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THE SPECTRUM OF SCHRÖDINGER OPERATORS WITH

RANDOMLY PERTURBED ERGODIC POTENTIALS

Artur Avila, David Damanik and Anton Gorodetski

Abstract. We consider Schrödinger operators in ℓ2(Z) whose potentials are given
by the sum of an ergodic term and a random term of Anderson type. Under the
assumption that the ergodic term is generated by a homeomorphism of a connected
compact metric space and a continuous sampling function, we show that the almost
sure spectrum arises in an explicitly described way from the unperturbed spectrum
and the topological support of the single-site distribution. In particular, assuming
that the latter is compact and contains at least two points, this explicit description
of the almost sure spectrum shows that it will always be given by a finite union
of non-degenerate compact intervals. The result can be viewed as a far reaching
generalization of the well known formula for the spectrum of the classical Anderson
model.

1 Introduction

In this paper we consider perturbations of ergodic Schrödinger operators in ℓ2(Z) by
the addition of a random potential of Anderson type. We will for simplicity assume
that both pieces of the potential are bounded.

It is known that with respect to the product measure, the spectrum is almost
surely equal to the same set, which we will denote by Σ1. A question of Bellissard
asks whether it can be shown that Σ1 has only finitely many gaps. Since, by general
principles, Σ1 cannot contain any isolated points, an equivalent formulation is the
assertion that Σ1 is given by a finite union of non-degenerate compact intervals.

It is in fact not obvious that in this generality, it is always true that Σ1 even
contains any non-degenerate intervals, especially if the unperturbed ergodic model
has a spectrum of Cantor type. This question, along with some preliminary results,
was discussed and advertised in a recent paper by two of the authors [7].

The purpose of the present paper is to establish a full affirmative answer to
Bellissard’s question and prove the finiteness of the number of gaps of Σ1 under
the assumption that the hull of the ergodic piece is connected. This relatively weak
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assumption is satisfied by many popular models, including quasi-periodic potentials
and potentials generated by skew-shifts and hyperbolic toral automorphisms. Beyond
just the finiteness of the number of gaps of Σ1, we even show how Σ1 results in an
explicit and simple way from the unpertubed almost sure spectrum Σ0 and the
topological support S of the single-site measure ν generating the Anderson-type
perturbation. This result in particular recovers the well known expression of the
almost sure spectrum of the Anderson model, which in our setting corresponds to
the case of a zero ergodic term.

Let us state our result precisely. The unperturbed model is given as follows.
Given a compact metric space X, a homeomorphism T : X → X, an ergodic Borel
probability measure μ with full topological support, suppμ = X, and a sampling
function f ∈ C(X, R), we generate potentials

Vx(n) = f(Tnx), x ∈ X, n ∈ Z

and Schrödinger operators

[Hxψ](n) = ψ(n + 1) + ψ(n − 1) + Vx(n)ψ(n)

on ℓ2(Z). By the general theory of ergodic Schrödinger operators on ℓ2(Z), the
spectrum of Hx, denoted by σ(Hx), is almost surely independent of x. That is, there
is a compact set Σ0 such that

Σ0 = σ(Hx) for μ -almost every x ∈ X. (1.1)

The random perturbation is given by

Wω(n) = ωn, ω ∈ Ω, n ∈ Z,

where Ω = (supp ν)Z and ν is a compactly supported probability measure on R with
topological support

S := supp ν (1.2)

satisfying

#S ≥ 2.

Since the product of μ and μ̃ := νZ is ergodic with respect to the product of T and
the left shift (compare, e.g., Theorem 6.1 in [14, Section 2.6]), there is, again by
the general theory of ergodic Schrödinger operators in ℓ2(Z), a compact set Σ1 such
that

Σ1 = σ(Hx + Wω) for μ × μ̃ -almost every (x, ω) ∈ X × Ω.

Since suppμ × μ̃ = X × SZ, we also have

Σ1 =
⋃

(x,ω)∈X×SZ

σ(Hx + Wω), (1.3)
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that is, the spectra corresponding to exceptional points can only be smaller than
the almost sure spectrum. In particular,

σ(Hx + Wω) ⊆ Σ1 for every (x, ω) ∈ X × SZ. (1.4)

For all the general results mentioned above and more background on ergodic Schrödinger
operators, we refer the reader to [3, 5].

Before stating our main theorem, we introduce the following operation on pairs
of compact subsets of R.

