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Abstract. We consider Schrédinger operators in ¢2(Z) whose potentials are given
by the sum of an ergodic term and a random term of Anderson type. Under the
assumption that the ergodic term is generated by a homeomorphism of a connected
compact metric space and a continuous sampling function, we show that the almost
sure spectrum arises in an explicitly described way from the unperturbed spectrum
and the topological support of the single-site distribution. In particular, assuming
that the latter is compact and contains at least two points, this explicit description
of the almost sure spectrum shows that it will always be given by a finite union
of non-degenerate compact intervals. The result can be viewed as a far reaching
generalization of the well known formula for the spectrum of the classical Anderson
model.

1 Introduction

In this paper we consider perturbations of ergodic Schrédinger operators in £?(Z) by
the addition of a random potential of Anderson type. We will for simplicity assume
that both pieces of the potential are bounded.

It is known that with respect to the product measure, the spectrum is almost
surely equal to the same set, which we will denote by ;. A question of Bellissard
asks whether it can be shown that > has only finitely many gaps. Since, by general
principles, ¥1 cannot contain any isolated points, an equivalent formulation is the
assertion that ¥, is given by a finite union of non-degenerate compact intervals.

It is in fact not obvious that in this generality, it is always true that X; even
contains any non-degenerate intervals, especially if the unperturbed ergodic model
has a spectrum of Cantor type. This question, along with some preliminary results,
was discussed and advertised in a recent paper by two of the authors [7].

The purpose of the present paper is to establish a full affirmative answer to
Bellissard’s question and prove the finiteness of the number of gaps of ¥; under
the assumption that the hull of the ergodic piece is connected. This relatively weak
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assumption is satisfied by many popular models, including quasi-periodic potentials
and potentials generated by skew-shifts and hyperbolic toral automorphisms. Beyond
just the finiteness of the number of gaps of X1, we even show how X results in an
explicit and simple way from the unpertubed almost sure spectrum Yy and the
topological support S of the single-site measure v generating the Anderson-type
perturbation. This result in particular recovers the well known expression of the
almost sure spectrum of the Anderson model, which in our setting corresponds to
the case of a zero ergodic term.

Let us state our result precisely. The unperturbed model is given as follows.
Given a compact metric space X, a homeomorphism 7" : X — X, an ergodic Borel
probability measure p with full topological support, suppu = X, and a sampling
function f € C'(X,R), we generate potentials

Ve(n) = f(T"z), € X, neZ
and Schrodinger operators
[He](n) = (n+1) +¢(n —1) + Vae(n)i(n)

on (%(Z). By the general theory of ergodic Schrédinger operators on (2(Z), the
spectrum of H,, denoted by o(H,), is almost surely independent of x. That is, there
is a compact set Yy such that

Yo = o(Hy) for p -almost every = € X. (1.1)
The random perturbation is given by
Wy(n) =wp, w €N, neZ,

where Q = (supp v)% and v is a compactly supported probability measure on R with
topological support

S :=suppv (1.2)
satisfying
#S > 2.

Since the product of p and ji := v/ is ergodic with respect to the product of T and
the left shift (compare, e.g., Theorem 6.1 in [14, Section 2.6]), there is, again by
the general theory of ergodic Schrodinger operators in ¢2(Z), a compact set ¥; such
that

Y1 =o0(Hy +W,) for pn x i -almost every (z,w) € X x Q.
Since supp u X i = X x S%, we also have

Si= J o(H. W), (1.3)
(z,w)eX xS%
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that is, the spectra corresponding to exceptional points can only be smaller than
the almost sure spectrum. In particular,

o(H, +W,) C % for every (z,w) € X x SZ. (1.4)

For all the general results mentioned above and more background on ergodic Schrédinger
operators, we refer the reader to [3, 5].

Before stating our main theorem, we introduce the following operation on pairs
of compact subsets of R.

DEFINITION. Suppose A and B are compact subsets of R. We define the compact set
A B as follows. If diam(A) > diam(B), then A% B = A+ ch(B), and if diam(A) <
diam(B), then A% B = ch(A) + B. Here, diam(S) denotes the diameter and ch(S)
denotes the convex hull of a compact S C R, and Sy + So denotes the Minkowski
sum {s1 + s9 : 51 € S1, s2 € Sa}.

