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We formulate measures of spin ordering in the q-state ferromagnetic Potts model in a
generalized external magnetic field that favors or disfavors spin values in a subset Is =

{1, . . . , s} of the total set of q values. The results are contrasted with the corresponding
measures of spin ordering in the case of a conventional external magnetic field that
favors or disfavors a single spin value out of total set of q values. Some illustrative
calculations are included.

© 2023 Published by Elsevier B.V.

1. Introduction

The q-state Potts model [1] has long been of interest as a classical spin model in which each spin can take on any of q
values in the interval Iq = {1, 2, . . . , q}, with a Kronecker delta function spin–spin interaction between spins on adjacent
sites [2,3]. In contrast to the q = 2 case, which is equivalent to the Ising model, for q ≥ 3, there are several different
ays that one can incorporate the effect of a symmetry-breaking (uniform) external magnetic field. The conventional
ay is to define this field as favoring one particular spin value out of the q possible values in the set Iq, e.g., [4]. In [5–8]

we defined and studied properties of the q-state Potts model with a generalized external magnetic field that favors or
disfavors a subset consisting of more than just one value in Iq. By convention, with no loss of generality, we take this
subset to consist of the first s values, denoted as the interval Is = {1, . . . , s}. The orthogonal subset in Iq is denoted
I⊥s = {s + 1, . . . , q}. In the case that we considered, the value of the magnetic field is a constant, consistent with its
property as being applied externally. More general models with magnetic-like variables whose field values depend on the
vertices have also been discussed [9–11], but we will not need this generality here.

In the present paper we continue the study of the q-state Potts model in this generalized uniform external magnetic
field. We discuss measures of spin ordering in the presence of the external field and formulate an order parameter for
this model. The results are contrasted with the corresponding measures of spin ordering in the case of a conventional
external magnetic field that favors or disfavors a single spin value in Iq.

2. Definition and basic properties of the potts model in a generalized magnetic field

In this section we review the definition and basic properties of the model that we study. We will consider the
Potts model on a graph G(V , E) defined by its set V of vertices (site) and its set E of edges (bonds). For many physical
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pplications, one usually takes G to be a regular d-dimensional lattice, but we retain the general formalism of graph theory
ere for later use. In thermal equilibrium at temperature T , the partition function for the q-state Potts model on the graph
in a generalized magnetic field is given by

Z =

∑
{σi}

e−βH , (2.1)

ith the Hamiltonian

H = −J
∑
eij

δσi,σj −

q∑
p=1

Hp

∑
ℓ

δσℓ,p , (2.2)

here i, j, ℓ label vertices of G; σi are classical spin variables on these vertices, taking values in the set Iq = {1, . . . , q};
= (kBT )−1; eij is the edge (bonds) joining vertices i and j; J is the spin–spin interaction constant; and

Hp =

{
H if p ∈ Is
0 if p ∈ I⊥s

. (2.3)

nless otherwise stated, we restrict our discussion to the ferromagnetic (J > 0) version of the model, since the
ntiferromagnetic model in a (uniform) external field entails complications due to competing interactions and frustration.
f H > 0, the external field favorably weights spin values in the interval Is, while if H < 0, this field favorably weights
pin values in the orthogonal interval I⊥s . This model thus generalizes a conventional magnetic field, which would favor
r disfavor one particular spin value. The zero-field Potts model Hamiltonian H and partition function Z are invariant
nder the global transformation in which σi → gσi ∀ i ∈ V , with g ∈ Sq, where Sq is the symmetric (= permutation)
roup on q objects. In the presence of the generalized external field defined in Eq. (2.3), this symmetry group of H and Z
s reduced from Sq at H = 0 to the tensor product

Ss ⊗ Sq−s . (2.4)

his simplifies to the conventional situation in which the external magnetic field favors or disfavors only a single spin
alue if s = 1 or s = q − 1, in which case the right-hand side of Eq. (2.4) is Sq−1.
We use the notation

