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We study an asymmetric dark matter model with self-interacting dark matter consisting of a Dirac
fermion y coupled to a scalar or vector mediator, such that the reaction y + y — y + y is well described by
perturbation theory. We compute the scattering cross section o, the transfer cross section o7, and the
viscosity cross section oy for this reaction. As one part of our study, we give analytic and numerical
comparisons of results obtained with the inclusion of both #-channel and u-channel exchanges and results
obtained in an approximation that has often been used in the literature that includes only the 7-channel
contribution. The velocity dependences of these cross sections are studied in detail and shown to be in

accord with observational data.
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I. INTRODUCTION

There is compelling evidence for dark matter (DM),
comprising about 85% of the matter in the Universe. Cold
dark matter (CDM) has been shown to account for the
observed properties of large-scale structure on distance
scales larger than ~10 Mpc [1-7]"* (reviews include
[8-13].) Some possible problems with fitting observational
data on length scales of ~1-10 kpc were noticed with early
CDM simulations that lacked baryon feedback [14-16].
These included the prediction of greater density in the
central region of galaxies than was observed (the core-cusp
problem), a greater number of dwarf satellite galaxies than
were seen (the missing satellite problem), and the so-called
“too big to fail” problem pertaining to star formation in
dwarf satellite galaxies. This led to the consideration of
models in which dark matter particles have significant self-
interactions. The extension of cold dark matter N-body
simulations to include baryon feedback can ameliorate

lSee, e.g., Particle Data Group, Review of Particle Properties
online at http://pdg.lbl.gov and L. Baudis and S. Profumo, Dark
Matter Minireview at this website.

Specifically, defining Q; = p;/p., where p, = 3H}/(872G),
with H the current Hubble constant, G the Newton gravitational
constant, and p; the mass density of a constituent i, current
cosmological observations yield the results Q,, = 0.315(7) for
the matter density, Qpy = 0.265(7) for the dark matter density,
and Q; = 0.0493(6) for the baryon matter density (see Particle
Data Group online).
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these problems with pure CDM simulations [17-28].
Nevertheless, cosmological models with self-interacting
dark matter (SIDM) are of considerable interest in their
own right and have been the subject of intensive study [14],
[29-77]. Other candidates for dark matter, such as primor-
dial black holes [78], mirror dark matter [31,79,80], warm
dark matter [81-84], ultralight (pseudo)scalar dark matter
[85,86], and dark matter in the context of extra-dimensional
models [87,88] have also been studied but will not be
discussed here.

A general estimate shows what size the cross section for
scattering of dark matter particles, denoted generically as o,
should be in order to alleviate problems with CDM
simulations lacking baryon feedback. It is necessary that
there should be one or more DM-DM scatterings over the
age of the Universe. The rate of DM-DM scatterings is

given by
c
I'= <_) UrelP’DM>
mpm

where mpy; denotes the mass of the DM particle.
Numerically, this is

=01 Gyr! o/mpy Urel DM _
yr (1 cm?/g) \50 km/s ) \0.1 My /pc?

(1.2)

(1.1)

An important property of cross sections of self-interacting
dark matter particles, inferred from fits to observational
data, is that they should decrease as a function of the
relative velocities v, of these DM particles. Quantitatively,
fits to galactic data on the scale of ~I1-10 kpc, with
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velocities v, ~50-200km/s, yield values o/mpy ~
lcm?/g, while fits to observations of galaxy clusters on
distance scales of several Mpc and v, ~ O(10%) km/s
generally yield smaller values of &/mpy ~0.1 cm?/g
(note the conversion relation 1 cm?/g = 1.8 barn/GeV).

In this paper we consider SIDM models in which the
dark matter is comprised of a spin-1/2 Dirac fermion y,
interacting with a mediator, generically denoted £. Both the
DM fermion and the mediator are taken to be singlets under
the Standard Model (SM). We study two versions of this
model, namely one in which the mediator field is a real
scalar, ¢, and another in which the mediator is a vector
field, £ = V. In both versions, we work in the context of an
asymmetric dark matter (ADM) theory (for a review, see,
e.g., [42]). Thus, by the time at which large-scale structure
formation begins, a net asymmetry has built up in the
number density of y and y particles. By convention, we take
this asymmetry to be such that the number density of y
particles is dominant over that of y particles. We assume
parameter values such that the lowest-order perturbative
calculation of the cross section gives a reliable description
of the physics, so we do not need to deal with non-
perturbative effects and bound states of dark matter
particles. We compute the scattering cross section o, the
transfer cross section o7, and the viscosity cross section oy,
for this reaction. As one part of our study, we give analytic
and numerical comparisons of results obtained with the
inclusion of both #-channel and u-channel exchanges and
results obtained in an approximation that has often been
used in the literature that includes only the #-channel
contribution. Our new results provide improved accuracy
for fitting models with self-interacting dark matter to
observational data.

In the version of our SIDM model with a real scalar
mediator £ = ¢h, we take the interaction between y and ¢ to
be of Yukawa form, as described by the interaction
Lagrangian

Ly =y, lixle. (1.3)

In the second version, the DM fermion y is assumed to be
charged under a U(1),, gauge symmetry with gauge field V
and gauge coupling g. Since only the product of the U(1),,
charge of y times g occurs in the covariant derivative in this
theory, we may, without loss of generality, take this charge
to be unity and denote the product as g,. The corresponding
interaction Lagrangian is

Lygv = gy leraV*. (1.4)
A Higgs-type mechanism is assumed to break the U(1),,
symmetry and give a mass my to the gauge field V. For
compact notation, we use the same symbol, a,, to denote
y2/(4r) for the case of a scalar mediator and g2/ (4x) for
the case of a vector mediator. For our study, it will be

convenient to have one reference set of parameters, and for
this purpose we will use the values

m,=5GeV, ms=5MeV, a,=3x10"  (1.5)

where, as above, £ denotes ¢ or V in the two respective
versions of the model. Thus, this model makes use of a light
mediator. Motivations for this choice are discussed below.
We will also calculate cross sections for a range of values of
the coupling, a,, and the mediator mass, m;, and show how
the results compare with those obtained with the reference
set of values in Eq. (1.5). Note that the y mass term is of
Dirac form, Lml = m,jy; we do not consider Majorana

mass terms for y here.

