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ABSTRACT
We study the space of ergodic measures of the map

f : T2 → T2, f (x, y) = (x, x + y)(mod1),

and show that its structure is similar to the graph of Thomae’s
function.

ARTICLE HISTORY
Received 11 November 2022
Accepted 25 January 2023

1. Introduction

Thomae’s function T : (0, 1) → R is given by

T(x) =

⎧⎪⎨
⎪⎩
0 if x is irrational;
1
q
, if x = p

q
for some coprime p, q ∈ N

and is also known as ‘the popcorn function,’ ‘the raindrop function,’ ‘the countable cloud
function,’ the Riemann function, or even as ‘the Stars over Babylon’ (as was suggested by
John Horton Conway). Some of these names are justified by the form of the graph of this
function, see Figure 1:

Thomae’s function is a standard example that is presented in most introductory real
analysis classes. This function is continuous at irrational values of the argument and is
discontinuous at rational values. This concept is a starting point for an interesting jour-
ney towards the Baire Category Theorem, where one can prove that there does not exist a
function which is continuous on the rationals and discontinuous on the irrationals. At the
same time, Thomae’s function itself remains a mathematical curiosity and is something
that doesn’t usually appear in ‘real life.’ The purpose of this short note is to show how a
structure similar to the graph of Thomae’s function can appear in a natural way as a space
of ergodic invariant measures of a very simple transformation.

Namely, define f : T2 → T2 via f (x, y) = (x, x + y (mod 1)). We use additive nota-
tion for the unit circle S1 = R/Z so it is identified with [0, 1). Thus, arithmetic on the
2-Torus T2 = R/Z × R/Z is understood to be done modulo 1, hence the notation given
in the abstract. With this understanding, we omit this notation in the proofs. Let δω be the
atomic probability measure at the pointω ∈ T2, andM(T2) be the space of all probability
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Figure 1. The graph of Thomae’s function.

Figure 2. The setR homeomorphic to the space of invariant ergodic measures of the map f.

measures on T2. Consider the map T : T2 → M(T2),

T(ω) := lim
n→∞

δω + δf (ω) + · · · + δf n−1(ω)

n
,

where the limit is taken in the weak-∗ topology. In this note, we proved that the function
T is well-defined over T2, describe the points at which T is continuous, and show that its
image has a topological structure similar to the graph of the Thomae’s function. Namely,
define the set R ⊂ R3 that can be obtained as a revolution of the graph of Thomae’s
function about the x-axis, see Figure 2:

R =
{
(x, y, z) ∈ R3 | x ∈ (0, 1),

√
y2 + z2 = T(x)

}
.

Then we have the following:

Theorem 1.1: The map T is well defined, and has the following properties:

• For any ω ∈ T2 the image T(ω) is an ergodic invariant measure of the map f.
• ThemapT is continuous at Lebesgue almost every point ofT2 and discontinuous at a dense

set of points. In particular, T is continuous at ω = (x0, y0) if and only if x0 is irrational.
• The image T(T2) is homeomorphic toR.

Remark 1.2: IfX is a measurable space and f : X → X, denote the set of f -invariant prob-
abilitymeasures byM(X, f ). One can define a set-valued functionV : X → 2M(X,f ) where
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V(ω) is the limit set of the sequence of measures ( 1n
∑n−1

i=0 δf i(ω))n. When X = T2 and f is
given as above, Theorem 1.1 implies that eachV(ω) is a singleton and hence can be thought
of as a function into M(X, f ), or that every point in X is generic for some measure. Sys-
tems of this kind have been studied in [6,14] and such systems with the property that V is
continuous have been characterized in [4,8]. Besides, there is always a residual subset of X
for which V is upper semi-continuous (see Proposition 3 in Chapter 8 of [1]), and in our
case when X = T2 and f is as above,V is actually continuous on a residual subset of X. We
are grateful to the anonymous referee for this remark.

Remark 1.3: One should expect structures similar to the graph of Thomae’s function to
appear in other contexts in dynamics whenever ‘natural’ semi-continuous functions on a
parameter space appear; for another example of this kind, see Remark 4.3.2 from [9]. We
are grateful to Simion Filip for this remark.

2. Spaces of invariant measures

Theorem 1.1 gives an example of a very simple transformation with a non-trivial topology
of the space of ergodic measures. So, another way to incorporate this example into a larger
picture is to ask a question about the structure of the space of invariant measures of a
dynamical system.

