
determine the R,,.
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Appendix A. General-n coefficients in the high-temperature series expansion
of D,

The HT series expansion of D,, in the Ising model on the square lattice has the form
D, = Zc,(g)xj, (A1)
j=

where x = v? (cf equation (1.6)) and the subscript + in D, is understood implicitly. An
elementary combinatoric argument determines the coefficient of the leading-order term as

o 2!
Conl = ) (A2)
The series (A1) can equivalently be written as
Dy =cDx" |1+ rfﬁ)xf] : (A3)
=1
where the ratio rfj) is given by
D o ¢
T (A4)

n,n

10
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Let us define a variable ¢ as 1 = k2% for T > T, and t = k_* for T < T, and auxiliary
functions o, + as follows:

dlIan+ t
ey =ttt —1)—"" — — A5
Oy =1 ) dr 1 (AS)
and
dlnD,_ 1
e =ttt — 1)——— — —. A6
Op, ( ) i 1 (A6)

In [29], Jimbo and Miwa showed that the o, functions are solutions to the following ODE of
Painlevé VI type (where subscripts 4 on o, are understood implicitly for 7> T, and T < T
and o/, = do, /d1):

[t(t — Do!'1> — n*[(t — 1)o, — 0,)* + 40l |(t — Dol — 0, — % (to) —0,) = 0. (A7)

The diagonal correlation functions D,, + are then determined in terms of the o, ... In [37] with
Ghosh, using the result from [29], we derived the general form of the nine terms beyond the
leading term in the HT expansion of D, = D, 1. (In [37], the coefficients cﬁfj) and the ratios
’”,(3) were denoted as ¢, ; and 7,4 j, respectively.) Our results in [37] included the following for

the ratios 2

o> 10 Our present notation:

i =2n (A8)
(D) n(2n2 + 31’1 + 5)
= A9
o n+ 1 ( )
S0 2n(2n® + 5n° + 16n + 25) A10)
: 3(n+1)
D) _ 4n® + 24n° + 103n* + 3720 + 94352 + 726n — 48 Al
e 6(n+ )(n+2)

o) _ 4n” + 32n° + 183n° + 930n* + 4031n> + 102281 + 69721 — 960
ms 15(n + D(n +2)

s

(A12)

and so forth for higher-order terms up to rfg). It is interesting to note that, in an analogous
manner, it was possible to use the fact that correlation functions for the transverse Ising quan-
tum spin chain at critical field and 7' = 0 satisfy a Painlevé V equation to derive a number of
properties of the correlation functions for these functions [33-36, 42, 43].

Appendix B. High-temperature series for R,

For reference, in this appendix we list the HT series that we calculate from our exact results
for R, with n up to 6. Note that R; was calculated in [3]. These series have the general form of
equation (3.1). We first record some relations between the elliptic moduli k> = 1/k. and the
respective high- and LT expansion variables v and z. The latter two variables are dual to each
other and satisfy
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1-— 1-—
V= ﬁi’ equivalently, z= T Z (B1)
Then
2w 1?
ks = | —— B2
> _1 _ 'U2:| ( )
and
T2z 4u
k. = = . B3
- _1—z2] (1 —u)? ®3)
It convenient to introduce the rescaled quantities
~ k> ~ k<
ks = —, ke = —. B4
>=7 <=7 (B4)
The HT series expansions are
Ry = v+ 20> +40° + 1207 + 420° + 1640"" + 6860" + 30120"° + O(v'7) (B5)

Ry, = v* + 60" + 160° + 460% + 15800 + 6180'2 +2618v'* + 116540'° + 0(v'®)  (B6)

Ry = v° 4+ 120° + 480" + 1520° + 5060"'! 4 19000" + 790205 + 35 11407 + O(")

(B7)
Ry = v* +200° + 1180% +4520'° + 15640"% 4 56840'* 4 227260'° 4 98 708v"® + O(*°)
(B8)

Rs = v + 3007 + 2500° + 12000'! + 460603 + 1692005 + 654520'7 + 274 4220
+ 0™ (B9)

R = v° + 4208 + 4740'0 + 28620"% + 126620 + 49 2820'° + 189702v'® + 770 190>°
+ 0(W*). (B10)

These series can be extended to higher n, but these are sufficient to illustrate our method.

