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Multiplicative equivariant infinite in place, we prove that the equivariant BPQ theorem can
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Mu}:}(f:ategorl‘es of G-spectra in [12].
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1. Introduction

We can view algebraic K-theory as a machine that takes as input a category with a
structured additive operation and produces a spectrum by group-completing the opera-
tion in a homotopy coherent way. The homotopy groups of this spectrum—the higher
K-groups—are rich invariants which connect homotopy theory with number theory, al-
gebraic geometry, and geometric topology. For example, the homotopy groups of the
K-theory spectrum of the category of finitely generated projective R-modules for a ring
R are Quillen’s higher K-groups of R, which are related to important problems and
conjectures in number theory, especially when R is a number ring.

Classically, there were two approaches for building the K-theory spectrum associated
to a symmetric monoidal category: Segal’s approach based on I'-spaces [47], and the
operadic approach of [2,29,30]. These two infinite loop space machines were shown to
be equivalent in [37,31]. One fundamental problem in infinite loop space theory is to
determine what structure on the input category ensures that its K-theory spectrum is a
highly structured ring spectrum. If the input has a second, related, structured multiplica-
tive operation, making it into a “ring category”, then a suitably multiplicative K-theory
machine should yield a ring spectrum. The study of multiplicative infinite loop space
theory saw much development early on [32,33,38,50,51]. A space level modernized sur-
vey is given in [35] and a modernized categorical treatment is given in [34]. A treatment
of multiplicative infinite loop space theory that is structured around the use of multi-
categories and multifunctors is given in [8], and that has served for inspiration in this
paper.

For a finite group G, the Segal infinite loop space machine has been generalized
equivariantly by Shimakawa in [48], and the operadic infinite loop space machine has
been generalized equivariantly by two of us in [13] to build (genuine) orthogonal G-
spectra from categories with additive operations that are suitably equivariant.' These
equivariant infinite loop space machines have been shown to be equivalent by three of
us in [39)].

It is a natural question to ask what kind of structure on a G-category makes its
K-theory into an equivariant ring spectrum, and this is not addressed in any of the

1A much earlier operadic machine with target Lewis-May G-spectra [25] was developed by Hauschild,
May, and Waner. It was never published, but is outlined by Costenoble and Waner [6].
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papers just mentioned. Nonequivariantly, the question can be answered without serious
use of 2-category theory, but we have not found such an answer equivariantly. The
multiplicative structure at the categorical level is encoded via multilinear maps that are
distributive up to coherent natural isomorphisms and is thus intrinsically 2-categorical.
The very different but essentially combinatorial ways around this found nonequivariantly
in [8,34] do not appear to generalize equivariantly, or at least not easily. Our work
involves conceptual categorical processing of 2-categorical input so that it feeds into an
equivariant version of the 1-categorical Segal machine, whose multiplicative properties
we have established in [14].

An equivariant version of the Barratt-Priddy-Quillen theorem, which expresses the
suspension G-spectrum of a G-space as the equivariant algebraic K-theory of a G-
category, was proven in [13] using the equivariant operadic machine. However, this
equivalence does not a priori preserve the multiplicative structure coming from the smash
product of based G-spaces. The main result of [12] relies on having a multiplicative equi-
variant K-theory machine starting at the level of G-categories that is compatible with
the Barratt-Priddy-Quillen theorem, and we provide that in this paper. An easier mul-
tiplicative version of the equivariant Barratt-Priddy-Quillen theorem is proven in [14,
Theorem 6.7]), but that starts from categorical input that is quite different from the
input needed in [12].

We start with an equivariant K-theory machine K¢ producing orthogonal G-spectra
from structured G-categories, which we take to be algebras over a suitable operad O. In
the nonequivariant case, the input would be permutative categories, which are algebras
over the Barratt-Eccles operad. Conceptually, we would like to extend K¢ to a monoidal
functor from structured G-categories to orthogonal G-spectra. However, the ring G-
categories that arise in nature are not the monoids for a monoidal structure on structured
G-categories. Rather, as in [8,24] and elsewhere, we have a multicategory structure on
structured G-categories. A multicategory structure on a category € allows one to make
sense of the notion of monoid in € as well as module over a monoid. We will thus extend
K¢ to a multifunctor, meaning that it is compatible with the multicategory structure.

We give some intuition for finding the structure on an operad that ensures that its
category of algebras is a multicategory. We think of the operad O as parametrizing
addition. Now suppose that we want to define a multiplication that distributes over
addition. Just as the product of integers mn is the n-fold addition of the integer m,
we can define a pairing O(m) x O(n) — O(mn) by repeating n times the variable
in O(m) and then “adding” using the operad structure map. The diagram that we
obtain when we compare this with the map O(n) x O(m) — O(nm) that we get by
twisting in the source and using a reordering permutation in the target does not strictly
commute in general. We define a pseudo-commutative operad to be one for which this
comparison diagram commutes up to natural isomorphism (see Definition 3.10), and we
show that this condition allows us to define a multicategory structure on the category
of O-algebras. A key example is the permutativity operad Pg of [15, Definition 3.4];
its algebras are the permutative G-categories and its pseudoalgebras are the symmetric
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monoidal G-categories [15]. The operad P¢ is a categorical Eo, G-operad as defined in
[13, Definition 2.1], and when G = e it is just the categorical F., Barratt-Eccles operad.

We write GU for the category of G-spaces and Cat(GU) for the 2-category of cat-
egories internal to GU, as described in Section 2.1. Fix a chaotic (Definition 2.6) Eo,
G-operad O in Cat(GU). We construct a multicategory Mult(O) whose underlying cat-
egory is the category O-Algps of O-algebras and pseudomorphisms. Writing Sp; for the
category of orthogonal G-spectra, we construct a functor

Kg: O-Algps — Spg

that group completes the additive structure, and most of the paper is devoted to estab-
lishing the following result, which appears as Theorem 9.14.

Theorem A. Let O be a chaotic Eo, G-operad in Cat(GU). Then the functor Kg: O-Algps
— Spg extends to a multifunctor.

We have the following direct corollary of Theorem A.

Corollary. If A is a monoid in O-Algys, then Kg(A) is a ring G-spectrum. If B is an
A-module in O-Algps, then Kg(B) is a Kg(A)-module G-spectrum.

We warn the reader, however, that Theorem A does not assert that K¢ is symmetric.
In particular, we do not claim that our version of Kg produces commutative ring G-
spectra as output. Constructing a symmetric equivariant K-theory multifunctor is an
ongoing challenge. Our multifunctor K¢ is a composite of multifunctors all but one of
which are symmetric, and we shall keep track of symmetry as we go along. However,
associative and unital multiplicative properties are all that are needed for the following
result, which is the heart of what is needed in [12]. We prove the following theorem in
Section 10. Here we use that GU embeds in Cat(GU), as recalled from [15, Remark 1.8]
in Remark 9.21.

Theorem B (Multiplicative equivariant Barratt-Priddy-Quillen). Let O be a topologically
discrete chaotic Eos G-operad in Cat(GU) and O4 the associated monad. There is a lax
monoidal natural transformation

a: X5, —KeO4

of functors GU — Spg such that ax is a stable equivalence of orthogonal G-spectra for
all input G-CW complexes X .

The main result of [12] gives a Quillen equivalence between the category of orthogonal
G-spectra and the category of “spectral Mackey functors,” i.e., spectrally enriched func-
tors G&/ — Sp, where G is a spectral version of the Burnside category. The proof
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of that result rests on having a multiplicative machine K which satisfies Theorem B.
Its construction was deferred to this paper. An alternative co-categorical perspective on
spectral Mackey functors as a model for G-spectra is given in [1,4,41]. Moreover, a version
of the multiplicative equivariant Barratt-Priddy-Quillen theorem appears as [1, Theo-
rem 10.6]. As the input for their machine differs from that of ours, a direct comparison
of their result with ours would be nontrivial but worthwhile.

Remark 1.1. An illuminating oco-category treatment of multiplicative infinite loop space
theory is given in [11]. We briefly compare that approach to the theory here. The input
with that approach is symmetric monoidal oo-categories, which are co-categorical gener-
alizations of Segal’s special I'-spaces. In this paper, as classically, the input is symmetric
monoidal 1-categories, but we need to work with the 2-category of such, in order to
keep track of the multiplicative structure. The focus of this paper is the passage from
there to special I'-categories, while the machine S o B from special I'-categories to (2-G-
spectra is taken as a black box. We view the machine S o B as essentially formal. Like
the oo-category machine, it is symmetric monoidal, at least in the variant form given
n [14]. Philosophically, from the co-category point of view, we are showing that, even
equivariantly, the passage from symmetric monoidal 1-categories to symmetric monoidal
oo-categories preserves multiplicative structure, albeit with a loss of symmetry.

1.1. A technical road map

The goal is to construct a version of equivariant algebraic K-theory which takes
as input an algebra over the equivariant categorical F,, G-operad O and produces a
G-spectrum in a way that preserves multiplicative structure and does so compatibly
with the multiplicative structure in the equivariant Barrat-Priddy-Quillen theorem. As
explained above, the source category, even nonequivariantly, does not admit a meaningful
symmetric monoidal structure, but we can build a multicategory structure on it. So
the task is to construct a multifunctorial version of Kg, and we do so in pieces. The
organization of this paper focuses on the multiplicative elaboration of the following
diagram, which displays K¢ as the composite of a sequence of multifunctors.

K
O-Algys c Spa (1.2)
]| = s [0
2-Algps Fa-GU,

2)]¢ s[5

¢
D-Alg,s —— Fo-PsAlg —— Fo-Alg
3 4

*
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We explain these steps and where the relevant definitions and notations are introduced

in the paper. In order to motivate the choice of route let us start with explaining the
last step, which in a way forces the rest of the route on us.
Step @ There are two space level equivariant infinite loop space machines, the operadic
and the Segal one, which have been shown to be equivalent in [39]. In the last step we use
the equivariant Segal machine of [39] since this is formally monoidal. Its domain is the
symmetric monoidal category of %#g-G-spaces ZG-GU,, which are based functors from
finite based G-sets to based G-spaces GU,, and its target is the symmetric monoidal
category Spg of orthogonal G-spectra.

Now the goal is thus to get to this last step. We mediate between operadic categorical
input and .%#-G-spaces using categories of operators, and the following steps are the
quickest ones we found to get to where we want to in a multiplicative way. As a general
comment on notation, the notation Algys is used for 2-categories of strict algebras and
pseudomorphisms between them, while PsAlg is used for 2-categories of pseudoalgebras
and pseudomorphisms.

We elaborate on these steps now.

