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We investigate whether the seven-loop beta function of the /Id)ﬁ theory exhibits evidence for an ultraviolet
zero. In addition to a direct analysis of the beta function, we calculate and study Padé approximants and
discuss effects of scheme transformations on the results. Confirming and extending our earlier studies of the
five-loop and six-loop beta functions, we find that in the range of A where the perturbative calculation of the
seven-loop beta function is reliable, the theory does not exhibit evidence for an ultraviolet zero.
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I. INTRODUCTION

In this paper we consider the renormalization-group
(RG) behavior of the 1¢* field theory in d = 4 spacetime
dimensions, where ¢ is a real scalar field. This theory,
commonly denoted ¢, is described by the Lagrangian

1 m* A,
L=3@h)@P-FF-Td (L)
The Lagrangian (1.1) is invariant under the global discrete
Z, symmetry ¢p - —¢. Quantum loop corrections lead to a
dependence of the physical quartic coupling 4 = A(u) on
the Euclidean energy/momentum scale u at which this
coupling is measured. The dependence of A(u) on u is
described by the RG beta function of the theory,
p, =dA/dt, or equivalently, f, = da/dt, where dt=
dlnp [1] and

(1.2)

(The argument y will often be suppressed in the notation.)
Since we will investigate the properties of the theory for
large u in the ultraviolet (UV), the value of m? will not play
an important role in our analysis. For technical conven-
ience, we assume that m? is positive. At a reference scale
Uo, the quartic coupling A(uy) is taken to be positive for the
stability of the theory. The one-loop term in this beta
function has a positive coefficient, so that for small 4,
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B, > 0, and hence as y — 0, the coupling A(u) — 0, i.e., the
theory is infrared (IR)-free. This perturbative result is in
agreement with nonperturbative approaches [2]; some
reviews include [3.4].

The beta function f, has the series expansion

p.=a i": bya’.
=1

The n-loop (n¢) beta function, denoted f, ., is given by
Eq. (1.3) with the upper limit of the loop summation index
¢ = n instead of £ = o0. The one-loop and two-loop terms
in 3, are independent of the scheme used for regularization
and renormalization, while terms of loop order # > 3 are

scheme-dependent [5,6]. For the O(N) /1|(Z|4 theory with an

N-component field, ¢ = (¢, ..., py), the coefficients b,
b,, and b3 were calculated in [5]. Higher-loop coefficients
b, with £ > 3 have been computed using the MS minimal
subtraction scheme [7,8]. A calculation of b5 and discus-
sion of earlier computations of b, and b5 (e.g., [9—-11]) were
given in [4,12]. The coefficient b was calculated for N = 1
in [13] and for general N in [14]. Most recently, the seven-
loop coefficient b; was calculated in [15]. In analyzing the
series expansion (1.3), one recalls that it is an asymptotic
expansion, and the large-order behavior has been the
subject of extensive study [16], including [17] and refer-
ences therein.

An interesting question is whether, for the region of A
where a perturbative calculation of f; is reliable, this beta
function exhibits evidence for a zero at some (positive)
value of the quartic coupling. This would be an ultraviolet
fixed point (UVFP) of the renormalization group; i.e., as
u — oo, A(u) would approach this value (from below). In
previous work we have investigated this question up to the

five-loop order for the O(N) A|q75|4 theory in [18] and up to

(1.3)
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the six-loop order for the real A¢* theory in [19] and the
O(N) /1|c?>|4 theory in [20], finding evidence against such a
UVEFP. In the present paper, using the results of [15], we
extend our analysis to the seven-loop level. Our analysis in
[20] covered a large range of specific N values and also
included an argument for the absence of a UV zero in the
(rescaled) n-loop beta function at large N [see Egs. (3.12)
and (3.13) in [20]]. Indeed, in the N — oo limit, the

(rescaled) beta function of this O(N) /1|(;5|1 theory is
one-loop exact [3], and hence obviously has no UV zero.
We will focus on the N =1 theory here.

