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1. Introduction

The g-state Potts model [1] has long been of interest as a classical spin model in which each spin can take on any of q
values in the interval I; = {1, 2, ..., q}, with a Kronecker delta function spin-spin interaction between spins on adjacent
sites [2,3]. In contrast to the g = 2 case, which is equivalent to the Ising model, for ¢ > 3, there are several different
ways that one can incorporate the effect of a symmetry-breaking (uniform) external magnetic field. The conventional
way is to define this field as favoring one particular spin value out of the g possible values in the set I, e.g., [4]. In [5-8]
we defined and studied properties of the g-state Potts model with a generalized external magnetic field that favors or
disfavors a subset consisting of more than just one value in I;. By convention, with no loss of generality, we take this
subset to consist of the first s values, denoted as the interval Iy = {1,...,s}. The orthogonal subset in I; is denoted
IsL = {s+ 1,...,q}. In the case that we considered, the value of the magnetic field is a constant, consistent with its
property as being applied externally. More general models with magnetic-like variables whose field values depend on the
vertices have also been discussed [9-11], but we will not need this generality here.

In the present paper we continue the study of the g-state Potts model in this generalized uniform external magnetic
field. We discuss measures of spin ordering in the presence of the external field and formulate an order parameter for
this model. The results are contrasted with the corresponding measures of spin ordering in the case of a conventional
external magnetic field that favors or disfavors a single spin value in I.

2. Definition and basic properties of the potts model in a generalized magnetic field

In this section we review the definition and basic properties of the model that we study. We will consider the
Potts model on a graph G(V, E) defined by its set V of vertices (site) and its set E of edges (bonds). For many physical
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applications, one usually takes G to be a regular d-dimensional lattice, but we retain the general formalism of graph theory
here for later use. In thermal equilibrium at temperature T, the partition function for the g-state Potts model on the graph
G in a generalized magnetic field is given by

z=Y e, 2.1)

{oi}

with the Hamiltonian

H=—J Soo;— ZH Z‘Sauﬂ (22)

€ij

where i, j, £ label vertices of G; o; are classical spin variables on these vertices, taking values in the set I; = {1, ..., q};
B = (ksT)~1; e; is the edge (bonds) joining vertices i and j; J is the spin-spin interaction constant; and

sz{H if p €l

. 2.3
0 if p eIt (2.3)

Unless otherwise stated, we restrict our discussion to the ferromagnetic (] > 0) version of the model, since the
antiferromagnetic model in a (uniform) external field entails complications due to competing interactions and frustration.
If H > 0, the external field favorably weights spin values in the interval I;, while if H < 0, this field favorably weights
spin values in the orthogonal interval I;-. This model thus generalizes a conventional magnetic field, which would favor
or disfavor one particular spin value. The zero-field Potts model Hamiltonian # and partition function Z are invariant
under the global transformation in which o; — go; V i € V, with g € S;, where S, is the symmetric (= permutation)
group on g objects. In the presence of the generalized external field defined in Eq. (2.3), this symmetry group of # and Z
is reduced from Sy at H = 0 to the tensor product

S ®Sys - (2.4)

This simplifies to the conventional situation in which the external magnetic field favors or disfavors only a single spin
value if s = 1 or s = g — 1, in which case the right-hand side of Eq. (2.4) is S;_1.
We use the notation

K=pB]., h=BH, y=¢,  v=y—1, w=e". (2.5)

The physical ranges of v are v > 0 for the Potts ferromagnet, and —1 < v < 0 for the Potts antiferromagnet. For fixed J
and H,as T — oo, v — 0 and w — 1, while for T — 0 (with our ferromagnetic choice ] > 0), v — oo; and w — oo
if H > 0 while w — 0 if H < 0. Recall that for ¢ = 2, the equivalence with the Ising model with standard Hamiltonian
(denoted with Is)

His = —Jis Z O'(IS) (IS) — Hys Z O','(IS) s (26)
i

€ij

where 0“5 41 makes use of the relations ] = 2J;; and H = 2Hj,.

