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Abstract. The multivariable autoregressive filter problem asks for a poly-
nomial p(z) = p(z1, . . . , zd) without roots in the closed d-disk based on
prescribed Fourier coefficients of its spectral density function 1/|p(z)|2.
The conditions derived in this paper for the construction of a degree
one symmetric polynomial reveal a major divide between the case of
at most two variables vs. the the case of three or more variables. The
latter involves multivariable elliptic functions, while the former (due
to [Geronimo and Woerdeman (Ann Math 160(3):839-906, 2004)]) only
involve polynomials. The three variable case is treated with more de-
tail, and entails hypergeometric functions. Along the way, we identify a

seemingly new relation between 2F1
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1. Introduction

The identification problem for wide sense stationary autoregressive stochastic
processes is a classical signal processing problem. We consider (wide sense)
stationary processes Xm = X(m1,...,md) depending on d discrete variables
defined on a fixed probability space (Ω,A, P ). We shall assume that the
random variables Xm are centered, i.e., their means E(Xm) equal zero. Recall
that the space L2(Ω,A, P ) of square integrable random variables endowed
with the inner product of centered random variables

〈X,Y 〉 := E(Y ∗X)
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is a Hilbert space. A sequence X = (Xm)m∈Zd is called a stationary process
on Z

d if for m, k ∈ Z
d we have that

E(X∗
mXk) = E(X∗

m+pXk+p) =: RX(m − k) for all p ∈ Z
d.

It is known that the function RX , termed the covariance function of X,
defines a positive semidefinite function, that is,

k∑
i,j=1

αiαjRX(ri − rj) ≥ 0

for all k ∈ N, α1, . . . , αk ∈ C, r1, . . . , rk ∈ Z
d. Bochner’s theorem [5,6] on

positive semidefinite functions states that for such a function RX there is a
positive measure μX defined for Borel sets on the torus [0, 2π]d such that

RX(r) =
∫

e−i〈r,u〉dμX(u)

for all d-tuples of integers r ∈ Z
d. The measure μX is referred to as the

spectral distribution measure of the process X.
For n = (n1, . . . , nd) ∈ N

d
0 we let n =

∏d
j=1{0, . . . , nj}. A centered

stationary stochastic process X is said to be AR(n) if there exist complex
numbers ak, k ∈ n\{0}, such that for every t,

xt +
∑
k∈n

k �=0

akxt−k = et, t ∈ Z
d, (1.1)

where {ek k ∈ Z
d} is a white noise zero mean process with variance σ2. Here

AR stands for auto-regressive. Let H be the standard half-space in Z
d; that

is

H = {(k1, . . . , kd) ∈ Z
d : there is j ∈ {1, . . . , d} with k1 = · · · = kj−1 = 0

and kj > 0}.

The AR(n) process is said to be causal if there is a solution to (1.1) of the
form

xt =
∑

k∈H∪{0}
φket−k, t ∈ Z

d, (1.2)

with
∑

k∈H∪{0} |φk| < ∞. Causality based on halfspaces and multivariable
generalizations of the one variable case go back to the influential papers by
Helson and Lowdenslager [16,17]. It is not difficult to see that the AR(n)
process X is causal if and only if the polynomial

p̃(z) = 1 +
∑
k∈n

k �=0

akzk

has no roots in the closed d-disk; we call such a polynomial stable. A causal
AR(n) process is in fact positive orthant causal, which by definition means
that there is a solution to (1.1) of the form
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xt =
∑
k≥0

k �=0

φket−k, t ∈ Z
d, (1.3)

where k = (k1, . . . , kd) ≥ 0 means that kj ≥ 0 for j = 1, . . . , d.
The multivariate autoregressive filter design problem is the following.

“Given are covariances

ck = E(X∗
0Xk), k ∈ n.

What conditions must the covariances satisfy in order that these are the co-
variances of a causal AR(n) process? And in that case, how does one compute
the filter coefficients ak, k ∈ n\{0} and σ2?”

The following characterization for the two variable autoregressive filter
design problem appeared in [10].

Theorem 1.1. [10] Let n,m ∈ N and ckl, (k, l) ∈ {0, . . . , n} × {0, . . . , m}, be
given complex numbers. There exists a causal autoregressive process with the
given covariances ckl if and only if there exist complex numbers ckl, (k, l) ∈
{1, . . . , n} × {−m, . . . ,−1}, such that

1. the (n + 1)(m + 1) × (n + 1)(m + 1) doubly indexed Toeplitz matrix
Γ = (ct−s)s,t∈{0,...,n}×{0,...,m} is positive definite;

2. the matrix (cs−t)s∈{1,...,n}×{0,...,m},t∈{0,...,n}×{1,...,m} has rank equal to
nm.

In this case one finds the vector
1
σ2

[anm · · · an0 · · · a0m · · · a01 1]

as the last row of the inverse of Γ.

If we consider the polynomial p(z) = 1
σ p̃(z), then the Fourier coefficients

of 1
|p|2 coincide exactly with the covariances ck. In other words,

1̂
|p|2 (k) = ck, k ∈ n,

where f̂(k) denotes the kth Fourier coefficient of the function f . There are
actually two main ingredients in the solution to this problem:

(i) one needs to find a trigonometric polynomial q(z) = q(z1, z2) with posi-
tive values on the bitorus so that its reciprocal has the required Fourier
coefficients ckl, and

(ii) this trigonometric polynomial needs to factor as q(z) = |p(z)|2, where
p(z) is stable.

This factorization is referred to as Fejér-Riesz factorization, and while its ex-
istence is guaranteed in one variable, this is not the case in two or more vari-
ables. This close connection between the causal autoregressive filter problem
and the Fejér-Riesz factorization problem led to necessary and sufficient con-
ditions in [10] for the two-variable Fejer-Riesz factorization problem. These
results are being used in, for instance, spectral estimation [32], image com-
pression [26], multiwavelet design [22], frames [19], stability analysis [21],
texture generation [27], radar applications [1], and digital watermarking [13].
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Some of these publications go beyond the two-variable setting [19,22,26,32],
and indicate that a better understanding of the case of three or more vari-
ables is needed. One of the main take aways of this paper is that the three
and more variable case require a substantially different approach than the
case of one and two variables.

In this paper we will focus on the case where the polynomial p(z) is a
degree one symmetric polynomials in d variables, i.e.,

p(z1, . . . , zd) = p0 + p1(z1 + · · · + zd).

In general, a symmetric polynomial is a polynomial where a permutation of
the variables does not change the polynomial. It is easy to see that p is stable
if and only if d|p1| < |p0|. The corresponding autoregressive filter problem is
as follows.

Problem. Given are complex numbers a and b. Find, if possible, a degree
one stable symmetric polynomial in d variables so that

1̂
|p|2 (0, 0, . . . , 0) = a,

1̂
|p|2 (1, 0, . . . , 0) = b.