Definition. Suppose A and B are compact subsets of R. We define the compact set

A⋆B as follows. If diam(A) ≥ diam(B), then A⋆B = A+ch(B), and if diam(A) <
diam(B), then A⋆B = ch(A) + B. Here, diam(S) denotes the diameter and ch(S)
denotes the convex hull of a compact S ⊂ R, and S1 + S2 denotes the Minkowski

sum {s1 + s2 : s1 ∈ S1, s2 ∈ S2}.

Theorem 1.1. Consider the setting described above and assume that X is con-

nected. Then, we have

Σ1 = Σ0⋆S. (1.5)

This theorem provides an affirmative answer to Bellissard’s question:

Corollary 1.2. If X is connected, then the almost sure spectrum Σ1 is given by

a finite union of non-degenerate compact intervals.

Proof. This is an immediate consequence of (1.5). ⊓⊔

Remark 1.3. The standard Anderson model (see, e.g., [11, 18] for some introduc-
tory texts) arises in our setting if we set Vx ≡ 0 for all x ∈ X (which can be
accomplished by choosing the zero sampling function f ∈ C(X, R)), which yields
Σ0 = [−2, 2]. For the Anderson model, it is a classical result due to Kunz and Souil-
lard [12] (see also, e.g., [3, Theorem 4.1], [11, Theorem 3.9], [15, Proposition 3.3],
and [18, Theorem 2]) that

Σ1 = [−2, 2] + supp ν = Σ0 + S. (1.6)

We remark here that (1.5) recovers, and indeed vastly generalizes, (1.6). To verify
this, consider the two cases in question. If diam(S) ≤ 4 = diam(Σ0), then Σ1 =
Σ0⋆S = [−2, 2] + ch(S) = Σ0 + S, where the last step follows from diam(S) ≤ 4.
On the other hand, if diam(S) > 4, then Σ1 = Σ0⋆S = ch([−2, 2]) + S = Σ0 + S.

Remark 1.4. In [7] it was shown that for some quasi-periodic potentials {Vx}, Σ1

contains an interval. Due to Corollary 1.2, we now know that for all quasi-periodic
potentials {Vx}, Σ1 is given by a finite union of non-degenerate compact intervals.
Beyond quasi-periodic potentials, which are generated by minimal translations on a
finite-dimensional torus, our result covers other ergodic maps on finite-dimensional
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tori with fully supported ergodic measure. This includes, for example, (generalized)
skew-shifts, for which it is also known that Σ0 is generically nowhere dense [1, 2]
and hence the topological structure of the almost sure spectrum changes markedly
in all these cases when the random perturbation is turned on.

Remark 1.5. Let us give an example showing that the formula (1.5) may fail when
X is not assumed to be connected. Consider the case where the unperturbed poten-
tial is 2-periodic, that is, we choose X = Z2 = Z/2Z, Tx = x+1, μ = 1

2δ0 + 1
2δ1. The

perturbation is given by the Bernoulli-Anderson model, that is, S has cardinality
2. By the general theory of periodic Schrödinger operators it follows that for any
f : X → R, the corresponding spectrum Σ0 has diameter at least four and either is
an interval or a union of two intervals. Therefore, if diam(S) ≤ 4, Σ0⋆S can have
at most two connected components. However, explicit calculations (based on, e.g.,
[6, Theorem 3.3.1] or [19, Lemma 2]) show that for f(0) = 0, f(1) = 7, S = {−1, 1},
we have

Σ1 =

[

5 −
√

65

2
, −1

]

∪
[

7 −
√

41

2
, 1

]

∪
[

6,
7 +

√
41

2

]

∪
[

8,
9 +

√
65

2

]

,

which has four components and hence does not coincide with Σ0⋆S. We also mention
that the topological structure of Σ1 for operators of this kind was recently studied
in [6, 19], and it was shown that it is always a union of at most four intervals (for
any values of f(0), f(1), and any two-point set S).

Remark 1.6. Some open questions about the topological structure of Σ1 in the case
of a disconnected X, which includes the case of the Anderson model with a periodic
background, or about the topological structure of the essential spectrum in the case
of the non-stationary Anderson model are formulated in [7], and we refer the reader
to that paper for a more detailed discussion of them.