Step . Part of this step is constructing multicategory structures on the source and
target categories. Even though we are ultimately interested in chaotic operads, we deter-
mine which structure on an operad makes its category of algebras a multicategory. After
a few preliminaries setting up our categorical framework of operads and multicategories
in Section 2, multicategories with underlying categories of the form O-Algys are defined
in Section 3 for operads O with what we call a pseudo-commutative structure.

The target in step 1 is algebras over a category of operators & associated to the
operad O. Categories of operators were first introduced in [37], where they mediated
between the operadic and Segalic infinite loop space machines, and they were used again
for the same purpose in [39] in the equivariant space level story. We introduce them here
to let them play the same role, not only equivariantly, but on the categorical level, which
is more subtle. We develop a general categorical framework that will specialize to an
understanding of categories of operators over both finite sets and finite G-sets, together
with their algebras and pseudoalgebras, in Section 4. We do this in a general framework
that will later clarify some key distinctions. Multicategories with underlying categories
of the form Z-Algys are defined in Section 5, where Z is any category of operators over
the category # of finite sets.

Taking & to be the category of operators associated to a pseudocommutative operad
O, the functor R which goes from O-algebras to Z-algebras is constructed as a multi-
functor in Section 5.5, but with a key proof deferred to Section 12. All of this works in
a general categorical context that a priori has nothing to do with either equivariance
or topology. A crucial technical point is that the “pseudo-commutative pairing” on an
operad that we have already mentioned gives rise to an analogous “pseudo-commutative
pairing” on its category of operators. The term “pseudo-commutative” was first coined
by Hyland and Power [17] in a monadic avatar of our categories of operators; it can be
viewed as shorthand for “pseudo-symmetric strict monoidal”.
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Step @ Just as in [39] when working equivariantly on the space level, in order to
keep track of equivariant homotopy type, we need to work with categories of operators
9 over the category F¢ of finite G-sets as opposed to just categories of operators 2
over finite sets .. Working equivariantly, but in fact in a specialization of our general
categorical framework, multicategories with underlying categories of the form Zg-Alg,,
where 9 is a category of operators over the category .Z¢ of finite G-sets, are defined in
Section 6. Taking P to be the category of operators associated to a chaotic operad O,
the prolongation multifunctor P from Z-algebras to Pg-algebras is also defined in that
section.

Step . Ultimately we want to get to algebras over the category of finite G-sets .%g. By
definition, the categories of operators 2 and %Y come with projections £: 2 — % and
¢a: Yo — F . Pulling back structure along these projections gives functors £* and &,
that send .F-algebras to Z-algebras and .Zg-algebras to Pg-algebras, and similarly for
pseudoalgebras. Taking full advantage of the equivariant context, we construct a section
Ca: Fa — Pa to &g in Section 7. Pulling back along (¢ gives the functor (. However,
since (g does not preserve structure as strictly as one might hope, ¢/, takes strict algebras
to pseudoalgebras.

Step E Since the section (¢ lands us in pseudoalgebras, our next step is to strictify back
to algebras. As we explain in Section 8, St is a specialization of a general strictification
functor due to Power and Lack [42,20] that rectifies the loss of strictness and lands
us in the multicategory associated to the symmetric monoidal 2-category .#g-Alg of
strict Fg-algebras in categories internal to G-spaces and strict maps between them.
Specializing general theory developed in [15], we explain in Section 8.2 how (g extends
to a multifunctor.

Step E Lastly, to move from categorical to space level input, we apply the standard
classifying space functor B levelwise. We treat the resulting functor in Section 9, where
we have to take special care in the treatment of nondegenerate basepoints for the final
passage to the spectrum level construction.

We use this sequence of composite multifunctors to complete the proof of Theorem A
in Section 9, and we combine our results here with results of [39] and [13] to prove
Theorem B in Section 10.

All of the multifunctors in (1.2) are symmetric except St and Sg. We could equally
well have used the slightly more elaborate but equivalent choice for Sg constructed in
[14], which is symmetric. However, although (. is itself symmetric, loss of strict structure
along it engenders the loss of symmetry of St, as we shall explain in Section 8.3.

Remark 1.3. We alert the reader to an alternative route to Theorems A and B that
was found at the same time as the one presented here. It will be presented in [28].
It is illuminating, but it is more categorically intensive since it focuses on 2-monads,
which we have avoided here despite this being a paper that is intrinsically all about
them. We will see in [28] that the k-ary morphisms in our operadic multicategories are
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the pseudoalgebras over a 2-monad M} and that the M) form a graded comonoid of
2-monads. Such structure also appears in other multicategorical contexts.

The alternative route uses a 2-monadic reinterpretation and generalization of the
vertical arrows in (1.2), but it replaces the horizontal composite St o (& by a multifunc-
tor whose underlying map of 2-categories is the composite of Power-Lack strictification
St: Yg-Alg,s — P-Alg and a derived variant of the left adjoint 8 9g-Alg —
Fa-Alg to the forgetful functor £ : Fg-Alg — Pg-Alg. The section (f: Yg-Alg —
Za-PsAlg is a categorical shortcut that avoids use of £, whose homotopical behav-
ior is problematic. The alternative route avoids any use of pseudoalgebras over .# or
Zq, but we again lose symmetry, now due to the passage from £¢ to a homotopically
well-behaved derived variant. Conceivably, a more sophisticated derived variant might
circumvent this.

1.2. Acknowledgments

This project has taken a long rocky road, and we have many people to thank, too
many to do justice to any of them. We are happy to thank Clark Barwick, Andrew
Blumberg, Anna Marie Bohmann, David Gepner, Nick Gurski, Mike Hill, Akhil Mathew,
Niko Naumann, Thomas Nikolaus, Emily Riehl, David Roberts, Jonathan Rubin, Stefan
Schwede, Michael Shulman, and Dylan Wilson. We also thank an anonymous referee for
very perceptive comments and suggestions that have vastly improved the exposition. We
apologize to anyone we may have forgotten.

2. Preliminaries on operads and multicategories

We begin here by introducing our categorical framework. We also recall the notions
of operads, their algebras, and pseudomorphisms between those. Finally, we recall the
notion of a multicategory.

Notation 2.1. Throughout the document, we will denote pseudomorphisms of various
types (for example, see Definition 2.13 or Definition 4.5) by arrows ~—.

2.1. V-categories

The categorical framework we begin with is the same as the one explained in more
detail in [15, § 1], hence we shall be brief.

Assumption 2.2. We let V be a cartesian closed, bicomplete” category.

2 This means that the category has all (small) limits and colimits.
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The examples of primary interest are ¥V = U or V = GU, where U is the category of
(compactly generated weak Hausdorff) spaces and GU is the category of G-spaces and
G-maps for a finite group G. The reader focused on topology is free to read V as U, but
nothing before Section 7 (or after Section 10) would change in any way. We defer further
discussion of the equivariant context to Section 6.

Notation 2.3. We let Cat()) denote the 2-category of categories, functors, and natural
transformations internal to V. We will refer to these as V-categories, V-functors, and

V-transformations.’

Thus any V-category C consists of objects ObC and MorC in V, and source, target,
identity, and composition structure maps, which are all required to be morphisms in V.
For € and D in Cat(V), a V-functor € — D is given by morphisms ObC — ObD
and MorC — MorD in V that are suitably compatible with the internal category struc-
ture. A V-transformation « between V-functors Fy, Fy: € = D is given by a morphism
a: ObC — MorD in V that makes the naturality diagrams commute. See [15, § 1.1]
for more detail.

Since V is complete, so is Cat(V).

Assumption 2.4. We assume that Cat()) is moreover cocomplete.

This assumption holds if either V is locally presentable or if V = U [49, (3.24) and
(3.25)]. For similar reasons, it is also true for V = GU.

Remark 2.5. We note that Cat()) is a cartesian closed 2-category since V is assumed
to be cartesian closed [18, Lemma B.2.3.15]. This implies in particular that it is a Cat-
enriched symmetric monoidal category.*

Definition 2.6. We say that a V-category C is chaotic, or indiscrete, if the source and

target maps yield an isomorphism MorC ﬂ> ObCxObC. Thus, when V is the category

of sets, there is a unique morphism between any two objects.

Chaotic V-categories and their properties are discussed in detail in [15, §1.2].

3 While Cat (V) is standard notation, our terminology for internal categories, functors, and natural trans-
formations is not; the terms we use are usually reserved for enriched categories rather than internal. Our
choice was made for the sake of readability.

4 A Cat-enriched symmetric monoidal category is a special case of a symmetric monoidal bicategory
(see [16]). In the latter all the bicategorical structure is weak (given by bicategories, pseudofunctors, and
pseudonatural equivalences), and in addition, the axioms for the associators, the symmetry, and the unitors
are satisfied up to 2-dimensional cells which in turn must satisfy certain axioms. In contrast, in the former
the bicategorical structure is strict (given by 2-categories, 2-functors, and 2-natural isomorphisms), and the
axioms on the associators, symmetry and unitors are satisfied strictly.
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2.2. Based V-categories

Let * denote the terminal object of V. A basepoint of an object V of V is a map
x* — V in V. Write V, for the category of based objects of V and based maps. Let x*
also denote the V-category whose object and morphism objects are both given by the
object x of V.

Definition 2.7. A based V-category, or V.-category, is a category internal to V.. Equiva-
lently, it is a category C internal to V equipped with a V-functor * — €. Its structure
maps source, target, identity, and composition must be in V.. There are correspond-
ing notions of based functors, called V,-functors, namely V-functors compatible with
basepoints, and based V-transformations, called V,-transformations, whose component
morphisms ObC — MorD are based. As noted in [15, Remark 1.6], the resulting 2-
category, here denoted Cat(V,), can be identified with Cat(V)..

Remark 2.8. For a V-category or V,-category C, an object of € will mean a functor x — C
or, equivalently, a morphism * — ObC in V. We warn the reader that we are using the
term “object” in a technical sense. For example, when V is the category of G-spaces, an
object is a G-fixed point of the G-space ObC, hence € may have no objects.

We can form the wedge and smash product of based V-categories A and B via the
pushout diagrams

* — A and AVB —— AxB
| |

J \ |
1 +

B-—-3AVB *———>AAB

just as for spaces. Since the objects functor Ob: Cat()) — V has both a left and a
right adjoint and therefore preserves limits and colimits, it follows that

Ob(A A B) = Ob(A) A Ob(B) (2.9)

for V,-categories A and B.

By the universal property of the smash product, a V,-functor AAB — C corresponds
to a V-functor A x B — € whose restriction to * x B and A X * is the constant functor at
the basepoint of €. This will allow us to define maps from smash products by specifying
basepoint conditions on V-functors defined on products.