Clearly, due to the symmetry, we have that

1̂
|p|2 (1, 0, . . . , 0) =

1̂
|p|2 (0, 1, . . . , 0) = · · · =

1̂
|p|2 (0, . . . , 0, 1),

so that it suffices to just require 1̂
|p|2 (1, 0, . . . , 0) = b. Notice that a > 0 will be

a necessary condition for the existence of a solution. If we apply a variation
of Theorem 1.1 to this case (this variation is where cnm is not pre-specified;
see [3, Theorem 3.3.1]), we obtain the following.

Theorem 1.2. The above problem has a solution in d = 2 variables if and
only if |b| < a. In that case, the polynomial p(z) = p0 + p1(z1 + z2) is given
via ⎡

⎢⎣
a b̄ b̄

b a |b|2
a

b |b|2
a a

⎤
⎥⎦
⎡
⎣

|p0|2
p1p̄0

p1p̄0

⎤
⎦ =

⎡
⎣

1
0
0

⎤
⎦ .

Indeed, in this case c1,−1 is the only unknown in the matrix Γ, and item
2 in Theorem 1.1 requires

[
c1,−1 c0,−1

c1,0 c0,0

]
=
[
c1,−1 b̄

b a

]

to be of rank 1, which leads to c1,−1 = |b|2
a .

The main result in this paper addresses the case of d variables, which we
will state in the next section. Recall that the hypergeometric function 2F1

is defined for |z| < 1 via the power series

2F1

(
a, b

c
; z

)
=

∞∑
n=0

(a)n(b)n

(c)n

zn

n!
,
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where c is not a negative integer. Here the Pochhammer function (q)n is
defined by

(q)n =

{
1, n = 0;
q(q + 1) · · · (q + n − 1), otherwise.

When we specify the result for d = 3 variables we obtain the following.

Theorem 1.3. The above problem has a solution in d = 3 variables if and only
if |b| < a. In that case, one finds the polynomial p(z) = p0 + p1(z1 + z2 + z3)
by determining c ≥ 0 so that

a(a + 2c)
a2 + 2ac − 3|b|2 =

(a + 2c)2

(a + 2c)2 − 3|b|2 2F1

( 1
3 , 2

3

1
;

27|b|4((a + 2c)2 − |b|2)
((a + 2c)2 − 3|b|2)3

)
,

(1.4)
and ⎡

⎢⎢⎣
a b̄ b̄ b̄
b a c c
b c a c
b c c a

⎤
⎥⎥⎦

is positive definite. Next a solution p(z) is found via the equation⎡
⎢⎢⎣

a b̄ b̄ b̄
b a c c
b c a c
b c c a

⎤
⎥⎥⎦

⎡
⎢⎢⎣

|p0|2
p1p̄0

p1p̄0

p1p̄0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ .

As one can see there is a significant difference between two and three
variables. In two variables the unknown in the matrix is easily found by set-
ting c = |b|2

a , while in three variables one needs to solve the highly nontrivial
equation (1.4) to find the unknown c in the matrix. The number c plays the
role of

c =
1̂

|p|2 (1,−1, 0, . . . , 0) =
1̂

|p|2 (−1, 1, 0, . . . , 0) = · · · =
1̂

|p|2 (0, . . . , 0, 1,−1),

where again we used the symmetry of the polynomial. We will see that c is
required to be nonnegative (see Proposition 2.2).

The paper is organized as follows. In Sect. 2 we present our main result
giving necessary and sufficient condition for the existence of an autoregressive
filter with a stable symmetric degree one polynomial in d variables, as well
as a method how to find the polynomial. In Sect. 3 we further specify the
results for the case of three variables and present a new relation between

2F1

(
1
3 , 2

3
1

; z
)

and 2F1

(
1
2 , 1

2
1

; z̃
)
. Finally, in Sect. 4 we explore formulas for

other Fourier coefficients in the three variable case.

2. The main result

We will begin by determining some of the Fourier coefficients of 1
|p(z)|2 , where

p(z) = p0 + p1(z1 + · · · + zd), z = (z1, . . . zd). It will be convenient to do a
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simple scaling and assume that p0 = 1. Next we will write p1 = −s. We will
use the notation

D = {z ∈ C : |z| < 1}, T = {z ∈ C : |z| = 1}, D = D ∪ T, N0 = {0, 1, 2, . . .}.

Lemma 2.1. The polynomial p(z) = 1 − s(z1 + · · · + zd) is stable if and only
if |s| < 1

d .

Proof. Let |s| < 1
d and (z1, . . . zd) ∈ D

d
. Then we have that |s(z1+· · ·+zd)| <

1, and thus p(z) �= 0. This gives that p(z) is stable.

When |s| ≥ 1
d , then z1 = · · · = zd = 1

sd yields a root of p(z) inside D
d
.

Thus p(z) is not stable. �

For q ∈ Z we let q+ = max{0, q} and q− = max{0,−q}.

Proposition 2.2. Let p(z) = 1 − s(z1 + · · · + zd), |s| < 1
d . Then for k =

(k1, . . . , kd) ∈ Z
d,

1̂
|p|2 (k) =

∞∑
n=0

∑
∑

ni=n

(
n + k+

1 + · · · + k+
d

n1 + k+
1 , . . . , nd + k+

d

)(
n + k−

1 + · · · + k−
d

n1 + k−
1 , . . . , nd + k−

d

)
|s|2ns

∑
j k+

j s̄
∑

j k−
j .

Here n1, . . . , nd ≥ 0 range over all nonnegative numbers that sum up to n. In
particular,

1̂
|p|2 (0, . . . , 0) > 0,

1̂
|p|2 (1,−1, 0, . . . , 0) ≥ 0. (2.1)

Proof. For (z1, . . . , zd) ∈ T
d we have

1
p(z)

=
∞∑

n=0

sn(z1 + · · · + zd)n =
∞∑

n=0

∑
∑

ni=n

(
n

n1, . . . , nd

)
snzn1

1 · · · znd

d ,

1
p(z)

=
∞∑

n=0

s̄n(z−1
1 + · · · + z−1

d )n =
∞∑

n=0

∑
∑

ni=n

(
n

n1, . . . , nd

)
s̄nz−n1

1 · · · z−nd

d .

Multiplying the two and extracting the coefficient of zk1
1 · · · zkd

d gives the

stated formula for 1̂
|p|2 (k).