Remark 1.7. While the case of an Anderson-type perturbation of a given ergodic
reference operator is very natural, let us remark that Theorem 1.1 extends to a
more general class of ergodic measures on X ×SZ. It is not necessary to consider the
product μ× μ̃. Moreover, it is not necessary to consider the product measure μ̃ = νZ

on SZ. The formula for Σ1 holds whenever it is the almost sure spectrum associated
with an ergodic measure on X ×SZ that has full support. This can be seen either by
inspection of the proof (which extends to measures of this kind) or by an application
of the semi-continuity property of the spectrum with respect to strong convergence,
which ensures that the almost sure spectrum of an ergodic family of Schrödinger
operators is completely determined by the topological support of the push-forward
measure on the space of realizations; compare [5, Theorem 4.8.8]. For example, in
the case when T : X → X is a uniquely ergodic homeomorphism of zero entropy
(e.g., an irrational circle rotation), one can replace μ × μ̃ by an ergodic measure on
X ×SZ with full support and zero entropy. The existence of such a measure follows,
for example, from the following argument. Let μ1 be the unique invariant measure
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of the map T : X → X. Let μ2 be an invariant ergodic measure with full support
and zero entropy for the left shift SZ → SZ; there is a residual set of such measures
in the space of invariant measures of the left shift, see [13, 16, 17]. Take μ1,2 to
be an ergodic joining of the measures μ1 and μ2. Since both μ1 and μ2 have zero
entropy, μ1,2 is also a measure of zero entropy. Finally, μ1,2 must have full support,
supp μ1,2 = X ×SZ. Indeed, since suppμ2 = SZ, an ω-limit set (with respect to the
left shift) of any μ2-regular point contains every periodic point p of the left shift.
Together with the unique ergodicity of T , this implies that the ω-limit set (with
respect to the product of T and the left shift) of any μ1,2-regular point must contain
the whole leaf X × {p}. Since such periodic leaves are dense in X × SZ, we must
have supp μ1,2 = X × SZ.

The remainder of the paper is structured as follows. Theorem 1.1 will be proved
in Sect. 3, after having discussed, in Sect. 2, some ingredients used in the proof.

2 Cocycles, Invariant Sections, and the Rotation Number

In this section we discuss some objects that will play a crucial role in the proof
of Theorem 1.1. They are centered around, and related in spirit to, the Johnson-
Schwartzman approach to gap labelling, but we will restrict our discussion to those
aspects that are needed in the proof. For the results mentioned below, as well as
more details and background, we refer the reader to [4, 5, 9, 10].

Recall the framework that defines the unperturbed potentials: X is a compact
metric space, T : X → X is a homeomorphism, μ is an ergodic probability measure
with full support, and f : X → R is a continuous sampling function. We associate
with these model data a one-parameter family of SL(2, R) cocycles as follows: for
E ∈ R, we let

AE : X → SL(2, R), AE(x) =

(

E − f(x) −1
1 0

)

, (2.1)

and consider the cocycle

(T, AE) : X × R
2 → X × R

2, (x, v) 
→ (Tx, AE(x)v). (2.2)

Iterating the cocycle, we obtain maps An
E : X → SL(2, R) for n ∈ Z so that

(T, AE)n = (Tn, An
E). One says that (T, AE) is uniformly hyperbolic if there are

C > 0, λ > 1 such that infx∈X ‖An
E(x)‖ ≥ Cλ|n|. Since the ergodic measure μ has

full support, the unperturbed almost sure spectrum can be characterized as follows:

Σ0 = {E ∈ R : (T, AE) is not uniformly hyperbolic}. (2.3)

It is often convenient to consider the projectivization of AE(x) and regard it as
a map from RP

1 to RP
1. Upon the natural identification of RP

1 with T = R/Z, we
then arrive at a map from T to T, which we denote by gE(x). An invariant section
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of the cocycle (T, AE) is a continuous map d : X → T such that for every x ∈ X, we
have gE(x)(d(x)) = d(Tx). If the cocycle (T, AE) is uniformly hyperbolic, it is well
known that there are two invariant sections ds

E , du
E : X → T, for which the associated

vectors in R2 experience exponential decay in forward (resp., backward) time under
iterations of the cocycle. These are called the stable (rep., unstable) section. We
have

ds
E(x) �= du

E(x) for every x ∈ X, (2.4)

consistent with (2.3).
Since the cocycle (T, AE) is homotopic to the constant cocycle (T, I) with the

identity matrix I (which is usually referred to as the cocycle being homotopic to the

identity), one can choose lifts g̃E(x) : R → R (i.e., π(g̃E(x)(y)) = gE(x)(π(y)) with
the canonical projection π : R → T) that are continuous in both x ∈ X and E ∈ R.

Remark 2.1. Note that any two such families of lifts must differ by a continuous
integer-valued function. In particular, if X is connected, any two such families of
lifts must be the same up to an additive integer constant, while this is not true when
X is not connected.