These HT series for R, can equivalently be expressed as series expansions in powers of
the variable /k-, using the relation (B2). However, in contrast to the series in v, the series
in powers of v/k- have coefficients that vary in sign, and do not increase monotonically in
magnitude; indeed, some terms have zero coefficients. We list these equivalent expansions
here. It is convenient to use the rescaled quantity l}> = (1/4)k~ as defined equation (B4), since
this avoids fractional coefficients. We have

Ri= k1 + Sk — 4k% + 44k — 60S + 469k — 82088 + 0k ) | (B11)

Ro = ke [1+4k. — 3k + 202 — 24k + 160k — 2358 + 1556k — 25684% + 0k ) |

(B12)

12
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Ry = K1+ 9k, — 382 + 28K + 8k + 153K +233K% + 1008KL + 358842 + O (k2 ) |

(B13)
Ri=R [1 + 16k + 12k2 + 20154 — 240k%. + 2332k — 3584K7, + 27 280k% + o(ici)}

(B14)
Rs =k [1 + 25k. + 60k2 — 75K3 + 561k — 699k%. + 4876k — 5420k7 + 45 516k8 + 0(122)}

(B15)
Re =k [1 + 36k + 165K2 — 14083 + 821k* + 276k% + 30924° + 15440k7 — 2484%5 + 0(/22)}

(B16)

Note that in the square bracket for R; in equation (B11) there is no I}2> term and in the square
bracket for R4 in equation (B14) there is no l}3> term.

For reference, we list numerical values of the R, for T > T in table 1. For comparison with
the numerical values of R, as T — T, the analytic values of (R,)., with n up to 6 from [39] are
as follows:

R =272 =0.707107 (B17)
22 2 2
R =1— =5 = (1 - ) (1 + ) =0.594715 (B18)
Vs Vs s
23
(R3)er = 23/2(1 - 7T2> = 0.53579045 (B19)
24%x7 28
(Ry)r = 2° (1 - W) = 0.497989 (B20)
22%x19 2°x11
_nl5)2 _
(Rs)er = 2"/ (1 -3t o ) = 0.470724 (B21)
2 10 22
(Re)es = 212 1_2 x 13 x31 2 ><7><l3_ 2
3 x 5272 33 x52x gt 306 x52g6
= 0.449 637. (B22)

Factorizations of these (R,).; for even n were given in [39]; we have only shown the first of
these factorizations, for R,, here. See also [40].

Appendix C Low-temperature series for (R;)conn.

For reference, we list here the LT series expansions of the connected correlation functions
(Ry)conn, for nup to 6 here. These have the general form (4.6) and are as follows:

(R1)eonn. = 41 + 28u* + 152u° + 780u’ + 3972u’ + 2034848
+ 105192’ + 548 792u'® + O(u'") (C1)

(R2)conn, = 4u* + 481 + 368u® 4 2320u” 4 13428u® + 74 848u°
+410576u'° 4 2238496u'" + O(u'?) (C2)

13
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Table 1. Numerical values of the R, for 1 < n < 6 and T > T, as functions of k-. For
reference, the values of v and 7/ corresponding to each value of k- are also shown.

k> v T/TC R] R2 R3 R4 R5 R(,
0 0 00 0 0 0 0 0 0
0.1 0.1543 8.828 0.1621 0.02746 0.4837 x 1072 0.8797 x 1073 1.642 x 10~* 0.3127 x 10~*
0.2 02134 4435 02349 0.05974 0.01617 0.4578 x 102 1.338 x 1073 0.4000 x 103
0.3 02559 2981 0.2950 0.09684 0.03431 0.01279 0.4926 x 102 1.939 x 1073
0.4 02897 2260 03494 0.1389 0.06011 0.027 40 0.01290 0.6200 x 1072
0.5 03178 1.832 0.4013 0.1864  0.094 63 0.050 59 0.027 90 0.015 69
0.6 03420 1.549 0.4525 0.2400 0.13935 0.08507 0.05348 0.03426
0.7 03632 1.350 0.5045 0.3011  0.1965 0.1345 0.094 62 0.067 74
0.8 03820 1.203 0.5595 0.3723  0.2700 0.2046 0.1590 0.1256
0.9 03989 1.090 0.6210 0.4596 0.3684 0.3070 0.2617 0.2262
1 0.4142 1 0.7071 0.5947  0.5358 0.4980 0.4707 0.4496
(R3)conn, = 4u® + 76u’ + 832u" + 6648u® + 44 852u° + 276 456u'°
+ 1623 704u'" +9293292u'? + Ou'?) (C3)
(Ra)conn. = 4u® + 112u" + 1712u® + 17 584u° + 141 756u'® + 988 1924
+ 6317392u' + 38365 984u' + O(u'") (C4)
(Rs)eonn. = 4u” + 156u® + 3224u° + 42412u'° + 414 228u"" + 3331 068u'?
+23619120u"® + 154485 248u'* + O(u') (C5)
(Re)eonn. = 4u® + 208u° + 5632u'® + 93 680u'" + 111149242
+ 10437 824u"® + 83409 104u'* + 596 805 184u'> + O(u'®).
(Co)

These series can equivalently be expressed in terms of the variable k., using the relation
(B3). As before, it is convenient to use the rescaled variable k. = (1/4)k. as defined in
equation (B4), since this avoids fractional coefficients. We have

(R1)conn, = 4k> + 4k* +36k> + 52k° + 384k + 668k% + 4500k + 8820k° + O(k))

(C7)

(R2)conn, = 4k + 16k> + 64kS + 192k + 908k% + 2256k> + 12704k + O(kl))  (C8)
(R3)conn, = 4k> + 36kS + 180k 4 440k> + 2948k + 5604k' + 42 808k"!