Finally, when k = (0, . . . , 0) the number s only appears in |s|2n which is
always ≥ 0, and > 0 when n = 0, and when k = (1,−1, 0, . . . , 0) the number
s only appears in |s|2n+2 which is always ≥ 0. Clearly, all the multinomial
coefficients are nonnegative, and thus (2.1) follows. �

Proposition 2.3. Let p(z) = 1 − s(z1 + · · · + zd), |s| < 1
d . Put

a =
1̂

|p|2 (0, 0, . . . , 0), b =
1̂

|p|2 (1, 0, . . . , 0), c =
1̂

|p|2 (1,−1, 0, . . . , 0).
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Then a > 0, c ≥ 0, and the (d + 1) × (d + 1) matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

a b̄ b̄ · · · b̄
b a c · · · c
b c a · · · c
...

...
. . .

...
b c c · · · a

⎤
⎥⎥⎥⎥⎥⎦

, (2.2)

is positive definite. Furthermore

A

⎡
⎢⎢⎢⎣

1
−s
...

−s

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ . (2.3)

Proof. Let

1
|p(z)|2 =

∑
k∈Zd

ckzk

denote its Fourier series. Thus 1̂
|p(z)|2 (k) = ck, k ∈ Z

d. Since 1
|p(z)|2 is positive,

the multiplication operator on L2(Td) with symbol 1
|p(z)|2 is positive definite.

Its matrix representation with respect to the standard monomial basis is
(ck−�)k,�∈Zd . Consequently, any principal submatrix (ck−�)k,�∈Λ, Λ ⊆ Z

d, is
positive definite. If we let Λ = {0, e1, . . . , ed}, where ej is the jth standard
basis vector of C

d, we obtain

(ck−�)k,�∈Λ =

⎡
⎢⎢⎢⎢⎢⎣

a b̄ b̄ · · · b̄
b a c · · · c
b c a · · · c
...

...
. . .

...
b c c · · · a

⎤
⎥⎥⎥⎥⎥⎦

, (2.4)

where

a =
1̂

|p|2 (0, 0, . . . , 0), b =
1̂

|p|2 (1, 0, . . . , 0), c =
1̂

|p|2 (1,−1, 0, . . . , 0).

Thus (2.4) is positive definite.
Next, we have that

1
|p(z1, . . . , zd)|2 p(z1, . . . , zd) =

1
p(1/z1, . . . , 1/zd)

=
∑

k∈N
d
0

φkz−k, z ∈ T
d,

where φ0 = 1. Comparing the coefficients of 1, z1, . . . , zd on both sides we get
the equality (2.3). �

Proposition 2.4. Let ps(z) = 1 − s(z1 + · · · + zd), |s| < 1
d . Put

a(s) =
1̂

|ps|2 (0, 0, . . . , 0), b(s) =
1̂

|ps|2 (1, 0, . . . , 0).
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Then a(s) is a function of |s| that is strictly increasing on [0, 1
d ). In addition,

{a(s) : |s| ∈ [0,
1
d
)} = [1, γd),

where

γd =
∞∑

n=0

∑
∑

ni=n

(
n

n1, . . . , nd

)2

d−2n. (2.5)

We have γ1 = γ2 = γ3 = ∞ and γd < ∞ for d ≥ 4. Finally,{ |b(s)|
a(s)

: |s| ∈
[
0,

1
d

)}
=
[
0, 1 − 1

γd

)
,

where 1
∞ = 0.

Remark 2.5. Writing (2.5) as γd =
∑∞

n=0 an,dd
−2n it seems that

∑∞
n=0

an,d

(n!)2 xn

= (I0(2
√

x))d = (
∑∞

k=0
xk

(k!)2 )d, where I0(·) is the the modified Bessel func-
tion of the first kind. For d = 4, 5, 6 this statement is supported by items
A002895, A169714, A169715, respectively, on the On-Line Encyclopedia of
Integer Sequences (oeis.org).

Proof of Proposition 2.4. By the established asymptotic that was first ascer-
tained in [25] and later generalized by [28, Theorem 4] and [7, Theorem 5.1],
we have

∑
∑

ni=n

(
n

n1, . . . , nd

)2

d−2n ≈ dd/2(4πn)(1−d)/2 as n → ∞.

Thus γd = ∞ for d ≤ 3, and γd < ∞ for d > 3 follows. By Proposition 2.2
we have that

a(s) =
∞∑

n=0

∑
∑

ni=n

(
n

n1, . . . , nd

)2

|s|2n,

thus a(s) is a continuous function and is increasing as |s| increases. Further,
a(0) = 1 and lim|s|→ 1

d
− a(s) = γd, yielding that the range of a(s) is the

interval [1, γd). Similarly,

|b(s)| =
∞∑

n=0

∑
∑

ni=n

(
n + 1

n1 + 1, n2, . . . , nd

)(
n

n1, . . . , nd

)
|s|2n+1

is a continuous function and is increasing as |s| increases. Also, note that
b(0) = 0. By (2.3) we have that

a(s) − dsb(s) = 1,

and thus
|b(s)|
a(s)

=
1

d|s|
a(s) − 1

a(s)
=

1
d|s| (1 − 1

a(s)
).

Since |b(0)|
a(0) = 0 and lim|s|→ 1

d
−

|b(s)|
a(s) = 1− 1

γd
, the last statement follows. �

The main result is the following.
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Theorem 2.6. Let d ≥ 3 and define γd via (2.5). Given are a > 0 and b ∈ C.
Then there exists a stable degree one symmetric polynomial p(z1, . . . , zd) so
that

1̂
|p|2 (0, 0, . . . , 0) = a,

1̂
|p|2 (1, 0, . . . , 0) = b,

if and only if |b| < (1 − 1
γd

)a. In that case, the polynomial p(z) may be found
by finding c ≥ 0 so that

a(a + (d − 1)c)
a2 + (d − 1)ac − d|b|2 =

1
(2π)d−2

∫

[0,2π]d−2

1√
g(t3, . . . , td)

dt3 · · · dtd, (2.6)

where

g(t3, . . . , td) =

⎛
⎝1 − 2|b|

a + (d − 1)c

∑
3≤j≤d

cos tj +

|b|2
(a + (d − 1)c)2

∑
3≤j,k≤d

cos(tj − tk)

⎞
⎠×

⎛
⎝1 − 2|b|

a + (d − 1)c

∑
3≤j≤d

cos tj +

|b|2
(a + (d − 1)c)2

⎛
⎝−4 +

∑
3≤j,k≤d

cos(tj − tk)

⎞
⎠
⎞
⎠ ,

and the matrix ⎡
⎢⎢⎢⎢⎢⎣

a b̄ b̄ · · · b̄
b a c · · · c
b c a · · · c
...

...
. . .

...
b c c · · · a

⎤
⎥⎥⎥⎥⎥⎦

is positive definite. Subsequently, p(z) = p0 + p1(z1 + · · · + zd) is found via
the equation

⎡
⎢⎢⎢⎢⎢⎣

a b̄ b̄ · · · b̄
b a c · · · c
b c a · · · c
...

...
. . .

...
b c c · · · a

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

|p0|2
p1p̄0

...
p1p̄0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ ,

where one may choose p0 > 0.