K = βJ , h = βH , y = eK , v = y − 1 , w = eh . (2.5)

he physical ranges of v are v ≥ 0 for the Potts ferromagnet, and −1 ≤ v ≤ 0 for the Potts antiferromagnet. For fixed J
nd H , as T → ∞, v → 0 and w → 1, while for T → 0 (with our ferromagnetic choice J > 0), v → ∞; and w → ∞

f H > 0 while w → 0 if H < 0. Recall that for q = 2, the equivalence with the Ising model with standard Hamiltonian
denoted with Is)

HIs = −JIs
∑
eij

σ
(Is)
i σ

(Is)
j − HIs

∑
i

σ
(Is)
i , (2.6)

here σ
(Is)
i = ±1 makes use of the relations J = 2JIs and H = 2HIs.

One can express the Potts model partition function on a graph G in a form that does not make any explicit reference
o the spins σi or the summation over spin configurations in (2.1), but instead is expressed in a purely graph-theoretic
anner, as a sum of terms arising from the spanning subgraphs G′

⊆ G, where G′
= (V , E ′) with E ′

⊆ E. In zero field, this
as done in [12], with the result

Z(G, q, v) =

∑
G′⊆G

ve(G′) qk(G
′) . (2.7)

or the model with a conventional external magnetic field that favors or disfavors a single spin value in the set Iq, a
panning-subgraph formula for the partition function was given in [4]. For the model with a generalized magnetic field
hat favors or disfavors a larger set Is consisting of two or more spin values in the set Iq and has a value Hi,p = Hp that
s the same for all vertices i ∈ V , a spanning-subgraph formula for the partition function was presented in Ref. [5] (see
lso [6]) and is as follows. Given a graph G = (V , E), the numbers of vertices, edges, and connected components of G are
enoted, respectively, by n(G) ≡ n, e(G), and k(G). The purely graph-theoretic expression of the partition function of the
otts model in a generalized magnetic field in this case is [5]

Z(G, q, s, v, w) =

∑
G′⊆G

ve(G′)
k(G′)∏
i=1

(q − s + swn(G′
i)) , (2.8)

here G′

i , 1 ≤ i ≤ k(G′) denotes one of the k(G′) connected components in a spanning subgraph G′ of G. The formula
2.8) shows that Z is a polynomial in the variables q, s, v, and w, hence our notation Z(G, q, s, v, w). For the case where
he magnetic field favors (or disfavors) only a single spin value, i.e., for the case s = 1, the formula (2.8) reduces to the
2
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panning subgraph formula for Z given in [4] (see also [13]). Parenthetically, we mention further generalizations that are
ifferent from the one we study here. First, one can let the spin–spin exchange constants J be edge-dependent, denoted
s Jij on the edge eij joining vertices i and j. Second, one can let the value of the magnetic-field-type variable be different
or different vertices ℓ ∈ V , so Hp is replaced by Hℓ,p. With these generalizations, a spanning-subgraph formula for the
artition function was given in [10] and studied further in [11].
Focusing on the term wn(G′

i) in (2.8) and letting ℓ = n(G′

i) for compact notation, one can use the factorization relation

wℓ
− 1 = (w − 1)

ℓ−1∑
j=0

wj (2.9)

to deduce that the variable s enters in Z(G, q, s, v, w), only in the combination

t = s(w − 1) . (2.10)

Hence, the special case of zero external field, H = 0, i.e., w = 1, is equivalent to the formal value s = 0 (outside the
interval Is).

Several relevant identities were derived in [5,6], including

Z(G, q, s, v, 1) = Z(G, q, v) , (2.11)

Z(G, q, s, v, 0) = Z(G, q − s, v) , (2.12)

Z(G, q, q, v, w) = wn Z(G, q, v) , (2.13)

and

Z(G, q, s, v, w) = wnZ(G, q, q − s, v, w−1) . (2.14)

The identity (2.14) establishes a relation between the model with H > 0 and hence w > 1, and the model with H < 0
and hence 0 ≤ w < 1. Given this identity, one may, with no loss of generality, restrict to H ≥ 0, i.e., w ≥ 1, and we will
do this below, unless otherwise indicated.