Self-interacting dark matter models of this type
have been shown to ameliorate problems with excessive
density on the scale of ~1 kpc in the cores of galaxies
and to improve fits to morphological properties of
galaxies and, on larger length scales extending to several
Mpc, also improve fits observational data on clusters of
galaxies [14], [29-77]. Self-interacting dark matter mod-
els with scalar and/or vector mediators are motivated by
the fact that these yield DM-DM scattering cross sections
that decrease as a function of the relative velocities v,
of colliding DM particles, as is desirable to fit observa-
tional data. The reason for our restriction to a vectorial
gauge interaction in Eq. (1.4) is that the generalization of
this to a chiral gauge theory, with an interaction £ =
qr9leLy e )V* + qrglZryr]V* in which the charges
qr # qr would lead to triangle gauge anomalies unless
one added further DM fermions to cancel these. To
maintain maximal simplicity, we have thus restricted this
version of the model to the vectorial interaction (1.4).

The relative velocities of DM particles on all of the scales
relevant for galactic and cluster properties are nonrelativ-
istic. Consequently, an approach that has often been used is
to model the scattering in terms of a quantum-mechanical
problem with a potential of the type that would result in the
nonrelativistic limit starting from the 7-channel exchange of
the mediator. In [64], an analysis was given of the full
quantum field theoretic scattering of DM particles in the
case of reaction with incident y + y. However, Ref. [64] did
not consider in depth the reaction

x+x—-x+x (1.6)

that is relevant to an ADM model. In passing, we note that
our analysis is equally applicable for symmetric dark matter
models; however, in this case, the reaction (1.6) only
contributes in part to the DM-DM scattering, the other
process being ¥ + y — ¥ + y, which was considered exten-
sively in Ref. [64]. Here we focus on the reaction (1.6).
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II. BACKGROUND

In this section we explain the reasons for our choice of
parameter values (1.5) in our model. First, in asymmetric
dark matter models, with the asymmetries in the dark
matter and the baryons being of similar magnitude, it is
plausible that

Mpm _ PDM 5

~5, 2.1
m, = o (2.1)

where p,, is the average cosmological baryon density, and
m,, is the proton mass [42]. This leads to the choice
m, ~5 GeV. (It should be noted that the simple relation-
ship can be avoided in specific models, depending on the
mechanisms that are assumed for the generation of the
x — y number asymmetry [42], but it will suffice for our
present purposes.) Second, as discussed above, SIDM fits
to small-scale structure yield 6/mpy ~ 1 cm?/g. Now, we
will show that in our model, 6/m, ~2zaym, /m?. Setting

this equal to 1 cm?/g determines the mediator mass m;

to be
a){ 1/2 m)( 1/4
_ MeV. (22
e (1.2x10‘5> (5 GeV ev. (22)

Third, in order to effectively annihilate away the symmetric
component of the dark matter in the early Universe in the
ADM model, one requires a sizable cross section for
Jx — &€ Note that, from Eq. (2.2), it follows that m; is
naturally smaller than m,,, so that this process is kinemat-
ically allowed. The depletion of the symmetric component
of the DM in the early Universe is satisfied when [39,40,42]

2ra’
~ x -25 3
(OVret) vy = i 2 0.6 x 107= cm’ /s,
X

(2.3)

where we have anticipated that m, < m,; this then yields a
lower bound on the SIDM coupling strength. Combining
this with a similar analysis for yy — ¢¢, one obtains the
lower bound

m
>2x 1074 %), 2.4
Ty~ =X (5 GeV) (24)

As stated before, for simplicity, we assume parameter
values such that lowest-order perturbative calculations
are sufficient to describe the scattering. From Eq. (A3)
in Appendix A, this perturbativity condition requires that
a)(ml/m,/, < 1. Using the constraints in Eqgs. (2.1), (2.2),
(2.4), and (A3), we then choose the values of the parameters
in Eq. (1.5). Because the DM particle y and the mediator
are SM-singlets, these choices for their masses are in
accord with bounds on DM particles and mediators from
current data (for summaries of bounds, see, e.g., [89-91]).

Although we use the particular set of values of the
parameters in Eq. (1.5) for much of our analysis, we also
perform cross section calculations for a substantial range of
allowed values of a, and m,, in Sec. VI. These calculations
show how our results would change with different
(allowed) values of parameters. Importantly, our choices
for m, and me, which are motivated from the above
considerations, also lead to the desired velocity depend-
ences for the SIDM cross sections in the model that are of
the right order to fit observational data.

III. KINEMATICS

In this section we review some basic kinematics relevant
for our cross section calculations. Since the number density
of jy fermions is much smaller than that of y fermions after
the y fermions have annihilated away in the ADM
framework, the dominant self-interactions of the y DM
particles arise from the reaction (1.6). We take a, to be
sufficiently small that the y-& interaction can be well
described by lowest-order perturbation theory. This entails
the condition that there be no significant Sommerfeld
enhancement of the scattering. In the case of a vector
mediator, the reaction (1.6) involves a repulsive interaction
of the y particles, so there is obviously no Sommerfeld
enhancement. Our choice of parameters (1.5) also guaran-
tees the reliability of the lowest-order perturbative calcu-
lation in the scalar case, as is discussed further in
Appendix A.

At tree level, there are two graphs contributing to the
x +x — y + y reaction, involving exchange of the media-
tor in the 7-channel and u-channel, with a relative minus
sign between the two terms in the amplitude, resulting from
the fact that these two graphs are related by the interchange
of identical fermions in the final state. These graphs and
the associated momentum labeling are shown in Fig. 1.