Remark 2.7. When we put s = b
a2+(d−1)ac−d|b|2 , the right hand side of (2.6)

may be rewritten as

1
(2πi)d−2

∫

Td−2

1
|1 − s(z3 + · · · + zd)|

1√|1 − s(z3 + · · · + zd)|2 − 4|s|2
dz3

z3
· · · dzd

zd
.
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In determining the Fourier coefficients of 1
|p(z)|2 , where

p(z) = 1 − s(z1 + · · · + zd), |s| <
1
d
,

we let w = z3 + · · · + zd, which we will treat as a parameter, and write

p(z) = p(z1, z2, w) = p0(w) − s(z1 + z2),

where p0(w) = 1 − sw. We write f(z) = 1
|p(z)|2 in Fourier series with w as a

parameter

f(z) =
∑

k,l∈Z

ckl(w)zk
1zl

2.

Proposition 2.8. Let p(z) = p(z1, z2, w) = p0(w)−s(z1 +z2), p0(w) = 1−sw,
|s| < 1

d , and write f(z) = 1
|p(z)|2 in Fourier series as

f(z) =
∑

k,l∈Z

ckl(w)zk
1zl

2.

Then
⎡
⎣

c00(w) c0,−1(w) c−1,0(w)
c01(w) c00(w) c−1,1(w)
c10(w) c1,−1(w) c00(w)

⎤
⎦
−1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

|1 − sw|2 −s̄(1 − sw) −s̄(1 − sw)

−s(1 − s̄w̄) 1
2 (|1 − sw|2

+
√|1 − sw|4 − 4|s|2|1 − sw|2 ) 0

−s(1 − s̄w̄) 0 1
2 (|1 − sw|2

+
√|1 − sw|4 − 4|s|2|1 − sw|2 )

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.7)

and
⎡
⎢⎢⎢⎣

c00(w) c0,−1(w) c−1,0(w) c−1,−1(w)

c01(w) c00(w) c−1,1(w) c−1,0(w)

c10(w) c1,−1(w) c00(w) c0,−1(w)

c11(w) c10(w) c01(w) c00(w)

⎤
⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

|1 − sw|2 −s̄(1 − sw) −s̄(1 − sw) 0

−s(1 − s̄w̄) s2 + 1
2 (|1 − sw|2

+
√|1 − sw|4 − 4|s|2|1 − sw|2 ) s2 −s̄(1 − sw)

−s(1 − s̄w̄) s2 s2 + 1
2 (|1 − sw|2 −s̄(1 − sw)

+
√|1 − sw|4 − 4|s|2|1 − sw|2 )

0 −s(1 − s̄w̄) −s(1 − s̄w̄) |1 − sw|2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. The first inverse follows from [23, Theorem 1.1]. With p(z1, z2) =
p00 + p01z2 + p10z1 + p11z1z2 and using the notation from [23, Theorem 1.1]
we have

A =

⎡
⎣

p00 0 0

p01 p00 0

p10 0 p00

⎤
⎦ , B =

⎡
⎣

p11 p10 p01

0 p11 0

0 0 p11

⎤
⎦ ,

C1 =

⎡
⎢⎢⎣
0 0 p10p00 − p01p11

0 0 0

.

.

.
.
.
.

.

.

.

⎤
⎥⎥⎦ , C2 =

⎡
⎢⎢⎣
0 p01p00 − p10p11 0

0 0 0

.

.

.
.
.
.

.

.

.

⎤
⎥⎥⎦ ,
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D1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

|p00|2 + |p10|2 − |p01|2 p00p10 0 0 · · ·
p10p00 |p00|2 + |p10|2 − |p01|2 p00p10 0 · · ·

0 p10p00 |p00|2 + |p10|2 − |p01|2
. . .

. . .

.

.

.
. . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

,

D2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

|p00|2 + |p01|2 − |p10|2 p00p01 0 0 · · ·
p01p00 |p00|2 + |p01|2 − |p10|2 p00p01 0 · · ·

0 p01p00 |p00|2 + |p01|2 − |p10|2
. . .

. . .

.

.

.
. . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

.

To invert D1 we write D1 = K1K
∗
1 , where K1 is an upper triangular bidiag-

onal Toeplitz operator with α on the main diagonal and β on the superdiag-
onal, where α > 0 and β are so that

α2 + |β|2 = (|p00|2 + |p10|2 − |p01|)2 + |p00p10|2, ab = (p00p10)(|p00|2
+|p10|2 − |p01|2).

Similarly for D2. Now we use the formula
⎡
⎣

c00(w) c0,−1(w) c−1,0(w)
c01(w) c00(w) c−1,1(w)
c10(w) c1,−1(w) c00(w)

⎤
⎦

−1

= AA∗ − B∗B − C∗
1D−1

1 C1 − C∗
2D−1

2 C2

to obtain (2.7).
For the second inverse, we use that the (4,1) entry in the inverse is 0

as p(z) does not have a p11z1z2 term. It now follows from the inverse block
matrix formula⎡
⎣

P H1 H3

H∗
1 Q H2

H∗
3 H∗

2 R

⎤
⎦

−1

=

⎡
⎣
[

P H1

H∗
1 Q

]−1 0
0

0 0 0

⎤
⎦+

⎡
⎣

0 0 0
0
0

[
Q H2

H∗
2 R

]−1

⎤
⎦−

⎡
⎣

0 0 0
0 Q−1 0
0 0 0

⎤
⎦ ,

(2.8)

which holds if there is a zero in the (3,1) block of the inverse; see, for instance,
[9, Formula (10)].1 �

Proposition 2.9. For p(z) = 1 − s(z1 + · · · + zd), |s| < 1
d , we have

1̂
|p|2 (0, . . . , 0) =

1
(2πi)d−2

∫

Td−2

1
|1 − s(z3 + · · · + zd)|

1√|1 − s(z3 + · · · + zd)|2 − 4|s|2
dz3

z3
· · · dzd

zd
.

Proof. In general we have that
⎡
⎣

x ȳ ȳ
y v 0
y 0 v

⎤
⎦

−1

=
1

xv − 2|y|2

⎡
⎢⎣

v −ȳ −ȳ

−y x − |y|2
v

|y|2
v

−y |y|2
v x − |y|2

v

⎤
⎥⎦ .

1Formula (2.8) goes back to the 1980s and easily generalizes to n × n block matrices with
a block tridiagonal inverse, but a reference for it is illusive.
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Combining this with Proposition 2.8 we find

c00(w) =
v

xv − 2|y|2 ,

where

v =
1
2
(|1 − sw|2 +

√
|1 − sw|4 − 4|s|2|1 − sw|2 ),

x = |1 − sw|2, y = −s(1 − s̄w̄).