Similarly, a V,-transformation

F
ANB |e e
¥G%
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corresponds to a V-transformation of functors defined on A x B whose restriction to
A x * and * x B is the identity.

Remark 2.10. Our assumptions further imply that the pushout is a Cat(V)-enriched
colimit [19, §3.8], and hence a 2-categorical colimit. This means that the smash product
extends to V,-functors and V,-transformations, giving rise to a 2-functor

A: Cat(V,) x Cat(V,) — Cat(V,).

This 2-functor gives Cat(),) the structure of a Cat-enriched symmetric monoidal cat-
egory.

Remark 2.11. Our standing assumptions on V imply that Cat(V,) is furthermore closed
symmetric monoidal with internal hom adjoint to A (see [9, Lemma 4.20], [43, Construc-
tion 3.3.14]).°

We will use the symmetric monoidal structure to enrich categories over Cat(V,) start-
ing in Section 4.
In our applications, categories often have disjoint base objects, and we write A, for

the coproduct (disjoint union in the relevant examples) of * with an unbased V-category
A. Then

.A+/\‘B+%(.AX‘B)+

(see [43, Lemma 3.3.16]).
Although x and A are not strictly associative, we omit parenthesization and view
iterated instances of these operations as parenthetisized from left to right.

2.8. Operads in Cat(V)

We will work throughout with a reduced operad O in Cat()V), reduced meaning that
O(0) is the trivial category *. We will often assume that O is chaotic, meaning that each
V-category O(n) is chaotic. We will use the notation

7: O(k) x O(j1) x -+ x O(jx) — O(j1 + -+ + i)
for the operad structure V-functors and 1: * — (1) for the unit object in O(1).
Definition 2.12. An O-algebra is an object A in Cat()) equipped with action V-functors

f(n): O(n) x A" — A

5 The associativity of A is not formal from the universal property of the pushout and requires Cat(V) to
be closed.
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that are appropriately X,-equivariant, unital, and associative, as in [29]. Since O is
assumed to be reduced, the functor (0): * — A specifies a basepoint 0 = 04 € A.

We will be using non-strict maps between (O-algebras, called O-pseudomorphisms.
The full definitions of these and of O-transformations between them are given in [5] and,
with some minor emendations, in [15, Definitions 2.23 and 2.24]. We shall not repeat
details, but we remind the reader of the key features.

Definition 2.13. Let A and B be O-algebras. An O-pseudomorphism A~~B is a V-
functor F': A — B such that F'(04) = 0g, together with invertible V-transformations
On

(n) x A" L 0 x Bn

n% o, Jem)
A B

—

for n > 0 such that 9y and the restriction of d; along 1 xid: A= x A — O(1) x A
are identity V-transformations and such that the appropriate equality of associativity
pasting diagrams relating the 0, to the structure maps of the operad holds (see [15,
Definition 2.23]). It is a (strict) O-map if the 9, are identity V-transformations.

Definition 2.14. An O-transformation between O-pseudomorphisms E and F' is a V-
transformation w: F = F such that the equality

An idx E™ O(n) x B /iMnN
) X — ) x
O(n) x A™ {idxw™ O(n) x B"
L
o(n) n idx F™
l l o(n) p o(n)
On,
/\
B
A A - B

holds for all n. We do not require the w to be invertible.

Notation 2.15. We will work throughout with the 2-category O-Algps of O-algebras,
O-pseudomorphisms, and O-transformations.

There is a more general definition of O-pseudoalgebras, as defined in [5,15], but we
choose not to introduce it since it is not needed for the purposes of this paper.
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2.4. Review of multicategories

We shall not repeat the complete definition of a multicategory given in such sources
as [8,24,53]. A multicategory M has a class Ob(M) of objects and for each sequence
a = {a1,...,ax} of objects, where k& > 0, and each object b, it has a set of k-ary
morphisms

Mk<5; b) = Mk(al, .. .,ak;b).

A quintessential example is that of k-linear maps in the category of vector spaces, which
is why k-ary morphisms in arbitrary multicategories are sometimes called k-linear maps,
even when there is no linear structure in sight.

Throughout, we understand multicategories to be symmetric, so that the symmetric
group X acts from the right on the collection of k-ary morphisms via maps

g: Mk(al, .. .,ak;b) — Mk(a(,(l), .. .,a[,(k);b).

For each object a there is an identity 1-ary morphism ¢ — a and there are composition
functions

vt My (b; €) x My, (@1301) x - -+ x My, (@r; bx) — M;({@n, ..., ax};c), (2.16)

where b is a k-tuple, @, for 1 < ¢ < k is a j,-tuple, and, with j = ji+- - -+j, {a1,...,ar}
is the j-tuple {a1,1,...,@1,5,,- -, k.1, -, Qhjy }-

The v are subject to direct generalizations of the associativity, identity, and equivari-
ance properties required of an operad in [29]. These properties are spelled out diagram-
matically in [8, Definition 2.1] and, with exceptional care, in [53, Chapter 11].°

All of our multicategories are enriched in Cat, but since that is only used peripherally
we will not go into detail.” A multicategory with one object is then the same thing as an
operad in Cat. Multicategories are often called colored operads, with objects thought of
as colors. The objects and 1-ary morphisms of a multicategory M specify its underlying
category, which is often also denoted M by abuse of notation.

Remark 2.17. There is a canonical® multicategory Mult(C) associated to a symmetric
monoidal category (C,®). Its objects are those of C, and

Mult,(C)(a1,...,ar;b) =Cla1 ® -+ ® ag, b).

6 The colored operads in [53] are symmetric multicategories with a set of objects, called colors, but the
generalization to a class of objects is evident.

7 In fact, they are enriched in Cat(V) when V is closed.

8 There is a slight subtlety here. It has been said that there is a choice of such multicategories depending
on the chosen order of associating variables. With an unbiased operadic definition of a symmetric monoidal
category, the specification of Mult(C) is unambiguous.
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It has the evident symmetric group actions and units. In schematic elementwise nota-
tion, using the notations of (2.16), the composite of a k-ary morphism F': b — ¢ with

(E1,..., Ey), where FE,: @, — b, is a jr-ary morphism for 1 < r <k, is the composite
Qr By F
® ey ® b— e (2.18)
1<r<k 1<s<j, 1<r<k

This generalizes the example in vector spaces where k-linear maps correspond to maps
out of the tensor product.

A morphism F: M — N of multicategories, called a multifunctor, is a function
F: Ob(M) — Ob(N) together with functions

F: Mg(ay,...,ax;b) — Ni(Faq,...,Fag;Fb)

for all objects a; and b such that F(id,) = idp(,) and F preserves composition. If these
functions are Yg-equivariant, we say that F is a symmetric multifunctor. A lax mon-
oidal (resp. lax symmetric monoidal) functor between symmetric monoidal categories
gives rise to a multifunctor (resp. symmetric multifunctor) between the corresponsing
multicategories.

Given a multicategory M, one can define the notion of monoid in M (see [24, Exam-
ple 2.1.11] or [53, §14.2]). This can be done using “parameter multicategories”, so that a
monoid in M is given by a multifunctor out of the appropriate parameter multicategory
into M. One can similarly define the notion of module over a monoid (see [8, Defini-
tion 2.5]). These notions agree with the usual ones when dealing with the multicategory
associated to a symmetric monoidal category as in Remark 2.17. A multifunctor preserves
associative and unital algebraic structures, and a symmetric multifunctor moreover pre-
serves commutative ones.

3. The multicategory of O-algebras

The goal of this section is to establish a multiplicative structure on the category
O-Algy of algebras over an operad. After some initial setup in Section 3.1, we introduce
the key concept of a pseudo-commutative operad in Section 3.2, following Corner and
Gurski [5]. We then establish a multicategory Mult(O) for any pseudo-commutative
operad O in Section 3.3, following Hyland and Power [17], and describe some variants in
Section 3.4. Finally, we show that the free O-algebra functor extends to a multifunctor

in Section 3.5.
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3.1. The intrinsic pairing of an operad

Surprisingly, the following elementary structure implicit in the definition of an operad
is central to our work. It is present in any reduced operad O in any cartesian monoidal
category W.

Definition 3.1. The intrinsic pairing of an operad O is given by the maps
®: O(j) x O(k) — O(jk)
defined as the composites

0) x (k) 25 0(5) x O(ky—0(jk),

where + is the structure map of the operad and j > 0 and k£ > 0.

Thinking of v as specifying additive structure, the “product” ® is taking seriously
that jk = k+-- -+ k. Thus the intrinsic pairing is an operadic manifestation of the grade
school lesson that multiplication is iterated addition.

Remark 3.2. The intrinsic pairing is not a pairing of operads in the sense originally de-
fined in [32, 1.4]. For many operads occurring naturally in topology, such as the little
cubes or Steiner operads, the intrinsic pairing appears to be of no real interest. How-
ever, as we shall see in Section 3.3, it appears naturally when trying to construct a
multicategory of algebras over an operad.

Proposition 3.3. Let O be an operad in a cartesian monoidal category W. Then the
object O = ]_[j>0 O(j) in W is a monoid with product operation ® and unit the unit
object 1 € O(1). It has a zero object x € O(0).

Proof. The unit properties of an operad are v(1;z) = z and y(z; 17) = z for z € O(j).
These say that 1 is a unit for O. The associativity of the pairing is an easy diagram
chase from the following special case of the associativity diagram for - in the definition
of an operad.

0(j) x O(k) x O@)*F — L, o(jk) x O()*

IR

O(jk0)

\./

O@j) x (O(k) x O(0)F)) ————— O(j) x O(kt)’

idx~?
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Since O is reduced, * € O(0) is a zero element. 0O

Consider the category X of sets n = {1,...,n} and isomorphisms. This is a full
subcategory of the category Fin~ of all finite sets and isomorphisms. It is bipermutative
under disjoint union and cartesian product. To be precise, the two monoidal structures, &
and ®, are given by sum and product at the level of objects. To apply @ to permutations
o € Y; and 7 € X}, and regard the result as a permutation of the j + k letters j + k =
{1,...,7 + k}, we are implicitly applying the evident isomorphism

Gr:jthk— Ik

in Fin™, then taking the disjoint union of ¢ and 7, and then applying C - Thatis, o &7
is defined by the commutative diagram in Fin~

obT
j+k——j+k (3.4)
CMJ Tc;;
J I k T> J I k.
Similarly, define
A=XNk:jk— g xEk (3.5)

in Fin~ to be the order-preserving bijection, where J X k is ordered lexicographically.
Then, p ® v is defined by the commutative diagram in Fin™~

1

Recall that the associative operad Assoc is given by Assoc(n) = %,,. Then ® gives

(3.6)

*>|§
k‘\

the intrinsic pairing of Definition 3.1 on Assoc. Moreover, if we think of the groups X;
as categories with a single object and thus think of Assoc as an operad in Cat, then
Assoc = ¥ and the monoidal structure of Proposition 3.3 is given by ®.