In the limit n(G) → ∞, the reduced, dimensionless free energy per vertex is

f ({G}, q, s, v, w) = lim
n(G)→∞

1
n(G)

ln[Z(G, q, s, v, w)] , (2.15)

here the symbol {G} denotes the formal n → ∞ limit of a given family of graphs, such as a regular lattice with some
specified boundary conditions. The actual Gibbs free energy per site is F (T ,H) = −kBTf (T ,H). For technical simplicity,
nless otherwise indicated, we will restrict to the ferromagnetic case J > 0 here; in [5–8] we have also discussed the
ntiferromagnetic case. The zero-temperature limit of the antiferromagnetic version defines a weighted-set chromatic
olynomial that counts the number of assignments from q colors to the vertices of G subject to the condition that no two
djacent vertices have the same color, with preferred (dispreferred) weighting given to colors in Is for H > 0 (H < 0,

respectively). Here and below, in order to avoid cumbersome notation, we will use the same symbol Z with different sets
f arguments to refer to the full model, as Z(G, q, s, v, w) and the zero-field special case, Z(G, q, v).
The partition function of the zero-field Potts model is equivalent to an important function in mathematical graph

heory, namely the Tutte (also called Tutte-Whitney) polynomial T (G, x, y) [14]. This is defined as

T (G, x, y) =

∑
G′⊆G

(x − 1)k(G
′)−k(G)(y − 1)c(G

′) , (2.16)

here c(G′) denotes the number of linearly independent cycles on G′. Note that c(G′) = e(G′) + k(G′) − n(G′) =

(G′) + k(G′) − n(G). The equivalence relation is

Z(G, q, v) = (x − 1)k(G)(y − 1)n(G)T (G, x, y) , (2.17)

ith

x = 1 +
q
v

, y = v + 1 , (2.18)

o that q = (x − 1)(y − 1). Reviews of the Tutte polynomial and generalizations include [9–11,15–18].

. Magnetic order parameter in the Ising, O(N ), and Potts model with a conventional magnetic field

3.1. Ising and O(N) models

In the Ising model (2.6) the magnetization per site is given by

M(H) = −
∂F

=
∂ f

, (3.1)

∂H ∂h

3
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nd the spontaneous magnetization is M ≡ limH→0 M(H). This M is (i) identically zero in the high-temperature phase
here the theory is invariant under the global Z2 ≈ S2 symmetry and, (ii) for a regular lattice of dimensionality above the

lower critical dimensionality dℓ = 1, M is nonzero in the low-temperature phase where there is spontaneous breaking
f this global Z2 symmetry, increasing from 0 to a maximum of 1 as T decreases from the critical temperature Tc to

T = 0. Alternatively, in the ferromagnetic Ising model (2.6) on a regular lattice, the (square of the) magnetization can be
calculated in the absence of an external field as the limit

M2
= lim

r→∞
⟨σ

(Is)
i σ

(Is)
j ⟩ , (3.2)

where ⟨σ
(Is)
i σ

(Is)
j ⟩ is the two-spin correlation function and r denotes the Euclidean distance between the lattice sites i and

j on the lattice. For T > Tc , this correlation function ⟨σ
(Is)
i σ

(Is)
j ⟩ → 0 as r → ∞, so that M = 0. Regarding the Ising model

as the N = 1 special case of an O(N) spin model, similar comments hold. Thus, consider the partition function

ZO(N) =

∫ ∏
i

dΩie−βHO(N) , (3.3)

with

HO(N) = −J
∑
⟨ij⟩

S⃗i · S⃗j − H⃗ ·

∑
i

S⃗i , (3.4)

where S⃗i is an N-component unit-normalized classical spin at site i on a given lattice and dΩi denotes the O(N) integration
measure. For zero external field, this model has a global O(N) invariance. The presence of an external magnetic field H⃗
explicitly breaks the O(N) symmetry down to O(N − 1). For general H⃗ , one has, for the thermal average of M⃗ = M⃗(H⃗),

M⃗(H⃗) = −
∂F

∂H⃗
, (3.5)

nd the relation

|M⃗|
2

= lim
r→∞

⟨S⃗i · S⃗j⟩ . (3.6)

s usual, the spontaneous magnetization for the Ising and O(N) models is defined as M0 = limH→0 M(H) and M⃗0 =

lim
|H⃗|→0 M⃗(H⃗), respectively.

