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Abstract. The bistable dynamics of a modified Nicholson’s blowflies delay

differential equation with Allee effect is analyzed. The stability and basins of
attraction of multiple equilibria are studied by using Lyapunov-LaSalle invari-

ance principle. The existence of multiple periodic solutions are shown using

local and global Hopf bifurcations near positive equilibria, and these solutions
generate long transient oscillatory patterns and asymptotic stable oscillatory

patterns.

1. Introduction. The growth of a biological population is often described by a
delay differential equation [8, 13, 29, 31]

u′(t) = −µu(t) + f(u(t− τ)), (1)

where u(t) is the population density at time t, µ is the constant mortality rate,
and f(u) is a density-dependent population growth function but depends on the
population density at a past-time t−τ for some τ > 0. Prominent examples of such
delay differential equation models include Nicholson’s blowflies model [7, 25, 38],
and Mackey-Glass model of physiological control systems [20, 35]. Similar models
also appear in the context of economic growth models [3, 21, 22].

Typically the growth function f(u) satisfies f ′(0) > 0 which indicates the pop-
ulation could have an overall positive growth rate in low density. But in many
other situations, the biological species may have smaller growth rate in low density
because of low mating rate or weak resistance to predators, which is termed as an
Allee effect in the population growth [1, 5]. It is typical that in such a system,
there exists a threshold under which the species will go to extinction, and there
are multiple stable equilibrium points. Study on the dynamic behaviors of the
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mathematical model with Allee effect is helpful for preventing the extinction of en-
dangered species, and it could play a significant role in the sustainable development
of ecological environment.

In this paper we consider the dynamical behavior of the following case of (1):

u′(t) = −µu(t) + βuk(t− τ)e−pu(t−τ). (2)

Here µ, β, p are positive parameters, and k > 0. The growth function in (2) is of
Ricker type. When k = 1, it becomes the classical Nicholson’s blowflies equation
which has been extensively studied in the literature [2, 6, 28, 30, 32, 38, 42] and
references cited therein. For the multiple-patch Nicholson’s blowflies model, cor-
responding results can be found in [10, 11, 17, 18, 27, 40, 41] and references cited
therein. When k 6= 1, equation (2) appears as a model for the process of generation
and degeneration of red blood cells [14, 37]. When k > 1, the population growth
rate is negative or decreasing function at low population size or density, which was
found by Allee [1] and is termed as the strong Allee effect [33]. For the model (2)
with Allee effect k > 1, Terry [36] considered a special case of k = 2 and found
conditions of population extinction and persistence. Huang et al. [12] (see also
Liz and Ruiz-Herrera [16]) characterized the basins of attraction of locally stable
equilibria and showed the existence of heteroclinic orbits. Their approach combines
the idea of relating the dynamics of a map to the dynamics of a delay differential
equation and invariance arguments for the solution semiflow under the assumption
that the equilibria exist. Sullivan et al. [34] presented numerical simulations of
spreading dynamics of the model (2) with diffusion when k > 1. For the case of
0 < k < 1, Buedo-Fernández and Liz [3] established sharp global stability conditions
for the positive equilibrium of equation (2). However, there are very few results for
the existence of the equilibria and the bifurcation for general k, especially for the
stability of the equilibria by using the characteristic method, which we consider in
this paper.

In this paper, we analyze dynamics of model (2) with k > 1, including the
existence and the stability of the equilibria, and the coexistence of the equilibrium
and the stable periodic solution, which is a remarkable phenomenon in biological
systems [15, 26]. By analyzing the distribution of the eigenvalues of associated
characteristic equations, the stability of the equilibria and the condition under which
Hopf bifurcations occur are obtained by taking the time delay τ as the bifurcation
parameter. The global stability of the equilibria is obtained by using Lyapunov
functional and Lyapunov-LaSalle invariance principle, which is different from the
approach in [12]. The global existence of the periodic solutions for all possible time
delay values τ is established by applying the global Hopf bifurcation theorem of Wu
[39]. Our main conclusions include the following:

(i) In addition to the extinction equilibrium u0 = 0, there exist two positive
equilibria u2 > u1 > 0 when the growth rate parameter β > β∗ and there is
no positive equilibria when β < β∗. The species goes to extinction if β is small
(β < β∗), and it persists if β is large and the initial population is appropriate.

(ii) The extinction equilibrium u0 is always locally stable, and it is globally asymp-
totically stable when β is small; the intermediate equilibrium u1 is always un-
stable; and the large equilibrium u2 is locally stable for β∗ < β < β∗ and all
τ > 0, but it becomes unstable for β > β∗ and large τ . Moreover, u2 attracts
all large initial values regardless of τ for a more restricted range of β.
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(iii) When β is large, Hopf bifurcations inducing oscillatory patterns occur near
both positive equilibria u1 and u2 if the time delay τ increases, generating
unstable and stable periodic solutions around respective equilibria. For large
τ , unstable periodic solutions around u1 cause long transient oscillatory pat-
terns before solutions eventually converge to one of asymptotic stable states:
the extinction state or the persistence state, which makes a bistable structure.
The persistence state can be either the equilibrium u2 or a stable limit cycle
around u2.

(iv) For small β > 0, either a small or large initial density of the population could
lead to eventual extinction, while an intermediate initial density results in
population persistence; and for large β > 0, a large initial density always
keeps the population persist in an oscillatory fashion.

Our results confirm that the dynamics of system (2) is bistable due to the Allee
effect structure. We also find parameter conditions for the occurrence of long tran-
sient oscillations and asymptotic stable oscillations, which has been of great interest
in recent ecological studies [9, 23, 24]. Numerically we also find that for intermedi-
ate growth rate β, a large initial population leads to eventual population extinction,
which appears to be a signature for delayed population model with Allee effect (see
[4]).

The rest of our paper is organized as follows. Some preliminaries needed in the
following are present in Section 2. In Section 3, we prove our main conclusions on
the dynamic behaviors of the model, such as the global stability of the equilibria
and the occurrence of Hopf bifurcation; and in Section 4, we show the global Hopf
bifurcation of periodic solutions. Finally, we show some numerical simulations to
illustrate our conclusions in Section 5, and conclude our results and discuss some
future work in Section 6.