For the reaction x(pi)+yx(p2) = x(p3) +x(ps), we
define the usual invariants

s = (p1+p2)* = (ps+ pa)’

t=(p1=p3)* = (Ps—p2)°

u=(p1—ps)* = (p3s—p2)* (3.1)
We review some basic kinematics relevant for the analysis
of this reaction. In the center-of-mass (CM) frame, the

energies of each of the particles in the initial and final states
are the same and are equal to

E =Y (3.2)

Similarly, the magnitudes of the 3-momenta of each of the
particles in the initial and final states are the same and are
equal to
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x(p1) > > x(p3)

X(p2) > > X(pa)

(a) t-channel

FIG. 1.

x(p1) x(p3)
¢ o
x(p2) X (p4)

(b) u-channel

Feynman diagrams for the reaction yy — yy via the exchange of the mediator particle, £. We show the case where £ = V. In

standard notation, replacing the wavy line by a dashed line represents the case where & = ¢.

=5 (3.3

where the magnitudes of the CM velocities are

(3.4)

In the nonrelativistic limit, the relative velocity with
which the two y particles approach each other is

ﬂrel = 2:3)(’ (35)

so in this limit, |p, | = m,f,/2. The angle between p, and
D3 in the center-of-mass frame is the CM scattering angle,
6. The invariants s, ¢, and u can be written in terms of | ﬁ){
and 0 as

s = 4(m3 +[p, ).
t = —4|p,|*sin*(6/2),

u=—4/p,|*cos*(6/2). (3.6)

The transformation § — 7 — 0 interchanges the ¢ and u
channels, as is evident in (3.6), since sin[(1/2)(z — 0)] =
cos(6/2).

|

IV. xx — xx SCATTERING CROSS SECTIONS
WITH SCALAR MEDIATOR

A. Differential and total cross sections

The lowest-order (tree-level) amplitude for the y + y —
x + y reaction resulting from the interaction (1.3) has the
form
M= MO - M), (4.1)
where M) and M are the t-channel and u-channel
contributions, and the relative minus sign accounts for
exchanging identical fermions in the final state. The
Lorentz-invariant differential cross section is

do 1 =2
dr~ 167A(s, m> mz)Z|M| '

XX

(4.2)

where A(x,y,z) = x% +y? + 22 = 2(xy + yz + zx), and 3
denotes an average over initial spins and a sum
over final spins. Here, A(s,m2,m}) = (sB,)*. For our
discussion, it will be useful to distinguish the terms
in do/dt arising from S |IM®OP, STIM®?2, and
SIIMI MO 4 MO MOT = 25 Re[MD* M), We
denote these as do()/dt, do'*)/dt, and do'™ /dt, respec-
tively. We find

do  mal [(t—4ml)* (u—4m2)? 1 {1
— = - —(P+u?—s?)+8m2s —8m ¢ |. (4.3)
dr (p,s)? (t—mé)2 (u—mé)2 (t—mé)(u—m;) 2 e x
The first and second terms on the right-hand side (RHS) of do _Als,my,m3)do  (Bys\ do a4
Eq. (4.3) are do'"/dt and do'™) /dt, while the third term dQ) oy dms  di \4x)dr (4.4)

with curly brackets is do'™) /dt. Since the amplitude (4.1) is
antisymmetric under interchange of identical particles in
the final state, and equivalently under interchange of the
t-channel and u-channel terms, it follows that the square
of the amplitude is symmetric under this interchange.
This symmetry under the interchange 7 <> u is evident
in the RHS of Eq. (4.3). The center-of-mass cross section,
(do/dQ) ey, is related to do/dt as

In terms of the center-of-mass scattering angle 6, the
symmetry of the RHS of Eq. (4.3) under the interchange
t <> u is expressed as the symmetry

(@) 0=(%) @-o. 6
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Because of the identical particles in the final state, a
scattering event in which a scattered y particle emerges
at angle @ is indistinguishable from one in which a scattered
x emerges at angle 7 — 6. The total cross section for the
reaction (1.6) thus involves a symmetry factor of 1/2 to
compensate for the double-counting involved in the inte-
gration over the range 6 € [0, z]:

1 do
=— [ dQ|—= .
STEEIN
Owing to the symmetry (4.5), this is equivalent to a polar
angle integration from 0 to z/2:

1 [1 do 1 do

2/_1d0059<dQ>CM /0 dcosG(dQ)CM. (4.7)
[Recall that if the final state consisted of n identical
particles, the factor 1/2 in Eq. (4.6) would be replaced
by 1/n!]

In addition to the differential cross section (do/dQ2)cps
other related (center-of-mass) differential cross sections
have been used in the study of the effects of self-interacting
dark matter, motivated by earlier analyses of transport
properties in gases and plasmas (e.g., [92] and references
therein). A major reason for this was the desire to define a
differential cross section that yields a useful description of
the thermalization effect of DM-DM scattering, particularly
in the case where the mass of the mediator particle is much
smaller than the mass of the DM particle. In this case, to
the extent that the scattering angle 6 is close to 0 for
distinguishable particles or close to 0 or z for indistin-
guishable particles, the DM particle trajectories are not
significantly changed by the scattering. To give greater
weighting to large-angle scattering that thermalizes par-
ticles in a gas or plasma, researchers [92] have used the
transfer (T) differential cross section,

(4.6)

dot do
2OT (1 —cosO) [ 22
aq — (1—cos )<d9) o

and the viscosity (V) differential cross section,

(4.8)

(4.9)

do
Y — (1 =cos?0) —
d (= cost) <d9> oM

(Although the same symbol, V, is used for the vector
mediator and viscosity, the context will always make clear
which meaning is intended.) For the same reason, namely
that these describe thermalization effects better than the
ordinary cross section, the transfer and viscosity cross
sections have been used in studies of DM-DM scattering
(e.g., [31,41] and subsequent work).