3.2. Measures of spin ordering in Potts model with conventional magnetic field

The situation is different in the Potts model, even with a conventional external magnetic field that favors only one
spin value. In our formalism, this means that Is consists of the single value s = 1. Before proceeding to derive our new
results, we review this situation for this conventional case. For this purpose, it is useful to analyze the properties of the
spin–spin correlation function. It will be sufficient here and below to assume that the graph G is a regular d-dimensional
lattice. Let us denote as Paa(i, j) the probability (in the thermodynamic limit, in thermal equilibrium at temperature T )
that the spins σi and σj at the sites i and j in the lattice have the value a ∈ Iq. At T = ∞, all spin configurations occur with
equal probability, so the probability that σi has a particular value a is just 1/q, and similarly with σj, so Paa(i, j) = 1/q2
at T = ∞. To define a correlation function with the usual property that in the high-temperature phase, as the distance r
between the spins goes to infinity, they should be completely uncorrelated, one must therefore subtract this 1/q2 term.
That is, in the Potts model, one defines the spin–spin correlation function as (e.g., [2])

Γaa(i, j) = Paa(i, j) −
1
q2

. (3.7)

hus, by construction, Γaa(i, j) = 0 at T = ∞. At T = 0, in the ferromagnetic Potts model, all of the spins take on the
ame value in the set Iq. Let us say that an infinitesimally small external field has been applied to favor the value a ∈ Iq,
so then Paa(i, j) = 1/q and hence, under these conditions,

Γaa(i, j) =
1
q

−
1
q2

=
q − 1
q2

at T = 0 . (3.8)

n the ferromagnetic Potts model with a conventional external (uniform) magnetic field favoring a single spin model, the
agnetic order parameter, M, normalized so that it is unity at T = 0, is then related to this spin–spin correlation function

Γaa(i, j) according to

M =

(
q2

q − 1

)
lim
r→∞

Γaa(i, j) . (3.9)

Although the quantity −∂F/∂H = ∂ f /∂h yields one measure of magnetic ordering, it is not the order parameter itself,
in contrast to the situation with both the Ising and O(N) spin models. Instead, as is evident from its definition, this partial
4
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erivative is equal to the fraction of the total number of sites in the (thermodynamic limit of the) lattice with spins taking
ne particular value out of the set of q values. We denote this as

M = −
∂F
∂H

=
∂ f
∂h

= w
∂ f
∂w

. (3.10)

t T = ∞, since all spin values are weighted equally, it follows that the fraction of the spins taking on any particular
alue is 1/q, i.e.,

M =
1
q

at T = ∞ . (3.11)

n the opposite limit of zero temperature, given that J > 0, the spin–spin interaction forces all of the spins to have the
ame value. There is then a dichotomy in the behavior of the system, depending on whether H is positive or negative. If
> 0, then the external field forces this spin value to be the single value in Is favored by this field, so

M = 1 at T = 0 if H > 0 , (3.12)

f, on the other hand, H < 0, then the single spin value that all the spins are forced to have by the spin–spin interaction
o lie in the orthogonal complement, which, for this case is the set I⊥s = {2, . . . , q}, so the fraction in Is is zero. Hence,

M = 0 at T = 0 if H < 0 . (3.13)

he zero-field values of M at a given temperature for the respective cases H > 0 and H < 0 are M0+ = limH→0+ M and
0− = limH→0− M .
Because the zero-field value of M does not vanish in the high-temperatures, Sq-symmetric phase, it cannot be the order

arameter of the model, but instead is an auxiliary measure of the magnetic ordering per site. In the literature, studies
ocused on the case H > 0 in formulating an appropriate order parameter. In this case, to define an order parameter,
ne subtracts the T = ∞ value of M from the value for general T and normalizes the result so that the order parameter
aturates at unity at T = 0. This yields a measure of spin ordering that we denote as M:

M =
M − MT=∞

MT=0 − MT=∞

=
M −

1
q

1 −
1
q

=
qM − 1
q − 1

. (3.14)

he zero-field value of this order parameter, i.e., the spontaneous magnetization, is then

M0 = lim
H→0

M . (3.15)

his construction was given for the specific case q = 3 in [19] and for general q in [20] (see also [2], where M0 was
enoted as m0). Series expansions [19] and Monte-Carlo simulations [20] for the two-dimensional Potts model were
onsistent with the behavior expected of an order parameter, namely M0 = 0 in the high-temperature Sq-symmetric
hase and M > 0 in the low-temperature phase with spontaneous symmetry breaking of the global Sq symmetry to Sq−1.
A parenthetical remark is in order concerning the trivial case q = 1 where the spins are all frozen to have the same

value and hence are nondynamical. In this q = 1 case, up to a prefactor wn, the partition function is equal to the free-field
result, wnZ(G, q, v). As a consequence, for any temperature, M = 1, so M has an indeterminate form 0/0. Thus, in using
he formula (3.14), one restricts to the range q ≥ 2.

. Measures of spin ordering in the Potts model with generalized magnetic field

In this section we present our new results on measures of spin ordering in the Potts model with a generalized magnetic
ield, including, in particular, the order parameter for this model. In the limit T → ∞, Paa(i, j) = 1/q2, independent of
s. This is a consequence of the fact that the Boltzmann weight e−βH in the expression for Z reduces to 1 for β = 0,
and so the spins are completely random. However, the auxiliary measure of spin ordering, M , behaves differently in the
Potts model with a generalized versus conventional external magnetic field. From the basic definition, calculating M from
Eq. (3.10) and then letting T → ∞, we find the following general behavior:

M =
s
q

at T = ∞ and any finite H . (4.1)

n the opposite limit, T → 0, the value of M again depends on the sign of H . If H > 0, then (given that J > 0), the
spin–spin interaction forces all spins to have the same value, and the presence of the external field forces this value to
lie in the set Is, so

lim
T→0

M = 1 for H > 0 . (4.2)

n this T → 0 limit (again, given that J > 0), if H < 0, then the spin–spin interaction forces all spins to have the same
alue and this value lies in the orthogonal complement I⊥s , so the fraction of spins in Is is 0:

lim M = 0 for H < 0 . (4.3)

T→0

5



S.-C. Chang and R. Shrock Physica A 613 (2023) 128532

F
w
v

I

I
w
l

g

T

A

t

i
f
(

5

t
l
o

5

t

w

w

a

(
a

inally, we record the behavior of M in the limits H → ±∞ at fixed finite nonzero temperature. In terms of the Boltzmann
eights, these two limits are w → ∞ and w → 0 with v finite. As H → ∞ in this limit, all of the spins must take on
alues in Is, so

lim
H→∞

M = 1 for any finite nonzero T . (4.4)

f H → −∞, then all spins must take on values in I⊥s , so the fraction in Is is zero:

lim
H→−∞

M = 0 for any finite nonzero T . (4.5)

n order to obtain the zero-field value of M at a given temperature, as in the case of a conventional magnetic field, one
ould calculate Z(G, q, s, v, w) on a given lattice graph G, take the thermodynamic limit, then calculate M and take the

imit H → 0+ or H → 0−.
We now construct a magnetic order parameter M for the Potts model in a generalized magnetic field. As noted above,

iven the identity (2.14), we can, without loss of generality, restrict to H > 0 and we shall do so henceforth. We obtain

M =
M − MT=∞

MT=0 − MT=∞

=
M −

s
q

1 −
s
q

=
qM − s
q − s

. (4.6)

he spontaneous magnetization is then

M0 = lim
H→0+

M . (4.7)

word is in order concerning the apparent pole at s = q. If s = q, then the presence of the external field simply adds a
constant term −Hn to H, or equivalently, i.e., the partition function is equivalent to the product of the factor wn times
he zero-field Z , as specified in the identity (2.13), so that

M = 1 if s = q , (4.8)

ndependent of temperature. Hence, just as was the case with the expression (3.14) for a conventional magnetic field
avoring just one spin, so also here, the expression (4.6) takes the indeterminate form 0/0 in this case. Hence, in using
4.6), we restrict s to the interval 1 ≤ s ≤ q − 1.