2. Preliminaries. In this section, we first give some preliminaries for the following
Nicholson’s blowflies equation with Allee effect:{

u′(t) = −u(t) + βuk(t− τ)e−u(t−τ), t > 0,

u(θ) = φ(θ), −τ ≤ θ ≤ 0.
(3)

System (3) is obtained by changing the variables in system (2):

û = pu, t̂ = µt, τ̂ = µτ, β̂ =
β

µpk−1

and removing the hat. The initial function φ ∈ Ξ1 which is defined as

Ξ1 := {φ ∈ C([−τ, 0],R) : φ(θ) ≥ (6≡)0 and φ(0) > 0, for each θ ∈ [−τ, 0]} .
First we have the following positivity and boundedness of solutions to system

(3).

Lemma 2.1. The solution of system (3) is positive for t > 0 and is ultimately
uniformly bounded if φ ∈ Ξ1.

Proof. Let

f(u) := βuke−u. (4)

Then f(0) = 0, f(+∞) = lim
u→+∞

f(u) = 0. And from f ′(u) = βuk−1e−u(k − u), we

have f ′(0) = 0 = f ′(k), which shows that 0 < f(u) ≤ fmax for all u > 0 with the
maximum of f is fmax = f(k) = βkke−k (see Figure 1).
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Figure 1. The graph of functions f(u) = βuke−u represented by the

cyan curve, and f̃(u) = u represented by the magenta curve. Here, k = 3

and β = 2.

Assume u(t) is a solution of system (3). Then it satisfies

u′(t) = −u(t) + βuk(t− τ)e−u(t−τ) ≥ −u(t), (5)

which implies u(t) ≥ u(0)e−t > 0 for t ∈ [0, τ ] as φ ∈ Ξ1. When t ∈ [τ, 2τ ],
by inequality (5), we have u(t) ≥ u(τ)eτ−t > 0. Repeating the above step for
t ∈ [jτ, (j + 1)τ ] with j ∈ N, we obtain that u(t) is positive for all t > 0.

From the boundedness of f , we have u′(t) ≤ −u(t) + fmax, and

lim sup
t→+∞

u(t) ≤ fmax = βkke−k, (6)

which implies that u(t) is ultimately bounded.

Assume ũ is an equilibrium of system (3). Obviously ũ = 0 is always an equilib-
rium. If ũ > 0, then it satisfies

ũk−1e−ũ =
1

β
.

Let g(u) = uk−1e−u. Then

g′(u) = uk−2e−u(k − 1− u).

Obviously, g(0) = 0, g(+∞) = 0, g′(0) = 0, g′(k− 1) = 0, g′(u) > 0 if u ∈ (0, k− 1)
and g′(u) < 0 if u ∈ (k − 1,+∞). And the maximum value of g(u) is

gmax := g(k − 1) = (k − 1)k−1e1−k. (7)

So we have the following results on the existence and multiplicity of nonnegative
equilibria of (3) (see Figure 2).

Proposition 1. For system (3), u0 = 0 is an equilibrium for all β > 0. Moreover,

(i) If β < β∗ := ek−1(k − 1)
1−k

, there is no positive equilibrium.
(ii) If β = β∗, there exists a unique positive equilibrium u∗ = k − 1.
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Figure 2. The existence of positive equilibria of (3) when k = 3 and

β > β∗ = 1.847.

(iii) If β > β∗, there are exactly two distinctive positive equilibria u1 and u2 satis-
fying 0 < u1 < k − 1 < u2.

3. Stability analysis of the constant equilibria. In this section, we establish
the stability of equilibria of (3) by analyzing the distribution of the eigenvalues and
using Lyapunov-LaSalle invariance principle.

First we have

Lemma 3.1. Assume that β > β∗, and let 0 < u1 < u2 be the two positive equilibria
of (3).

(i) Assume the initial function satisfies

0 ≤ φ(θ) ≤ u1 for any θ ∈ [−τ, 0] and 0 < φ(0) < u1. (8)

Then the solution of system (3) satisfies 0 < u(t) < u1 for t ≥ 0.
(ii) Let u3 be the unique value such that u3 > u2 and f(u3) = f(u1) = u1. Assume

the initial function satisfies

u1 ≤ φ(θ) ≤ u3 for any θ ∈ [−τ, 0] and u1 < φ(0) < u3. (9)

Then the solution of system (3) satisfies u1 < u(t) < u3 for all t ≥ 0.

Moreover, assume β < β̂ := ekk1−k and the initial function φ satisfies

u1 ≤ φ(θ) ≤ k for any θ ∈ [−τ, 0] and u1 < φ(0) < k. (10)

Then the solution of system (3) satisfies u1 < u(t) < k for t ≥ 0.

Proof. If u(t) is a solution of system (3), then it satisfies

u(t) = u(t0)et0−t +

∫ t

t0

es−tf(u(s− τ))ds, t > t0 ≥ 0. (11)
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(i) Choose t0 = 0 and t ∈ (0, τ ] in (11), then by using the monotonicity of the
function f when 0 < u < u1 and f(u1) = u1, we have

u(t) = φ(0)e−t +

∫ t

0

es−tf(u(s− τ))ds ≤ φ(0)e−t + f(u1)(1− e−t) = u1 + (φ(0)− u1)e−t.

Thus φ(0) < u1 implies u(t) < u1. Repeating the above steps for any t0 = jτ and
t ∈ (jτ, (j + 1)τ ] for j ∈ N, we get 0 < u(t) < u1 for any t > 0.

(ii) Again we choose t0 = 0 and t ∈ (0, τ ] in (11), then

u(t) = φ(0)e−t +

∫ t

0

es−tf(u(s− τ))ds ≥ u1 + (φ(0)− u1)e−t > u1,

and

u(t) = φ(0)e−t +

∫ t

0

es−tf(u(s− τ))ds ≤ fmax + (u3 − fmax)e−t ≤ u3,

as u3 ≥ fmax which is true by the monotone property of the function f(u). Re-
peating the above steps for any t0 = jτ and t ∈ (jτ, (j + 1)τ ] for j ∈ N, we obtain
u1 < u(t) < u3 for any t > 0.