Given the invariance of (do/dQ)cy under the trans-
formation @ — 7 — @ and the fact that cos @ is odd under
this transformation, it follows that the integral of the
product of cos@ times (do/dQ)c-y vanishes. Hence, the
total cross section is equal to the total transfer cross section:

1
o*:l/dQ do :2_71' dcos@E

2 I d
—g/_ldcosé’(l —cosH)(d—;>CM = or.

As was noted in [92], the transfer differential cross section
does not correctly describe the scattering in the case of
identical particles, since it does not maintain the @ <> 7 — 0
symmetry in the reaction. However, given Eq. (4.10),
the resultant integral over angles is equal to the integral
of the ordinary (unweighted) cross section, i.e., 67 = o.
The viscosity differential cross section, with its angle-
weighting factor of (1 — cos? ) = sin? & does maintain the
0 <> 7 — 6 symmetry in the scattering of identical particles.
In passing, we note that another type of differential cross
section has also been considered that weights large-angle
scattering [45], namely (1 — | cos@|)(do/d2)cy,; this also
maintains the @ — 7z — @ symmetry of reaction (1.6).)

In the nonrelativistic (NR) limit $, < 1, the kinematic
invariants have the property that s> {|¢|, |ul}; m2>
{|#], |u|}; and s — (2m,)?. Hence, in this limit, the CM
differential cross section reduces to

(4.10)

1

(da) ) 2[ 1 n 1
aad — 2m _
dQ) e © L= mé)z (u— m55>2

(t— mi)(u - mi)

1 1

1
-0 [(1 T+ rsin2(0/2))7

where

RQN
(8]

m
oy — 7

N

(4.12)

(1 + rcos®(0/2))2 (1 + rsin®(0/2))(1 + rcos?(6/2))

}, (4.11)

I
and r is the ratio

(4.13)

- <ﬂrelm)() 2‘
g
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The property that the transformation 6 — 7 — 6 [under
which sin(6/2) — cos(6/2)] interchanges the ¢ and u
channels is evident in Eq. (4.11), since it interchanges
the first and second terms arising, respectively, from
| M2 and from | M |2, and leaves the third term arising
from —2Re(M* M®)) invariant. Since all of the y-y
relative velocities v, in the relevant observational data are
nonrelativistic, we will henceforth specialize to this case,
taking the subscript NR to be implicit in the notation.

Since self-interacting dark matter has been studied
extensively before, it is appropriate to discuss how our
current results compare with and complement previous
work. In [Eq. (25) of] the review [54] on SIDM, the
differential cross section in the center of mass for elastic
DM self-scattering was given (in the same perturbative
Born regime a,m,/my < 1 as we use here) as

do am’ oo
dQ  [mvi (1 —cos6)/2+m3]*  [rsin?(6/2) + 1]*°
(4.14)

where we transcribe the result from [54] in our notation in
the second term of Eq. (4.14). As is evident, this corre-
sponds to the f-channel contribution in our full result
(4.11). However, the true differential cross section for
the DM self-scattering y + y — y + y must include not
just the t-channel contribution but also the u-channel
contribution, as we have done here. A subsequent study
in [70] gave results from a semiclassical solution of the
Schrodinger equation for the quantum mechanical problem
of a DM particle scattering from a Yukawa potential and
noted identical-particle effects. Our work is complementary
to [70], since we perform a full quantum field theory
calculation with analysis of both #-channel and u-channel
contributions, rather than just solving a quantum-mechani-
cal potential scattering problem. See also [77].

Regarding the range of values of the ratio r in Eq. (4.13),
it is important to note that even in the nonrelativistic regime
Pl < 1, it is not necessarily the case that the ratio r is
small. With the illustrative mass values in Eq. (1.5), and
taking into account that for v ~3 x 10° km/s (i.e.,
Bre ~ 1072) for DM particles in galaxy clusters, it follows
that r ~ 10% in this case. In contrast, for the analysis of
DM self-interactions on length scales of order a few kpc
within a galaxy, if v, ~30 km/sec (i.e., S~ 107,
then r ~ O(1072).

It is interesting to elucidate how the various contributions
to the cross section from |MO]2, |M®]2,  and
2Re(M* M) behave as a function of r. We find that
in the r < 1 regime relevant for the analysis of galactic data
on the 1-10 kpc scale, the terms contributing to
(do/dQ)cy have the property that the r-channel term
|M®]? and the u-channel term |M®|? give equal con-
tributions, while the 7-u interference term 2Re (M ()* M ()

gives a contribution equal in magnitude and opposite in
sign to that from |[M® 2. As we denoted the three terms
contributing to do/dt, we similarly label the three terms
contributing to (do/dQ2)cy and the resultant total cross
section with superscripts (¢), (1), and (tu), so that the
respective contributions to the total cross section are

. 1 do')
? 2 /< Z9) )CM ! S ( )
and
=06 + 6 4 ), (4.16)
We calculate
270,
(1 = 5 — 2220 4.1
c o T+ r (4.17)
and
In(1 +r)
() — _4 4.18
c 70y R ( )
so that
1 In(1+r)
=4 — . 4.19
° myOL—l—r r(2—|—r)] ( )

For fixed o, the total cross section ¢ is a monotonically
decreasing function of the ratio r. Concerning the individ-
ual contributions to ¢, we observe that

o) =6 = —6\") =276, atr=0, (4.20)

so that for small r, there is a cancellation between the
interference term o™ and the u-channel term o™ (or
equivalently, the #-channel term, since o) =6®). In
contrast, for large r, oY) = ¢\*) decrease as 270, /r, while
o) decreases more rapidly, as (") ~ —4zc,Inr/r?. The
total cross section has the small-r Taylor series expansion

7
6 = 2zn0 [1 - r—l—gr2 + 0(r3)] for r< 1. (4.21)

For » > 1, o has the series expansion

6:47560 [1_(1+1nr)+0<1n_r>
r

r r?
for NR regime and r > 1. (4.22)
The prefactor in Eq. (4.22) is
droy 472'0@2{ (4.23)

ro mé/}2 '

rel
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To compare the full cross section with the result obtained
by including only the contribution from the t-channel, we
consider the ratio

1 In(1
% _sli= M (4.24)
o) r(2+r)
This ratio has the small-r expansion
40 r3+0(4) for r < 1 (4.25)
— = — - r or r , .
ot 6 6

so in the small-r regime, ¢ is approximately equal to ().
For the (nonrelativistic) large-r regime, the ratio (4.24) has
the expansion

c Inr Inr-—1 Inr

for NR regime and r > 1.