. Some explicit examples

Some explicit examples illustrate the use of (4.6) for the order parameter. Although a Peierls-type argument shows that
here is no spontaneous symmetry breaking of the Ss ⊗ Sq−s symmetry (2.4) on (the n → ∞ limit of a) one-dimensional
attice or quasi-one-dimensional lattice strip, these types of lattices are, nevertheless, useful to illustrate some features
f Eq. (4.6).

.1. 1D lattice

As a first example, we use the exact expression for Z(G, q, s, v, w) on a one-dimension lattice derived in [6]. This yields
he reduced dimensionless free energy per site (in the thermodynamic limit, in the notation of [6])

f (1D, q, s, v, w) = ln(λZ,1,0,1) , (5.1)

here

λZ,1,0,1 =
1
2

(
A +

√
R

)
, (5.2)

ith

A = q + s(w − 1) + v(w + 1) (5.3)

nd

R = A2
− 4v(q + v)w . (5.4)

As expected, in the thermodynamic limit, this result applies independent of the boundary conditions.) The resultant
uxiliary measure of spin ordering, M , is

M =
w
√

[
s + v −

2v(q + v)
√

]
. (5.5)
R A + R
6
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t is straightforward to confirm that Eq. (5.5) satisfies the general relations (4.1)–(4.5). As T → ∞, i.e., β → 0, the variables
v and w (for finite J and H) approach the limits v → 0 and w → 1, i.e., K → 0 and h → 0. In this limit, we calculate a
two-variable series expansion of M in K and h and find

M =
s
q

[
1 +

(
1 −

s
q

)
h
{
1 +

2
q
K +

1
2

(
1 −

2s
q

)
h +

1
q
K 2

+
3
q

(
1 −

2s
q

)
Kh

+

(1
6

−
s
q

(
1 −

s
q

))
h2

+ O(K 3, K 2h, Kh2, h3)
}]

as T → ∞ . (5.6)

etting β = 0, one sees that this expansion satisfies the identity (4.1). Substituting Eq. (5.6) into our general expression
for the order parameter, we obtain

M =
sh
q

[
1 +

2
q
K +

1
2

(
1 −

2s
q

)
h +

1
q
K 2

+
3
q

(
1 −

2s
q

)
Kh +

(1
6

−
s
q

(
1 −

s
q

))
h2

+ O(K 3, K 2h, Kh2, h3)
]

as T → ∞ , (5.7)

here the notation O(K 3, K 2h, Kh2, h3) refers to terms of order K 3, K 2h, Kh2, or h3. The proportionality of M to (s/q)h =

s/q)βH as β → 0 is the expression of the Curie–Weiss relation for the induced magnetization for this model.
Given Eq. (4.6) connectingM andM, the susceptibilities defined viaM andM are simply related to each other. Defining

M = ∂M/∂H and χM = ∂M/∂H , we have

χM =

(
1 −

s
q

)
χM . (5.8)

rom Eq. (5.7), it follows that the two-variable high-temperature Taylor series expansion of χM in powers of K and h is
given by

β−1χM =
s
q

[
1 +

2
q
K +

(
1 −

2s
q

)
h +

1
q
K 2

+
6
q

(
1 −

2s
q

)
Kh +

(1
2

−
3s
q

(
1 −

s
q

))
h2

+ O(K 3, K 2h, Kh2, h3)
]

as T → ∞ . (5.9)

For H → ∞ at finite T (equivalently, w → ∞ with finite v), we calculate the Taylor series expansion

M = 1 −
s(q − s)
(s + v)2w

+
s(q − s)[s(q − s) − 2v(q + v)]

(s + v)4w2 + O
( 1

w3

)
(5.10)

nd hence

M = 1 −
sq

(s + v)2w
+

sq[s(q − s) − 2v(q + v)]
(s + v)4w2 + O

( 1
w3

)
. (5.11)