We have

xv − 2|y|2 =
1
2
(|1 − sw|4 − 4|s|2|1 − sw|2

+|1 − sw|2
√

|1 − sw|4 − 4|s|2|1 − sw|2
)

=

v
√

|1 − sw|4 − 4|s|2|1 − sw|2 = v|1 − sw|
√

|1 − sw|2 − 4|s|2.
Thus

c00(w) =
1

|1 − sw|√|1 − sw|2 − 4|s|2 =
1

|1 − s(z3 + · · · + zd)|
1√|1 − s(z3 + · · · + zd)|2 − 4|s|2 .

To find the 0th Fourier coefficient of 1
|p(z)|2 we need to compute

1
(2πi)d−2

∫

Td−2
c00(z3 + · · · + zd)

dz3

z3
· · · dzd

zd
,

which yields the stated formula. �

It is easy to check the following lemma.

Lemma 2.10. Suppose that the (d + 1) × (d + 1) matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

a b̄ b̄ · · · b̄
b a c · · · c
b c a · · · c
...

...
. . .

...
b c c · · · a

⎤
⎥⎥⎥⎥⎥⎦

(2.9)

is invertible. Then the first column of the inverse equals

1
a2 + (d − 1)ac − d|b|2

⎡
⎢⎢⎢⎣

a + (d − 1)c
−b
...

−b

⎤
⎥⎥⎥⎦ .

Proof. Simply multiply A by the vector to obtain the first standard basis
vector. �
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Proof of Theorem 2.6. By the last statement in Proposition 2.4 we see that
|b|
a ∈ [0, 1 − 1

γd
) is necessary and sufficient.

Next, the polynomial p(z) after normalization so that p(0) = 1 will
satisfy (2.3). Starting with A as in (2.9) we can, by Lemma 2.10, rescale the
matrix as a+(d−1)c

a2+(d−1)ac−d|b|2 A so that the (1,1) entry of its inverse is 1, which
corresponds to the situation where p(0) = 1. Then, again using Lemma 2.10,
we find that s = − dp

dz1
|z=0 corresponds to the value s = b

a2+(d−1)ac−d|b|2 .

Using this value for s as well as 1̂
|p|2 (0, . . . , 0) = a a+(d−1)c

a2+(d−1)ac−d|b|2 , we find
that Proposition 2.9 yields equality (2.6). �

3. The three variable case

In this section we provide further details when d = 3. To be consistent with
earlier results in [11] and [31], we consider the polynomial

p(z1, z2, z3) = 1 − z1 + z2 + z3

r
, r > 3.

Comparing this with the previous section, we make the conversion s = 1
r and

require s > 0. This is not a significant restriction as a phase appearing in s
can always be absorbed in the variables via (z1, z2, z3) → eiθ(z1, z2, z3).

We will use the complete elliptic integral of the first kind, which is

K(m) =
∫ π

2

0

1√
1 − m sin2(t)

dt

=
∫ 1

0

1√
1 − t2

√
1 − mt2

dt =
π

2 2F1

( 1
2 , 1

2

1
; m

)
.

Theorem 3.1. Let p(z1, z2, z3) = 1 − z1+z2+z3
r , r > 3, and f(z) = 1

|p(z)|2 ,
z = (z1, z2, z3). Write

f(z) =
∑

k,l,m∈Z

cklmzk
1zl

2z
m
3 , (z1, z2, z3) ∈ T

3.

Then

c000 = r2

2π

∫ 2π

0
1√

r2+1−2r cos t
√

r2−3−2r cos t
dt

= 2r2

π(r−1)
3
2 (r+3)

1
2
K( 16r

(r−1)3(r+3) )

= r2

(r−1)
3
2 (r+3)

1
2

2F1

(
1
2 , 1

2
1

; 16r
(r−1)3(r+3)

)
. (3.1)

Proof of Theorem 3.1. From Proposition 2.9 with s = 1
r and z3 = eit we

obtain

c000 =
1
2π

∫ 2π

0

1
|1 − eit

r |
1√

|1 − eit

r |2 − 4
r2

dt.

Using that |1 − eit

r |2 = (1 − cos t
r )2 + sin2 t

r2 = 1
r2 (r2 − 2r cos t + 1), formula

(3.1) follows.
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Next, use cos t = 2 cos2 t
2 −1 = 2 sin2(π

2 − t
2 )−1, do a change of variable

t → π
2 − t

2 , use the symmetry of the integrand, and (3.1) becomes

2r2

π

∫ π
2

0

1√
(r + 1)2 − 4r sin2 t

√
(r + 3)(r − 1) − 4r sin2 t

dt. (3.2)

Now we let p2 = 4r
(r+1)2 and q2 = 4r

(r+3)(r−1) , and use the first formula in
Section 2.616 of [12], which is the equality2

∫ π
2

0

dx√
(1 − p2 sin2 x)(1 − q2 sin2 x)

=
1√

1 − p2

∫ π
2

0

dα√
1 − q2−p2

1−p2 sin2 α
.

This transforms (3.2) into

2r2

π

1√
(r − 1)3(r + 3)

∫ π
2

0

1√
1 − 16r

(r−1)3(r+3) sin2 t
dt

=
2r2

π(r − 1)
3
2 (r + 3)

1
2
K(

16r

(r − 1)3(r + 3)
).

�

The following result is inspired by a generating function entry by Paul
D. Hanna [14] regarding sequence A002893 on the On-Line Encyclopedia of
Integer Sequences (oeis.org). Hanna arrived at this entry as a variation of the
generating function for the triangle of cubed binomial coefficients (sequence
A181543 on oeis.org) and numerically verified it for hundreds of terms [15].

Theorem 3.2. Using the same notation as in Theorem 3.1, we have

c000 =
r2

r2 − 3 2F1

( 1
3 , 2

3

1
;

27(r2 − 1)
(r2 − 3)3

)
, r > 3.

Proof. By Proposition 2.2, we have c000(r)=
∑∞

n=0

∑
n1+n2+n3=n

(
n

n1, n2, n3

)2

r−2n, r > 3. Letting x = r−2, and

g(x) =
∞∑

n=0

∑
n1+n2+n3=n

(
n

n1, n2, n3

)2

xn,

h(x) =
1

1 − 3x
2F1

( 1
3 , 2

3

1
;

27x2(1 − x)
(1 − 3x)3

)
,

the stated equality now comes down to proving that g(x) = h(x), |x| < 1
9 .