Finally we assume that β < β̂. By doing similar calculation as above and the
fact that

u(t) = φ(0)e−t +

∫ t

0

es−tf(u(s− τ))ds < fmax + (k − fmax)e−t ≤ k,

as fmax < k if and only if β < β̂, we obtain the conclusion that u1 < y(t) < k for
any t > 0.

Lemma 3.1 (i) shows that when the initial function is less than the smaller positive
equilibrium, the solution will converge to 0, which implies that the population will
become extinct when the initial density of the population is small. This phenomenon
is an important manifestation of Allee effect.

Let ũ be one of the equilibria obtained in Proposition 1. The linearized equation
of system (3) at ũ is

ϕ′(t) = −ϕ(t) + βe−ũũk−1(k − ũ)ϕ(t− τ),

and the corresponding characteristic equation is

λ− β(k − ũ)e−ũũk−1e−λτ + 1 = 0. (12)

When ũ = u0, the unique eigenvalue of equation (12) is λ[0] = −1, which implies
that u0 is always locally asymptotically stable. Furthermore, we have

Theorem 3.2. u0 = 0 is locally asymptotically stable with respect to (3) for all
β > 0 and τ > 0. Moreover, u0 is globally asymptotically stable when β < β∗ and
τ > 0.

Proof. We only need to establish the global stability of u0 by constructing a Lya-
punov functional V1 : Ξ1 → R as

V1(u) = u(t) +

∫ 0

−τ
βuk(t+ s)e−u(t+s)ds.

By taking the time derivative of V along solutions of system (3), we have

V ′1(u)|(3) = u(t)(βg(u(t))− 1) ≤ u(t)(βgmax − 1) ≤ 0,
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if β ≤ β∗ = 1/gmax and gmax is defined in (7). And V ′1(u)|(3) = 0 if and only if
u = 0. Thus, by the Lyapunov-LaSalle invariance principle [8, 13], u0 is globally
asymptotically stable.

We remark that the global stability of u0 = 0 was also proved in Theorem 3.2 of
[12] and Theorem 3.1 of [16] by using a map related to the dynamics of (3). Our
proof is based on Lyapunov method.

For the stability of positive equilibria of (3), we have the following results.

Theorem 3.3. For system (3), the following stability conclusions are true:

(i) u1 is unstable for all β > β∗ and τ > 0; When τ = τ
[1]
j (j ∈ N0) defined in

(18), (unstable) periodic solutions of system (3) bifurcate near u1.
(ii) u2 is locally asymptotically stable if one of the following statements holds: (a)

τ ≥ 0 and β∗ < β < β∗ := (k + 1)1−kek+1, or (b) 0 ≤ τ < τ
[2]
0 and β > β∗;

and when τ > τ
[2]
0 and β > β∗, u2 is unstable. Moreover, when β > β∗ and

τ = τ
[2]
j (j ∈ N0) defined in (20), system (3) undergoes a Hopf bifurcation at

u2, and periodic solutions of system (3) bifurcate near u2.

Proof. When ũ = ul for l = 1, 2, equation (12) becomes

λ[l] − (k − ul)e−τλ
[l]

+ 1 = 0, (13)

with ul satisfying βe−uluk−1l = 1.
Assume τ = 0. The unique eigenvalue of (13) at u1 is

λ[1] = k − 1− u1, (14)

and the unique eigenvalue of (13) at u2 is

λ[2] = k − 1− u2. (15)

From (iii) of Proposition 1, λ[1] > 0 and λ[2] < 0, which implies u1 is unstable.
Assume τ 6= 0 and λ[l] = ω[l]i (ω[l] > 0, l = 1, 2) is a root of equation (13). Then

sin(ω[l]τ) =
ω[l]

ul − k
, cos(ω[l]τ) = − 1

ul − k
. (16)

That is, (ω[l])2 = (k − 1 − ul)(k + 1 − ul). When l = 1, k − 1 − u1 > 0 implies
k + 1− u1 > 0. Thus, ω[1] exists and satisfies

ω[1] =
√

(k − u1)2 − 1, (17)

and

τ
[1]
j =

1

ω[1]

(
(2j + 1)π + arccos

(
1

u1 − k

))
, j ∈ N0 := N ∪ {0}. (18)

When l = 2, k − 1 − u2 < 0. If u2 ≤ k + 1 (equivalently β∗ ≤ β ≤ β∗), then
(ω[2])2 ≤ 0 and there exists no purely imaginary root of (13). If u2 > k + 1
(equivalently β > β∗), then the imaginary part of the purely imaginary root is

ω[2] =
√

(u2 − k)2 − 1, (19)

and the delay τ must equal to

τ
[2]
j =

1

ω[2]

(
(2j + 1)π − arccos

(
1

u2 − k

))
, j ∈ N0. (20)
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Differentiating (13) with respect to τ for l = 1, 2, we obtain

dλ[l]

dτ
− (k − u[l])e−τλ

[l]

(
−λ[l] − τ dλ[l]

dτ

)
= 0,

that is, (
dλ[l]

dτ

)−1
=
eτλ

[l]

+ τ(k − u[l])
λ[l](u[l] − k)

.

By applying (16)-(20) and separating the real part and the imaginary part of the

derivative at τ = τ
[l]
j , we have(

dReλ[l]

dτ

)−1 ∣∣∣∣
τ=τ

[l]
j

=
sin(ω[l]τ

[l]
j )

ω[l](u[l] − k)
=

1

(ω[l])2 + 1
> 0, (21)

which implies the transversality condition for the Hopf bifurcation holds.

We remark that the local stability of u2 was also shown in Proposition 2 of [16].
By Theorem 3.2 and Theorem 3.3, under the condition of (ii) in Theorem 3.3, the
two equilibria u0 and u2 are both locally stable, so the system is bistable. This is
another manifestation of the Allee effect.

By restricting the range of β, we can show that the convergence to the large
equilibrium u2 is “global” in a sense as it attracts all initial conditions in [u1, k]
defined in Lemma 3.1.

Theorem 3.4. Assume that β∗ < β < β̂, τ > 0 and the initial function φ satisfies
(10). Let u(t) be the solution of (3). Then lim

t→∞
u(t) = u2.