Theorem 1.1. Consider the setting described above and assume that X is con-
nected. Then, we have

¥ =Ygk S. (1.5)
This theorem provides an affirmative answer to Bellissard’s question:

COROLLARY 1.2. If X is connected, then the almost sure spectrum Y1 is given by
a finite union of non-degenerate compact intervals.

Proof. This is an immediate consequence of (1.5). O

REMARK 1.3. The standard Anderson model (see, e.g., [11, 18] for some introduc-
tory texts) arises in our setting if we set V, = 0 for all x € X (which can be
accomplished by choosing the zero sampling function f € C(X,R)), which yields
Yo = [-2,2]. For the Anderson model, it is a classical result due to Kunz and Souil-
lard [12] (see also, e.g., [3, Theorem 4.1], [11, Theorem 3.9], [15, Proposition 3.3],
and [18, Theorem 2]) that

Y1 =[-2,2] +suppr =%p+S. (1.6)

We remark here that (1.5) recovers, and indeed vastly generalizes, (1.6). To verify
this, consider the two cases in question. If diam(S5) < 4 = diam(Xy), then ¥; =
YokS = [-2,2] + ch(S) = Xo + S, where the last step follows from diam(S) < 4.
On the other hand, if diam(S) > 4, then ¥; = 3% S = ch([-2,2]) + S =%p+ S.

REMARK 1.4. In [7] it was shown that for some quasi-periodic potentials {V,}, ¥;
contains an interval. Due to Corollary 1.2, we now know that for all quasi-periodic
potentials {V,.}, ¥; is given by a finite union of non-degenerate compact intervals.
Beyond quasi-periodic potentials, which are generated by minimal translations on a
finite-dimensional torus, our result covers other ergodic maps on finite-dimensional
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tori with fully supported ergodic measure. This includes, for example, (generalized)
skew-shifts, for which it is also known that ¥ is generically nowhere dense [1, 2]
and hence the topological structure of the almost sure spectrum changes markedly
in all these cases when the random perturbation is turned on.

REMARK 1.5. Let us give an example showing that the formula (1.5) may fail when
X is not assumed to be connected. Consider the case where the unperturbed poten-
tial is 2-periodic, that is, we choose X = Zo = Z/27, Tx = z+1, p = %50—# %61. The
perturbation is given by the Bernoulli-Anderson model, that is, S has cardinality
2. By the general theory of periodic Schrédinger operators it follows that for any
f: X — R, the corresponding spectrum >y has diameter at least four and either is
an interval or a union of two intervals. Therefore, if diam(S) < 4, ¥o% S can have
at most two connected components. However, explicit calculations (based on, e.g.,
[6, Theorem 3.3.1] or [19, Lemma 2]) show that for f(0) =0, f(1) =7, S = {-1,1},
we have

=[P T ),

which has four components and hence does not coincide with ¥¢%.S. We also mention
that the topological structure of 3; for operators of this kind was recently studied
in [6, 19], and it was shown that it is always a union of at most four intervals (for
any values of f(0), f(1), and any two-point set S).

REMARK 1.6. Some open questions about the topological structure of 3; in the case
of a disconnected X, which includes the case of the Anderson model with a periodic
background, or about the topological structure of the essential spectrum in the case
of the non-stationary Anderson model are formulated in [7], and we refer the reader
to that paper for a more detailed discussion of them.