If f : M → M is a diffeomorphism of a closed smooth manifold M, it is known that f
must have some Borel invariant measures, and the space of all invariant probability mea-
sures is compact in weak-∗ topology. Moreover, it forms a convex subset in the space
M(M) of all probability measures onM; indeed, if ν0 and ν1 are invariant measures, then

νt = tν1 + (1 − t)ν0 (1)

is also a probability invariant measure for any t ∈ [0, 1]. Ergodic measures are exactly the
extremal points (points that cannot be represented as νt from (1) for some t ∈ (0, 1) and
ν0 �= ν1), of this convex set. So, one can think about ergodic measures as vertices of the
simplex of all invariant measures. Moreover, the simplex is a Choquet simplex, i.e. in this
case, a closed, convex subset of M(M) in which every point is a barycenter of a unique
probability measure supported on the set of extremal points. Such a unique representation
of an invariant measure as a weighted average of ergodic measures is known as an ergodic
decomposition.

Thinking of invariant measures, it is tempting to think, say, about a tetrahedron, and
to think about ergodic measures as its vertices. But this picture can be quite misleading.
For example, for hyperbolic dynamical systems, the simplex of invariantmeasures typically
forms the Poulsen simplex, a unique nontrivial compact Choquet simplex with a dense set
of extreme points, see [17].

More specific questions on the structure of spaces of invariant measures were studied in
the theory of dynamical systems at least since the 1970s. K. Sigmund in [19] showed that
the space of ergodic measures for a transitive subshifts of finite type is path-connected;
the result was recently extended by G. Iommi and A. Velozo [12] to the case of countable
Markov shifts. Denseness of atomic ergodic measures in the space of all invariant mea-
sures for hyperbolic systems was studied by many authors, including K. Sigmund [18] and
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A. Katok [13]. T. Downarowicz showed that for every Choquet simplex K there exists a
minimal subshift with the space of ergodic invariant measures affinely homeomorphic to
K [7]. Questions about structure of the space of hyperbolic ergodic measures on a locally
maximal homoclinic class of a diffeomorphismwere studied by A. Gorodetski and Y. Pesin
[11]. Some of the results by C. Bonatti and J. Zhang [3], by L.J. Diaz, K. Gelfert, T. Mar-
carini, and M. Rams [5], and by D. Yang and J. Zhang [20] can be interpreted in terms of
the structure of the space of ergodic invariant measures of partially hyperbolic diffeomor-
phisms under different assumptions. Recently, a notion of emergence have been developed
by P. Berger and J. Bochi in [2]; it can be viewed as a way to quantify the ‘size’ or ‘dimen-
sion’ of the space of ergodic measures of a dynamical system. For other related results, see
also [10,15,16].

3. Proof of Theorem 1.1

We first recall the following useful facts about sequences of real numbers:

Lemma 3.1: (1) If ( pnqn )n is a sequence of fully reduced rationals with an irrational limit,
then qn → ∞ as n → ∞.

(2) If (an)n is a sequence such that there is some M satisfying an = an+M, then

lim
n→∞

a1 + · · · + an
n

= a1 + · · · + aM
M

.

Consider the ergodic invariant measure of T2 given by

μ(p/q, y0) :=
1
q

q−1∑
i=0

δ( p
q , y0+i pq

)

where p/q is a fully reduced rational. Furthermore, denote the Lebesgue measure on S1 by
mS1 .

Lemma 3.2: For ω = (x0, y0) ∈ T2,

T(ω) =
{
δx0 × mS1 if x0 �∈ Q

μ(p/q, y0) if x0 ∈ Q, with x0 = p
q fully reduced

.

Proof: Fix ω = (x0, y0) ∈ T2 and let φ ∈ C0(T
2). For simplicity, denote

μn := δω + δf (ω) + · · · + δf n−1(ω)

n
.

First suppose that x0 �∈ Q. Then, we note that y0 has dense orbit in S1 under the rotation
function Rx0 . Now, by the continuity of φ and theWeyl Equidistribution Theorem, we have

lim
n→∞

∫
φ dμn = lim

n→∞

n−1∑
i=0

φ(x0,Rix0(y0)) =
∫ 1

0
φ d

(
δx0 × mS1

)
.