Proof. Denote

Ξ2 = {φ ∈ Ξ1 : u1 < φ(θ) < k, for each θ ∈ [−τ, 0]} ,

which implies that Ξ2 is positively invariant by the conclusion in (ii) of Lemma 3.1.
In the following, we will prove this theorem in several steps.

Step 1. If u1 < u < k, then Ṽ2(u) < Ṽ2(u1), where Ṽ2 : [u1, k]→ R and

Ṽ2(u) = u− u2 lnu+

∫ 0

−τ
(f(u)− f(u2) ln f(u)) ds

= u− u2 lnu+ τ (f(u)− f(u2) ln f(u)) .

Taking the direct derivative of Ṽ2 with respect to u, we get

Ṽ2
′
(u) =

u− u2
u

+ τ
f ′(u)

f(u)
(f(u)− f(u2)) .

It is not difficult to see that u2 < k if and only if β < β̂ and (u−u2)(f(u)−f(u2)) > 0

for each u ∈ [u1, k], which implies that Ṽ2(u) ≥ 0 and u = u2 is the global minimum

of Ṽ2(u) in [u1, k].

Next, we verify that Ṽ2(u1) > Ṽ2(k). In fact,

Ṽ2(u1)− Ṽ2(k) =u1 − u2 lnu1 + τ(f(u1)− f(u2) ln f(u1))

− (k − u2 ln k + τ(f(k)− f(u2) ln f(k)))

=Z1(u1) + Z2(u1),
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where

Z1(u1) =u1 − k + u2(ln k − lnu1),

Z2(u1) =τ(f(u1)− f(k) + f(u2) ln f(k)− f(u2) ln f(u1)).

Taking the derivative of Z1 and Z2 with respect to u1, respectively, then we obtain

Z ′1(u1) = 1− u2
u1

< 0, Z ′2(u1) =
τf ′(u1)

f(u1)
(f(u1)− f(u2)) < 0,

as f(u1) = u1, f(u2) = u2 and f ′(u1) > 0, f(u1) < f(u2) when u2 < k. Then as
u ∈ [u1, k], the minimum values of functions Z1(u) and Z2(u) are both obtained at

the point u = k and Z1(k) = 0, Z2(k) = 0, which implies that Ṽ2(u1) > Ṽ2(k).
Step 2. Define

G̃ =
{
ψ ∈ Ξ2 : Ṽ2(ψ) < Ṽ2(k)

}
.

Then by Step 1 and (ii) of Lemma 3.1, G̃ is invariant, u1 /∈ G̃ and |u| < k for each

φ ∈ G̃, where | · | represents the norm of C([−τ, 0],R).

Define a Lyapunov functional V2 : G̃→ R as

V2(u) = u(t)− u2 lnu(t) +

∫ 0

−τ
[f(u(t+ s))− f(u2) ln f(u(t+ s))] ds,

where f is defined in (4). Then V2 is a Lyapunov functional for (2) on G̃. In fact,
taking the time derivative of V2 along a positive solution of system (3), we have

V ′2 (u)|(3) = −u(t) +u2−
u2

u(t)
f(u(t− τ)) + f(u(t))− f(u2) ln f(u(t)) + f(u2) ln f(u(t− τ)).

Denote h(x) = x− 1− lnx and notice f(u2) = u2, then we have

V ′2(u(t))|(3) =− u(t)− u2h
(
u2f(u(t− τ))

u(t)f(u2)

)
− u2 ln

(
u2f(u(t− τ))

u(t)f(u2)

)
+ f(u(t))− u2 ln f(u(t)) + u2 ln f(u(t− τ))

=− u(t) + f(u(t))− u2h
(
u2f(u(t− τ))

u(t)f(u2)

)
+ u2 ln

(
u(t)f(u2)

u2f(u(t))

)
=− u(t) + f(u(t))− u2h

(
u2f(u(t− τ))

u(t)f(u2)

)
− u2h

(
u(t)f(u2)

u2f(u(t))

)
+ u2

u(t)f(u2)

u2f(u(t))
− u2

:=− u2h
(
u2f(u(t− τ))

u(t)f(u2)

)
− u2h

(
u(t)f(u2)

u2f(u(t))

)
+A,

where

A = −u(t) + f(u(t)) + u2
u(t)f(u2)

u2f(u(t))
− u2 = u(t)

(
f(u(t))

f(u2)
− 1

)(
u2
u(t)

− f(u2)

f(u(t))

)
.

If u ∈ Ξ2, then u(t) < k and f is monotonic increasing in (0, k), which implies
A ≤ 0. It is well known that h(x) ≥ 0 for x > 0 and h(x) = 0 if and only if x = 1.

Thus, V ′2 |(3)(u) ≤ 0 for all u ∈ G̃, which implies V2 is a Lyapunov functional on G̃.

Let S =
{
φ ∈ G̃ : V̇2(φ) = 0

}
and M be the largest invariant subset in S with

respect to (3). Then a direct calculation shows that M = {u2}. By the Lyapunov-
LaSalle invariance principle (Theorem 5.3.2 in [8]), we have that the omega limit
sets of solutions are contained in M , which ends the proof.
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We remark that the global stability of u2 was also proved in Theorem 3.4 of [12]
and Theorem 3.1 of [16] by using a map related to the dynamics of (3). Our proof
is based on a different Lyapunov method.
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Figure 3. Dynamics of system (3) with k = 4 in the β − τ plane.

The critical values are β∗ = 0.7439, β̂ = 0.8531 and β∗ = 1.1873. We

choose eleven points in β−τ plane to perform the numerical simulations

in Section 5: P1 = (0.7, 1), P2 = (0.7, 10), P3 = (0.8, 1), P4 = (0.8, 10),

P5 = (1, 1), P6 = (1, 7), P7 = (1, 8), P8 = (1.5, 1), P9 = (1.5, 1.94), P10 =

(1.5, 3), P11 = (1.5, 10). Here L.A.S. stands for locally asymptotically

stable, and G.A.S. stands for globally asymptotically stable. HB curve

τ = τ
[1]
0 and HB curve τ = τ

[2]
0 represent the Hopf bifurcation curves

τ = τ
[1]
0 at u1 and τ = τ

[2]
0 at u2, respectively.