REMARK 1.7. While the case of an Anderson-type perturbation of a given ergodic
reference operator is very natural, let us remark that Theorem 1.1 extends to a
more general class of ergodic measures on X x SZ. It is not necessary to consider the
product j x fi. Moreover, it is not necessary to consider the product measure ji = v”
on S%. The formula for ¥; holds whenever it is the almost sure spectrum associated
with an ergodic measure on X x S% that has full support. This can be seen either by
inspection of the proof (which extends to measures of this kind) or by an application
of the semi-continuity property of the spectrum with respect to strong convergence,
which ensures that the almost sure spectrum of an ergodic family of Schrédinger
operators is completely determined by the topological support of the push-forward
measure on the space of realizations; compare [5, Theorem 4.8.8]. For example, in
the case when T': X — X is a uniquely ergodic homeomorphism of zero entropy
(e.g., an irrational circle rotation), one can replace p x i by an ergodic measure on
X x S% with full support and zero entropy. The existence of such a measure follows,
for example, from the following argument. Let p1 be the unique invariant measure
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of the map T : X — X. Let us be an invariant ergodic measure with full support
and zero entropy for the left shift S* — S%; there is a residual set of such measures
in the space of invariant measures of the left shift, see [13, 16, 17]. Take p12 to
be an ergodic joining of the measures u; and ps. Since both py and pe have zero
entropy, (1,2 is also a measure of zero entropy. Finally, p1 2 must have full support,
supp p12 = X X SZ. Indeed, since supp o = S%, an w-limit set (with respect to the
left shift) of any us-regular point contains every periodic point p of the left shift.
Together with the unique ergodicity of 7', this implies that the w-limit set (with
respect to the product of 7" and the left shift) of any p; o-regular point must contain
the whole leaf X x {p}. Since such periodic leaves are dense in X x S%, we must
have supp 12 = X x Sz,

The remainder of the paper is structured as follows. Theorem 1.1 will be proved
in Sect. 3, after having discussed, in Sect. 2, some ingredients used in the proof.

2 Cocycles, Invariant Sections, and the Rotation Number

In this section we discuss some objects that will play a crucial role in the proof
of Theorem 1.1. They are centered around, and related in spirit to, the Johnson-
Schwartzman approach to gap labelling, but we will restrict our discussion to those
aspects that are needed in the proof. For the results mentioned below, as well as
more details and background, we refer the reader to [4, 5, 9, 10].

Recall the framework that defines the unperturbed potentials: X is a compact
metric space, T : X — X is a homeomorphism, p is an ergodic probability measure
with full support, and f : X — R is a continuous sampling function. We associate
with these model data a one-parameter family of SL(2,R) cocycles as follows: for
FE e R, we let

Ap: X —SL2,R), Ap(z) = <E _1f("5> _01> , (2.1)

and consider the cocycle
(T,Ap) : X xR? - X xR?, (z,v) — (T, Ag(z)v). (2.2)

Iterating the cocycle, we obtain maps A% : X — SL(2,R) for n € Z so that
(T, Ap)" = (T", A%t). One says that (T, Ag) is uniformly hyperbolic if there are
C > 0, A > 1 such that inf,cx [|[A% ()| > CAI"l. Since the ergodic measure x has
full support, the unperturbed almost sure spectrum can be characterized as follows:

Yo={FE €R: (T, Ag) is not uniformly hyperbolic}. (2.3)

It is often convenient to consider the projectivization of Ag(z) and regard it as
a map from RP! to RP'. Upon the natural identification of RP! with T = R/Z, we
then arrive at a map from T to T, which we denote by gg(x). An invariant section
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of the cocycle (T, Ag) is a continuous map d : X — T such that for every x € X, we
have gg(z)(d(z)) = d(Tz). If the cocycle (T, Ag) is uniformly hyperbolic, it is well
known that there are two invariant sections d3,, df, : X — T, for which the associated
vectors in R? experience exponential decay in forward (resp., backward) time under
iterations of the cocycle. These are called the stable (rep., unstable) section. We
have

dy(z) # dg(z) for every x € X, (2.4)

consistent with (2.3).

Since the cocycle (T, Ag) is homotopic to the constant cocycle (7', I) with the
identity matrix I (which is usually referred to as the cocycle being homotopic to the
identity), one can choose lifts gg(x) : R — R (i.e., 7(gr(z)(y)) = gr(x)(7(y)) with
the canonical projection 7 : R — T) that are continuous in both z € X and E € R.

REMARK 2.1. Note that any two such families of lifts must differ by a continuous
integer-valued function. In particular, if X is connected, any two such families of
lifts must be the same up to an additive integer constant, while this is not true when
X is not connected.