In view of this previous evidence against a UV zero in 3,

and associated UVFP in the O(N) A|g|* theory, it is
worthwhile to mention one case where an IR-free quantum
field theory is known to have a UVFP, namely, the
nonlinear O(N) ¢ model in d = 2 + ¢ spacetime dimen-
sions. In this theory, an exact solution was obtained in the
limit N — oo with A(u)N = x(u) a fixed function of y and
yielded the beta function

(1.4)

for small e, where xyy = 2z¢ is a UV fixed point of the
renormalization group [21]. Since the leading term in f3, is
positive for ¢ > 0, this theory is IR-free. Thus, in this
nonlinear O(N) ¢ model in d =2+ ¢ dimensions, the
coupling x(u) flows (monotonically) from x =0 at y =0
to x = xyy as 4 — oo. Note that by making € < 1 one can
arrange that the UVFP at xyjy = 27ze occurs at an arbitrarily
small value of the scaled coupling x.

This paper is organized as follows. In Sec. II we review
some relevant background. In Sec. III we present the results
of our analysis of the seven-loop beta function. Section IV
contains a further analysis of this question of a UV zero using
Padé approximants, while Sec. V discusses effects of scheme
transformations. Our conclusions are given in Sec. VI.

II. BETA FUNCTION

The n-loop truncation of (1.3), denoted f,,,, is a
polynomial in a of degree n + 1 having an overall factor
of a®>. We may extract this factor and define a reduced beta
function

Pa
ﬂar = b a
T Pare bla Z ‘

The n-loop truncation of f,,, denoted f,,,, =R, is
defined by taking the upper limit of the sum in (2.1) to be
¢ = n rather than 7 = .

The first two coefficients in the beta function of this
theory are b; = 3 and b, = —17/3 [5]. The coefficients b,
with 3 <7 <7 and the resultant higher-loop beta function
discussed below are calculated in the MS scheme. The
coefficients up to the five-loop level are [4,5,9,12]

(2.1)

145
by =~ + 123 = 32.5497, (2.2)
4
by = _% — 78¢5 + 184 — 12085 = —271.606, (2.3)
and
764621 7965 1189
= s+ 4
5="3010 T 16 &7 C4 +987¢s + 4583
- géf, + 1323¢, = 2848.57, (2.4)

where the floating-point values are given to the indicated
accuracy and

|
gs:Z;

n=1

(2.5)

is the Riemann zeta function. If s = 2r is even, then (|
can be expressed as a rational number times 7", namely
Z.:Zr - ( )H_IBQr(Zﬂ)zr/[ ( )']’ where Bn are the
Bernoulli numbers; however, we leave these {,, in their
generic form here and below. The six-loop coefficient is
[13,14]

18841427 779603 N 16989 . 63723
c 11520 240 3 16 °* 10 *°
8678 6691 63627
- —Cg —— ¢ + 162858, — 5 {7
264543 51984
— 4704855 + 5 {g — 75 35— 76883
46112
6 y = —34776.13, (2.6)
where [22]
Gi= Y (2.7)
> n3m5

m>n>1
The seven-loop coefficient is considerably more compli-

cated than by, and we refer the reader to [15] for the
analytic expression. The numerical value is

by = 474651.0. (2.8)

Thus, in summary, the seven-loop beta function of the A¢*
theory (calculated in the MS scheme) is

17
Bage = @ <3 -3¢ + 32.5497a% — 271.6064°

+2848.57a* — 34776.1a° + 474651a6>. (2.9)
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III. ZEROS OF THE r-LOOP BETA FUNCTION UP
TO LOOP ORDER =7

In this section we investigate a possible UV zero, denoted
ayy ¢, of the n-loop beta function, j, ... The double zero of
Pane ata = 0is always present (independent of n); this is an
infrared zero and hence will not be of interest here.

A necessary condition for there to be robust evidence for
a UV zero in the beta function of an IR-free theory is that
the values calculated at successive loop orders should be
close to each other. Although the two-loop beta function
Paae does have a UV zero, at ayy,, = 9/17 = 0.52941,
we found that the three-loop beta function j, 3, has no UV
zero and, while a UV zero is present in f3, 4., it occurs at a
considerably smaller value, namely ayy 4, = 0.23332. At
the five-loop level, 3,5, has no UV zero, while at the six-
loop level, although f, ¢, has a UV zero, it occurs at a still
smaller value, ayy g, = 0.16041 [18,19]. Thus, the results
of this analysis show that the necessary condition that the
beta function calculated to successively higher loop order
should exhibit values of ayy ,, that are close to each other
is not satisfied by this theory. At seven-loop order, using
.7, from [15], we find that this function has no physical
UV zero. Instead, the zeros are comprised of three com-
plex-conjugate pairs, —0.10213540.079848i, 0.0142348+
0.136854i, and 0.124533 £ 0.0659940i. Summarizing,

Clvazf = 052941,
aUV,6f =0.16041

aUVAf = 023332,

no ayy,, forn=3,57. (3.1)

The calculations up to seven loops show a pattern, namely
that for even n = 2, 4, 6, f,, ., has a zero, ayy ., but the
values for different n are not close to each other, while for
odd n=1,3,5,7, f,,, has no UV zero.