The local/global stability of equilibria and convergence results in Theorems 3.2,
3.3 and 3.4 can be visualized in Figure 3 to see the effect of β and τ on the dynamics
of (3). In particular, there are three bifurcation values in β: β∗ (saddle node

bifurcation) < β̂ (global to local dynamics transition) < β∗ (absolute to conditional
stability), and one bifurcation value in τ : τ0(β) (Hopf bifurcation) when β > β∗.

4. Global Hopf bifurcations. Theorem 3.3 shows that the periodic solutions
bifurcate from the positive equilibrium when τ is near the bifurcation value under
some conditions. Here we consider the global extension of the branches of periodic
orbits to τ far away from bifurcation values.

Denote ũ as one of the positive equilibria and τj with j ∈ N0 as one of the
bifurcation value corresponding to the equilibrium ũ. Let R+ = [0,∞) and C =
C([−τ, 0],R+) be the Banach space of bounded and continuous functions equipped
with the standard supermum norm.
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Rewrite system (3) as the following general functional differential equation

u′(t) = F (ut, τ, T ), (ut, τ, T ) ∈ C × R2
+, (22)

where R2
+ = R+ × R+, ut(θ) = u(t+ θ) ∈ C and F : C × R2

+ → R is defined as

F (φ, τ, T ) = −φ(0) + βφ(−τ)ke−φ(−τ).

Identifying the subspace of C consisting of all constant mappings with R+, we have a

restricted mapping F̂ = F |R3
+

: R3
+ → R defined as F̂ (x, τ, T ) = −x+βxke−x, where

R3
+ = R+ × R+ × R+. It is easy to see that F̂ is twice continuously differentiable,

that is, the assumption (A1) in Chapter 3 of [39] is satisfied.
Set S(F ) be the set of the stationary solutions of equation (22):

S(F ) = {(u0, τ, T ), (u1, τ, T ), (u2, τ, T ) : τ > 0, T > 0}.

For any stationary solution (ũ, τ, T ) ∈ S(F ), the characteristic equation is

∆(ũ,τ,T )(λ) = λ− β(k − ũ)e−ũũk−1e−λτ + 1.

It is easy to see that λ = 0 is not a root of ∆(ũ,τ,T )(λ)=0 for all (ũ, τ, T ) ∈ S(F ),
which implies the assumption (A2) in Chapter 3 of [39] holds.

By the definition of F (u, τ, T ) and ∆(ũ,τ,T )(λ), the smoothness assumption (A3)
of Chapter 3 in [39] is satisfied. Thus, for (ul, τ, T ) ∈ S(F ), there exist ε >

0 and a continuously differentiable mapping v : Bε(τ
[l]
j , T

[l]) → R+ satisfying

F̂ (v(τ, T ), τ, T ) = 0 for (τ, T ) ∈ Bε(τ [l]j , T [l]) = (τ
[l]
j − ε, τ

[l]
j + ε)× (T [l]− ε, T [l] + ε),

where T [l] = 2π/ω[l] and l = 1, 2.

From Theorem 3.3, for each j ∈ N0, (u1, τ
[1]
j , T [1]) is an isolated center [39] when

β > β∗ and (u2, τ
[2]
j , T [2]) is an isolated center when β > β∗. Thus, by Theorem 3.3

and (21), there exist ε > 0, δ > 0 and smooth curves λ[l] : (τ
[l]
j − δ, τ

[l]
j + δ) → C

(which represents the set of all complex numbers) such that ∆(v(τ,T ),τ,T )(λ
[l](τ)) = 0

as |λ[l](τ)− iω[l]| < ε and τ ∈ [τ
[l]
j − δ, τ

[l]
j + δ], where

λ[l](τ
[l]
j ) = iω[l],

dReλ[l](τ
[l]
j )

dτ
> 0, l = 1, 2.

Let

Ω[l]
ε = {(α, T ) : 0 < α < ε, |T − T [l]| < ε}.

Then, by Theorem 3.3 and (21), it is not difficult to see that ∆(ul,τ,T )(α+2πi/T ) = 0

as |τ − τ [l]j | ≤ δ and (α, T ) ∈ ∂Ω
[l]
ε if and only if τ = τ

[l]
j , α = 0 and T = T [l]. Denote

H±(ul, τ
[l]
j , T

[l])(α, T ) = ∆
(ul,τ

[l]
j ±δ,T )

(α+ 2πi/T ).

Then we obtain the cross number of the isolated center (ul, τ
[l]
j , T

[l]) is

γ
[l]
1

(
ul, τ

[l]
j , T

[l]
)

= degB

(
H−(ul, τ

[l]
j , T

[l]),Ω[l]
ε

)
− degB

(
H+(ul, τ

[l]
j , T

[l]),Ω[l]
ε

)
= −1,

for each j ∈ N0 and l = 1, 2, where degB represents the Brouwer degree. This
verifies the assumption (A4) for m = 1 of Chapter 3 in [39] holds.

Define a closed subset of C × R2
+ by

Σ(F ) = Cl
{

(x, τ, T ) ∈ C × R2
+ : x is a T -periodic solution of system (22)

}
,
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and denote by C(ul, τ
[l]
j , T

[l]) the connected component of Σ(F ) containing the point

(ul, τ
[l]
j , T

[l]) with l = 1, 2, where T [l] = 2π/ω[l], τ
[l]
j and ω[l] are defined in (17)-(20).

From Theorem 3.3, C(ul, τ
[l]
j , T

[l]) are nonempty subsets of Σ(F ).

From Theorem 3.3 in [39], one of the following alternatives holds:

(I) C(ul, τ
[l]
j , T

[l]) is unbounded in C × R2
+; or

(II) C(ul, τ
[l]
j , T

[l]) is bounded, C(ul, τ
[l]
j , T

[l]) ∩ S(F ) is finite and∑
(w,τ,T )∈C(ul,τ

[l]
j ,T [l])∩S(F )

γ
[l]
1 (w, τ, T ) = 0.

From (4), the alternative (II) cannot happen. Thus, the alternative (I) must

happen for each of C(ul, τ
[l]
j , T

[l]), that is,

Lemma 4.1. C
(
ul, τ

[l]
j , T

[l]
)

is unbounded in C×R2
+ for each center

(
ul, τ

[l]
j , T

[l]
)

and l = 1, 2.