One can express the Potts model partition function on a graph G in a form that does not make any explicit reference
to the spins o; or the summation over spin configurations in (2.1), but instead is expressed in a purely graph-theoretic
manner, as a sum of terms arising from the spanning subgraphs G’ C G, where G’ = (V, E’) with E’ C E. In zero field, this
was done in [12], with the result

Z(G.q.v)= ) v o(c) (2.7)

G'cG

For the model with a conventional external magnetic field that favors or disfavors a single spin value in the set I, a
spanning-subgraph formula for the partition function was given in [4]. For the model with a generalized magnetic field
that favors or disfavors a larger set I; consisting of two or more spin values in the set I; and has a value H;, = H, that
is the same for all vertices i € V, a spanning-subgraph formula for the partition function was presented in Ref. [5] (see
also [6]) and is as follows. Given a graph G = (V, E), the numbers of vertices, edges, and connected components of G are
denoted, respectively, by n(G) = n, e(G), and k(G). The purely graph-theoretic expression of the partition function of the
Potts model in a generalized magnetic field in this case is [5]

k(G")

Z(G,q,s, v, w) = Z (@ 1_[ (q— s+ sw'@y (2.8)

G'<G i=1

where G, 1 < i < k(G') denotes one of the k(G') connected components in a spanning subgraph G’ of G. The formula
(2.8) shows that Z is a polynomial in the variables g, s, v, and w, hence our notation Z(G, g, s, v, w). For the case where
the magnetic field favors (or disfavors) only a single spin value, i.e., for the case s = 1, the formula (2.8) reduces to the
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spanning subgraph formula for Z given in [4] (see also [13]). Parenthetically, we mention further generalizations that are
different from the one we study here. First, one can let the spin-spin exchange constants | be edge-dependent, denoted
as J; on the edge e;; joining vertices i and j. Second, one can let the value of the magnetic-field-type variable be different
for different vertices £ € V, so H, is replaced by H, ,. With these generalizations, a spanning-subgraph formula for the
partition function was given in [10] and studied further in [11].

Focusing on the term w€) in (2.8) and letting £ = n(G}) for compact notation, one can use the factorization relation

-1
w' = 1=w-1> w (29)

j=0
to deduce that the variable s enters in Z(G, q, s, v, w), only in the combination
t=s(w—1). (2.10)

Hence, the special case of zero external field, H = 0, i.e., w = 1, is equivalent to the formal value s = 0 (outside the
interval ).
Several relevant identities were derived in [5,6], including

Z(G,q,s,v,1)=Z(G, q,v) , (2.11)

Z(G,q,8,v,0)=Z(G,q —s,v), (2.12)

Z(G,q,q, v, w) = w"Z(G, q,v), (2.13)
and

Z(G,q,s,v,w) = w"Z(G,q.q —s,v,w ') . (2.14)

The identity (2.14) establishes a relation between the model with H > 0 and hence w > 1, and the model with H < 0
and hence 0 < w < 1. Given this identity, one may, with no loss of generality, restrict to H > 0, i.e,, w > 1, and we will
do this below, unless otherwise indicated.

In the limit n(G) — oo, the reduced, dimensionless free energy per vertex is

1
fUG},q,s,v,w) = n(él)gloo nC) In[Z(G, q, s, v, w)], (2.15)
where the symbol {G} denotes the formal n — oo limit of a given family of graphs, such as a regular lattice with some
specified boundary conditions. The actual Gibbs free energy per site is F(T, H) = —kgTf(T, H). For technical simplicity,
unless otherwise indicated, we will restrict to the ferromagnetic case J > 0 here; in [5-8] we have also discussed the
antiferromagnetic case. The zero-temperature limit of the antiferromagnetic version defines a weighted-set chromatic
polynomial that counts the number of assignments from q colors to the vertices of G subject to the condition that no two
adjacent vertices have the same color, with preferred (dispreferred) weighting given to colors in I for H > 0 (H < 0,
respectively). Here and below, in order to avoid cumbersome notation, we will use the same symbol Z with different sets
of arguments to refer to the full model, as Z(G, g, s, v, w) and the zero-field special case, Z(G, q, v).
The partition function of the zero-field Potts model is equivalent to an important function in mathematical graph
theory, namely the Tutte (also called Tutte-Whitney) polynomial T(G, x, y) [ 14]. This is defined as

TG, xy) = Y (x— OOy — 1y, (2.16)
G'cG

where c(G') denotes the number of linearly independent cycles on G'. Note that c(G') = e(G') + k(G') — n(G') =
e(G') + k(G') — n(G). The equivalence relation is