In particular, e; ® e, = ;. The product ® is a group homomorphism and so satisfies
po vt = (p@v)(oc®@7). Clearly e @ v =v and u ® e = p.

Remark 3.7. The equivariance formulas for an operad O imply that the pairing on %
and the pairing on O are compatible in the sense that for all o € ¥; and 7 € X, the
following diagram commutes
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0(j) x O(k) —— O(jk)

O’XTJ/ lo’@T

0(j) x O(k) — O(jk),

where the elements o, 7, and ¢ ® 7 are acting via the prescribed actions on the objects
of an operad.

Definition 3.8. Let 7; ;, € X5 be the permutation specified by the composite

—1
Ajk Akj

i % k kx j——kj = jk

-~

ik

1<

It reorders the set j x k from lexicographic ordering to reverse lexicographic ordering.
Clearly T;kl =Tk, and T, =€, = Ty 1.

The 7;; are the symmetry isomorphisms for ® in 3. More precisely, for © € ¥; and
v € ¥, we have the commutative diagram (in Fin™)

That is,

Tik(p@v) = (v & u)rr or equivalently (u® v)71g; = 7k ;(V Q p). (3.9)
3.2. Pseudo-commutative operads

We recall the permutativity operad P from [13, Definition 4.1], also known as the
Barrat-Eccles operad. For every natural number n, the category P(n) is defined as the
contractible groupoid £%,, with objects the elements of ¥,, and with a unique morphism
between any two objects, i.e. it is a chaotic category as in Definition 2.6. As such, we
say that the operad P in Cat is the chaotic categorification of the associativity operad
Assoc whose values are the sets Assoc(n) = %,. Algebras over P are in one-to-one
correspondence with permutative categories [30].
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Note that equation (3.9) implies that the diagram

P(j) x P(k) —— P(jk)

P(k) x P(j) — P(kj)

does not in general commute. Rather, since P(kj) is chaotic, there exists a natural
isomorphism «;: 7, ; ©c ® => ® o t. This is an example of a pseudo-commutative
operad, as defined by Corner and Gurski [5, §4].

We summarize their definition here. As usual, when defining categorical structures,
coherence axioms are essential for completeness and rigor. However, they can be lengthy
and may not make for enjoyable reading. To avoid disrupting the flow of exposition, we
generally defer their precise formulation to Section 11. In particular, we give the axioms
needed to complete the following definition in Section 11.1.°

Definition 3.10. Let O be an operad in Cat(V). A pseudo-commutative structure on an
operad O is a collection of invertible V-transformations, one for each (j, k), of the form

O3) x Ok) —2— O(jk) (3.11)

{ Y ajx JTM

O(k) x O(j) — O(k;).

The «; must satisfy coherence axioms for identity, symmetry, equivariance, and op-
eradic compatibility that are specified and discussed in Section 11.1.

If O is chaotic, such transformations « always exist and all conditions are automati-
cally satisfied [15, §1.2], thus giving the following result.

Lemma 3.12. (/5, Corollary 4.9]) A chaotic operad has a unique pseudo-commutative
structure.

We will often write “pseudo-commutative operad” when we really mean “operad

equipped with a pseudo-commutative structure”, but there is no ambiguity when O
is chaotic, and we later prefer to specialize to chaotic operads.

9 The original definition of [5] requires some minor corrections that are given there.
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3.8. The multicategory of O-algebras

Hyland and Power [17] show that there is a multicategory of algebras over a pseudo-
commutative monad, and Corner and Gurski show in [5] that the monad corresponding to
a pseudo-commutative operad is pseudo-commutative in the sense of [17]. We follow these
sources to describe the multicategory of algebras over a pseudo-commutative operad.

For the pairings of O-algebras we want to consider maps F': Ax B — C that preserve
the algebra structure on each variable up to canonical isomorphism. For example, if +
denotes a binary operation in O, we need to make sense of a distributivity law of the
general form

F(a,by +b2) = F(a,b1) + F(a, ba).

Diagonal maps enter since a appears once on the left and twice on the right. The
definition contains a number of schematic coherence diagrams to the effect that whenever
two natural transformations have a chance to be equal they are equal. We shall explain

the diagrams after giving the definition. The following maps s; play a key role.'’

Notation 3.13. Let A;, 1 < i < k, be V-categories and let n > 0. Define s; to be the
composite V-functor displayed in the diagram

.A1><--~><Ai,1><O(n)XA?><.Ai+1><~~-xAki>O(n)><(A1><~--><Ak)”

tl: 4

O(H)X.Al><-'~XAi_lXA;LXAH_lX--'XA]C.WO(’II)XA?X“-XAZ

Here t is the evident transposition, A is obtained by applying the diagonal maps A; —
A7 for j # i, and the right hand isomorphism is obtained by transposing from a product
of nth powers to an nth power of a product.

Definition 3.14. Let O be a (reduced) pseudo-commutative operad in Cat()). We define
the (symmetric) multicategory Mult(O) of O-algebras and pseudomorphisms. Its under-
lying 2-category is O-Algps, so its objects, morphisms, and 2-cells are the O-algebras,
the O-pseudomorphisms (Definition 2.13), and the O-transformations (Definition 2.14).
Recall that since O is reduced, all O-algebras are assigned basepoints. Its 0-ary mor-
phisms are (unbased) maps * —» B, that is, they correspond to a choice of object in B.
For k > 1, its k-ary morphisms (A1, ..., Ax) — B are the tuples (F,d;), where

10 The elementary maps s; correspond to the “strengths” t; in Hyland and Power [17, p. 156]; in their
categorical treatment, the existence of t; with suitable properties is an axiom on a given 2-monad, although
they do make the strengths explicit in the case of permutative categories.
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(a) F: Ay A+ N A — B is a V,-functor, which we may equally well express as a
V-functor F: Ay x --- x Ay, — B such that F(aq,...,a;) is equal to Op if any
object a; is 0.4, and F/(f1,..., fx) is ido, if any f; is ido,,, and

(b) the §;, 1 <1i <k, are sequences of invertible V-transformations 0;(n) as indicated in
the following diagram.

idx F"™

O(n) x (Ay x -+ x Ap)" O(n) x B (3.15)
Al X - x O(n) x AP X - x Ay, Us,(n) 0(n)
idxe(n)xidl
./41 X oo X .Ak = B

The distributivity isomorphisms §;(n) must satisfy coherence axioms that are specified
and discussed in Section 11.2.

For o € X, the right action of ¥; on the k-ary morphisms of Mult(O) sends
(F,0;): (Aq,..., Ax) — B to the composite

Ag(l)x---an(k)LLA1><~-><.A;€L>B, (3.16)

where o denotes the reordering of terms given by o(ag(1),...,0.k)) = (a1,...,ax).
Permuting the indices, the §; for F'o are inherited from the §; for F. Precisely, d,-1(;)(n)
for Fo is induced from §;(n) for F by pasting the defining diagram (3.15) to the right of
the following commutative diagram. To avoid confusion, we point out that in the middle
left term of the diagram, the factor O(n) x A" appears in the o~1(i)th position. The
middle horizontal map moves it to position i by the permutation o, as i = oo ~1(i). The
map 0(n): O(n) x A? — A, is applied in the o~1(i)th slot on the left hand side and in
the ith slot on the right hand side.

O(n) x (A1) X == X Ag(i))" e O(n) x (A X -+ X Ap)"
TS 1) Tsl-
Asy X - X (O(n) x AP) x -+ XAg(k);)Alx“'X(O(TL)XA?)><'~~><.Ak
1d><9(n)><1dJ{ Jidx@(n)xid
Ay X - X Ag(r) - Ay X oo x Ay,

Note that (Fo)r = F(oT), both mapping Ay, 1) X - -+ X Ay (k) to B.
The identity functor of A gives the unit element id4 € Mult(O)(A; A). With the
notation for sequences from Section 2.4, the composition multiproduct
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Mult(0)(B;C) x [[F_, Mult(0)(Ay; By) —— Mult(O)({AL,... A};C)
is given by
Y(F;Ey,...,Exy)=Fo(EiN---\Ey).

We identify {(¢,7)}, 1 < ¢ < kand 1 <r < jg, with {1 <4 < j; +---j,} by letting
(g,r) correspond to i@ = j1 + -+ + jq—1 + r. Then §,,(n) for the multicomposition is
given by pasting the diagrams for 55 and 65 7. We show this explicitly in the case of
(¢,7) = (1,1). The general case is shown similarly. We use the notation :4\q for the
product Ag 1 X -+ X Ag ;.-

idx(E1 XX Ep)" idxF"

O(n) x (.//4\1 X oo X ,/él\k)" O(n) x (By x -+ x By)" ———— = O(n) x C"

S1 T S1

—~  dXE}'XE3X--xE}

O(n)><24\1”><,/4\2><-~-><,4k—> O(n) X B X By x ++- X By,

slxidT 0(n)

O(n) X A} X A1g X -+ X Agj, ¥ 551 (n)xid On)xid Y 8 (n)
0(n)><idl
A x - x Ay Poe— By x - x By - c

(3.17)
One can check that the §’s satisfy the coherence axioms. In addition, one checks that
this composition is associative and unital and respects equivariance by checking the
agreement at the level of underlying functors and the corresponding ¢§’s. For example,
the §’s corresponding to a triple composite are given by the diagram that is given by
pasting the three appropriate instances of § (cf. [17, Proposition 18]). Further verifications
are needed to show that this all really does specify a multicategory. For example, the
symmetry axiom (i) in Section 11.1 is used in the verification that Fo satisfies the
axioms when F' does. However, we omit further details. We have translated the axioms
of Hyland and Power to our operadic setting. Their [17, Proposition 18] applies to show
that Mult(Q) is a multicategory enriched in the category Cat of small categories. We
learned the central role played by pseudo-commutativity from them.

3.4. Variants of Mult(O) and comparisons

We remark that our definition of Mult(O) applies almost verbatim to define a mul-
ticategory of O-pseudoalgebras as defined in [5,15]. Pseudoalgebras over an operad are
defined by relaxing the coherence diagrams for the operadic multiplication with the
structure map of the algebra to only commute up to coherent natural isomorphisms.
The only axioms in the definition of O-pseudomorphisms (listed in Section 11.2) that
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would differ slightly for O-pseudoalgebras as opposed to O-algebras are (iv) and (v). In
these conditions it wouldn’t make sense to ask for equality of 2-cells as written, since the
maps on the boundary of the 2-cells would not be equal, and instead one would need to
paste them with the coherence isomorphisms from the definition of O-pseudoalgebras.