For further properties of the connected component C
(
ul, τ

[l]
j , T

[l]
)

, we prove

several preliminary results. Lemma 2.1 implies that the boundedness of all the
periodic solutions:

Lemma 4.2. All positive periodic solutions of system (3) are uniformly bounded.

We have the following non-existence results for the periodic solutions of (3) with
certain periods.

Lemma 4.3. System (3) has no periodic solutions of period τ and 2τ .

Proof. Any nonconstant periodic solution u(t) of (3) with period τ is a periodic
solution of the ordinary differential equation u′(t) = −u(t) + βuk(t)e−u(t) since
u(t− τ) = u(t). It is well known that a first order autonomous ordinary differential
equation has no non-constant periodic solutions so (3) has no periodic solutions of
period τ .

We next prove the nonexistence of periodic solutions with period 2τ . Assume
that u(t) is a periodic solution of (3) with period 2τ . Let v(t) = u(t − τ), then
(u(t), v(t)) is a periodic solution of the following system

u′(t) = −u(t) + βvk(t)e−v(t),

v′(t) = −v(t) + βuk(t)e−u(t).
(23)

Denote P (u, v) = −u + βvke−v and Q(u, v) = −v + βuke−u. A direct calculation
leads to

∂P

∂u
+
∂Q

∂v
= −2 < 0,

which implies system (23) has no non-constant periodic solutions by Bendixson’s
criterion.

Now we are in the position to describe the global Hopf bifurcations and existence
of multiple periodic solutions of (3).

Theorem 4.4. For system (3), the following statements are true:

(i) Assume that β∗ < β ≤ β∗. Then system (3) has at least j + 1 non-constant

periodic solutions when τ > τ
[1]
j with j ∈ N0.
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(ii) Assume β > β∗. Then system (3) has at least j + 2 non-constant periodic

solutions when τ > max{τ [1]0 , τ
[2]
0 ,min{τ [1]j , τ

[2]
j }} with j ∈ N; and it has at

least 1 non-constant periodic solution when τ > min{τ [1]0 , τ
[2]
0 }.

Proof. We first assume that β > β∗. In that case, Hopf bifurcations occur at both

u1 and u2 when τ increases. By the definition of τ
[l]
j in (18) and (20) for l = 1, 2,

we have that for j ∈ N0,

τ
[1]
j ω[1] = (2j + 1)π + arccos

(
1

u1 − k

)
,

τ
[2]
j ω[2] = (2j + 1)π − arccos

(
1

u2 − k

)
,

which implies that for j ∈ N0 and l = 1, 2,(
2j +

3

2

)
π < τ

[1]
j ω[1] < (2j + 2)π,

(
2j +

1

2

)
π < τ

[2]
j ω[2] < (2j + 1)π. (24)

Here we use the fact that u1 − k < −1, u2 − k > 1 when β > β∗ and the range of
the function arccos is [0, π]. Thus, by (24), a direct calculation leads to for j ∈ N0,

τ
[1]
j

j + 1
<

2π

ω[1]
<

4τ
[1]
j

4j + 3
<
τ
[1]
j

j
,
τ
[2]
j

j + 1
<

2τ
[2]
j

2j + 1
<

2π

ω[2]
<

4τ
[2]
j

4j + 1
<
τ
[2]
j

j
. (25)

The relations in (25) imply that near the Hopf bifurcation point τ = τ
[l]
j , the period

T of bifurcating periodic solutions on C(ul, τ
[l]
j , T

[l]) with T [l] = 2π/ω[l] satisfies

τ

j + 1
< T <

τ

j
, if (u, τ, T ) ∈ C(ul, τ

[l]
j , T

[l]), j ∈ N, l = 1, 2, (26)

and

τ < T < 2τ, if (u, τ, T ) ∈ C(u1, τ
[1]
0 , T [1]),

2τ < T < 4τ, if (u, τ, T ) ∈ C(u2, τ
[2]
0 , T [2]).

(27)

From Lemma 4.3, the bounds of T in (26) hold for all periodic solutions on

C(ul, τ
[l]
j , T

[l]), as T cannot equal to τ/j for any j ∈ N otherwise (3) has a periodic

solution with period τ . Hence the periods of periodic solutions of system (3) on

C(ul, τ
[l]
j , T

[l]) are uniformly bounded. In particular this also implies that

C(ul, τ
[l]
j , T

[l]) ∩ C(ul, τ
[l]
i , T

[l]) = ∅, i 6= j, l = 1, 2,

C(u1, τ
[1]
j , T [1]) ∩ C(u2, τ

[1]
i , T [2]) = ∅, i 6= j.

(28)

Combining Lemma 4.1, Lemma 4.2 and the boundedness of periods, C(ul, τ
[l]
j , T

[l])
is bounded in the projections onto u and T components, thus the projection of

C(ul, τ
[l]
j , T

[l]) onto the τ -space must be unbounded for l = 1, 2. Also there is
no nontrivial periodic solutions when τ > 0 is small, thus we conclude that the

projection of C(ul, τ
[l]
j , T

[l]) (l = 1, 2) onto τ -space includes (τ
[l]
j ,+∞). The bound

of T in (26) does not exclude the possibility of C(u1, τ
[l]
j , T

[1]) = C(u2, τ
[l]
j , T

[2]) for

j ∈ N, so we conclude that there exists at least one periodic solution (u, τ, T ) of (3)

on C(u1, τ
[l]
j , T

[1])∪C(u2, τ
[l]
j , T

[2]) when τ > min{τ [1]j , τ
[2]
j } with T satisfying (26).

However for j = 0, (27) implies that τ < T < 2τ for all periodic solutions of (3)
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on C(u1, τ
[1]
0 , T [1]), and T > 2τ for all periodic solutions of (3) on C(u2, τ

[2]
0 , T [2]),

hence
C(u1, τ [1]0 , T [1]) ∩ C(u2, τ

[2]
0 , T [2]) = ∅. (29)

Thus there exists at least one periodic solution (u, τ, T ) of (3) on C(u1, τ
[1]
0 , T [1])

when τ > τ
[1]
0 , and there exists at least one periodic solution (u, τ, T ) of (3) on

C(u2, τ
[2]
j , T [2]) when τ > τ

[2]
0 with T satisfying (27).