To show these results numerically for a typical case, we take the illustrative values q = 5 and v = 2. In Figs. 1 and
we plot M for this 1D lattice as a function of w in the intervals 1 ≤ w ≤ 8 and 8 ≤ w ≤ 40. Fixing the value of v

orresponds most simply to fixing the values of J and T , so that the variation in w then amounts to a variation in H at
ixed T . The results show that, as expected, M increases monotonically with increasing w and thus H , for fixed T . For
mall h, i.e., w − 1 → 0+, the values of M satisfy the relation M = (s/q)h, in accord with (5.7) and hence are larger for
arger s. However, as is evident from the series expansion (5.11) and from Fig. 2, this monotonicity is not preserved in M
or this 1D lattice at large w.

.2. Ly = 2 lattice strips

In [8] we calculated Z(G, q, s, v, w) for the width Ly strips of the square and triangular lattice. This work generalized our
revious calculations of Z(G, q, v) in zero external field on these strips [21,22]. In the infinite-length limit (independent
f longitudinal boundary conditions), the reduced free energy is given, respectively, by fsq,Ly=2 = (1/2) ln λsq,Ly=2 and
tri,Ly=2 = (1/2) ln λtri,Ly=2, where λsq,Ly=2 and λtri,Ly=2 are roots of respective degree-5 and degree-6 algebraic equations.
ence, it is not possible to calculate the derivatives M = w∂ f /∂w analytically to give explicit expressions for M and M for

these infinite-length lattice strips. However, using numerical differentiation, it is still possible to obtain values for these
quantities, given input values for v, q, and s. Using this method and again taking the illustrative values q = 5 and v = 2,
we show plots of M for the infinite-length strips of the square and triangular lattices with width Ly = 2 in Figs. 3–6. As
as the case with the 1D lattice, for small h, the values of M satisfy the relation M = (s/q)h, and thus are larger for

arger s, but this monotonicity relation does not apply for large w.
7
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q
a

6

s
S
c

Fig. 1. Plot of M (denoted Mcal in this and other figures)for the 1D lattice as a function of w in the range 1 ≤ w ≤ 8 for the illustrative values
= 5 and v = 2. For w ≳ 1, the curves, going from bottom to top, refer to s = 1, 2, 3, 4. The colors are s = 1 (red), s = 2 (brown), s = 3 (green),
nd s = 4 (blue).

Fig. 2. Plot of M for the 1D lattice as a function of w in the range 8 ≤ w ≤ 40 for the illustrative values q = 5 and v = 2. For w = 8, the curves,
going from bottom to top, refer to s = 1, 2, 3, 4; crossings of curves are evident for larger w values. The color coding is the same as in Fig. 1.

. Thermodynamic properties and critical behavior

As discussed in Section 2 above, in the presence of the generalized external magnetic field defined in Eq. (2.3), the
ymmetry group of H and Z is reduced from Sq at H = 0 to the tensor product in Eq. (2.4), and this further simplifies to
q−1 if s = 1 in which case, the external field favors or disfavors only a single spin value. From the identity (2.14), the
ase s = q − 1 is effectively equivalent to the conventional case s = 1. However, if s is in the interval

2 ≤ s ≤ q − 2 , (6.1)
8
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(

Fig. 3. Plot of M for the infinite-length strip of the square lattice of width Ly = 2, as a function of w in the range 1 ≤ w ≤ 4 for the illustrative
values q = 5 and v = 2. For w ≳ 1, the curves, going from bottom to top, refer to s = 1, 2, 3, 4. The color coding is the same as in Fig. 1.

Fig. 4. Plot of M for the infinite-length strip of the square lattice of width Ly = 2, as a function of w in the range 4 ≤ w ≤ 40 for the illustrative
values q = 5 and v = 2. The curves, going from bottom to top, refer to s = 4, 3, 2, 1. The color coding is the same as in Fig. 1.