For n € Z,, consider the composition G, g, = ge(T" ' (z)) o --- o gr(z). Due
to [2, 4, 5, 9, 10] and [8, Theorem A.9] we have the following:

ProproSITION 2.2. For any FE € R, the rotation number

p(E) = lim 7GI7E’n(y)

n—oo X n

du(y)

exists. Moreover, for p-a.e. x € X and any y € R, we have

éx,E,n(y)

— p(E) as n — oc.
n

The function E — p(F) is continuous and monotone. Moreover, it is constant on an
interval (E1, Es) if and only if (T, Ag) is uniformly hyperbolic for every E € (E1, E»).

REMARK 2.3. Notice that since the lifts could be shifted by the same integer con-
stant, in the case of a connected X, the rotation number is only defined up to an
integer.

In the proof of Theorem 1.1 we will crucially rely on the following statement,
whose proof will be given at the end of this section:

PROPOSITION 2.4. Assume that X is connected. Suppose Eq, Eo» € R are such that
E, < Ej and the cocycles (T, Ag,) and (T, Ag,) are uniformly hyperbolic. Then
either [E1, E2] N ¥ = (), or ¥o C (E1, E2), or the unstable sections df, and d, are
not homotopic.



370 A. AVILA ET AL. GAFA

The next proposition does not assume the connectedness of X:

PROPOSITION 2.5. Suppose d' : X — T and d?> : X — T are continuous. If we have
d'(z) # d*(z) for all x € X, then d' and d? are homotopic.

Proof. Continuously turn d!(z) counterclockwise until it “hits” d?(x). More pre-
cisely, observe that d! — d? is a nonvanishing map into T and hence (by compactness
and continuity) maps into Ts = T \ B;s(0) for some § > 0 small. Since Ts is (homeo-
morphic to) an interval, d' —d? is a continuous map from T to an interval and hence
is nullhomotopic. O

As a corollary (of Proposition 2.5 and (2.4)) we get the following simple fact that
we state explicitly:

PROPOSITION 2.6. If E' ¢ ¥, then the unstable section d}, and the stable section
dy, of (T, Ag) are homotopic.

The following statement is just a convenient reformulation of the definition of
the rotation number of a cocycle in the case where an invariant section exists (not
necessarily a stable/unstable section of a hyperbolic cocycle, although that is the
context we are most interested in):

PROPOSITION 2.7. Suppose X is connected and the cocycle (T, A) has an invariant
section d : X — T. Then the displacement function'

wa,a(x) = g(z)(y) — v,

where y € n~1(d(z)), does not depend on the choice of y € n~1(d(z)), and the
rotation number p(T, A) is given by

p(T,A) = /chd’A(x) dp(z) mod 1.

Proof. The statement follows from the existence of the rotation number as stated
in Proposition 2.2 and Remark 2.1. Indeed, by Remark 2.1, the choice of a different
family of lifts §(x) will only change the integral [ ¢4 4(x)dpu(z) by an integer
constant. O

ProprosITION 2.8. In the context of Proposition 2.7, suppose that another cocycle
(T, A") is such that it has the same d : X — T as an invariant section. Then

p(T,A) = p(T,A’) mod 1.

Proof. Notice that ¢4 4(z) — ¢q.a/(x) is a continuous integer-valued function. Since
X is connected, the result follows. O

! Here, §(x) is defined for the cocycle (T, A) in a way analogous to our definition of §g(z) asso-
ciated with the cocycle (T, Ag) above.
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PROPOSITION 2.9. Suppose that X is connected, (T, A) is an SL(2,R) cocycle that
is homotopic to the identity, o : X — R is continuous, and the cocycle (T,C) is
given by C(x) = R_y(1(2))A(7) Ro(q), where Ry € SL(2,R) is the rotation in R? by
angle . Then p(T,C) = p(T, A) mod 1.

Proof. Denote by {ga(z)} the family of projectivizations of { A(x)}, and let {ga(x)}
be a continuous family of lifts of the maps {ga(z)}; such a family of lifts exists since
the cocycle (T, A) is homotopic to the identity. Similarly to the notation introduced
above for the Schrédinger cocycles, set Gy an(y) = Ga(T" ! (z))o...0ga(z). Then

ge (@) (y) = ga(x)(y + a(x)) — a(T(x))

form a family of lifts of projectivizations of {C(z)}, and

Gx,C,n(y) = gT"*l(a:),C ©:--0 QI,C(?J)
= grn-1(2),4° 0 Gz, A(y + a(z)) — (T (2)).