In summary system (3) has at least j + 2 non-constant periodic solutions when

τ > max{τ [1]0 , τ
[2]
0 ,min{τ [1]j , τ

[2]
j }} with j ∈ N; and it has at least 1 non-constant

periodic solution when τ > min{τ [1]0 , τ
[2]
0 }.

For the case of β∗ < β ≤ β∗, the proof is same as above except that Hopf

bifurcations only occur at u1 not u2, so only C(u1, τ
[1]
j , T [1]) exist for j ∈ N0.

We remark that the estimates (25) can lead to a finer estimate of period T of

periodic solutions on the bifurcation branches C(u1, τ
[l]
j , T

[1]) and C(u2, τ
[l]
j , T

[2]).

But it is not known that whether (3) possesses periodic orbits with period 4τ when

β > β∗. If that is the case, we can exclude the possibility of C(u1, τ
[l]
j , T

[1]) =

C(u2, τ
[l]
j , T

[2]) for j ∈ N, and there will be 2j + 2 non-constant periodic solution

when τ > min{τ [1]j , τ
[2]
j } for j ∈ N0.

5. Numerical simulations. In this section, we show some numerical simulations
to demonstrate our theoretical results in the previous sections and also explore
more possible dynamics of (3). In the simulations, we use k = 4 and the bifurcation

values calculated previously are β∗ = 0.7439, β̂ = 0.8531 and β∗ = 1.1873.
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Figure 4. The global stability of u0 of system (3) with k = 4, β =

0.7 < β∗. Left panel: τ = 1 and (β, τ) = P1; right panel: τ = 10

and (β, τ) = P2 as in Figure 3. Initial condition: φ(t) = 1 < u1 (red),

φ(t) = 3 ∈ (u1, u3) (blue), and φ(t) = 9.3 > u3 (green).

When β = 0.7 < β∗, there is no positive equilibria and all solutions converge to
u0 = 0 as shown in Theorem 3.2; see Figure 4.

When β > β∗, the system has two distinctive positive equilibria u2 > u1. We
also assume β < β∗. When the time delay τ is small, solutions of (3) converge
to u0 provided φ < u1 and converge to u2 provided φ > u1 (Theorems 3.2 and
3.4). When τ is large, solutions of (3) converge to u0 provided φ < u1 or φ is large
enough, and they converge to u2 provided φ > u1 but not large enough; see Figure 5
(β = 0.8) and Figure 6 (β = 1). In these two cases, transient oscillatory dynamics of
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Figure 5. The dynamics of system (3) with k = 4 and β = 0.8. Upper

row: τ = 1 and (β, τ) = P3; lower row: τ = 10 and (β, τ ) = P4 as in

Figure 3. Initial condition: (left column) φ(t) = 1 < u1 (red), φ(t) = 3 ∈
(u1, u3) (blue), and φ(t) = 6.2 > u3 (green); (right column) φ(t) = 6.3

(blue). Here positive equilibria are u1 = 2.3817 and u2 = 3.7093.

system (3) occurs when the time delay τ is large, but the solution converges to the
equilibrium u0 or u2 asymptotically. The transient oscillatory behavior corresponds
to the unstable periodic solutions bifurcating from the unstable equilibrium u1
through Hopf bifurcations (see Theorems 3.3 and 4.4). When τ = 8 in Figure 6,
a threshold phenomenon is shown: the solution converges to u2 when φ is smaller
than the threshold and it converges to u0 when φ is larger than it.

For β ∈ (β∗, β
∗), all oscillatory behavior of solutions appear to be transient as

indicated by unstable periodic solutions bifurcated from unstable equilibrium u1.
As the time delay τ gets larger, the transient oscillations also last longer. Figure
7 shows the long transient oscillations when β = 1 and τ = 50. Similar oscillatory
long transients have also been observed in [23], see also [9, 24].

When β > β∗, the larger equilibrium u2 can lose its stability through Hopf
bifurcation when τ increases, and sustained oscillations occur around u2. See Figure

8 for the case of β = 1.5 and τ small. Here ω
[2]
0 = 1.1753, τ

[2]
0 = 1.9364 and

τ
[2]
1 = 7.2823. So a solution with large initial value converges to u2 when τ <

τ
[2]
0 , and it converges to a limit cycle when τ > τ

[2]
0 . Using normal form theory

of Hopf bifurcations, we can calculate that µ2 = 2.113 > 0, β2 = −0.423 < 0,
T2 = 0.464 > 0 (using standard notation of normal forms), which implies that the

Hopf bifurcation at τ = τ
[2]
0 is supercritical and the bifurcating periodic solution is

locally asymptotically stable.
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Figure 6. The dynamics of system (3) with k = 4 and β = 1. First

row: τ = 1 and (β, τ) = P5; Second row: τ = 7 and (β, τ) = P6;

Third row: τ = 8 and (β, τ ) = P7 as in Figure 3. Initial condition:

(left column) φ(t) = 1 < u1 (red), φ(t) = 3 ∈ (u1, u3) (blue), and

φ(t) = 9.2 > u3 (green); (right column) φ(t) = 9.3 (blue). Here positive

equilibria are u1 = 1.8572 and u2 = 4.5364.

For β > β∗, when the time delay τ increases, the simple sinusoidal oscillatory
pattern around u2 transits to a two-frequency oscillations with asymmetric peaks
(see Figure 9 left column), and long transient of oscillations around u1 also occurs
but asymptotically transits into the oscillation pattern around u2 (see Figure 9 right
column). In the transition period from the transient oscillatory pattern around
u1 to the stable oscillatory pattern around u2, both types of oscillations occur
alternatively (see Figure 9 third row).