(4.26)

Thus, in this large-r regime relevant for fits to observational
data on galaxy clusters, the full y-y scattering cross section
is larger by approximately a factor of 2 then the result
obtained by keeping only the contribution from the
t-channel.

In order to compare the full calculation including
contributions from both the #-channel and u-channel with
a calculation that only includes the ¢-channel, we plot ¢
versus o) in Fig. 2 as a function of .. For this purpose,
we use the illustrative values of masses and couplings in
Eq. (1.5). In accordance with our result (5.2) below, we
subsume the cases of a scalar and a vector mediator
together and denote m; as the mass of ¢ or V. We note
again that with these values, there is no significant
Sommerfeld enhancement of the cross section, justifying
our use of the lowest-order (tree-level) perturbatively
computed amplitude in the scalar case. Separately, there
is no Sommerfeld enhancement in the vector case since the
scattering is repulsive. The dependence of the differential
cross sections on the angle ¢ is shown in the comparative
Fig. 2(d). As is evident from Fig. 2, for the range of relative
velocities v, < 102 km/s relevant for dark matter scatter-
ing in the interior of galaxies and dwarf spheroidal
satellites, o is close to (), but as v, increases beyond
about 102 km/s, although both ¢ and o") decrease, the full
cross section is larger than the result obtained by keeping
only the #-channel contribution. This trend continues to
values v ~ O(10%) km/s relevant to dark matter effects in
galaxy clusters. One should note that even for a fixed v,
there is considerable diversity in the values of o/mpy
inferred from fits to galactic and cluster data (e.g.,
[50,53,73,93] and references therein). The curves marked
QMg in Fig. 2 are the results that one would obtain in a
quantum mechanical approach with a potential for the

different situation with distinguishable particles (see
Appendices). We show results for a specific set of v
values in Table I.

B. Transfer cross sections

Our result in Eq. (4.11) together with the definition (4.8)
yields the differential transfer cross section in the relevant
nonrelativistic limit. For the individual contributions from
IMO12 M2, and —2Re(MD* M), we calculate (in
the nonrelativistic regime, as before)

(1 4moy 1 In(1 +r)
= - , 4.27
ot r { 1+r + r ( )
o 4 In(1
o) = 220 [1 I+ r)], (4.28)
r r
and
(tu) 477:60 ln(l + r)
= - —. 4.29
or r [ 2+r ( )

The prefactor in Egs. (4.27)—(4.29) is given by Eq. (4.23).
Note that, in contrast to the equality o) = ¢ in

(1)

Eq. (4.17), the individual contributions o}’ and 0<T“> to

or are not equal; i.e., 6~(rt> # o-(T"). This is a consequence of
the fact that the definition of dor/dQ fails to preserve the
0 — n — 0 symmetry of the actual differential cross section
for the reaction (1.6).

Summing these contributions, we find, in accordance
with our general equality (4.10), the result

In(1 + r)] ‘ (430)

or 647[0-0[1 +r r(2+r)
Since o1 = o, the transfer cross section has the same small-
r and large-r expansions as were displayed for o in
Egs. (4.21) and (4.22).

We may compare our result (4.30) for o7 with the result
given, in the same Born regime, as Eq. (Al) in Ref. [40]
(denoted TYZ), which is the same as Eq. (5) in Ref. [34]
(denoted FKY) and reads (with their R = \/r and v = iy
in our notation)

877(1)2( [ r }
o7 =—2% |In(l1+r)——
T:FKY,TYZ ; 3 a+r)
_ 8rayr [In(1+7r) 1
m)% fel r 1+r
_ 8ma’ In(1+r) 1 (431)
mé/}fel r 147 '

063013-7



SUDHAKANTHA GIRMOHANTA and ROBERT SHROCK

PHYS. REV. D 106, 063013 (2022)

ay, =3 x 107" m, =5 GeV, m¢ = 5 MeV a, =3 x107" m, =5 GéV, mg = 5 MeV
------------------------------------------- 1L I.I.""‘.,
1t
— @ 0.100
= =
~. 0.100} =
QE) L 0.010
=
3 S
S 0.010 & 0.001
& 0.010¢ S
------ QM. (Yukawa) -=-=-= QMyist. (Yukawa)
_4_
—— t—channel 10 —— t—channel
0.001y ____. t+u—chanpnel | M [ e t+u—channel
. . . . . -5l . . .
1 10 100 1000 10 10 1 10 100 1000 104
Vel (km/s) Urer (km/s)
(a) Cross section (b) Transfer cross section
=3x107" my = =5M 1 = 1000 k
o =3 x 1074:mx = 5 GV, mg = 5 MoV a, =3x 107" m, =5 GeV,m¢ = 5 MeV, v, 000 km/s
L ————
—~ 0.100
o0 H
= ;
= ;
S 0010 ;
= :
£
= 0.001
------ QM (Yukawa)
1074}
—— t—channel e
------ t+u—channel
107° : 5 700 1600 0 0.0 0.5 1.0 1.5 2.0 25 3.0
O[rad
Vel (km/s) [rad]

(c) Viscosity cross section

(d) Dependence of differential scattering cross section on
the scattering angle

FIG. 2. Panel (a) shows o/m, for the reaction y + y — y + y, as a function of the relative velocity v, of the colliding y particles. The
full result with proper inclusion of both #-channel and u-channel contributions is shown as the dashed blue curve, while the result of
including only the 7-channel is indicated by the solid red curve. The curves marked QMg;; refer to the result that one would get in a
quantum mechanical approach to the different situation with distinguishable particles (see Appendix B). The illustrative values
m, =5 GeV, m; =5 MeV, and a, =3 x 10~* given in Eq. (1.5) are used for the calculation. Panel (b) and (c) present the
corresponding plots of the transfer and viscosity cross sections respectively. Panel (d) shows the dependence of the differential CM
scattering cross section on the scattering angle. The color coding in (d) is the same as in the other figures.

TABLE 1.