Z(G, q,v) = (x — 1)y — 1)OT(G, x, ), (2.17)
with
x:1+g, y=v+1, (2.18)
v

so that g = (x — 1)(y — 1). Reviews of the Tutte polynomial and generalizations include [9-11,15-18].
3. Magnetic order parameter in the Ising, O(N), and Potts model with a conventional magnetic field
3.1. Ising and O(N) models
In the Ising model (2.6) the magnetization per site is given by
oF  of

M(H)=—ﬁ—%, (3.1)
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and the spontaneous magnetization is M = limy_.o M(H). This M is (i) identically zero in the high-temperature phase
where the theory is invariant under the global Z, ~ S, symmetry and, (ii) for a regular lattice of dimensionality above the
lower critical dimensionality d, = 1, M is nonzero in the low-temperature phase where there is spontaneous breaking
of this global 2, symmetry, increasing from O to a maximum of 1 as T decreases from the critical temperature T, to
T = 0. Alternatively, in the ferromagnetic Ising model (2.6) on a regular lattice, the (square of the) magnetization can be
calculated in the absence of an external field as the limit

M? = lim (c®™y | (3.2)
i 7

“5)>

where (ai“s)aj is the two-spin correlation function and r denotes the Euclidean distance between the lattice sites i and

j on the lattice. For T > T, this correlation function (5’o") — 0 as r — oo, so that M = 0. Regarding the Ising model

as the N = 1 special case of an O(N) spin model, similar comments hold. Thus, consider the partition function
ZO(N) = f Hine*ﬁHO(N) . (33)
i

with
HO(N) = —]Zgi-gj—ﬁ‘zgi s (34)
(i) i

where §i is an N-component unit-normalized classical spin at site i on a given lattice and d2; denotes the O(N) integration
measure. For zero external field, this model has a global O(N) invariance. The presence of an external magnetic field H
explicitly breaks the O(N) symmetry down to O(N — 1). For general H, one has, for the thermal average of M = M(H),

o aF
M(H) = 3 (3.5)

and the relation
M° = lim 5;-S;) . (3.6)
r—00

As usual,_the spontaneous magnetization for the Ising and O(N) models is defined as My = limy_.o M(H) and 1\710 =
lim“:”ﬁo M(H), respectively.

3.2. Measures of spin ordering in Potts model with conventional magnetic field

The situation is different in the Potts model, even with a conventional external magnetic field that favors only one
spin value. In our formalism, this means that I; consists of the single value s = 1. Before proceeding to derive our new
results, we review this situation for this conventional case. For this purpose, it is useful to analyze the properties of the
spin-spin correlation function. It will be sufficient here and below to assume that the graph G is a regular d-dimensional
lattice. Let us denote as Pg(i, j) the probability (in the thermodynamic limit, in thermal equilibrium at temperature T)
that the spins o; and o; at the sites i and j in the lattice have the value a € I;. At T = oo, all spin configurations occur with
equal probability, so the probability that o; has a particular value a is just 1/q, and similarly with o}, so Pe(i,j) = 1/4°
at T = oo. To define a correlation function with the usual property that in the high-temperature phase, as the distance r
between the spins goes to infinity, they should be completely uncorrelated, one must therefore subtract this 1/q* term.
That is, in the Potts model, one defines the spin-spin correlation function as (e.g., [2])

1
Faa(Lj) = Paa(iaj) - qu . (37)

Thus, by construction, Ig(i,j) = 0 at T = oco. At T = 0, in the ferromagnetic Potts model, all of the spins take on the
same value in the set ;. Let us say that an infinitesimally small external field has been applied to favor the value a € I,
so then Pg(i, j) = 1/q and hence, under these conditions,
.11 g-
Tu(i,j)=—-—— =

aa(i, J) PR e
In the ferromagnetic Potts model with a conventional external (uniform) magnetic field favoring a single spin model, the
magnetic order parameter, M, normalized so that it is unity at T = 0, is then related to this spin-spin correlation function
I'4(i, j) according to

atT=0. (3.8)