For n ∈ Z+, consider the composition G̃x,E,n = g̃E(Tn−1(x)) ◦ · · · ◦ g̃E(x). Due
to [2, 4, 5, 9, 10] and [8, Theorem A.9] we have the following:

Proposition 2.2. For any E ∈ R, the rotation number

ρ(E) = lim
n→∞

∫

X

G̃x,E,n(y)

n
dμ(y)

exists. Moreover, for μ-a.e. x ∈ X and any y ∈ R, we have

G̃x,E,n(y)

n
→ ρ(E) as n → ∞.

The function E 
→ ρ(E) is continuous and monotone. Moreover, it is constant on an

interval (E1, E2) if and only if (T, AE) is uniformly hyperbolic for every E ∈ (E1, E2).

Remark 2.3. Notice that since the lifts could be shifted by the same integer con-
stant, in the case of a connected X, the rotation number is only defined up to an
integer.

In the proof of Theorem 1.1 we will crucially rely on the following statement,
whose proof will be given at the end of this section:

Proposition 2.4. Assume that X is connected. Suppose E1, E2 ∈ R are such that

E1 < E2 and the cocycles (T, AE1
) and (T, AE2

) are uniformly hyperbolic. Then

either [E1, E2] ∩ Σ0 = ∅, or Σ0 ⊂ (E1, E2), or the unstable sections du
E1

and du
E2

are

not homotopic.
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The next proposition does not assume the connectedness of X:

Proposition 2.5. Suppose d1 : X → T and d2 : X → T are continuous. If we have

d1(x) �= d2(x) for all x ∈ X, then d1 and d2 are homotopic.

Proof. Continuously turn d1(x) counterclockwise until it “hits” d2(x). More pre-
cisely, observe that d1 −d2 is a nonvanishing map into T and hence (by compactness
and continuity) maps into Tδ = T \ Bδ(0) for some δ > 0 small. Since Tδ is (homeo-
morphic to) an interval, d1 −d2 is a continuous map from T to an interval and hence
is nullhomotopic. ⊓⊔

As a corollary (of Proposition 2.5 and (2.4)) we get the following simple fact that
we state explicitly:

Proposition 2.6. If E �∈ Σ0, then the unstable section du
E and the stable section

ds
E of (T, AE) are homotopic.

The following statement is just a convenient reformulation of the definition of
the rotation number of a cocycle in the case where an invariant section exists (not
necessarily a stable/unstable section of a hyperbolic cocycle, although that is the
context we are most interested in):

Proposition 2.7. Suppose X is connected and the cocycle (T, A) has an invariant

section d : X → T. Then the displacement function1

ϕd,A(x) = g̃(x)(y) − y,

where y ∈ π−1(d(x)), does not depend on the choice of y ∈ π−1(d(x)), and the

rotation number ρ(T, A) is given by

ρ(T, A) =

∫

X

ϕd,A(x) dμ(x) mod 1.

Proof. The statement follows from the existence of the rotation number as stated
in Proposition 2.2 and Remark 2.1. Indeed, by Remark 2.1, the choice of a different
family of lifts g̃(x) will only change the integral

∫

X
ϕd,A(x) dμ(x) by an integer

constant. ⊓⊔

Proposition 2.8. In the context of Proposition 2.7, suppose that another cocycle

(T, A′) is such that it has the same d : X → T as an invariant section. Then

ρ(T, A) = ρ(T, A′) mod 1.

Proof. Notice that ϕd,A(x) − ϕd,A′(x) is a continuous integer-valued function. Since
X is connected, the result follows. ⊓⊔

1 Here, g̃(x) is defined for the cocycle (T, A) in a way analogous to our definition of g̃E(x) asso-
ciated with the cocycle (T, AE) above.
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Proposition 2.9. Suppose that X is connected, (T, A) is an SL(2, R) cocycle that

is homotopic to the identity, α : X → R is continuous, and the cocycle (T, C) is

given by C(x) = R−α(T (x))A(x)Rα(x), where Rθ ∈ SL(2, R) is the rotation in R2 by

angle θ. Then ρ(T, C) = ρ(T, A) mod 1.