Comparison of different cross sections divided by dark matter particle mass, m,,, in units of cm?/g, as functions of v,,;. The

calculations use the parameter values in Eq. (1.5). See text for further details.

Vet (km/s) o) /m,, (cm?/g) o/m, oy /m, or/m, o\ /m, ov/m,
10 0.99 0.99 0.99 0.99 0.66 0.66
102 0.90 0.90 0.86 0.89 0.59 0.59
103 0.082 0.13 0.025 0.13 0.030 0.042
10* 0.89 x 1073 1.8 x 1073 0.96 x 1073 1.8x 1073 1.6 x 10~5 29x%x 107
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As is evident from a comparison of Eq. (4.31) with our
Eq. (4.27) [using the definition of our notation given in
Eq. (4.23)], the result for the transfer cross section in
Eq. (A1) of Ref. [40] [or equivalently, Eq. (5) of Ref. [34]]
is what one would get for the DM self-scattering if one did
the calculation for nonidentical particles and hence only
included the #-channel contribution and did not include
the 1/2 factor for identical particles in the final state in
performing the integral over d€2. That is,

f
OTTYZFKY = 25(T . (4.32)

To compare the full transfer cross section with the result
obtained by just including the z-channel contribution, we
examine the ratio

- [L _ ln((1+r>)]

T 1+r r(2+r

or T G (4.33)
e

For small r, this ratio has the expansion

2

T+ I T 00 forr< 1. (434)
ORI
T
For large r, we find
T T forr> 1. (4.35)

o Inr—1

Thus, although both our or and the result orpxyTyz
decrease with v, (and thus with r, for fixed m, and
me), our result decreases substantially less rapidly for
large r. With our parameters, this large-r regime includes
values of v,; ~ O(10%) km/s typical of galaxy clusters. For
example, at v, = 3 x 103 km/s [corresponding to r = 10?
with our choices for m, and m; in Eq. (1.5)], the ratio (4.33)
has the value 26, or equivalently, or/o1rkyTyZz = 13, @
substantial difference from unity. Therefore, in performing
fits to observational data, if one uses the transfer cross
section, we would advocate the use of Eq. (4.30) rather than
the result in Eq. (A1) of Ref. [40] for the large-r regime,
since they differ substantially.

In Fig. 2(b) we plot o1 in comparison with a(T’ ) over the
same range of v, and thus also S as for the regular CM
cross section. The fact that the true o1 decreases consi-
derably less rapidly than the #-channel contribution used in
[34,40] is evident in this figure. This is also apparent in
Table I.

C. Viscosity cross section

For the viscosity cross section we calculate the following
contributions from the f¢-channel, u-channel, and 7-u
interference:

(0 _ ()

Oy = 0Oy
8o In(1+ r)
= 7" {-2 +2+7) 7} (4.36)
and
(tu) 870 2(1 +7) ln(l + r)
= -1 , 4.37
ov r? { 24r)r (4.37)

so that the total nonrelativistic viscosity cross section is

oy = ag) + 684) + agu)

8oy 2(5+5r+7r*)In(1+7r)
= -5+
2 2+rr

} . (4.38)
s

As was the case with ¢ and or, for fixed m, and m, the
viscosity cross section oy is a monotonically decreasing
function of r.

We remark on properties of the individual contributions
ag), 034 ), and o&f“). The fact that o-g) = 03’ Vs guaranteed
by the property that (do/d€Q), maintains the 6 - 7= — 6
symmetry of (do/d2)cy, Which interchanges the 7- and u-

channels. These contributions have the small-r expansions

4
o) = o 4% {1 PN 0(r3)}

3 10
for r <« 1 (4.39)
and
w _ 4 4
o =T 1+ =2+ 0(7)
3 5
for r < 1. (4.40)
Hence,
s () e ()
i = it =
4
- _’;"0 (4.41)

This is analogous to the relation that we found for the
individual contributions to ¢ in Eq. (4.20). Thus, the full
viscosity cross section has the small-r series expansion

4roq

ov =3 I—r+r2+0() forr<l. (4.42)

At large r, oy has the series expansion
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8 2(31 1 1
oy = 0 zln,_5+w+0<n_;>}
T r r
for r>1. (4.43)

The prefactor in Eq. (4.43) is 8z0,/r* = 8naz/(Brm3).
For small r, the ratio ov/ a\f behaves as

oy 2

N1+ o). (4.44)
SORNRRRT)
\%
while for r> 1,
oy 1 1
=2—-——+0 . 4.45
A0 T () @

2
do\  _q

s+ u? —4m(s +u —t) + 8m;

In Fig. 2(c) we plot oy in comparison with ai? over the

same range of S as for the regular CM cross section.
A notable feature of these numerical calculations, which
is in agreement with our analytic results, is that for values
of v ~ O(10°) km/ sec typical of galaxy clusters, oy is
considerably smaller than op. This is also evident in
Table I.

V.xx — xx SCATTERING CROSS SECTIONS WITH
VECTOR MEDIATOR

In this section we consider the case of a vector mediator
with the SIDM interaction (1.4). The differential cross
section in this case is just the analog of the Moller cross
section with the photon replaced by the massive vector
boson V:

s+ 2 —4m(s 4+t — u) + 8m;

2
r—my,

().

{ ( )?
2{s* — 8mZs + 12m}}
(t=my)(u=—my) |

t—my)(u— my

:23

In the nonrelativistic limit that is relevant for
fitting observational data, this differential cross section
becomes the same as the result for an SIDM model with a

scalar mediator, Eq. (4.11), with the replacement
m(/) - My
do do

(#8) .~

where we append subscripts to indicate vector (vec)
versus scalar mediators. Quantitatively, the difference
between (do/dQ)cyyee and (do/dQ)cy, is a term of
O(f%,). Even at the length scale of a few Mpc in galaxy
clusters, B~ 1072, and therefore this difference is
negligibly small. Consequently, our analysis in the
previous section also applies to this model. Similar
comments apply for the transfer and viscosity cross
sections.