Hence, for p-regular z € X, we have

p(T,C) = lim Gaomly) _ lim Guan(y) _ (T, A),

n—oo n n—00 n

concluding the proof. O
Together, Propositions 2.9 and 2.8 imply the following:

PROPOSITION 2.10. Assume that X is connected. If the unstable sections d%l and
dy,, are homotopic, then p(E1) = p(Fs) mod 1.

Proof. It df; and df, are homotopic, the cocycle (T, Ag,) is conjugate to a cocycle
for which the section df, is invariant (and which, due to Proposition 2.8, has the
same rotation number). On the other hand, due to Proposition 2.9 it also must have
the same rotation number as (T, Ag,). 0

Proof of Proposition 2.4. Given Fp,FEs € R with E; < FEy so that the cocycles
(T, Ag,) and (T, Ag,) are uniformly hyperbolic, it follows from (2.3) that £y and E»
belong to the complement of ¥y. If they belong to the same connected component
of § N R (i.e., the same gap), then we have [Ey, E5] N Xy = 0. If B} < min X
and Fy > max Y, then Xy C (E1, Es). Otherwise, we must have that F; and E»
belong to different gaps of Y, one of which is bounded. In this case, it follows from
Propositions 2.2 and 2.10 that the unstable sections d}, and df, are not homotopic.

0
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3 Proof of the Main Result

In this section we prove Theorem 1.1. We will denote the complement of a subset S
of R by 8¢, that is, S = R\ S. We emphasize this because sometimes spectra are
naturally considered as subsets of C, but for the discussion below it is not necessary
to move off the real axis.

Recall that ¥y denotes the unperturbed spectrum, compare (1.1), and 37 denotes
the almost sure spectrum after adding the random perturbation, compare (1.3). Re-
call also that .S denotes the topological support of the single-site measure generating
the random perturbation; see (1.2).

Before we start the formal proof, we would like to informally discuss the main
ideas. First, we would like to remind the reader that the addition of a constant to
the potential is equivalent to a shift in the energy. Therefore, if one takes an energy
in X, the addition of a constant that belongs to S must give us an energy in .
It is now key to our argument to observe the following. Start with the Schrédinger
cocycle (T, Ag) associated with the unperturbed ergodic potential, compare (2.1)-
(2.2), and suppose that there are two constants from the support S of the random
perturbation such that adding any one of them to an energy outside of ¥y produces
a uniformly hyperbolic cocycle and also such that the unstable sections of these two
cocycles are not homotopic. Then there is a point in the phase space where the stable
direction of one cocycle coincides with the unstable direction of the other. Consider
the potential generated by the T-orbit of that point. Then adding one constant to
all values of the potential on the right half line and another constant to the potential
on the left half line gives a sequence of matrices that are hyperbolic on each of the
half lines, but such that the most contracting vector of the products of matrices to
the right coincides with the most contracting vector to the left, hence its images
form an eigenfunction, and therefore the energy in question must be in 3.

These ideas lead to the following statement:

LEMMA 3.1. If E € XY, then E — S C X§ and all E' € E — S have homotopic
unstable sections with respect to the unperturbed cocycle at energy E'.

Proof. We show the contrapositive. That is, if £ — S € ¥§ or if £ — 5 C 3§ and
there are v,v’ € S that have non-homotopic unstable sections at energies F — v and
E — v with respect to the respective unperturbed cocycles, then E € ;.

Consider first the case £ — S € . Then, there is v € § such that F' —v € X.
This shows that the constant realization W, = v is such that F € o(H + V, + W)
for every z € Xy with o(H,) = Xg. Since this set of z’s has full x measure, and
translates of ji-almost every @ can approximate w, a strong approximation argument
then implies that E € 31, as desired.