2
M= ( d ) lim T, ) . (3.9)
q— 1) roo0

Although the quantity —dF /d0H = df /dh yields one measure of magnetic ordering, it is not the order parameter itself,
in contrast to the situation with both the Ising and O(N) spin models. Instead, as is evident from its definition, this partial
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derivative is equal to the fraction of the total number of sites in the (thermodynamic limit of the) lattice with spins taking

one particular value out of the set of q values. We denote this as
oF  of of

ToH oh - Vow

At T = oo, since all spin values are weighted equally, it follows that the fraction of the spins taking on any particular

value is 1/g, i.e.,

(3.10)

1
M=- atT=o00. (3.11)
q

In the opposite limit of zero temperature, given that J > 0, the spin-spin interaction forces all of the spins to have the
same value. There is then a dichotomy in the behavior of the system, depending on whether H is positive or negative. If
H > 0, then the external field forces this spin value to be the single value in I; favored by this field, so

M=1 atT=0ifH>0, (3.12)
If, on the other hand, H < 0, then the single spin value that all the spins are forced to have by the spin-spin interaction
to lie in the orthogonal complement, which, for this case is the set I- = {2, ..., q}, so the fraction in I is zero. Hence,

M=0 atT=0ifH<0. (3.13)

The zero-field values of M at a given temperature for the respective cases H > 0 and H < 0 are Mg+ = limy_, o+ M and
Mof = limHﬁof M.

Because the zero-field value of M does not vanish in the high-temperatures, S;-symmetric phase, it cannot be the order
parameter of the model, but instead is an auxiliary measure of the magnetic ordering per site. In the literature, studies
focused on the case H > 0 in formulating an appropriate order parameter. In this case, to define an order parameter,
one subtracts the T = oo value of M from the value for general T and normalizes the result so that the order parameter
saturates at unity at T = 0. This yields a measure of spin ordering that we denote as M:

M-—M—w M-—g¢ qM-1

M= = = 3.14
Mr—o — Mr=co 1—% q—1 .
The zero-field value of this order parameter, i.e., the spontaneous magnetization, is then
Mo = lim M . (3.15)
H—0

This construction was given for the specific case ¢ = 3 in [19] and for general g in [20] (see also [2], where M, was
denoted as myg). Series expansions [19] and Monte-Carlo simulations [20] for the two-dimensional Potts model were
consistent with the behavior expected of an order parameter, namely My = 0 in the high-temperature S;,-symmetric
phase and M > 0 in the low-temperature phase with spontaneous symmetry breaking of the global S, symmetry to S;_;.

A parenthetical remark is in order concerning the trivial case ¢ = 1 where the spins are all frozen to have the same
value and hence are nondynamical. In this ¢ = 1 case, up to a prefactor w", the partition function is equal to the free-field
result, w"Z(G, q, v). As a consequence, for any temperature, M = 1, so M has an indeterminate form 0/0. Thus, in using
the formula (3.14), one restricts to the range q > 2.

4. Measures of spin ordering in the Potts model with generalized magnetic field

In this section we present our new results on measures of spin ordering in the Potts model with a generalized magnetic
field, including, in particular, the order parameter for this model. In the limit T — oo, Py(i,j) = 1/¢?, independent of
s. This is a consequence of the fact that the Boltzmann weight e~#* in the expression for Z reduces to 1 for 8 = 0,
and so the spins are completely random. However, the auxiliary measure of spin ordering, M, behaves differently in the
Potts model with a generalized versus conventional external magnetic field. From the basic definition, calculating M from
Eq. (3.10) and then letting T — oo, we find the following general behavior:

s
M = - atT = oo and any finite H . (4.1)
q

In the opposite limit, T — 0, the value of M again depends on the sign of H. If H > 0, then (given that ] > 0), the
spin-spin interaction forces all spins to have the same value, and the presence of the external field forces this value to
lie in the set I, so

%in})M:lforH>0. (4.2)

In this T — 0 limit (again, given that ] > 0), if H < 0, then the spin-spin interaction forces all spins to have the same
value and this value lies in the orthogonal complement I}, so the fraction of spins in I is 0:

}in})M:OforH<0. (4.3)
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Finally, we record the behavior of M in the limits H — oo at fixed finite nonzero temperature. In terms of the Boltzmann
weights, these two limits are w — oo and w — 0 with v finite. As H — oo in this limit, all of the spins must take on
values in I, so

lim M = 1 for any finite nonzero T . (4.4)

H—o00

If H— —oo, then all spins must take on values in I}, so the fraction in I is zero:

Hlim M =0 for any finite nonzero T . (4.5)
——00
In order to obtain the zero-field value of M at a given temperature, as in the case of a conventional magnetic field, one
would calculate Z(G, q, s, v, w) on a given lattice graph G, take the thermodynamic limit, then calculate M and take the
limit H — 0t or H — 0~

We now construct a magnetic order parameter M for the Potts model in a generalized magnetic field. As noted above,
given the identity (2.14), we can, without loss of generality, restrict to H > 0 and we shall do so henceforth. We obtain

M—Mr_o M—7 qM—s

M= = 4.6
Mr—o —=Mr—os  1—73 q—s (46)

The spontaneous magnetization is then
Mo = lim M. (4.7)

H—0t

A word is in order concerning the apparent pole at s = q. If s = q, then the presence of the external field simply adds a
constant term —Hn to #, or equivalently, i.e., the partition function is equivalent to the product of the factor w" times
the zero-field Z, as specified in the identity (2.13), so that

M=1 ifs=gq, (4.8)

independent of temperature. Hence, just as was the case with the expression (3.14) for a conventional magnetic field
favoring just one spin, so also here, the expression (4.6) takes the indeterminate form 0/0 in this case. Hence, in using
(4.6), we restrict s to the interval 1 <s <q— 1.

5. Some explicit examples

Some explicit examples illustrate the use of (4.6) for the order parameter. Although a Peierls-type argument shows that
there is no spontaneous symmetry breaking of the S; ® S;_s; symmetry (2.4) on (the n — oo limit of a) one-dimensional
lattice or quasi-one-dimensional lattice strip, these types of lattices are, nevertheless, useful to illustrate some features
of Eq. (4.6).

5.1. 1D lattice

As a first example, we use the exact expression for Z(G, q, s, v, w) on a one-dimension lattice derived in [6]. This yields
the reduced dimensionless free energy per site (in the thermodynamic limit, in the notation of [6])

f(1D,q,s, v, w) = In(Az,1,01) , (5.1)
where

Az1.01 = %(A + \/E) , (5.2)
with

A=q+s(w—1)+v(w+1) (5.3)
and

R=A%—4v(qg+v)w . (5.4)

(As expected, in the thermodynamic limit, this result applies independent of the boundary conditions.) The resultant
auxiliary measure of spin ordering, M, is

B 2v(q+v)]

A+ VR (53)

M w[s+
= — v
VR
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It is straightforward to confirm that Eq. (5.5) satisfies the general relations (4.1)-(4.5). AsT — oo, i.e.,, 8 — 0, the variables
v and w (for finite | and H) approach the limits v — 0 and w — 1, i.e,, K — 0 and h — 0. In this limit, we calculate a
two-variable series expansion of M in K and h and find

s s 2 1 2s 1, 3 2s
M=2[1+(1-2)n 1+71<+7(1——)h+71< +7(1——)Kh
q q q 2 q q q q

1
n (7 - 5(1 - f))hZ + O(K?, K?h, K%, h3)} ] asT — 0. (5.6)
6 q\ ¢

Setting 8 = 0, one sees that this expansion satisfies the identity (4.1). Substituting Eq. (5.6) into our general expression
for the order parameter, we obtain

sh 2 1 2s 1, 3 2s 1 s S\,
M= 1+7I<+7(1——>h-|—71< +—<1——)I<h+<———(1——))h
q q 2 q q q q 6 ¢ q

+ O(K3, K%h, Kh?, h%) ] asT — oo, (5.7)

where the notation O(K3, K?h, Kh?, h3) refers to terms of order K3, K2h, Kh?, or h3. The proportionality of M to (s/q)h =
(s/q)BH as B — 0 is the expression of the Curie-Weiss relation for the induced magnetization for this model.