In Fig. 1 we plot the n-loop beta functions for2 < n <7
loops. Another way to show this information is via the
n-loop reduced beta function, S, ,,, = R,. We plot R, in
Fig. 2 for 2 <n <7. The results discussed above are

beta
0.5

0.4
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0.0
-0.1
-0.2

FIG. 1. Plot of the n-loop f function f3, ,,» as a function of a for
(i) n = 2 (red, solid), (ii) n = 3 (green, dashed), (iii) n = 4 (blue,
dotted), (iv) n = 5 (black, dot-dashed), (v) n = 6 (cyan, solid),
and (vi) n = 7 (brown, solid). At a = 0.16, going from bottom
to top, the curves are for n=6, n=4, n=2, n=3,
n=>5and n="7.
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FIG. 2. Plot of the ratio R, of the n-loop beta function S, ,,
divided by f, 14, as a function of a for (i) n =2 (red, solid),
(ii) n = 3 (green, dashed), (iii) n = 4 (blue, dotted), (iv) n =5
(black, dot-dashed), (v) n =6 (cyan, solid), and (vi) n =7
(brown, solid). At a =0.16, going from bottom to top, the
curves are forn =6, n=4,n=2,n=3,n=5,and n = 7.

evident in these figures. First, one may inquire how large
the interval is in a over which the calculations of f3,,, to
the respective n-loop orders are in mutual agreement. As
one can see from Figs. 1 and 2, the n-loop beta functions
PBane With 2 <n <7 only agree with each other well over
the small interval of couplings 0 < a < 0.05. As shown in
Fig. 1, the B, ,, with even n = 2, 4, 6 reach maxima and
then decrease, crossing the (positive) real axis at different
values listed in Eq. (3.1), while the f,,, with odd n
increase monotonically with a. This seven-loop analysis
confirms and extends our conclusions in [19,20] at the
six-loop level that the zero in the two-loop beta function of
the A¢* theory occurs at too large a value of a for the
perturbative calculation to be reliable.

IV. ANALYSIS WITH PADE APPROXIMANTS

One can gain further insight into the behavior of the beta
function by the use of Padé approximants (PAs). We carried
out this analysis up to the six-loop level in [19,20], finding no
indication of a physical UV zero, and here we extend it to the
seven-loop level. Since the double zero in §,,,,, at a = 0 is
not relevant to the question of a UV zero, we use the reduced
beta function g, , ,, for this Padé analysis. The [p, g] Padé
approximant to f3, , ., is the rational function [23]

1+ Zﬁ;l rial
14+ >0, sia*

with p + ¢ = n— 1, where the coefficients r; and s; are
independent of a. At seven-loop order, we can calculate the
Padé approximants [p, gl with[p, g] taking on the values
[6,0], [5,1], [4,2], [3,3], [2,4], [1,5], and [0,6]. Since the loop

order is understood, we write [p, ¢] = [p, q| for brevity

[p-dls,,,, = (4.1)

ﬂa.r.7f

of notation. The PA [6,0] is equivalent to 3, , 7, itself, which
we have already analyzed, and the PA [0,6] has no zeros;
thus, we focus here on the remaining five Padé approximants.
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We list our results for these Padé approximants to f3,, 7, below:

1+ 11.760a — 14.931a® + 57.552a° — 286.17a* + 1367.8a°

5,1 = , 4.2
[>.1] 1 + 13.649a (4.2)
1 +20.541a + 75.687a*> — 49.670a° + 81.973a*
4,2 =T 2AE T . (43)
1 +22.430a + 107.21a
1 +25.073a + 152.8142 + 155.9943
3,3 = @t @ <, (4.4)
1 +26.962a + 192.8942 + 318.33a
1 +22.314a + 103.554>
[2,4] = + 6;+ as 40 (4.5)
1 +24.203a + 138.42a% + 89.390a% — 91.252a
1+ 14.023
1, 5] i a (4.6)