Now, suppose that x0 = p/q is a fully reduced rational number. Since the sequence
(φ(

p
q , y0 + i pq ))i satisfies the premises of Lemma 3.1 part (2), we have that μn converges



272 A. GORODETSKI AND A. LUNA

to μ(p/q, y0) since

lim
n→∞

1
n

n−1∑
i=1

φ

(
p
q
, y0 + i

p
q

)
= 1

q

q−1∑
i=0

φ

(
p
q
, y0 + i

p
q

)
.

�

Proof of Theorem 1.1: That T is well-defined and the first statement, follow easily from
Lemma 3.2 and construction of T. We now prove the sufficient and necessary conditions
for the continuity of T at ω ∈ T2.

For sufficiency, it is enough to prove that if ω = (p/q, y0), where p/q is fully reduced,
then T is not continuous at ω. We consider a continuous function h : S1 → S1 such that∫ 1

0
h(y) dy > 0 and h

(
y0 + i

p
k

)
= 0,

for i = 0, 1, . . . , q − 1. Now, let ((xk, yk))k be a sequence such that xk �∈ Q and (xk, yk) →
(x0, y0), and consider the function φ ∈ C0(T

2) via φ(x, y) = h(y). Then, by Lemma 3.2,
it is clear that

lim
k→∞

∫ 1

0
φ d(T((xk, yk)) �=

∫ 1

0
φ d(T(ω)).

Therefore, T is not continuous at (p/q, y0).
Conversely, let ω = (x0, y0) ∈ T2 where x0 �∈ Q. We will show that if ωk → ω, then

T(ωk) → T(ω) in the weak-∗ topology. It suffices to consider the cases whenωk = (xk, yk)
with xk �∈ Q and ωk = (pk/qk, yk), where each pk/qk is a fully reduced rational value.

Let φ ∈ C0(T
2). The former case is almost immediate by the uniform continuity of φ

and the Weyl Equidistribution Theorem. In the latter case, we have that

∫ 1

0
φ d(T(ωk)) = 1

qk

qk−1∑
i=0

φ

(
pk
qk

, yk + i
pk
qk

)
.

As φ is uniformly continuous, for sufficiently large k, we canmake the quantity φ( pkqk , yk +
i pkqk ) arbitrarily close to φ(x0, y0 + i pkqk ), so it suffices to show that

lim
k→∞

1
qk

qk−1∑
i=0

φ

(
x0, y0 + i

pk
qk

)
=

∫
φ d(T(ω)).

Notice that the partition of S1 given by Pk = {Ripk
qk

(y0)}qki=0 splits S
1 into qk many intervals

of equal length. Thus, by Lemma 3.1 part (1), since qk → ∞, we must have

lim
k→∞

1
qk

qk−1∑
i=0

φ

(
x0, y0 + i

pk
qk

)
= lim

k→∞

qk−1∑
i=0

φ

(
x0, Ripk

qk

(y0)
)

· (mesh(Pk))

=
∫ 1

0
φ(x0, y) dy.

Therefore, T is continuous at (x0, y0) if x0 �∈ Q.
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Finally, we want to show that T(T2) is homeomorphic toR. First consider the function

T̃(x) =
{
T(x) 0 < x < 1
1 x = 0

and denote the revolution of its graph on [0, 1) by R̃. Now, consider
ψ1 : T(T2) → R̃ defined by

ψ1(T((x, y))) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(x, 0, 0) x �∈ Q(
p
q ,

1
q cos(2π iqy),

1
q sin(2π iqy)

)
x = p

q fully reduced(
0, cos(2π iy), sin(2π iy)

)
x = 0

.

Clearly ψ1 is a bijection, and both ψ1 and ψ−1
1 are continuous, so that T(T2) is homeo-

morphic to R̃.
To see that R̃ is homeomorphic to R, it is enough to show that the graph G[0,1) of

T̃ on [0, 1) is homeomorphic to the graph G(0,1) of T on (0, 1). Consider the bijection
ψ2 : G[0,1) → G(0,1) which maps (0, 1) �→ ( 12 ,

1
2 ), (

1
n ,

1
n ) �→ ( 1

n+1 ,
1

n+1 ) for n ∈ N≥2, and
is the identity otherwise. It is clear that ψ2 is a bijection, both ψ2 and ψ−1

2 are continuous,
and hence ψ2 is a homeomorphism between G[0,1) and G(0,1). Therefore, the revolutions
of these sets, R̃ andR, are also homeomorphic. �
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