Given Eq. (4.6) connecting M and M, the susceptibilities defined via M and M are simply related to each other. Defining
xm = 0M/0H and x, = 0M/0H, we have

XM = (1 - g) XM - (5.8)

From Eq. (5.7), it follows that the two-variable high-temperature Taylor series expansion of y ., in powers of K and h is
given by

2 2 1, 6, 2 1 3
B m = = [ 1+ 2K + (1 - —S)h+ “K? 7(1 - —S)Kh+ (— - 3(1 - f))hz
q q 7/ a4 g q
+ O(K3, K%h, Kh?, h%) ] asT — oo . (5.9)

For H — oo at finite T (equivalently, w — oo with finite v), we calculate the Taylor series expansion

_ s(@—s)  s(q—s)s(q—s)—2v(q+v)] 1
M=1- (s +v)w (s + v)4w? +O<E> (5.10)
and hence
_ sq sqls(q — s) — 2v(q + v)] 1
M=1- (s +v)2w (s + v)4w? O(wB) . (5.11)

To show these results numerically for a typical case, we take the illustrative values ¢ = 5 and v = 2. In Figs. 1 and
2 we plot M for this 1D lattice as a function of w in the intervals 1 < w < 8 and 8 < w < 40. Fixing the value of v
corresponds most simply to fixing the values of J and T, so that the variation in w then amounts to a variation in H at
fixed T. The results show that, as expected, M increases monotonically with increasing w and thus H, for fixed T. For
small h, i.e, w — 1 — 0T, the values of M satisfy the relation M = (s/q)h, in accord with (5.7) and hence are larger for
larger s. However, as is evident from the series expansion (5.11) and from Fig. 2, this monotonicity is not preserved in M
for this 1D lattice at large w.

5.2. L, = 2 lattice strips

In [8] we calculated Z(G, q, s, v, w) for the width L, strips of the square and triangular lattice. This work generalized our
previous calculations of Z(G, q, v) in zero external field on these strips [21,22]. In the infinite-length limit (independent
of longitudinal boundary conditions), the reduced free energy is given, respectively, by fq =2 = (1/2)InAs = and
fm',Lyzz =(1/2)In Atri,Ly=2, where Asq.Ly=2 and AgriL,=2 are roots of respective degree-5 and degree-6 algebraic equations.
Hence, it is not possible to calculate the derivatives M = wadf /9w analytically to give explicit expressions for M and M for
these infinite-length lattice strips. However, using numerical differentiation, it is still possible to obtain values for these
quantities, given input values for v, g, and s. Using this method and again taking the illustrative values ¢ =5 and v = 2,
we show plots of M for the infinite-length strips of the square and triangular lattices with width L, = 2 in Figs. 3-6. As
was the case with the 1D lattice, for small h, the values of M satisfy the relation M = (s/q)h, and thus are larger for
larger s, but this monotonicity relation does not apply for large w.

7
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Mecal 1

[«
—_
[\)_-
w_-
N
N
o\_-
\]_-
|

Fig. 1. Plot of M (denoted Mcal in this and other figures)for the 1D lattice as a function of w in the range 1 < w < 8 for the illustrative values
g =5 and v = 2. For w > 1, the curves, going from bottom to top, refer to s = 1, 2, 3, 4. The colors are s = 1 (red), s = 2 (brown), s = 3 (green),
and s = 4 (blue).

0.981 /

0.971
0.96+
0.951
Mcal 1
0.94+
0.93+
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Fig. 2. Plot of M for the 1D lattice as a function of w in the range 8 < w < 40 for the illustrative values ¢ =5 and v = 2. For w = 8, the curves,
going from bottom to top, refer to s =1, 2, 3, 4; crossings of curves are evident for larger w values. The color coding is the same as in Fig. 1.

6. Thermodynamic properties and critical behavior

As discussed in Section 2 above, in the presence of the generalized external magnetic field defined in Eq. (2.3), the
symmetry group of # and Z is reduced from S; at H = 0 to the tensor product in Eq. (2.4), and this further simplifies to
Sg—1 if s = 1 in which case, the external field favors or disfavors only a single spin value. From the identity (2.14), the
case s = q — 1 is effectively equivalent to the conventional case s = 1. However, if s is in the interval

2<s<q-2, (6.1)
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Fig. 3. Plot of M for the infinite-length strip of the square lattice of width L, = 2, as a function of w in the range 1 < w < 4 for the illustrative
values ¢ =5 and v = 2. For w > 1, the curves, going from bottom to top, refer to s =1, 2, 3, 4. The color coding is the same as in Fig. 1.
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Fig. 4. Plot of M for the infinite-length strip of the square lattice of width L, = 2, as a function of w in the range 4 < w < 40 for the illustrative
values ¢ =5 and v = 2. The curves, going from bottom to top, refer to s =4, 3, 2, 1. The color coding is the same as in Fig. 1.