We recall some necessary requirements for a zero of a
[p, g] Padé approximant to be physically relevant. These
include the requirement that this zero should occur on the
positive real axis in the complex a plane and the require-
ment that this zero of the PA should be closer to the origin
a =0 than any pole on the real positive a axis since
otherwise the pole would dominate the IR to UV flow
starting at the origin. If a Padé approximant were to exhibit
such a zero, then one would proceed to inquire how close it
is to any of the ayy ,, in Eq. (3.1). However, we find that
none of these Padé approximants (4.2)—(4.6) has a zero
on the positive real a axis. Explicitly, the [5,1] PA has
two complex-conjugate pairs of zeros at a = —0.12719 £+
0.26046i and a = 0.26922 £ 0.209301, together with a real
zero at a = —0.074837. This real zero is part of a nearly
coincident pole-zero pair, with the pole of the [5,1]
PA being located at a = —0.073267. The appearance of
a nearly coincident pole-zero pair close to a point a; in a
[p, q] Padé approximant is typically an indication that the
function that the PA is fitting has neither a pole nor a zero in
the local neighborhood of g since, as the locations of the
nearly coincident pole-zero pair approach each other,
they simply divide out in the ratio (4.1). Each of the
Padé approximants that we calculate here has a pole-
zero pair. The [4,2] PA has zeros at the complex-conjugate
pair a = 0.42009 £ 0.96575i, together with the real
values a = {-0.16929, —0.064970} and poles at a =
{—0.14481, —-0.064414}. The [3,3] PA has zeros at a =
{-0.78531,-0.13282, —-0.061458} and poles at a =
{-0.42342,-0.12140,-0.061112}. The [2,4] PA has
zeros at a = {-0.15193,-0.063563} and poles at
a = {-0.69186,—-0.13432, -0.063100, 1.8689}. Finally,
the [1,5] PA has a zero at a = —0.071313 and poles at a =
{-0.22780, —0.070185, 0.44160, 0.035937 + 0.39287i}.
Thus, our analysis with Padé approximants of the seven-
loop beta function yields the same conclusion as our
analysis of the beta function itself, namely that there is

1 + 15.912a + 19.205a> — 45.828a* + 196.10a* — 910.03a°

no evidence for a stable, reliably perturbatively calculable
UV zero up to this seven-loop level.

V. EFFECTS OF SCHEME TRANSFORMATIONS

Since the terms in the beta function at loop order n > 3 are
scheme-dependent, it is necessary to assess the effect of
scheme transformations in an analysis of zeros of a higher-
loop beta function. A scheme transformation can be expressed
as a mapping between a and a transformed coupling a’,

a=df(d), (5.1)

where f(a') is the scheme transformation function. Since this
transformation has no effect in the free theory, one has
f(0) = 1. We consider f(a’) functions that are analytic
about @ = a’ = 0 and hence can be expanded in the form

(5.2)

where the k, are constants and s,,,, may be finite or infinite.
The beta function in the transformed scheme, S, =
da'/d1n p, has the expansion

Po=a Yy by(a). (5.3)
=1

In [24], formulas were derived for the &/, in terms of b, and the
k. In addition to b} = b; and b, = b,, these are

bg = b3 + k]b2 + (k% - kz)b],
bg = b4 + 2k1b3 + k%bz + (—2](? + 4k1k2 - 2k3)b1,
(5.5)

(5.4)

and so forth for higher . These results are applicable to the
study of both an IR zero in the beta function of an
asymptotically free theory and a possible UV zero in the
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beta function of an IR-free theory. They were extensively
applied to assess scheme dependence in higher-loop studies
of an IR fixed point in asymptotically free non-Abelian gauge
theories [24-28].

For the present A¢* theory, a study of scheme dependence
was carried out in [18]. It was shown that even when one
shifts to a scheme different from the usual MS scheme,
the beta function still does not satisfy a requisite condition
for a physical UV zero, namely that the value of this zero
(in a given scheme) should not change strongly when it is
calculated to successive loop orders. This result from [18]
also holds in the same way in the present seven-loop context.

VI. CONCLUSIONS

In this paper we have investigated whether the real scalar
field theory with a A¢* interaction exhibits evidence of an

ultraviolet zero in the beta function. Using the seven-loop
coefficient b; from [15], our present study extends our
previous six-loop study in [19,20] to the seven-loop level.
Our work includes a study of the seven-loop beta function
itself, together with an analysis of Padé approximants.
We conclude that, for the range of couplings where the
perturbative calculation of this beta function may be
reliable, it does not exhibit robust evidence for an ultra-
violet zero.
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