We will show that both g(x) and h(x) satisfy the Heun differential equation
(see [18]) with initial values

x(1 − x)(1 − 9x)y′′ + (1 − 20x + 27x2)y′ + (9x − 3)y = 0, y(0) = 1, y′(0) = 3.
(3.3)

2due to a change of variables sinα =

√
1−p2 sin x√
1−p2 sin2 x

.
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If we write g(x) =
∑∞

n=0 gnxn, |x| < 1
9 , then it follows from [29, Theo-

rem 1; see also Table 1] that

n2gn −(10n2 −10n+3)gn−1 +9(n−1)2gn−2 = 0, n ≥ 2, g0 = 1, g1 = 3. (3.4)

But then it is a straightforward computation that g(x) satisfies (3.3). Indeed,
plugging y = g(x) =

∑∞
n=0 gnxn in the left hand side of (3.3) and extracting

the coefficient of xn−1 we obtain

n(n − 1)gn − 10(n − 1)(n − 2)gn−1 + 9(n − 2)(n − 3)gn−2

+ngn − 20(n − 1)gn−1 + 27(n − 2)gn−2 + 9gn−2 − 3gn−1

= n2gn + (−10n2 + 30n − 20 − 20n + 20 − 3)gn−1

+(9n2 − 45n + 54 + 27n − 54 + 9)gn−2

= n2gn − (10n2 − 10n + 3)gn−1 + 9(n − 1)2gn−2 = 0,

where in the last step we use (3.4).
Next, let us turn to h(x). Introduce z(x) = 27x2(1−x)

(1−3x)3 and w(z) =

2F1

(
1
3 , 2

3
1

; z
)
. Then (see, for instance, [12, Section 9.15])

(1 − z)zw′′(z) + (1 − 2z)w′(z) − 2
9
w(z) = 0.

We have that h(x) = 1
1−3xw(z(x)), h′(x) = 3

(1−3x)2 w(z(x))+ 54x
(1−3x)5 w′(z(x)),

and

h′′(x) =
18

(1 − 3x)3
w(z(x)) +

54(15x + 1)
(1 − 3x)6

w′(z(x)) +
4(27x)2

(1 − 3x)9
w′′(z(x)).

Plugging y = h(x) in the left hand side of (3.3) yields

x(1 − x)(1 − 9x)h′′(x) + (1 − 20x + 27x2)h′(x) + (9x − 3)h(x) =
108x

(1 − 3x)3
((1 − z(x))z(x)w′′(z(x)) + (1 − 2z(x))w′(z(x))

−2
9
w(z(x))

)
= 0.

In addition, it is easy to check that h(0) = 1, h′(0) = 3.
Thus both g(x) and h(x) satisfy (3.3), and thus by uniqueness we find

that h(x) = g(x). �
Remark 3.3. Using the Birkhoff-Trjitzinsky method (see [4], and [20] for com-
plete proofs; see also [30] and [24]) one can obtain that the asymptotics of
gn = hn is 0.41349667 · 9n

n (1 + O(n−1)). From this one can deduce that g(x)
is transcendental over Q(x); see [24, Corollary 2.1]. This implies that the au-
toregressive filter problem in three and more variables is of a different nature
than the case of one or two variables in the sense that one can no longer
expect necessary and sufficient conditions via polynomial expressions with
rational coefficients, such as the low rank requirement in two variables.

Corollary 3.4.

1
r2 − 3 2F1

( 1
3 , 2

3

1
;

27(r2 − 1)
(r2 − 3)3

)
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=
1

(r − 1)
3
2 (r + 3)

1
2

2F1

( 1
2 , 1

2

1
;

16r

(r − 1)3(r + 3)

)
.

Proof. Combine Theorems 3.1 and 3.2. �

There are formulas that relate 2F1

(
1
3 , 2

3
1

; z
)

and 2F1

(
1
2 , 1

2
1

; z̃
)

(see, for
instance, [2, page 112]), but the above equality seems to be of a different
nature than those already known.

We end this section by providing a proof for Theorem 1.3.

Proof of Theorem 1.3. By Theorem 2.6 we see that |b|
a < 1 is necessary and

sufficient. The proof is the same as the proof of Theorem 2.6, except that
we will use the expression of c000 from Theorem 3.2. Let d = 3. As before,
the polynomial p(z) after normalization so that p(0) = 1 will satisfy (2.3).
Starting with A as in (2.9) we can, by Lemma 2.10, rescale the matrix as

a+(d−1)c
a2+(d−1)ac−d|b|2 A so that the (1,1) entry of its inverse is 1, which corresponds
to the situation where p(0) = 1. Then, again using Lemma 2.10, we find that
1
r = − dp

dz1
|z=0 corresponds to the value 1

r = b
a2+(d−1)ac−d|b|2 . Using this

value for r as well as c000 = 1̂
|p|2 (0, . . . , 0) = a(a+(d−1)c)

a2+(d−1)ac−d|b|2 , we find that
Proposition 2.9 yields equality (1.4). �

sing the same notation as in T

4. The three variable case: other Fourier coefficients

In [11] the current authors considered the two variable analog, and ob-
tained the following expression for the Fourier coefficients of f(z1, z2) =
|1 − z1+z2

r |−2, r > 2.

Theorem 4.1. [11, Theorem 1] Let p(z1, z2) = 1 − z1+z2
r with r > 2, and let

ck1,k2 denote the Fourier coefficients of its spectral density function f(z1, z2) =
|1 − z1+z2

r |−2. Then we have

ck1,k2 =
1√

1 − 4
r2

(
r

2
−
√

r2

4
− 1

)|k1|+|k2|
, k1k2 ≤ 0,

and

ck1,k2 =

(|k1|+|k2|
|k1|

)

r|k1|+|k2| 3F2

(
1, |k1|+|k2|

2 + 1, |k1|+|k2|+1
2

|k1| + 1, |k2| + 1
;

4
r2

)
, k1k2 > 0.

In an attempt to obtain a three variable generalization of the above
result, we have found following expressions for the Fourier coefficients cJ ,
J ∈ {−1, 0, 1}3 of f(z1, z2, z3) = |1 − z1+z2+z3

r |−2, r > 3.

Theorem 4.2. Using the same notation as in Theorem 3.1, we have

c100 =
r2

4π

∫ 2π

0

1
r − eit

(√
r2 − 2r cos t + 1
r2 − 2r cos t − 3

− 1

)
dt =
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−r

2
+

r2

4π

∫ 2π

0

r − cos t√
r2 − 2r cos t + 1

√
r2 − 2r cos t − 3

dt,

c−1,1,0 =
r2

8π

∫ 2π

0

√
r2 − 2r cos t − 3
r2 − 2r cos t + 1

− 2 +

√
r2 − 2r cos t + 1
r2 − 2r cos t − 3

dt,

and

c011 =
r2

π

∫ 2π

0

1

eit(r − eit)(
√

(r2 + 1 − 2r cos t)(r2 − 3 − 2r cos t) + r2 − 3 − 2r cos t)
dt =

−1

2
+

r2

4π

∫ 2π

0

r cos t − cos 2t
√

r2 + 1 − 2r cos t
√

r2 − 3 − 2r cos t
dt =

r

4π

∫ 2π

0
cos t

√
r2 − 2r cos t + 1

r2 − 2r cos t − 3
dt

+
r

4π

∫ 2π

0

r − cos t
√

r2 − 2r cos t + 1
√

r2 − 2r cos t − 3
dt − 1

2
=

r

4π

∫ 2π

0
cos t

√
r2 − 2r cos t + 1

r2 − 2r cos t − 3
dt +

c100

r
. (4.1)

Proof. From Proposition 2.8 we get

c01(eit)

=
2r2

r − eit

(√
(r2 + 1 − 2r cos t)(r2 − 3 − 2r cos t) + r2 − 3 − 2r cos t

)−1

Using c011 = 1
2π

∫ 2π

0
c01(eit)e−itdt we consequently obtain

c011 =
r2

π

∫ 2π

0

1

eit(eit − r)
√

r2 − 3 − 2r cos t(
√

r2 + 1 − 2r cos t +
√

r2 − 3 − 2r cos t)
dt.