When V = U and O is the permutativity operad P, the multicategory Mult(P) is
not quite the same as the multicategory of symmetric strict monoidal categories defined
by Hyland and Power [17] and the multicategory of permutative categories defined by
Elmendorf and Mandell [8]. The difference is that we have taken our distributivity 2-
cells §; to be invertible. Neither [17] nor [8] do so, and we have drawn our arrows in the
direction used in [17], which is opposite to the choice in [8]. This difference in the choice
of direction of the 2-cells d; would matter if we relaxed the isomorphism requirement. For
example, the strengths s; of Notation 3.13 would no longer be relevant with the opposite
choice, so the definition in [8] would no longer be a specialization of [17] and would not
be compatible with the conventions of Corner and Gurski [5] or with LaPlaza’s classical
coherence theory for symmetric bimonoidal categories [21,22]. It would therefore lead to
some erroneous conclusions, as explained in [34, Scholium 12.3].

The work of [8] used the classical biased definition of permutative categories rather
than its unbiased operadic equivalent, and that simplifies details when comparing op-
eradic algebraic structures to their classical biased equivalents. With our unbiased op-
eradic reformulation, the equivariant generalization is immediate. For example, we can
take O to be the categorical equivariant Barratt-Eccles operad Pg of [13] to obtain the
multicategory Mult(Pg) of genuine permutative G-categories; genuine permutative and
symmetric monoidal G-categories are defined to be Pg-algebras and Pg-pseudoalgebras,
respectively, in [13,15]. Our work also applies to the normed symmetric monoidal cate-
gories of Rubin [45], which are defined as algebras over an operad, but which also admit
a biased definition.

3.5. The free O-algebra multifunctor O

As explained in [35, § 4], a (reduced) operad O in a category W has two associated
monads, O defined on the ground category W, and O, defined on the ground category
W. Their categories of algebras are isomorphic. The first takes the basepoint as given
and requires the basepoint built in by the operad action to agree with the given one,
and it is defined using basepoint identifications. The second just builds in the basepoint
by the action. The first is the one central to topology and is in principle more general.
For an unbased object X € W,

0,X =0(Xy) = [[0G) x5, X7. (3.18)
§>0

This is a based object with basepoint given by the inclusion of * = O(0) x X°.
Starting on the category level with W = Cat()V), we prefer to avoid basepoint iden-
tifications and we therefore focus on Q4. When V is U or GU, applying the classifying
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space functor gives an operad BQO, and we denote the associated monad by @fp IO
is Y-free, in the sense that X; acts freely on O(j) for each j, we then have the basic
commutation relation

B(04€) ~ 0Y*(Be) (3.19)

for € € Cat(V), and that is essential to our applications.
Thus fix a chaotic operad O in Cat(V) in this section.

Definition 3.20. For V-categories C and D, define a V,-functor
w: 04CANO0LD — 04(Cx D)

by passage to orbits from the maps

O3) x € x O(k) x DF—"50(j) x Ok) x € x D*Z*L0(jk) x (€ x DYk, (3.21)

The map ¢ here is defined using the lexicographic ordering A of (3.5); explicitly, it is
given by

(Cl,. .. ,Cj)7(d17-- ,dk) — (Clyd1)7~-~(clydk)7 ...... ,(Cj,dl),...,(Cj,dk).

Since O is reduced, the maps (3.21) factor through the smash product and, using the
equivariance axiom for operad composition, they also pass to orbits with respect to
symmetric group actions; therefore they induce a well-defined map w.

Proposition 3.22. A pseudo-commutativity structure on O induces an invertible V-
transformation

04CA0.D —— 0,(Cx D) (3.23)

tl Va l@#n

©+D AN @+€ T> @+(D X G)

Proof. By axiom (iii) from Definition 3.10, the transformations c; j descend to orbits. It
is straightforward to check that they define the claimed invertible V,-transformation. O

We now extend w to a binary morphism in Mult(Q). We need to define the trans-
formations 0;(n) for ¢ = 1,2. Careful inspection shows that we can take d;(n) to be the
identity transformation. That is, we claim that the following diagram commutes.
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idxw™

On) x (048 x 01D)" ————— O(n) x O (C x D)

|

O(n) x (046)" x 04D 0(n)
O(n)xidJ/
@+G X ©+D @+(G X D)

In particular, it is important to notice that the variables in € and D are arranged
lexicographically under either composite. The variables in the operad agree under the
composite by iterated application of the associativity diagram for the structure maps -,
as in Proposition 3.3.

We define d2(n) as the following pasting diagram

O(n) x (04€ x 0L D) e o) x 04(€x D) (3.24)

idxt™ ﬂ
idxa Ax O ()"

idxw™

52 O(n) x (04D x 04€)" — O(n) x OL(D x €)™

]

04 x O(n) x (0.D)" — On) x (04+D)" x 0,€ o(n) o(n)

9(rz)><idl

idx0(n) 0.Dx0—2 L0, (DxE)
t O (t)

¥«

0,x 0D 04(€ x D),

where the inner pentagon is §; = id.

Proposition 3.25. The axioms on « imply that (w, 01 = id, d2) satisfies the conditions for
a 2-ary morphism in Mult(O) given in Section 11.2.

Proof. The most difficult axiom to verify is (v). The operadic compatibility condition
on « (Definition 3.10 (iv)) is central to this verification. We leave the details to the
reader. O

For ease of notation we will denote this morphism by w. The following result follows
easily from the definition of w.

Lemma 3.26. The pairing w is natural, in the sense that for all V-functors F': A — C,
H:B — D, the diagram
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(04A, 0.B) —— O, (A x B)
(O+F,O+H)l J/O+(F><H)
(@+€, ©+D) T> @+(€ X D)

in Mult(O) commutes.

Lemma 3.27. Given V-categories C, D, and &, the following diagram in Mult(O) com-
mutes.

w,id
(046,0,D,0,¢) — (04(€ x D), 04€)

(id,w)J/ Jw

(04€,04(D x €)) —— 04 (Ex (D xE)) — OL((ExD)x &)

Proof. Since the intrinsic pairing ® is associative, the diagram

IR

wAid

0.CA(0OLDAOLE) — (0LCADQLD)AOLE 2 OL(€ x DYAOLE

0LEAOL(Dx &) —— 04 (€ x (D x &) ——— O, ((€x D) x &)

commutes; the compatibility of the ; follows from the conditions on a. O
Thus, given V-categories Cq, ..., Ck, we have a corresponding k-ary morphism
Wk * (@+€1, ey ©+€k) — @+(€1 X oo X Gk)

in Mult(0), defined by using w iteratively. Since this is a composition in Mult(Q), the
d; for wy are obtained from those for w using the pasting (3.17). We take wy = id and
take wp to be the choice of object (1,%) € O(1) x x C O (x).

Theorem 3.28. The functor Oy from V-categories to O-algebras extends to a multifunctor
O4: Mult(Cat(V)) — Mult(O).

We do not claim that the multifunctor we construct is symmetric, and we shall show
that it is not in Remark 3.29.

Proof. In Mult(Cat(V)), a k-ary morphism is just a V-functor F': €; X - -+ x C — D.
Its image under the multifunctor is the composite
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We @+F
(04C1,..., 04C)—2 30, (€ X -+ x C)—— 04 D.

It is clear that this assignment sends the identity of € to the identity of O (€). The
fact that the assignment preserves composition follows from the functoriality of O and
the naturality of w (Lemma 3.26). O

Remark 3.29. The multifunctor O is not symmetric. To see this, consider idexp as a
bilinear map in Mult(Cat(V)). On one hand, if we first hit it with the symmetry ¢ and
then O, we end up with a bilinear map whose V,-functor is given by

w 04()
@4_@ A ©+€ E— @+(‘D X G) %( @+(G X D)

If, on the other hand, we first do @, and next ¢, we get

04,DAOLE — 3 O4(€) x OL(D) —2— 0,(C x D).

These maps do not agree since they differ by the two-cell a.

In the upcoming book [52], Yau introduces the notion of a pseudo symmetric Cat-
multifunctor, which strictly preserves the units and composition but only preserves the
symmetric group action up to coherent natural isomorphisms called pseudo symmetry
isomorphisms [52, Definition 4.1.1]. We expect that our multifunctor O should be an ex-
ample of a pseudo symmetric multifunctor, the coherent pseudo symmetry isomorphisms
being given by the a’s.

4. V,-2 categories and their algebras and pseudoalgebras

This section establishes terminology and notation that will be used frequently in
the coming sections. Much of what we do in Section 4.1 is to describe explicitly what
it means to do enriched category theory over the 2-category Cat()). In Section 4.2,
we introduce algebras and pseudoalgebras in this context, and we set ourselves up to
discuss multiplicative structures on our categories of algebras by introducing monoidal
structures on our enriched categories in Section 4.3.

4.1. V,-2-categories

All of our categories of operators, which we introduce in Sections 5.1 and 6.2, are
examples of V,-2-categories, and we explain what those are here. To define these, we work
in the setting of categories enriched in Cat()) and Cat(V.). More precisely, returning
to Section 2, we note that Cat(V) and Cat(V,) are symmetric monoidal Cat-enriched
categories, with cartesian and smash product, respectively. As such, they are particular
examples of symmetric monoidal bicategories, and we can enrich and weakly enrich over
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them, in the sense of [10]. In this section we give a self-contained treatment of these weak
notions of enrichment.

Definition 4.1. We refer to categories, functors, and natural transformations enriched in
Cat(V) as V-2-categories, V-2-functors, and V-2-natural transformations, respectively.
Similarly, we call categories, functors, and natural transformations enriched in Cat(V,)
Vi -2-categories, Vi-2-functors, and V,-2-natural transformations, respectively.

We briefly unpack these definitions. A V-2-category € consists of a collection of ob-
jects (0-cells) and a morphism V-category C(c,d) for each pair of objects (¢, d) (giving
objects in V of 1-cells and 2-cells). For a V,-2-category we moreover have that each
C(e,d) has a basepoint, and the composition factors through the smash product. If C
and D are V-2-categories, a V-2-functor F': € — D is given by a function F' on objects
and V-functors C(c,d) — D(F(c), F(d)) satisfying the evident unit and associativity
conditions (strictly). For a V,-2-functor we further require that the latter are V,-functors.