+ 74980k"? + O(k'3) (C9)

14
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Table 2. Numerical values of the R, for 1 < n < 6 and T < T, as functions of k. For
reference, the values of z and T/7, corresponding to each value of k. are also shown.

k< z T/T. Ry Ry R3 Ry Rs Rs

0 0 0 0 0 0 0 0 0

0.1 0.1543 0.2940 0.9976 0.9975 0.9975 0.9975 0.9975 0.9975
0.2 0.2134 0.3811 0.9904 0.9800 0.9899 0.9898 0.9898 0.9898
0.3 0.2559 0.4593 0.9786 0.9769 0.9767 0.9767 0.9767 0.9767
0.4 0.2897 0.5351 0.9622 0.9580 0.95745  0.9574 0.95735  0.95735
0.5 0.3178 0.6105 0.9410 0.9325 0.9310 0.9307 0.9306 0.9306
0.6 0.3420 0.6865 0.9144 0.8992 0.8958 0.8949 0.8946 0.8945
0.7 0.3632 0.7634 0.8817 0.8562 0.8491 0.8467 0.8458 0.8454
0.8 0.3820 0.8413 0.8412 0.8003 0.7864 0.78065  0.7779 0.7765
0.9 0.3989 0.9202 0.7893 0.7245 0.6978 0.6842 0.6764 0.6716
1 0.4142 1 0.7071 0.5947 0.5358 0.4980 0.4707 0.4496

(R4)conn, = 4K + 64KT + 5045 + 1344k° + 7720k"0 4 22912k} + 108 608k

+ 352256k 4+ Ok (C10)
(Rs)comn, = 4k” + 100k>. + 1204k% + 4900k™ + 19224k} + 84708k!2 4 311588k">

+1230068k™ + O(k') (C11)
(Re)eonn, = 4k% + 144k° + 2496k'° + 15 872k"! + 58 484k'> + 250 896k "3

+ 1104448k + 3668 416k"> + O(k'S). (C12)

Combining equations (C1)—(C6) with the LT series expansion for M2, one obtains the LT series
expansions for the full R, correlation functions:

Ry =1 —4u* —12u° — 36u* — 120u° — 448u° — 1820u" — 7844u® — 35256u° — 163 484u'°

— O (C13)
Ry =1 —4u* — 16u° — 60u* — 224u° — 860u® — 3472u" — 14764u® — 65 6001’

—301700u" — O(u'") (C14)
Ry =1 —4u* — 161° — 64u* — 268u° — 1152u’ — 4960u’ — 21 544u® — 95 5961°

—435820u' — O(u'") (C15)
Ry =1—4u* —16u° — 64u* — 272u° — 1224u’ — 5680u’ — 26 480u® — 122 864u°

—570520u'" — O(u'") (C16)
Rs = 1 —4u* — 16u° — 64u* — 272u° — 1228u’ — 5788u’ — 28 036u® — 137 224u°

— 669 864u'’ — O(u'") (C17)
Re = 1 —du* —161° — 64u* — 272u° — 1228u® — 5792u’ — 28 188u® — 140 240u°

— 706 644u'® — O(u'). (C18)

15
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The equivalent series expansions, expressed in terms of the variable k., are

Ry =1 —4k% + 4k — 20k + 36k> — 172k + 384k’ — 1796k + 4500k>.

— 20748k + O(k!)) (C19)
Ry =1 —4k% —20k% + 16k> — 160k + 192k” — 1556k% + 2256k°. — 16 864k

— 27392k + ok (C20)
Ry=1—4k2 — 24k* + 4k — 188k + 180k. — 2024k% +2948k° — 23 964k"

+ 0k (€21)
Ry =1 —4k2 —24k* — 22068 + 64k” — 1960k> + 1344k% — 21848k + oK)  (C22)
Rs =1 —4k2 — 24k —224k° + 4k” — 2364k + 1204k — 24668k + O(kL)  (C23)

Re =1 —4k% — 24k* —224k% — 2460k% + 144k%. — 27072k 4 OkY). (C24)

We list numerical values of the R,, for T < T, in table 2.
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