then the general model of Eqs. (2.2) and (2.3) exhibits properties that are interestingly different from those of a q-state
Potts model in a conventional magnetic field. In this section we will consider both signs of H and J . With a conventional
magnetic field, at a given temperature T , if H ≫ |J|, the interaction with the external field dominates over the spin–spin
interaction, and if h = βH is sufficiently large, the spins are frozen to the single favored value. In contrast, in the model
with a generalized magnetic field, if s lies in the interval (6.1), and if |H| ≫ |J|, this effectively reduces the model to
i) an s-state Potts model if H > 0, or (ii) a (q − s)-state Potts model if H < 0. For given values of q and s, taking the
thermodynamic limit of a given regular lattice, there are, in general, four types of possible models, depending on the sign
of H and the sign of J . A discussion of these models, including the types of critical behavior, where present in the case of
square lattice, was given in (Section 4 of) [7] with details for the illustrative case q = 5 and s = 2. We generalize this here
to q ≥ 5. For H = 0, the ferromagnetic version of the model has a first-order phase transition, with spontaneous breaking
9
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Fig. 5. Plot of M for the infinite-length strip of the triangular lattice of width Ly = 2, as a function of w in the range 1 ≤ w ≤ 4 for the illustrative
values q = 5 and v = 2. For w ≳ 1, the curves, going from bottom to top, refer to s = 1, 2, 3, 4. The color coding is the same as in Fig. 1.

Fig. 6. Plot of M for the infinite-length strip of the triangular lattice of width Ly = 2, as a function of w in the range 4 ≤ w ≤ 40 for the illustrative
values q = 5 and v = 2. The curves, going from bottom to top, refer to s = 4, 3, 2, 1. The color coding is the same as in Fig. 1.

of the S5 symmetry, at Kc = ln(1 +
√
q), while the antiferromagnetic version has no finite-temperature phase transition

and is disordered even at T = 0 [2,3]. For H > 0 and H ≫ |J|, the theory reduces effectively to a two-state Potts model,
i.e., an Ising model. Owing to the bipartite property of the square lattice, there is an elementary mapping that relates
the ferromagnetic and antiferromagnetic versions of the model, and, as is well known, both have a second-order phase
transition, with spontaneous symmetry breaking of the S2 ≈ Z2 symmetry, at |Kc | = ln(1+

√
2) ≃ 0.881 (where K = βJ),

with thermal and magnetic critical exponents yt = 1, yh = 15/8, described by the rational conformal field theory (RCFT)
with central charge c = 1/2. For H < 0 and |H| ≫ |J|, the theory effectively reduces to a (q− 2)-state Potts model. In the
ferromagnetic case, J > 0, if (a) q = 5, then the resultant 3-state Potts ferromagnet has a well-understood second-order
10
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p
a
t
e
r
3
n

hase transition, with spontaneous symmetry breaking of the S3 symmetry, at Kc = ln(1 +
√
3) ≃ 1.01, with thermal

nd magnetic critical exponents yt = 6/5, yh = 28/15, described by a RCFT with central charge c = 4/5; (b) if q = 6,
hen the resultant 4-state Potts ferromagnet also has a second-order phase transition with thermal and magnetic critical
xponents yt = 3/2, yh = 15/8, described by a RCFT with central charge c = 1 [2,23,24]; and (c) if q ≥ 7, then the
esultant Potts ferromagnet has a first-order transition [2,3]. In the antiferromagnetic case, J < 0, if q = 5, the resultant
-state Potts antiferromagnet has no finite-temperature phase transition but is critical at T = 0 (without frustration), with
onzero ground-state entropy per site S/kB = (3/2) ln(4/3) ≃ 0.432 [2,25]. If q ≥ 6, then the resultant (q− 2)-state Potts

antiferromagnet (on the square lattice) does not have any symmetry-breaking phase transition at any finite temperature
and is disordered also at T = 0. Similar discussions can be given for other lattices.

7. Conclusions

In this paper we have discussed measures of spin ordering in the q-state Potts model in a generalized external magnetic
field that favors or disfavors spin values in a subset Is = {1, . . . , s} of the total set of q values. In particular, we have
constructed an order parameter M (given in Eq. (4.6)) and have presented an illustrative evaluation of it, together with
relevant series expansions, for the (thermodynamic limit of the) one-dimensional lattice, as well as quantitative plots of
M for this 1D lattice and for strips of the square and triangular lattices.
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