Finally, if £ and F' are V-2-functors € — D, where € and D are V-2-categories, a
V-2-natural transformation ¢: E = F consists of 1-cells'! (.: E(c) — F(c), meaning
objects of D(E(c), F(c)), such that the naturality diagrams

C(e,d) ——— D(E(c), E(d))

Fl J/(Cd)*

D(F(e), F(d)) ~—= D(E(e), F(d)

commute for all pairs (¢, d) of objects of €. The same is true for a V,-2-natural transfor-
mation, except that the diagram above lives in Cat(V,).

As in [39, § 1.3], there is a close relationship between V-2-categories with a zero object
and V,-2-categories, which we now explain. For a V-2-category C, we say that 0 in C is
a zero object if C(c,d) = * when either ¢ = 0 or d = 0. If € has a zero object, each hom
V-category C(c, d) is based with basepoint

Oc.a: * = C(0,d) x €(c,0)——€(c, d). (4.2)

Proposition 4.3. For C a V-2-category with zero object 0, the basepoints (4.2) give C an
enrichment in Cat(Vy).

Proof. We only need to check that composition in € factors through the smash product.
The associativity diagram

' As in Remark 2.8, a 1-cell here means a V-functor * — D(E(c), F(c)).
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C(d,e) x €(0,d) x €(c,0) —5 ©(d, e) x C(c, d)

* 2 C(0,€) x €(c,0) ————— C(c,e)

shows that composition sends C(d,e) x 0,4 to O, and the symmetric argument shows
that composition also sends 04 % C(c,d) to Oce. O

The following result, whose proof we leave to the reader, characterizes V,-2-functors
for V-2-categories with a zero object.

Proposition 4.4. If C and D have zero objects, then V,-2-functors F': € — D correspond
bijectively to V-2-functors F': € — D that are reduced, in the sense that F(0¢) = O0p.
Moreover, V.-2-natural transformations correspond bijectively to V-2-natural transfor-

mations between reduced V-2-functors (that is, there is no extra condition).

Following [10, §§ 3.5 and 3.7], we now introduce the weaker notions of V-pseudofunctor
and V-pseudonatural transformation, together with their based variants.'?

Definition 4.5. A V-pseudofunctor F: C~~~D between V-2-categories consists of a func-
tion F' on objects and V-functors

F: C(b,c) — D(F(b), F(c))
such that the following diagram commutes

oo ) (4.6)

. F
idp(e)

D(F(c), F(c)),
together with invertible coherence V-transformations

FXxF

C(b,c) x C(a,b) —— D(F(b), F(c)) x D(F(a), F(b)) (4.7)
OJ Yo JO
C(a, ) - D(F(a), F(c))

2 In the language of [15], we are restricting to normal V-pseudofunctors.
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that are unital (¢iq,— and ¢_ ;4 are the identity) and associative in the sense that the rel-
evant equalities of pasting diagrams relating to triple composition hold (see for example
[23, § 1.1] or [10, § 3.5]).

The based variant is defined similarly.

Definition 4.8. A V,-pseudofunctor F: C~~~D between V,-2-categories is a V-pseudo-
functor such that

(1) the functors on morphisms are V,-functors, with the unit diagram (4.6) replaced
with the diagram of V,-functors with source * IT *,'* and

(2) the transformations ¢ in (4.7) descend to V.-transformations of V,-functors with
source C(b, c) A C(a, b).

That is, in the diagram (4.7) for a V,-pseudofunctor, both instances of x in the top
row are replaced by A.

Definition 4.9. Let £ and F be V-pseudofunctors €~~~D, where € and D are V-2-
categories. Then a V-pseudotransformation'* (: E = F consists of 1-cells (.: E(c) —
F(c) for objects ¢ € € and invertible coherence V-transformations

(b, c) — s D(F(b), F(c)) (4.10)

El e l(cw*

D(Eb), E(c)) -~ DIE(®), F(c))

for objects b,c € € such that the component of (.. at id. is the identity 2-cell for all
¢ € € and the relevant coherence diagram expressing compatibility with composition
commutes (see for example [23, § 1.2] or [10, § 3.7]).

Again, the definition is essentially the same in the based context.

Definition 4.11. Let ' and F be V,-pseudofunctors € ~-D, where € and D are V,-2-
categories. Then a V,-pseudotransformation (: E = F is a V-pseudotransformation
of the underlying V-pseudofunctors such that each (3 . is a V,-transformation, meaning
that its component at 0 . is the identity.

As in Proposition 4.4, we have the following characterization of V,-pseudofunctors.

13 This is equivalent to requiring that the unit diagram (4.6) commutes as a diagram of underlying V-
functors.
4 This is meant as an abbreviation of V-pseudonatural transformation.
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Proposition 4.12. If C and D have zero objects, then V.-pseudofunctors C~—+D corre-
spond bijectively to V-pseudofunctors C~~+D that are

(1) reduced, in the sense that F(0e) = 0p, and
(2) such that ¢ restricts to the identity on the subcategories 0p . X C(a,b) and C(b, c)x0q p.

Moreover, V.-pseudotransformations (: E = F correspond bijectively to V-
pseudotransformations between the underlying V-pseudofunctors (that is, there is no
extra condition).

As in any enriched setting, we have the following construction.

Definition 4.13. If € and D are V-2-categories, their product V-2-category € x D has
objects Ob(€) x Ob(D) and morphism V-categories

(€ x D)((e,d),(d,d)) =C(c,d) x D(d,d"),

with composition given by composing in € and D after reordering the terms appropri-
ately. If € and D have zero objects, so does € x D, with zero object (0, 0).

Similarly, if € and D are V,-2-categories, we have a V,-2-category C A D with objects
Ob(C) x Ob(D) and with

(CAD)(c,d),(d,d")) =C(c,d) AND(d,d")

as the V,-category of morphisms.
Given V,-pseudofunctors F: €~+C" and F': D~-+D’, with pseudofunctoriality con-
straints n and ¢, respectively, we define the V,-pseudofunctor

EANF: CAD~C AD

as follows. On objects it is given by E x F. On morphism V,-categories is given by

C(e,d) AD(d,d') E2Es @ (Ee, EC) A D(Fd, Fd').

The coherence V,-transformation of (4.7) is given by

ENFAEANF
e(d, ")y AD(d,d") AC(c,d’) AD(d,d') — C'(EC, E") AD!(Fd', Fd") A €' (Ec, E¢) AD'(Fd, Fd')

J ENENFAF J

C(c, ") NC(e,d) AND(d',d") ND(d,d') —— C'(E,Ec")NC'(Ec, E¢) ND'(Fd', Fd") N D'(Fd, Fd')

J Yone l

e(c, ") AD(d,d") — €/ (Ee, E") N D' (Fd, Fd")

IR
IR
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Finally, given V,-pseudotransformations ¢: E = E’ and 0: F = F’, we define the
Vi-pseudotransformation (AQ: EAF = E'AF as follows. The component at an object
(¢,d) of CAD is the 1-cell (. Ay. The coherence V,-transformation of (4.10) is given by
Ceer N Og.ar, noting that ((o A 0g)* = (C.)* A (04)*, and similarly for postcomposition.

It is routine to verify that A is strictly functorial with respect to composition of
V.-pseudofunctors and (vertical) composition of V,-pseudotransformations.

We note that x and A are not strictly associative. However, for convenience, and as
we have done earlier in other settings, we make the convention to omit parenthesization
and to view iterated instances of these operations as parenthetisized from left to right.

The following remark allows us to regard 2-categories as V-2-categories and establishes
a convenient context.

Remark 4.14. The underlying set functor U: ¥V — Set specified by UX = V(x, X)
has left adjoint V: Set — V specified by V.S =[] _g *, the coproduct of copies of the
terminal object * indexed on the elements of the set S. Thus

Set(S, UX) = V(VS, X). (4.15)

When V is strongly complete [15, Definition 6.2], a mild condition that holds in all rele-
vant examples, V preserves finite limits. We can apply this with V replaced by Cat(V),
so that

Cat(B,UX) = Cat(V)(VB, X), (4.16)

for a category B and a V-category X. We regard categories B as discrete 2-categories,
meaning that they have only identity 2-cells. Applying V to the hom categories of 2-
categories allows us to change their enrichment from Cat to Cat (V). Thus we may regard
categories B as V-2-categories, and we agree to do so without change of notation. We
then call B a discrete V-2-category. In our examples, B has a zero object and therefore
gives rise to a V,-2-category.

4.2. Algebras and pseudoalgebras over V,-2-categories

Classically, algebras over a category D enriched in based spaces can be defined as
enriched functors X': D — U,.. The “action” of the category D can be seen by translating
this enriched functor into adjoint form as the data of a family of compatible continuous
maps D(a,b) A X(a) — X(b) indexed by objects a,b of D. Similarly, algebras over an
operad O in U can be defined either via action maps O(j) x X7 — X or equivalently
via a map of operads from O to the endomorphism operad End(X).
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Remark 4.17. This second interpretation can always be given when the ambient category
is closed, as we have assumed. Indeed, if V is closed, it has an internal hom object V(V, W)
for each pair of objects and an adjunction

V(V x W, 2) = V(V.V(W, 2)).
Each object V' then has an endomorphism operad End(V') with
End(V)(j) = Y(V?,V).

An action of an operad O in V on an object V' € V is then the same as a map of operads
O — End(V). This gives an adjoint specification of O-algebras.

As Cat(V) is cartesian closed (see Remark 2.5), we will write Cat()) for the resulting
V-2-category. Similarly, Cat(V,) is closed by Remark 2.11, and we will write Cat(V,)
for the resulting V,-2-category.

If C is a V-2-category, it is natural to define a C-algebra & to be a V-2-functor X': € —
Cat(V). If C has a zero object, we say that X is reduced if X(0) = *. We have the
following enhancement of Propositions 4.4 and 4.12.

Proposition 4.18. Let C be a V-2-category with zero object. Then

(1) Vi-2-functors € — Cat(V.) correspond bijectively to reduced V-2-functors € —»
Cat(V).

(2) Vi-pseudofunctors C~~»Cat(V,) correspond bijectively to reduced V-pseudofunctors
C~~Cat(V) such that ¢ restricts to the identity on the subcategories Op . x C(a, b)
and C(b,c) x 0qp.

Proof. To prove (1), let X': € — Cat(V) be a reduced V-2-functor. Then for ¢ € C, the
adjoint of the map

C(0,c) — Cat(V)(X(0), X(c))
endows X(c¢) with a basepoint:
* = C(0,c) x X(0) — X(c).

Functoriality can then be used to check that this indeed gives rise to a V.-2-functor
C — Cat(V,). For the converse we apply Proposition 4.4 with D = Cat(V.), and then
forget the basepoints to get a map with target Cat()).