In the other case, E — S C X§ and there are v,v’ € S such that £ —v and E — v/
have non-homotopic unstable sections with respect to the respective unperturbed
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cocycles. Consider the random realization

Wo(n) = {v/ néed_,

v ne€ .
Since the stable and unstable sections of the unperturbed cocycle for fixed energy are
homotopic by Proposition 2.6, by assumption we have that the unstable section for
energy E — v and the stable section for energy E — v’ are non-homotopic (they exist
due to £ — S C Xf). By Proposition 2.5 there exists « € X such that df,_ (z) =
%_u (x). This shows that the Schrédinger operator with potential V, 4+ W, for
these particular choices for  and w possesses an exponentially localized eigenvector
at energy E. Thus, we have E € o(H, + W,,), and hence by (1.4), we have F € ¥;.
g

LEMMA 3.2. Assume that X is connected. Then, E € ¥{ if and only if either E — S
is contained in a gap of ¥y or X is contained in a gap of £ — S.

Proof. For the first direction we suppose that F£ € R is such that neither £ — S is
contained in a gap of Yy, nor g is contained in a gap of £ —.S. We need to show
that F € X.

One possibility is that F — S intersects ¥g. By the argument given above in the
proof of Lemma 3.1, it follows that £ € 31, as desired.

The other possibility is that neither set is contained in a gap of the other, but
they still have empty intersection. In this case one can find v,v’ € S such that £ —wv
and E — v’ belong to different gaps of X, one of which must be an interior (i.e.,
bounded) gap. Proposition 2.4 now shows that the unstable sections at these two
energies are non-homotopic. Thus, by Lemma 3.1 we find E € ¥, again as desired.

For the reverse direction we suppose that E € R is such that either £ — S is
contained in a gap of X, or ¥ is contained in a gap of £ —S. We need to show
that E € 9. It is clear that ¥; C ch(S) + Xo. Thus, if E — S is contained in a gap
of X, then E — ch(S) is also contained in a gap of ¥, and hence E cannot be in
ch(S) + X, so E & 3.

To see the other implication, we can assume without loss of generality that
r := max Y9 = —min Xy (otherwise shift appropriately and subsume the necessary
translate in ). By self-adjointness, we therefore must have

|H;|| =r for p— almost every z € X. (3.1)

Arguing in a similar way as before, the addition of H, to W,, can shift the edge of a
spectral gap by no more than r (for p-almost every x € Xj). Since S is the spectrum
of the multiplication operator W,, for fi-almost every w € €2, it follows that £ € X
if ¢ is contained in a gap of F — S. Indeed, if ¥ is contained in a gap of ¥ — S,
then ch(Xg) is contained in the same gap of E — S as well, which implies that

E ¢S+ ch(Xy)=85+[-rr].
Due to (3.1), this implies that £ € X. 0
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Proof of Theorem 1.1. Consider first the case where diam(S) < diam(3g). Then, by
Lemma 3.2, E € Xf if and only if E' — S is contained in a gap of ¥y (as the other
case is impossible). But this in turn is equivalent to the statement that E — ch(S)
is contained in a gap of ¥y. It follows that an E € R obeys E ¢ 3 if and only if
E ¢ X0+ ch(S), whence 31 = X% .S in this case.

In the case where diam(S) > diam(Xy), we argue similarly. By Lemma 3.2,
E € ¥ if and only if ¥ is contained in a gap of £'—.S. This in turn is equivalent to
the statement that ch(3) is contained in a gap of £ — S. It follows that an £ € R
obeys E ¢ 31 if and only if E ¢ ch(Xg) + S, whence 1 = Xg%.S in this case as
well. O

Acknowledgments

We would like to thank Jake Fillman and the anonymous referee for several helpful
comments that have resulted in an improvement of the presentation.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights
to this article under a publishing agreement with the author(s) or other rightsh-
older(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

References

[1] A. Avila, J. Bochi, D. Damanik, Cantor spectrum for Schrédinger operators with po-
tentials arising from generalized skew-shifts, Duke Math. J. 146 (2009), 253-280.

[2] A. Avila, J. Bochi, D. Damanik, Opening gaps in the spectrum of strictly ergodic
Schrodinger operators, J. Eur. Math. Soc. 14 (2012), 61-106.