Multiplying numerator and denominator in the integrand with√
r2 + 1 − 2r cos t − √

r2 − 3 − 2r cos t, we obtain

r2

4π

∫ 2π

0

√
r2 + 1 − 2r cos t

eit(r − eit)
√

r2 − 3 − 2r cos t
dt − r2

4π

∫ 2π

0

1
eit(r − eit)

dt.

The second term equals 1
2 , and for the first term we can take its real part

(since we know that c011 is real). This gives

c011 = − 1
2 + r2

4π

∫ 2π

0
r cos t−cos 2t
r2+1−2r cos t

√
r2+1−2r cos t√
r2−3−2r cos t

dt

= − 1
2 + r2

4π

∫ 2π

0
r cos t−cos 2t√

r2+1−2r cos t
√

r2−3−2r cos t
dt.

The last equality for c011 is obtained by using 1
z(r−z) = 1

r ( 1
z + 1

r−z ) and
applying it to the first expression for c011.

Next, from Proposition 2.8 we find
c−1,1(e

it
)

=
4r2

√
r2 + 1 − 2r cos t

√
r2 − 3 − 2r cos t(

√
r2 + 1 − 2r cos t +

√
r2 − 3 − 2r cos t)2

.

Multiplying numerator and denominator with (
√

r2 + 1 − 2r cos t

− √
r2 − 3 − 2r cos t)2 we obtain

c−1,1(eit) =
r2

4

(
(
√

r2 + 1 − 2r cos t − √
r2 − 3 − 2r cos t)2√

r2 + 1 − 2r cos t
√

r2 − 3 − 2r cos t

)
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=
r2

4

(√
r2 − 2r cos t − 3
r2 − 2r cos t + 1

− 2 +

√
r2 − 2r cos t + 1
r2 − 2r cos t − 3

)
.

Use now c−1,1,0 = 1
2π

∫ 2π

0
c−1,1(eit)dt to obtain the result.

The proof for c100 is similar. �

In Theorem 3.1 we have expressed c000 in terms of the complete elliptic
integral of the first kind. We can express the other Fourier coefficients above
in terms of the complete elliptic integral of the first, second and third kind,
which are K(m), E(m) and Π(n,m), respectively, where

E(m) =
∫ π

2

0

√
1 − m sin2 t dt =

π

2 2F1

(− 1
2 , 1

2

1
; m

)
,

and

Π(n,m) =
∫ π

2

0

1

(1 − n sin2(t))
√

1 − m sin2(t)
dt.

Proposition 4.3. Using the same notation as in Theorem 3.1, we have
c100 =

r

3
(c000 − 1),

c011 =
1

3
(c000 − 1) +

(r4 − 2r2 − 15)K( 16r

(r+3)(r−1)3
) − (r + 3)(r − 1)3E( 16r

(r+3)(r−1)3
) − 4(r − 3)(r + 1)Π( 4r

(r+3)(r−1)
, 16r

(r+3)(r−1)3
)

4π(r − 1)
√

(r + 3)(r − 1)

=
1

3
(c000 − 1) −

1

2
+

(r + 3)(r − 1)3K( 16r

(r+3)(r−1)3
) − (r + 3)(r − 1)3E( 16r

(r+3)(r−1)3
) + 4(r − 3)(r + 1)Π( 4

(r−1)2
, 16r

(r+3)(r−1)3
)

4π(r − 1)
√

(r + 3)(r − 1)
,

c111 =
3

r
c011,

c0,1,−1 =
1

2
(rc001 − c000),

c1,1,−1 = rc011 − 2c001. (4.2)

Other Fourier coefficients cJ , J ∈ {−1, 0, 1}3, are obtained via cJ = cσ(J) =
c−J , where σ is a permutation.

Proof. First observe that
1

|p(z1, . . . , zd)|2 p(z1, . . . , zd) =
1

p( 1
z1

, . . . , 1
zd

)
=
∑

k∈N
d
0

φkz−k, z ∈ T
d, (4.3)

where φ0 = 1. If we extract the Fourier coefficients indexed by Λ = {0, 1}3

on both sides, we obtain⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c000 c00,−1 c0,−1,0 c0,−1,−1 c−100 c−1,0,−1 c−1,−1,0 c−1,−1,−1

c001 c000 c0,−1,1 c0,−1,0 c−101 c−1,0,0 c−1,−1,1 c−1,−1,0

c010 c01,−1 c000 c0,0,−1 c−110 c−1,1,−1 c−1,0,0 c−1,0,−1

c011 c010 c001 c000 c−111 c−1,1,0 c−1,0,1 c−1,0,0

c100 c1,0,−1 c1,−1,0 c1,−1,−1 c000 c0,0,−1 c0,−1,0 c0,−1,−1

c101 c100 c1,−1,1 c1,−1,0 c001 c000 c0,−1,1 c0,−1,0

c110 c1,1,−1 c1,0,0 c1,0,−1 c010 c0,1,−1 c000 c0,0,−1

c111 c110 c101 c100 c011 c010 c001 c000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
− 1

r− 1
r− 1
r

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ .
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Since p is a symmetric polynomial with real coefficients we have that cJ =
cσ(J) = c−J , where σ is a permutation. Thus we obtain

c000 − 3c001

r
= 1, (1 − 1

r
)c001 − c000

r
− c0,−1,1

r
= 0,

c100 − 2c0,−1,1

r
− c1,−1,−1

r
= 0,

c011 − c1,1,−1 + c100 + c0,−1,1

r
= 0, c111 − 2c011

r
− c100

r
= 0.

This yields the stated relations between the different Fourier coefficients (see
also [31, Proposition 3.1.1]).

Finally, we turn to c011. To prove the first expression for c011, by (4.1)
it suffices to prove
∫ 2π

0
cos t

√√√√ r2 − 2r cos t + 1

r2 − 2r cos t − 3
dt =

−(r + 3)(r − 1)3E( 16r

(r+3)(r−1)3
) + (r4 − 2r2 − 15)K( 16r

(r+3)(r−1)3
) − 4(r − 3)(r + 1)Π( 4r

(r+3)(r−1)
, 16r

(r+3)(r−1)3
)

r(r − 1)
√

(r + 3)(r − 1)
.