then the general model of Egs. (2.2) and (2.3) exhibits properties that are interestingly different from those of a g-state
Potts model in a conventional magnetic field. In this section we will consider both signs of H and J. With a conventional
magnetic field, at a given temperature T, if H > |J|, the interaction with the external field dominates over the spin-spin
interaction, and if h = BH is sufficiently large, the spins are frozen to the single favored value. In contrast, in the model
with a generalized magnetic field, if s lies in the interval (6.1), and if |H| > |J|, this effectively reduces the model to
(i) an s-state Potts model if H > 0, or (ii) a (q — s)-state Potts model if H < 0. For given values of q and s, taking the
thermodynamic limit of a given regular lattice, there are, in general, four types of possible models, depending on the sign
of H and the sign of J. A discussion of these models, including the types of critical behavior, where present in the case of
square lattice, was given in (Section 4 of) [7] with details for the illustrative case ¢ = 5 and s = 2. We generalize this here
to g > 5. For H = 0, the ferromagnetic version of the model has a first-order phase transition, with spontaneous breaking

9
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Fig. 5. Plot of M for the infinite-length strip of the triangular lattice of width L, = 2, as a function of w in the range 1 < w < 4 for the illustrative
values ¢ =5 and v = 2. For w > 1, the curves, going from bottom to top, refer to s =1, 2, 3, 4. The color coding is the same as in Fig. 1.
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Fig. 6. Plot of M for the infinite-length strip of the triangular lattice of width L, = 2, as a function of w in the range 4 < w < 40 for the illustrative
values ¢ =5 and v = 2. The curves, going from bottom to top, refer to s =4, 3, 2, 1. The color coding is the same as in Fig. 1.

of the S5 symmetry, at K. = In(1 + ,/q), while the antiferromagnetic version has no finite-temperature phase transition
and is disordered even at T = 0 [2,3]. For H > 0 and H >> |J|, the theory reduces effectively to a two-state Potts model,
i.e,, an Ising model. Owing to the bipartite property of the square lattice, there is an elementary mapping that relates
the ferromagnetic and antiferromagnetic versions of the model, and, as is well known, both have a second-order phase
transition, with spontaneous symmetry breaking of the S, ~ Z, symmetry, at |K;| = In(1 ++/2) ~ 0.881 (Where K = BI),
with thermal and magnetic critical exponents y, = 1, y, = 15/8, described by the rational conformal field theory (RCFT)
with central charge c = 1/2. For H < 0 and |H| > |J|, the theory effectively reduces to a (q — 2)-state Potts model. In the
ferromagnetic case, ] > 0, if (a) ¢ = 5, then the resultant 3-state Potts ferromagnet has a well-understood second-order
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phase transition, with spontaneous symmetry breaking of the S; symmetry, at K. = In(1 + +/3) =~ 1.01, with thermal
and magnetic critical exponents y; = 6/5, y, = 28/15, described by a RCFT with central charge ¢ = 4/5; (b) if ¢ = 6,
then the resultant 4-state Potts ferromagnet also has a second-order phase transition with thermal and magnetic critical
exponents y; = 3/2, y, = 15/8, described by a RCFT with central charge ¢ = 1 [2,23,24]; and (c) if ¢ > 7, then the
resultant Potts ferromagnet has a first-order transition [2,3]. In the antiferromagnetic case, | < 0, if ¢ = 5, the resultant
3-state Potts antiferromagnet has no finite-temperature phase transition but is critical at T = 0 (without frustration), with
nonzero ground-state entropy per site S/kg = (3/2)1n(4/3) >~ 0.432 [2,25]. If ¢ > 6, then the resultant (q — 2)-state Potts
antiferromagnet (on the square lattice) does not have any symmetry-breaking phase transition at any finite temperature
and is disordered also at T = 0. Similar discussions can be given for other lattices.

7. Conclusions

In this paper we have discussed measures of spin ordering in the g-state Potts model in a generalized external magnetic
field that favors or disfavors spin values in a subset Iy = {1, ..., s} of the total set of q values. In particular, we have
constructed an order parameter M (given in Eq. (4.6)) and have presented an illustrative evaluation of it, together with
relevant series expansions, for the (thermodynamic limit of the) one-dimensional lattice, as well as quantitative plots of
M for this 1D lattice and for strips of the square and triangular lattices.
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