— — ith f <1,
dQ) CM,vec dQ) CM,¢p W m¢ iy or iBl‘Cl

(5.2)

VI. STUDY OF PARAMETER VARIATION

In this section we study the dependence of the cross
sections divided by DM mass for reaction (1.6) (calcu-
lated with both the z-channel and u-channel contribu-
tions) on the values of the coupling, a,, and mediator
mass, m,. In Fig. 3 we show plots of 6/m, = or/m,, and

063013-

(u—mi)?

u—my

(5.1)

[

oy/m, as functions of @, and m;. For this study, it will
suffice to keep m, fixed at the value of 5 GeV as in
Eq. (1.5). The figures in the upper and lower panel are for
o/m, = or/my, and oy/m,, respectively. In each hori-
zontal panel, the figures on the left and right are for the
value v,; = 30 km/s typical of dwarf satellite galaxies
and the value 4 x 10° km/s typical of galaxy clusters,
respectively. In each figure we show curves of the
respective cross section divided by m, for the values
10 cm?/g, (dot-dashed blue), 1 cm?/g, (dashed purple),
and 0.1 cm?/g, (solid orange). The coupling a, should lie
above the gray region in order to satisfy the bound
(60)7,—ee 2 0.6 x 107 cm?/s from the depletion of
the symmetric component constraint on this ADM model,
as discussed in Sec. II. The region shaded red is outside
the Born regime and corresponds to a,m,/m; > 1. The
region shaded blue is excluded by observational data on
the Bullet Cluster (Galaxy Cluster 1E 0657-56) [32,54].
Our parameter values in Eq. (1.5) are indicated by the
magenta-colored asterisk. These plots show how m, and
m; can be varied while retaining cross section values that
avoid excluded regions. For a given choice of parameter
values, our calculations (with inclusion of both #-channel
and u-channel contributions) yield oy < ot at v, values
characteristic of galaxy clusters. In both cases, our
resulting cross sections are in accord with upper limits
on o/mpy inferred from fits to properties of galaxy
clusters.

10
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(a) or/m, contours: dwarf scale
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FIG. 3.

my=5 GeV, v=4000 km/s [Cluster scale]
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(b) or/m, contours: cluster scale
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x
3

mg [MeV]

(d) ov/my contours: cluster scale

Plots showing contours of fixed transfer cross section o7 = ¢ and viscosity cross section oy, divided by DM mass m,,, in the

space of parameters (¢, @, ). Our results are calculated with the inclusion of both #-channel and u-channel contributions. The left two
panels in each horizontal row apply for the typical DM-DM relative velocity v, = 30 km/s in dwarfs, while the right two panels apply
for the typical velocity v,y = 4 x 10° km/s in galaxy clusters. The coupling a, should lie above the gray shaded region to satisfy the

condition (6v);, - 2 0.6 x 1073 c¢m?/s in order to effectively deplete away the symmetric component of the DM in the early
Universe. The red shaded region is outside the Born regime, namely where a,m, /m; > 1, and the blue shaded region corresponds to the
exclusion limit from the Bullet cluster (Galaxy Cluster 1E 0657-56). The dot-dashed blue contour corresponds to o7/m,, = 10 cm?/g,
whereas the dashed purple and solid orange contours correspond to o7 /m, = 1 cm?/g and 0.1 cm?/g, respectively, and similarly with
oy/m,. In each plot, our parameter choice in Eq. (1.5) is indicated by the magenta asterisk.

VII. CONCLUSIONS

In summary, in this paper we have studied a model with
self-interacting dark matter consisting of a Dirac fermion y
coupled to a scalar or vector mediator such that the reaction
x +x — x + yis well described by perturbation theory. An
asymmetric dark matter framework is assumed for this
study. We have computed the scattering cross section for
this reaction including both #-channel and u-channel con-
tributions and have analyzed how the results with inclusion

of contributions from both of these channels compare with
a calculation that has often been used in the literature
that only includes the ¢-channel contribution. Our results
elucidate the interplay between the terms | M (]2, | M@ 2,
and the interference term —2Re(M©W* M) in both the
differential and total cross sections. We find a particularly
strong deviation at large r from results in the literature for
the transfer cross section o7 that include only #-channel
contributions. With the illustrative values of the dark matter

063013-11



SUDHAKANTHA GIRMOHANTA and ROBERT SHROCK

PHYS. REV. D 106, 063013 (2022)

fermion mass m,,, the mediator mass m,, and the coupling

a, used here, the region of large r corresponds to DM

velocities v, ~ 10° km/s, which occur in galaxy clusters.
Further, we have studied how our cross section calcula-
tions vary for a range of mediator mass m: and
DM-mediator coupling a,. Our analytic and numerical
calculations should be useful in fits to observational data. A
self-interacting dark matter model of the type considered
here remains an appealing approach to accounting for this
data on scales ranging from 1-10 kpc in galaxies to several
Mpc in galaxy clusters.
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APPENDIX A: CONDITION FOR THE VALIDITY
OF THE BORN APPROXIMATION

In this appendix we discuss further some aspects of the
x +x — x + y reaction. We comment first on the relation
between our full quantum field theoretic calculation and the
nonrelativistic quantum mechanical analysis in the non-
relativistic limit, where one considers scattering of the y
particle in a potential. This relation is relevant since the
velocities that occur, both on length scales of galaxies
(Vo1 ~30-200 km/s), and on length scales relevant for
galaxy clusters [v,q ~ O(10%) km/s], are all nonrelativis-
tic. A standard reduction of a two-body problem of the
scattering of two different particles a and b expresses this in
terms of an effective one-body problem in which a particle
with the reduced mass u = m,m;/(m, + m;,) undergoes a
scattering due to an isotropic potential V. For the equal-
mass situation under consideration here, the particle has
u =m,/2 and velocity v, = 2v,, and hence momentum
P = HUr = (m;(/z)(zv;() =m,v, = |l_5;(" where |ﬁ)(| was
given in Eq. (3.3). The corresponding magnitude of the
wave vector is k = p/f = p in our units with 7 = 1.