(4.4)

The left hand side of (4.4) can be rewritten as
∫ 2π

0

cos t

√
r2 − 2r cos t + 1
r2 − 2r cos t − 3

dt =
∫ 2π

0

√
r2 − 2r cos t + 1
r2 − 2r cos t − 3

dt

−
∫ 2π

0

(1 − cos t)

√
r2 − 2r cos t + 1
r2 − 2r cos t − 3

dt. (4.5)

We will first show that
∫ 2π

0

√
r2 − 2r cos t + 1
r2 − 2r cos t − 3

dt

=
4
(
4K( 16r

(r+3)(r−1)3 ) + (r − 3)(r + 1)Π( 4r
(r+3)(r−1) ,

16r
(r+3)(r−1)3 )

)

(r − 1)
√

(r + 3)(r − 1)
.

(4.6)

To prove (4.6) we need to show the equality

∫ 2π

0

√
r2 − 2r cos t + 1
r2 − 2r cos t − 3

dt =
∫ 2π

0

√
(r + 3)(r − 1)3 − 16r sin2 t

(r + 3)(r − 1) − 4r sin2 t
dt.

To prove the above equality we make some simplifications. In the second
integral, because everything is in terms of sin2 t, the integral over [0, 2π] is
equal to 4 times the integral over [0, π/2]. For the first integral, make the
change of variables cos t = 1 − 2 sin2 t/2 then t → t/2, then put everything
on [0, π/2] and divide by 4, to obtain,

r − 1√
(r − 3)(r + 1)

∫ π
2

0

√√√√ 1 + 4r
(r−1)2 sin2 t

1 + 4r
(r−3)(r+1) sin2 t

dt
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=

√
r − 1
r + 3

∫ π
2

0

√
1 − 16r

(r+3)(r−1)3 sin2 t

1 − 4r
(r+3)(r−1) sin2 t

dt.

Now let p2 = − 4r
(r−1)2 and q2 = − 4r

(r−3)(r+1) . Then 1 − q2 = (r+3)(r−1)
(r−3)(r+1) and

q2−p2

1−q2 = 16r
(r+3)(r−1)3 . The integrals become

∫ π
2

0

√
1 − p2 sin2 t

1 − q2 sin2 t
dt =

1√
1 − q2

∫ π
2

0

√
1 − q2−p2

1−q2 sin2 t

1 + q2

1−q2 sin2 t
dt. (4.7)

On the right hand integral make the change of variable sin t =
√

1−q2 sin x√
1−q2 sin2 x

3,

then [0, π/2] → [0, π/2] and the right hand integral goes to the left hand
integral. Indeed, we have

cos tdt =

√
1 − q2 sin2 x

√
1 − q2 cos x −

√
1 − q2 sin x 1

2
√

1−q2 sin2 x
(−2q2 sin x cos x)

1 − q2 sin2 x
dx.

Using cos t =
√

1 − (1−q2) sin2 x
1−q2 sin2 x

= cos x√
1−q2 sin2 x

, we find

dt =

√
1 − q2

1 − q2 sin2 x
dx.

Now equality (4.7) (and thus (4.6)) follows after some manipulations.
Next, we deal with the second term of the right hand side of (4.5):

∫ 2π

0

(1−cos t)

√
r2 − 2r cos t + 1
r2 − 2r cos t − 3

dt = 2
∫ π

0

(1−cos t)

√
r2−1
2r − cos t

r2−3
2r − cos t

dt. (4.8)

By using the change of variables u = cos t (and thus dt = − 1√
1−u2 du), we

can rewrite this as

2
∫ 1

−1

√
( r2+1

2r − u)(1 − u)

( r2−3
2r − u)(u − (−1))

du.

Let

a =
r2 + 1

2r
, b =

r2 − 3
2r

, c = 1, y = 1, d = −1,

and observe that a > b > c ≥ y > d. We can now use [8, Equations 252.17
and 362.16], which yield

∫ y

d

√
(c − u)(a − u)
(b − u)(u − d)

du =

(a − d)(c − d)g
2α2(k2 − α2)

(
α2E(k2) + (k2 − α2)K(k2)

+(2k2α2 − α4 − k2)Π(α2, k2)
)
,

3The reverse change of variables is sin x = sin t√
1−q2+q2 sin2 t

and we get dx =
√

1−q2

1−q2+q2 sin2 t
dt.
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where

g =
2√

(a − c)(b − d)
, α2 =

d − c

a − c
, k2 =

(a − b)(c − d)
(a − c)(b − d)

.

We obtain that (4.8) equals

(r − 1)3(r + 3)E( 16r
(r+3)(r−1)3

) − (r − 1)2(r + 1)2K( 16r
(r+3)(r−1)3

) + 4(r + 1)3Π( −4r
(r−1)2

, 16r
(r+3)(r−1)3

)

r

√
(r − 1)3(r + 3)

.

(4.9)

Next we observe that [8, Equation 117.03], after multiplying with (r−1)5(r+3)
4r(r+1)2 ,

gives

(r + 1)2Π(
−4r

(r − 1)2
,

16r

(r + 3)(r − 1)3
) =

(r − 3)(r + 1)Π(
4r

(r + 3)(r − 1)
,

16r

(r + 3)(r − 1)3
) + 4K(

16r

(r + 3)(r − 1)3
).

(4.10)

Putting these together with (4.6), yields (4.4).
To prove the second equality for c011 from the first, we use (see [8,

Formula 117.02])

Π(n,m) = K(m) − Π(
m

n
,m) +

π

2

√
n

(1 − n)(n − m)
,

with n = 4r
(r+3)(r−1) and m = 16r

(r+3)(r−1)3 . The constant here works out to

equal π
2

(r+3)
1
2 (r−1)

3
2

(r−3)(r+1) . Thus (4.2) follows. �

Equation (4.3) yields the relations

cklm − ck−1,l,m + ck,l−1,m + ck,l,m−1

r
= 0, (k, l,m) �∈ −N

3
0.

These equalities provide a partial picture of the Fourier coefficients of |1 −
z1+z2+z3

r |−2, r > 3. Our method to determine other relations rely on the
formulas obtained in Proposition 2.8. The inverses in this proposition are
obtained via [23, Theorem 1.1] and the ability to find a formula for the inverse
of a tridiagonal infinite Toeplitz matrix. If we want to use this method to
obtain expressions for Fourier coefficients beyond the indices {−1, 0, 1}3, we
will need to be able to find manageable expressions for (part of) the inverse
of more involved infinite (block) Toeplitz matrices, which is a challenge.
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