Proof. Denote by {gA(x)} the family of projectivizations of {A(x)}, and let {g̃A(x)}
be a continuous family of lifts of the maps {gA(x)}; such a family of lifts exists since
the cocycle (T, A) is homotopic to the identity. Similarly to the notation introduced
above for the Schrödinger cocycles, set G̃x,A,n(y) = g̃A(Tn−1(x)) ◦ . . . ◦ g̃A(x). Then

g̃C(x)(y) = g̃A(x)(y + α(x)) − α(T (x))

form a family of lifts of projectivizations of {C(x)}, and

G̃x,C,n(y) = g̃T n−1(x),C ◦ · · · ◦ g̃x,C(y)

= g̃T n−1(x),A ◦ · · · ◦ g̃x,A(y + α(x)) − α(Tn(x)).

Hence, for μ-regular x ∈ X, we have

ρ(T, C) = lim
n→∞

G̃x,C,n(y)

n
= lim

n→∞

G̃x,A,n(y)

n
= ρ(T, A),

concluding the proof. ⊓⊔

Together, Propositions 2.9 and 2.8 imply the following:

Proposition 2.10. Assume that X is connected. If the unstable sections du
E1

and

du
E2

are homotopic, then ρ(E1) = ρ(E2) mod 1.

Proof. If du
E1

and du
E2

are homotopic, the cocycle (T, AE1
) is conjugate to a cocycle

for which the section du
E2

is invariant (and which, due to Proposition 2.8, has the
same rotation number). On the other hand, due to Proposition 2.9 it also must have
the same rotation number as (T, AE2

). ⊓⊔

Proof of Proposition 2.4. Given E1, E2 ∈ R with E1 < E2 so that the cocycles
(T, AE1

) and (T, AE2
) are uniformly hyperbolic, it follows from (2.3) that E1 and E2

belong to the complement of Σ0. If they belong to the same connected component
of Σc

0 ∩ R (i.e., the same gap), then we have [E1, E2] ∩ Σ0 = ∅. If E1 < min Σ0

and E2 > max Σ0, then Σ0 ⊂ (E1, E2). Otherwise, we must have that E1 and E2

belong to different gaps of Σ0, one of which is bounded. In this case, it follows from
Propositions 2.2 and 2.10 that the unstable sections du

E1

and du
E2

are not homotopic.

⊓⊔
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3 Proof of the Main Result

In this section we prove Theorem 1.1. We will denote the complement of a subset S
of R by Sc, that is, Sc = R \ S. We emphasize this because sometimes spectra are
naturally considered as subsets of C, but for the discussion below it is not necessary
to move off the real axis.

Recall that Σ0 denotes the unperturbed spectrum, compare (1.1), and Σ1 denotes
the almost sure spectrum after adding the random perturbation, compare (1.3). Re-
call also that S denotes the topological support of the single-site measure generating
the random perturbation; see (1.2).

Before we start the formal proof, we would like to informally discuss the main
ideas. First, we would like to remind the reader that the addition of a constant to
the potential is equivalent to a shift in the energy. Therefore, if one takes an energy
in Σ0, the addition of a constant that belongs to S must give us an energy in Σ1.
It is now key to our argument to observe the following. Start with the Schrödinger
cocycle (T, AE) associated with the unperturbed ergodic potential, compare (2.1)–
(2.2), and suppose that there are two constants from the support S of the random
perturbation such that adding any one of them to an energy outside of Σ0 produces
a uniformly hyperbolic cocycle and also such that the unstable sections of these two
cocycles are not homotopic. Then there is a point in the phase space where the stable
direction of one cocycle coincides with the unstable direction of the other. Consider
the potential generated by the T -orbit of that point. Then adding one constant to
all values of the potential on the right half line and another constant to the potential
on the left half line gives a sequence of matrices that are hyperbolic on each of the
half lines, but such that the most contracting vector of the products of matrices to
the right coincides with the most contracting vector to the left, hence its images
form an eigenfunction, and therefore the energy in question must be in Σ1.

These ideas lead to the following statement:

Lemma 3.1. If E ∈ Σc
1, then E − S ⊆ Σc

0 and all E′ ∈ E − S have homotopic

unstable sections with respect to the unperturbed cocycle at energy E′.

Proof. We show the contrapositive. That is, if E − S �⊆ Σc
0 or if E − S ⊆ Σc

0 and
there are v, v′ ∈ S that have non-homotopic unstable sections at energies E − v and
E − v′ with respect to the respective unperturbed cocycles, then E ∈ Σ1.

Consider first the case E − S �⊆ Σc
0. Then, there is v ∈ S such that E − v ∈ Σ0.