The argument for (2) is similar, with the caveat that the condition on ¢ is necessary
to ensure that we do get a map with target Cat(V,.). O
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Definition 4.19. Let C be a V,-2-category. A (strict) C-algebra is a V,-2-functor X': € —
Cat(V.). Unpacking the definition in adjoint form, this consists of a function that assigns
a V,-category X (c) to each object ¢ of C, together with action V,-functors

0: Cle,d) N X(c) — X(d)
such that the unit and composition diagrams of V,-functors

(*I*)AX() —— X and  C(d,e) AC(c,d) A X(c) 2% €(d, e) A X(d)

idc/\idl / o/\idJ/ Je
0

Cle,c) N X(c) Clc,e) AN X(c) — X(e)

commute.

Remark 4.20. The unit diagram can equally well be expressed as a diagram of V-functors,
with source * x X(c).

We do not discuss general C-pseudoalgebras here, leaving such consideration for [28].
However, we will need a version of pseudoalgebras in the special case of € = F starting
in Section 7. We define these now.

Definition 4.21. Let € be a V,-2-category. A weak C-pseudoalgebra X is a V,-pseudofunctor
C~~Cat(V,). Unpacking the definition in adjoint form, this consists of a function that
assigns a V,-category X(c) to each c € €, together with action V.-functors

0:Cc,d) N X(c) — X(d)
and invertible V,-transformations

C(d,e) A C(e,d) A X(c) ~2% e(d, e) A X(d)

o/\idl /- la

Clc,e) AN X(c) — X(e)
which are the identity when either morphism is the identity 1-cell. Moreover, the ¢ are
required to be coherent as in Definition 4.5.

Remark 4.22. The strictness with respect to basepoints encoded in the definitions above
expresses the intuition that additive zero objects should behave strictly in multiplicative
structures. The strictness with respect to identity arrows expresses the intuition that
identity operations should be the identity.
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Remark 4.23. Though it is not the choice made in this article, it is also possible to
consider less general C-pseudoalgebras. As Cat(V,) is closed, these can be described as
V.-pseudofunctors € ~~+Cat(V,) that are strictly functorial on a subcategory B C C.
Different choices of B lead to several possible versions of pseudoalgebras. While we will
only deal with the weakest possible variant of pseudoalgebras here, the different types
of pseudomorphisms described in the next definition will play an important role.

Definition 4.24. Let C and B be V,.-2-categories with the same objects, let i: B — C be
a V,-2-functor which is the identity on objects, and let X and ) be C-algebras (or weak
C-pseudoalgebras). A (C, B)-pseudomorphism, F: X ~~=Y is a V,-pseudotransformation
between V,-2-functors (or V,-pseudofunctors) that is strict when precomposed with the
V,-2-functor i. Unpacking this definition in adjoint form, F' consists of V,-functors

F(e): X(c) — V(¢
together with invertible V,-transformations ¢ as in the diagram

ele,d) A x(0) 2D e (e, d) A V(0) (4.25)

| T

that are the identity transformation after whiskering with the map induced by i as
depicted in the following diagram:

idAF(c)
B(c,d) N X(c) — B(c,d) AN Y(c (4.26)
iAidJ/ zAldl
idAF(c)

Cle,d) N X(c) —— C(e,d) A V(e

The ¢ must satisfy the relevant equalities of pasting diagrams relating to composition in
C. If § is always the identity, then F is a (strict) C-map. Thus the condition on B says that
F restricts to a strict B-algebra map. We refer to the extreme case, in which B consists
only of identity morphisms and basepoint morphisms, as weak C-pseudomorphisms.

The following notion will also be needed later.
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Definition 4.27. A C-pseudomorphism F': X ~~) of C-pseudoalgebras is said to be a
level equivalence if each component F(c): X(c) — Y(c) is an (internal) equivalence of
V.-categories.

Definition 4.28. A C-transformation w between C-pseudomorphisms F and F consists
of V.-transformations w.: E(¢c) = F(c) that are suitably compatible with the V-
transformations 6% and 6%, as in [10, § 3.10]. We do not require the w,. to be isomor-
phisms.

This definition is just a translation of the notion of a V,-modification between V,-
pseudotransformations. We will only use the explicit description just given.
These notions assemble to form various 2-categories of interest to us.

Notation 4.29. For a given V,-2-category C with a V,-2-functor i: B — € which is the
identity on objects, we define the following 2-categories, with C-transformations as the
2-cells in all cases.

e C-Alg of C-algebras and strict C-maps;
o C-Algpss of C-algebras and (C, B)-pseudomorphisms;
o C-PsAlg of weak C-pseudoalgebras and weak C-pseudomorphisms.

We have inclusions
C-Alg C C-Algysp C C-PsAlg.

This article largely focuses on the 2-categories C-Algpss in the case that € is a
category of operators. As noted in Notations 5.14 and 6.17, we will then fix the relevant
B and drop the subscript B from the notation. However, pulling back along the section
(g in Section 7 will land in a category of type C-PsAlg, and the strictification theorem
in Section 8 will land in a category of type C-Alg.

We end this subsection with two constructions on (pseudo)algebras.

Notation 4.30. Given a V,-pseudofunctor £: D~~~ € and a C-pseudoalgebra X', we define
the D-pseudoalgebra £*X as the composite

D «/Ev»> e ~Lo Cat(V.).

Whiskering by € extends this construction to C-pseudomorphisms and C-transformations,
giving a 2-functor!'®

15 Even though ¢ is not strict, the process of prewhiskering with it induces a strict 2-functor because it is
essentially given by evaluation. See [10, § 4.2] for further information. In contrast, note that postwhiskering
is only a pseudofunctor.
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£ : C-PsAlg — D-PsAlg.
If € is a strict V,-2-functor, this construction restricts to give a 2-functor
£ C-Alg — D-Alg.

The 2-functor £* preserves level equivalences of pseudoalgebras as defined in Defini-
tion 4.27.

Definition 4.31. Suppose given V,-2-categories € and D. Given a C-pseudoalgebra X and
an D-pseudoalgebra ), we define their external smash product X XY to be the € A D-
pseudoalgebra given by the composite

enDd 2 cat(V.) A Cat(v,) — Cat(V,),

where X A'Y is the smash product of V,-pseudofunctors as defined in Definition 4.13. If
X and Y are strict algebras, so is X A ).
This construction extends to pseudomorphisms and transformations.

4.8. Permutative structures on V,-2-categories

In order to encode multiplicative structures on algebras, we use monoidal structures
on V,-2-categories, as defined in this section. Even in the case when V = Set, what we
present here is not the most general definition of a symmetric monoidal structure on a
2-category (see [3,16]). Here, we present a rather strict notion in which the monoidal
product is allowed to be a pseudofunctor, but must strictly satisfy associativity and
unitality; while the symmetry is allowed to be a pseudotransformation, it must satisfy
the symmetry axiom strictly.

Definition 4.32. A strict pseudo-monoidal V.-2-category consists of a V,-2-category C
together with an object I, and a V,-pseudofunctor

®: CAC~—C

that is strictly associative and strictly unital with respect to I. A pseudo-permutative
Vi-2-category is a strict pseudo-monoidal V,-2-category together with a V,-pseudo-
transformation

eae——" sene

S

such that the following axioms hold.
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(i) The following pasting diagram is equal to the identity of ®:

ene ! ene ! eAe

AN
\\\\\:Ti®§ ’/%f/
® 2l ®
)G.L

(ii) The 2-cell

N3 idAt
tV \\Ald
G/\3 dA® N G/\Q
-
@h \ = /
N2 . > @
is equal to the 2-cell
idAt
tAid 1d/\7' ®Aid
idA® idA®
e ®Aid
T/\l(%
@h \ %
g 1
N2 > @

The unlabeled regions in both diagrams commute, the quadrilaterals by the strict
associativity of ® and the pentagon by the naturality of ¢.

If ® is a strict V,-2-functor and 7 is a strict V,-transformation, we say (C,I,®,7) is a
permutative V. -2-category.

Remark 4.33. Classically, a permutative category is a symmetric strict monoidal cat-
egory, strict meaning that the product is strictly associative and unital. The defini-
tion above is similar, just done in the context of the 2-category of V.-2-categories,
V,-pseudofunctors, and V,-pseudotransformations. Thus “strict pseudo-monoidal” here
means that ® is a strictly associative and unital operation given by a V-pseudofunctor;
it respects composition only up to coherent isomorphisms. The standard coherence the-
orem for permutative categories still applies in this case: for any permutation o € ¥y,
there exists a unique composite of instances of 7 that fits in the diagram below.
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to
_
To
=
@F L @®F
e

Here ®F denotes the k-ary product induced by iterating ®, and the map t, sends a

e/\k e/\k

k-tuple (c1,...,cx) to (o-1(1),--+;Co-1(k)). The 1-cell component of 7, is the (unique)
composite of instances of the 1-cell of 7 that reorders

CL®---®cp — Co—1(1) ®"'®Co—1(k)~

Definition 4.34. Let (C,I,®,7) and (D, I’,®', 7’") be pseudo-permutative V,-2-categories.
A symmetric monoidal pseudofunctor (V,u): C~~D consists of a V,.-pseudofunctor
U: C~~D such that ¥(I) = I, together with a V,.-pseudotransformation

ere LY pap

N
@é Yy §®’
e

~

~ee~~5 D
v
such that the following axioms hold.

(i) p is unital, meaning that its restrictions to {I} A C and C A {I} are the identity
transformation, where {I} C € denotes the discrete V,-2-category on the single
object I.16

(ii) p is associative, meaning that

ercne LYY DADAD erene LYY pADAD
®@Aid g Vynid @' Aid idA® Vidap idA®’
CAC Y S DAD - CAC L S DAD

<

of Yy o

~ ~

Lo g

¢ ~~rnyD ¢ ~rrry D
v 4

The vertical boundaries of these diagrams are equal because of the associativity of
® and ®’.

16 The V.-object of morphisms in {I} is V{07,id;} = # IT *. Thus, {I} A C 2 €.
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(iii) The following equality of pasting diagrams holds:

PUAY PAY

CAC >DAD >D/\CD
® 4 (& = DAD = ene AL DAD
-~
ﬁ / L
c »D » D.

If U is a strict V,-2-functor, we refer to (¥, u) as a symmetric monoidal 2-functor.
5. The multicategory of Z-algebras and the multifunctor R

Nonequivariantly, categories of operators were introduced on the space level in order
to mediate the passage from algebras over an F.,-operad in spaces to special .%-spaces
when comparing the operadic and Segalic infinite loop space machines [37]. Algebras over
a category of operators are a generalization of both % -spaces (aka I'-spaces) and algebras
over an F,-operad. In this section we discuss their categorical analogues. Equivariant
categories of operators were studied in [46,39], and their categorical analogues will be
introduced in Section 6.