[3] D. Damanik, Schrédinger operators with dynamically defined potentials, Ergod. Theory
Dynam. Syst. 37 (2017), 1681-1764.

[4] D. Damanik, J. Fillman, Gap-labelling for discrete one-dimensional ergodic Schrodinger
operators. arXiv:2203.03696, to appear in From Complex Analysis to Operator Theory:
A Panorama, Eds. M. Brown, F. Gesztesy, P. Kurasov, A. Laptev, B. Simon, G. Stolz,
I. Wood, Springer.

[5] D. Damanik, J. Fillman, One-Dimensional Ergodic Schridinger Operators, I. General
Theory, Graduate Studies in Mathematics 221, American Mathematical Society (2022).

[6] D. Damanik, J. Fillman, P. Gohlke, Spectral characteristics of Schrédinger operators
generated by product systems, to appear in J. Spectr. Theory. arXiv:2203.11739.

[7] D. Damanik, A. Gorodetski, Must the spectrum of a random Schrédinger operator
contain an interval?, Commun. Math. Phys. 393 (2022), 1583-1613.

[8] A. Gorodetski, V. Kleptsyn, Parametric Furstenberg theorem on random products of
SL(2, mathbbR) matrices, Adv. Math. 378 (2021), 81.


http://arxiv.org/abs/2203.03696
http://arxiv.org/abs/2203.11739

GAFA THE SPECTRUM OF SCHRODINGER OPERATORS... 375

[9] R. Johnson, Exponential dichotomy, rotation number, and linear differential operators
with bounded coefficients, J. Differ. Equ. 61 (1986), 54-78.

[10] R. Johnson, R. Obaya, S. Novo, C. Niiiez, R. Fabbri, Nonautonomous Linear Hamilto-
nian Systems: Oscillation, Spectral Theory and Control, Developments in Mathematics
36, Springer (2016).

[11] W. Kirsch, An invitation to random Schrédinger operators, Panor. Synthéses 25, Ran-
dom Schridinger Operators, 1-119, Soc. Math. France, Paris (2008).

[12] H. Kunz, B. Souillard, Sur le spectre des opérateurs aux differences finies aléatoires,
Commun. Math. Phys. 78 (1980), 201-246.

[13] J. Oxtoby, On two theorems of Parthasarathy and Kakutani concerning the shift trans-
formation, Proceedings of the International Symposion on Ergodic theory, 203-215, Aca-
demic Press, New York (1963).

[14] K. Petersen, Ergodic Theory, Cambridge Studies in Advanced Mathematics 2, Cam-
bridge University Press, Cambridge (1989).

[15] W. Schlag, An introduction to multiscale techniques in the theory of Anderson local-
ization, Part I, Nonlinear Anal. 220 (2022), 55.

[16] K. Sigmund, Generic properties of invariant measures for Axiom A diffeomorphisms,
Invent. Math. 11 (1970), 99-109.

[17] K. Sigmund, On the prevalence of zero entropy, Israel J. Math. 10 (1971), 281-288.

[18] G. Stolz, An introduction to the mathematics of Anderson localization, Entropy and
the Quantum II, 71-108, Contemp. Math. 552, Amer. Math. Soc., Providence (2011).

[19] W. Wood, On the spectrum of the periodic Anderson—Bernoulli model, J. Math. Phys.
63 (2022), 102705.

A. AviLa
Institut fiir Mathematik, Universitéit Ziirich, Winterthurerstrasse 190, 8057 Ziirich, Switzer-
land.

artur@math.sunysb.edu
and

IMPA, Estrada D. Castorina 110, Jardim Botéanico, Rio de Janeiro 22460-320, Brazil.

D. DAMANIK
Department of Mathematics, Rice University, Houston, TX 77005, USA.
damanik@rice.edu
A.GORODETSKI
Department of Mathematics, University of California, Irvine, CA 92697, USA.
asgor@uci.edu

Received: November 3, 2022
Accepted: January 10, 2023



	The Spectrum of Schrödinger Operators with Randomly Perturbed Ergodic Potentials
	Abstract
	1 Introduction
	2 Cocycles, Invariant Sections, and the Rotation Number
	3 Proof of the Main Result
	Acknowledgments
	References