This shows that the constant realization Wω ≡ v is such that E ∈ σ(H + Vx + Wω)
for every x ∈ X0 with σ(Hx) = Σ0. Since this set of x’s has full μ measure, and
translates of μ̃-almost every ω̃ can approximate ω, a strong approximation argument
then implies that E ∈ Σ1, as desired.

In the other case, E −S ⊆ Σc
0 and there are v, v′ ∈ S such that E − v and E − v′

have non-homotopic unstable sections with respect to the respective unperturbed
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cocycles. Consider the random realization

Wω(n) =

{

v n ∈ Z−,

v′ n ∈ Z+.

Since the stable and unstable sections of the unperturbed cocycle for fixed energy are
homotopic by Proposition 2.6, by assumption we have that the unstable section for
energy E − v and the stable section for energy E − v′ are non-homotopic (they exist
due to E − S ⊆ Σc

0). By Proposition 2.5 there exists x ∈ X such that du
E−v(x) =

ds
E−v′(x). This shows that the Schrödinger operator with potential Vx + Wω for

these particular choices for x and ω possesses an exponentially localized eigenvector
at energy E. Thus, we have E ∈ σ(Hx + Wω), and hence by (1.4), we have E ∈ Σ1.

⊓⊔
Lemma 3.2. Assume that X is connected. Then, E ∈ Σc

1 if and only if either E − S
is contained in a gap of Σ0 or Σ0 is contained in a gap of E − S.

Proof. For the first direction we suppose that E ∈ R is such that neither E − S is
contained in a gap of Σ0, nor Σ0 is contained in a gap of E − S. We need to show
that E ∈ Σ1.

One possibility is that E − S intersects Σ0. By the argument given above in the
proof of Lemma 3.1, it follows that E ∈ Σ1, as desired.

The other possibility is that neither set is contained in a gap of the other, but
they still have empty intersection. In this case one can find v, v′ ∈ S such that E −v
and E − v′ belong to different gaps of Σ0, one of which must be an interior (i.e.,
bounded) gap. Proposition 2.4 now shows that the unstable sections at these two
energies are non-homotopic. Thus, by Lemma 3.1 we find E ∈ Σ1, again as desired.

For the reverse direction we suppose that E ∈ R is such that either E − S is
contained in a gap of Σ0, or Σ0 is contained in a gap of E − S. We need to show
that E ∈ Σc

1. It is clear that Σ1 ⊆ ch(S) + Σ0. Thus, if E − S is contained in a gap
of Σ0, then E − ch(S) is also contained in a gap of Σ0, and hence E cannot be in
ch(S) + Σ0, so E �∈ Σ1.

To see the other implication, we can assume without loss of generality that
r := max Σ0 = − min Σ0 (otherwise shift appropriately and subsume the necessary
translate in S). By self-adjointness, we therefore must have

‖Hx‖ = r for μ − almost every x ∈ X. (3.1)

Arguing in a similar way as before, the addition of Hx to Wω can shift the edge of a
spectral gap by no more than r (for μ-almost every x ∈ X0). Since S is the spectrum
of the multiplication operator Wω for μ̃-almost every ω ∈ Ω, it follows that E ∈ Σc

1

if Σ0 is contained in a gap of E − S. Indeed, if Σ0 is contained in a gap of E − S,
then ch(Σ0) is contained in the same gap of E − S as well, which implies that

E �∈ S + ch(Σ0) = S + [−r, r].

Due to (3.1), this implies that E ∈ Σc
1. ⊓⊔
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Proof of Theorem 1.1. Consider first the case where diam(S) ≤ diam(Σ0). Then, by
Lemma 3.2, E ∈ Σc

1 if and only if E − S is contained in a gap of Σ0 (as the other
case is impossible). But this in turn is equivalent to the statement that E − ch(S)
is contained in a gap of Σ0. It follows that an E ∈ R obeys E /∈ Σ1 if and only if
E /∈ Σ0 + ch(S), whence Σ1 = Σ0⋆S in this case.

In the case where diam(S) > diam(Σ0), we argue similarly. By Lemma 3.2,
E ∈ Σc

1 if and only if Σ0 is contained in a gap of E −S. This in turn is equivalent to
the statement that ch(Σ0) is contained in a gap of E − S. It follows that an E ∈ R

obeys E /∈ Σ1 if and only if E /∈ ch(Σ0) + S, whence Σ1 = Σ0⋆S in this case as
well. ⊓⊔
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[9] R. Johnson, Exponential dichotomy, rotation number, and linear differential operators
with bounded coefficients, J. Differ. Equ. 61 (1986), 54–78.
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