A common approach is to use the Born approximation to
describe a sufficiently weak scattering process. The con-
dition for the Born approximation to be valid in the
quantum mechanical analysis of potential scattering takes
two different forms depending on |p|. In both cases, it is
essentially the condition that the scattered wave is a small
perturbation on the incident plane wave. We use the fact
that in this quantum mechanical approach, the interaction
mediated by &£ exchange is represented by a potential,

e—m,:|55\
V(X)) = V(X)) =Vo—rcr (A1)
" mex]

with

Yo _

(A2)
meg

a,.

We define the distance |X| = d. The range of this potential
is ~a = 1/m,. The condition for the validity of the Born
approximation takes the following two forms [94], depend-
ing on the value of ka = p/m;=p,m,/m:=/r/2,
where r is the ratio (4.13). For r < 1, the condition is
that the kinetic energy 1/(2ua?) should be much larger
than the potential energy ~V,, ie., 2ua’Vy< 1.
Substituting a = 1/m; and the expression for V, in
Eq. (A2), this is the inequality

2uV a,m
Sl LY (A3)

For r > 1, the condition is (Vya/f) In(2ka) < 1, which
can be rewritten as

%ln(\/;) < 1.

To show that our parameter choices in Eq. (1.5) satisfy
these conditions, we first consider values of v, ~ 30 km/s
relevant for SIDM dynamics within galaxies. Then S, =
107* so r= (Bram,/me)* = 1072, Since this is <1,
condition (A3) is applicable. We have a,m,/m; = 0.3
for our choices of parameters in Eq. (1.5). For a value
of v, ~3x103 km/s relevant for galaxy clusters,
Pres = 1072, so r = 102, and hence condition (A4) applies.
For this value of v, the left-hand side of the inequality
(A4)1s 0.069, which is < 1. Thus, as stated in the text, with
our choices of a,, m,, and m; and for the values of v, of
relevance to SIDM effects on scales ranging from 1-10 kpc
in the core of a galaxy to several Mpc for clusters of
galaxies, our restriction to the Born regime is justified.

(A4)

APPENDIX B: QUANTUM MECHANICAL
TREATMENT OF THE YUKAWA POTENTIAL

Here we review the quantum mechanical treatment of the
Yukawa potential and derive Eq. (4.27) for the transfer
cross section from the partial wave analysis. These are well-
known results (e.g., [94,95]), but we briefly discuss them
here for the convenience of the reader in comparing the
quantum mechanical treatment with the quantum field
theory results. In a quantum mechanical analysis, one
writes the full wave function as consisting of an incident
term (choosing the initial direction of propagation to be
along the z axis, with no loss of generality) plus the
spherical wave due to the scattering by the potential. For
large distance d from the origin, this has the form

eikd

y(X) = e+ f(0) -, (B1)
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where k = |I_<'| is the magnitude of the wave vector of the
incident particle and we have assumed azimuthal sym-
metry. The scattering amplitude f(6) can be expanded in
terms of partial waves as

1 (s8]
%Z (2¢ + 1)A,P4(cos 0), (B2)
=0
where P,(cos ) is the Legendre polynomial and
Af = ei5f sin 5f (B3)

is the quantum mechanical scattering amplitude in the £’th
partial wave, with phase shift d,. The differential scattering
cross section is then

do
e =If O

[Se]

Z (20 +1)(2¢' 4 1)A,A% P 4(cosO) P (cos0).

(B4)

Given a potential V(X’), the Born approximation to f is

f= _2i/d3£/e—i;’<2’v(£/)eii-i’
T

(B5)
where k and k' are the wave vectors of the incident and
scattered waves. This is evidently the Fourier transform of
V(X') with respect to the momentum transfer § = k — k',
with magnitude

q = |q| = 2ksin(0/2). (B6)
Consider the Yukawa potential (with d = |X|):
e—mgd
V(d) = *a, = (B7)

A standard calculation yields the scattering amplitude

2ua,
mé + q2 ’

Fyu(0) =F (B8)

For our application to y-y scattering, the reduced mass is
p=m,/2 and k = (m,/2)v, ie., g = m,v,sin(0/2).
Therefore, from Eq. (B4), in the Born approximation,

(do) B szmz
dQ Yuk ( + m relSln (9/2))2
00

T (1 rsin?(6)2))2

(B9)

where we have used the definitions of o, and r in
Egs. (4.12) and (4.13). Comparing Eq. (B9) with
Eq. (4.11), one sees that if one were to approach the
calculation without proper use of the antisymmetrization of
the quantum mechanical wave function, then the Yukawa
potential would correspond to inclusion of only the
t-channel contribution to the full quantum field theoretic
amplitude. Finally, applying the definitions of transfer and
viscosity cross sections, given in Egs. (4.8) and (4.9) yields
the corresponding cross sections for this Yukawa potential:

4ro
SeMYuk = T, +0r’ (B10)
8no, 1 In(1 +r
o7 Yk = —— [_1+r+ ( p )} (B11)
16 In(1 +
Oy yuk = —a { 2+ (2+ r)%]. (B12)

Thus, these are the cross sections that one would get in a
quantum mechanical treatment if one did not take account
of the necessity of antisymmetrizing the wave function
under exchange of identical fermions.

The calculation in nonrelativistic quantum mechanics for
identical fermion scattering must, of course, respect the
Pauli exclusion principle. In other words, the wave function
for the y-y system should be completely antisymmetric, i.e.,
should have the form of a Slater determinant, namely

X2 X1)
X2 Xz)

X1 x1

\/_’)(1 xz

From here, it is evident that the normalization factor 1/ V2 in
the Slater determinant wave function is equivalent to the
factor 1/2 in the formula for the scattering cross section (4.6).
The antisymmetrization in the Slater determinant is the
quantum mechanical equivalent of the inclusion of both
the #-channel and the u-channel diagrams in the quantum
field theoretic calculation. Thus, a quantum mechanical
treatment with proper antisymmetrization for scattering of
identical fermions gives the same result as the (nonrelativistic
limit of the) quantum field theoretic calculation. We have
presented the results for these cross sections for the Born
regime in the text, as Eqs. (4.19), (4.30), and (4.38).

T(XI,XZ (B13)
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