The solution orbits of (3) with different initial conditions are shown in Figure 10
and Figure 11 on the u(t)−u(t− τ) phase plane for different β and τ . Bistability in
(3) is clearly demonstrated in all cases: for smaller β, u0 and u2 are both attractors;
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Figure 7. Transient oscillation dynamics of system (3) with k = 4,

β = 1 and τ = 50. Upper left: initial condition φ(t) = 1 < u1 (red),

φ(t) = 3 ∈ (u1, u3) (blue), and φ(t) = 9.2 > u3 (green). Upper right:

initial condition φ(t) = 9.3 (blue). Lower row: snapshots of the solution

with φ(t) = 9.2 over different time intervals. Here positive equilibria are

u1 = 1.8572 and u2 = 4.5364.
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Figure 8. Oscillatory dynamics of (3) with k = 4 and β = 1.5. Left

panel: τ = 1 and (β, τ) = P8; right panel: τ = 3 and (β, τ) = P10 as in

Figure 3. Initial condition: φ(t) = 1 < u1 (red), and φ(t) = 3 ∈ (u1, u3)

(blue). Here positive equilibria are u1 = 1.3871 and u2 = 5.5432.

and for larger β, u0 and a limit cycle around u2 are attractors. Long transient
oscillations around u1 can be observed for large τ(≈ 50) no matter what the value
of β is, and stable oscillations around u2 is the asymptotic limit of solutions of
(3) when β = 1.5 and large τ . Figure 11 shows the complex dynamics of long
transient oscillations around u1 and eventual switching to stable oscillations around
u2 (corresponding to the same solution shown in Figure 9 right column and third
row). The dynamics of β = 0.8 (or β = 1) and τ = 50 also suggests the existence
of a periodic pulse type solution oscillating between u0 and u2 (see also Figure 7
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Figure 9. Two-frequency oscillations with asymmetric peaks and the

transient oscillation dynamics of (3) with k = 4 and β = 1.5. First

row: τ = 10 and (β, τ ) = P11 in Figure 3; Second row: τ = 50; Third

row: snapshots of the solution with the initial condition φ(t) = 9.3 and

τ = 50 over different time intervals. Initial condition: φ(t) = 1 < u1

(red), φ(t) = 3 ∈ (u1, u3) (blue), and φ(t) = 9.3 (green). Here positive

equilibria are u1 = 1.3871 and u2 = 5.5432.

lower middle panel), and it appears to be asymptotically unstable but can stay for
a long time.

For β > β∗, the dynamics of (3) is always bistable with one stable state being
the extinction state u0 = 0, and the other persistence state being either a stable
positive equilibrium u2 > 0 or a stable limit cycle around u2. In general increasing
the growth rate β shrinks the size of the basin of attraction of extinction state
u0 and enlarge the size of the basin of attraction of the persistence state. Figure
12 shows the partition of the set of constant initial conditions φ(t) ≡ φ > 0 for
t ∈ [−τ, 0] according to the asymptotic limit of solutions starting from such initial
conditions. We observe that for the case of β = 0.8 or β = 1, the basin of attraction
of u0 is split into region I and III, two disconnected regions. The phenomenon of
population extinction for large initial conditions was also found in another delay
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Fi g u r e 1 0. T h e u ( t) − u ( t − τ ) p h a s e pl a n e s of s y s t e m ( 3 ) wi t h k = 4.
U p p e r l ef t: β = 0 .8, τ = 2; U p p e r ri g ht: β = 0 .8, τ = 5 0; Mi d dl e l ef t:
β = 1, τ = 2; Mi d dl e ri g ht: β = 1, τ = 5 0; B o t t o m l ef t: β = 1 .5, τ = 2.
B o t t o m ri g ht: β = 1 .5, τ = 5 0. S ol u ti o n o r bi t s a r e s h o w n f o r 0 ≤ t ≤

1 0 0 0.

di ff er e nti al e q u ati o n wit h di ff er e nt t y p e of All e e e ff e ct [ 4 ]. N ot e t h at t h e r e gi o n III
s ati s fi e s t h at φ > u 3 ( s e e L e m m a 3. 1 ) a n d τ > τ̃ . O n t h e ot h e r h a n d, w h e n β > β ∗ ,
it a p p e ar s t h at all l ar g e i niti al c o n diti o n s l e a d t o a p e r si st e n c e st at e.

6. C o n cl u di n g r e m a r k s. I n t hi s p a p er, w e a n al y z e t h e d y n a mi c al b e h a vi or a n d
t h e e ff e ct of t h e d el a y of a s c al ar Ni c h ol s o n’ s bl o w fli e s e q u ati o n wit h All e e e ff e ct. T h e
e xi st e n c e, st a bilit y a n d b a si n s of attr a cti o n of m ulti pl e e q uili bri a h a v e b e e n st u di e d
b y u si n g t h e c h ar a ct eri sti c m et h o d a n d L y a p u n o v- L a S all e i n v ari a n c e pri n ci pl e. T a k-
i n g t h e ti m e d el a y v al u e a s t h e bif ur c ati n g v al u e, t h e e xi st e n c e of m ulti pl e p eri o di c
s ol uti o n s ar e o bt ai n e d u si n g l o c al a n d gl o b al H o pf bif ur c ati o n s n e ar t h e p o siti v e
e q uili bri a. N u m eri c al si m ul ati o n s of t h e s y st e m h a v e s h o w n ri c h d y n a mi c s s u c h a s
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Figure 11. The u(t)− u(t− τ) phase plane of system (3) with k = 4,

β = 1.5, τ = 50 and φ = 9. Solution orbits are shown for 0 ≤ t ≤ 1000.

Figure 12. The domains of attraction of stable states on φ− τ plane

with k = 4, where φ is a constant initial condition. Upper left: β =

0.8 ∈ (β∗, β̂); Upper right: β = 1 ∈ (β̂, β∗); and lower: β = 1.5 > β∗.

Region I: converging to u0 = 0; Region II: converging to u2 > 0; and

Region III: converging to u0 = 0 for upper row, and oscillating for lower

row.

long transient oscillations, and multiple-frequency oscillations which are generated
from the interplay of bistability and time delay.

It should be noted that model (2) is also called the Lasota-Wazewska equation
in biology, which describes the number of red blood cells when blood transfusion
is conducted among the animal group [14]. It has an age structured equation with
unimodal and delay feedback. Our conclusions obtained above can be applied to
the Lasota-Wazewska equation, which coincides with the information in [19].
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The model here is the kinetic equation of the reaction-diffusion model proposed
in [34]. It is interesting to see the further effect of diffusion on the already complex
dynamics caused by bistability and time delay, especially the phenomena of spatial-
temporal pattern formation and spatial propagation.
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