We show that for a category of operators Z with pseudo-commutative structure, as
defined in Section 5.2, there is a multicategory of algebras over 2. For categories of op-
erators coming from operads, the necessary structure arises from a pseudo-commutative
structure on the operad, as in Definition 3.10. We make all of this precise in this section.

5.1. Categories of operators over F

The definitions in this subsection are categorical analogues of definitions in [37]. We
give the definitions in the setting of V-2-categories.

Definition 5.1. Recall that % denotes the category of based sets n = {0,1,...,n} with
basepoint 0 and let IT denote its subcategory of morphisms ¢: m — n such that
|p=1(j)] = 0 or 1 for 1 < j < n. We often use the abbreviated notation ¢; = |¢~1(j)|.
We regard .% and II as discrete 2-categories, meaning that they have only identity 2-cells.
Via Remark 4.14, we then regard them as V,-2-categories.

Definition 5.2. A Cat(V)-category of operators 2 over %, abbreviated Cat(V)-CO over
F, is a V-2-category whose objects are the based sets n for n > 0 together with V-2-
functors

13
99—
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such that . and £ are the identity on objects and £ o ¢ is the inclusion. A morphism
v: 9 — & of Cat(V)-COs over .7 is a V-2-functor over .% and under II.

Definition 5.3. A Cat(V)-CO Z over .# is reduced if 0 is a zero object, and we then
say that 2 is a Cat(V,)-category of operators over .%. We shall restrict attention to
Cat(V,)-categories of operators over .Z.

Remark 5.4. By Propositions 4.3 and 4.4, if 2 is a Cat(V,)-CO over .%, then 2 is a
V,-2-category and ¢ and £ are V,-2-functors; that is, 2 is a V,-2-category over .% and
under II. A morphism 2 — & of reduced Cat(V)-COs over % is necessarily reduced
since it must send 0 to O; thus it is a V,-2-functor over .% and under II.

Let O be an operad in Cat()). We can associate to it a category of operators 2 =
2(0) over .F by letting

gmn = [ [ o)

deZF(mmn) 1<j<n

Composition is induced from the structural maps v of O. To write formulas instead of
diagrams, we use elementwise notation, writing ¢; € O(¢;) for objects and morphisms
in O(¢;). For (¢,c1,...,¢p): m — mnand (¢,dy,...,dp): n — p, define

(rdi,oosdy) o (Bersnen) = (voo, [T wdss T[] edns.0)).  (55)

1<j<p P(i)=j

The ¢; with ¢(i) = j are ordered by the natural order on their indices i, and p; (v, ¢)
is that permutation of |(¢ o ¢)71(j)| letters which converts the natural ordering of
(¢ o ¢)71(j) as a subset of {1,...,m} to its ordering obtained by regarding it as
Hyo)=; ¢~ (i), so ordered that elements of ¢~!(i) precede elements of ¢~1(i') if i < 4’
and each ¢~1(4) has its natural ordering as a subset of {1,...,m}. When it is clear which
¢ and v are being composed, we abbreviate the notation for the permutation p;(, ¢)

to p]

Proposition 5.6. [57, Construction 4.1] The above specification makes 2(QO) into a cat-
egory of operators over F, and it is reduced if O is reduced.

Proof. The map : Z — F sends (¢, c1, ..., ¢y,) to ¢. Recall that any morphism ¢ in IT
satisfies ¢; <1 for j > 0. The inclusion ¢: Il — 2 sends ¢: m — n to (¢,c1,...,¢n),
where ¢; =1 € O(1)if ¢ =1and ¢; =€ O(0) if p; =0. O

5.2. Pseudo-commutative categories of operators over F

In analogy with our definition of pseudo-commutativity of an operad, we define a
compatible notion of pseudo-commutativity of a category of operators 2 over .%. The
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categories Il and % are permutative under the smash product of finite based sets, as
we now recall. On objects, m A p is defined to be mp, where we identify the latter
with the actual smash product of finite based sets via lexicographical ordering. More
precisely, on elements that are not the basepoint, the identification uses the map in
(3.5). Given ¢ € #(m,n) and ¢ € Z(p,q) their smash product ¢ A ¢ € F(mp,nq)
is thus defined analogously to (3.6) using these reordering isomorphisms of finite based
sets. The symmetry isomorphisms 7 are given by the permutations 7, , of Definition 3.8
which reorder the sets mp from lexicographic to reversed lexicographic ordering. If ¢
and 7 are permutations, outside of the basepoint ¢ A coincides with the formula (3.6),
so the inclusion of ¥ in % identifies ® with A. We will continue to use the symbol ® for
emphasis when dealing with permutations.
Recall the notion of pseudo-permutative V,-2-category from Definition 4.32.

Definition 5.7. A pseudo-commutative structure on 2 is a pseudo-permutative structure
(2,1,®,7) such that

(1) ® restricts to A on ITAIT and projects to A on % (in the sense that Eo® = Ao (EAE));
(2) ® restricts to a strict V.-2-functor on II A Z and 2 AT,
(3) 7 restricts to the symmetry on II given in Definition 3.8.

We identify the pieces of this definition explicitly. First note that condition (1) implies
in particular that ® = A on objects. The fact that ® is a V,-pseudofunctor means that

there is a collection of invertible V,-transformations

BA®

2(n,p) AN D(r,s) AN Z2(m,n) A (q,r) ———— Z(nAr,pAs)AZ(mAqg,nAr)
1d/\i%/\1clJ/ﬁ
P2, p) N Z(m,n) A Z(r,s) A Z(q,r) Vo °
)N Z(q,s) p. P2(mAq,pASs)

(5.8)
relating ® to composition.

Condition (2), which is necessary for Theorem 6.14, translates to requiring 9 to be
the identity (so that the diagram commutes) when either both Z(n,p) and Z(r,s) are
restricted to II or both 2(m,n) and 2(q,r) are restricted to II.

Writing this out elementwise, on 1-cells it means that, whenever the composites are
defined,

(c®d)o(anb)=(coa)®(dob)
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and

(aAb)o(c®d)=(aoc)®(bod)

where ¢ and d are morphisms of Z and a and b are morphisms of II. We think of this as
saying that the monoidal structure on ® is strict relative to II. As the pseudofunctoriality
constraint for ®, the V,-transformations ¢ must satisfy a condition with respect to
triple composition. The condition on ® being strictly associative imposes another set of
conditions on .

Condition (3) means that the 1-cell constraint of 7 at the object (m, p) is the permu-
tation 7, , thought of as a morphism in %, and the pseudonaturality constraint is an
invertible V,-transformation

P(m,n) A 9(p,q) —— 7(pm,qn) (5.9)

®J/ \//-f- J(TM,:U)*

2(mp,nq) — 2(mp, qn)

Tn,q)*

that is the identity when restricted to the subcategory II(m, n) ATI(p, q). These pseudo-
naturality constraints must be compatible with composition in 2 and the pseudofunc-
toriality constraint .

Remark 5.10. For later use, we emphasize a particular consequence of the strictness
relative to IT here. Let a € II(m’, m) and b € TI(q’, q). The compatibility of ¢ with triple
composition together with condition (2) implies that

P2, p) AN D(r,s) AN Z(m,n) A D(q,r) e P2mAr,pAs)ANPZ(mAqg,nAr)
idAidAa*Ab* idA(aAb)*

2(n,p) A 2(r,s) N Z2(m’,n) A 2(d’,r) o, I(nAr,pAs)AZ2(m' Aq',nAr)

idAtAId | =
Z(n,p) AN Z(m',n) A Z(r,s) N 2(d',r) a o
ono
Z(m’,p) N 7(d,s) Z(m’' Aq',pAs)

is equal to
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2(n,p) A Z(r,s) A Z2(m,n) A 2(q,r) e ImAr,pAs)ANZ(mAqg,nAr)
idAtAid | 2
P2(m,p) AN Z(m,n) A D(r,s) A Z(q,r) Vo o
oAo
Z(m, p) A Z(q;s) 5 Z(mAq,pAs)
a*A\b* (anb)*
Z(m',p) A D(d';s) - Zm'Nq',p As)

The two unlabeled squares have instances of 9 that are the identity because of condition
(2). The boundaries on both diagrams are equal since composition in 2 is strict. This
equality expresses a condition on ¢ for when the first terms of a triple composition come
from II. There are similar conditions for when the middle and the last terms come from
I1.

Definition 5.11. We define a map (¥, u): 9 — & of pseudo-commutative categories of
operators to be a symmetric monoidal 2-functor (Definition 4.34) such that ¥ is a map
of Cat(V.)-COs over .Z and the restriction of y to the subcategory ILATI is the identity
transformation.

We defer the proof of the following theorem to Section 12. It ensures that our defini-
tions of pseudo-commutativity for operads and for their associated categories of operators
are compatible. The verification is essentially combinatorial bookkeeping and is painstak-
ing rather than hard.

Theorem 5.12. Let O be a pseudo-commutative operad in Cat(V). Then 2 = 2(0) is a
pseudo-commutative category of operators.

Remark 5.13. The construction is functorial. With the appropriate definition of a pseudo-
commutative morphism O — P of pseudo-commutative operads, the map 2(0) —
2(P) is pseudo-commutative. In analogy with Lemma 3.12, when O and P are chaotic,
any morphism of operads between them is necessarily pseudo-commutative.

5.3. The multicategory of P-algebras

For a category of operators & over .%#, we consider Z-algebras as defined in
Definition 4.19. As indicated in Remark 4.23, there is a more general notion of Z-
pseudoalgebra, which is discussed in [28]. Recall that we have the notions of (2,II)-
pseudomorphism and Z-transformation from Definitions 4.24 and 4.28.
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Notation 5.14. For a category of operators & over %, we denote by Z-Algps the 2-
category of strict Z-algebras, (2,11)-pseudomorphisms, and Z-transformations. This
2-category was denoted by Z-Algpys; in Notation 4.29, but we now fix B = II and drop
it from the notation.

This notion, with its strictness with respect to II, is essential for the construction of
P in the left column of (1.2), as we explain in Remark 6.3.

Let 2 be a reduced pseudo-commutative category of operators over .#. We define
the multicategory Mult(2) of Z-algebras, which amounts to defining the k-ary mor-
phisms. As said before, we set it up to have its objects be Z-algebras, although with
only slightly more work we could equally well have set it up to have its objects be
2-pseudoalgebras.

Recall from Section 4.2 that a Z-algebra is given by a V,-2-functor X: ¥ —
Cat(V,), which can be expressed in adjoint form as in Definition 4.19. Thus the ac-
tion of 2 on X is given by V,-functors

0: 2(m,n) A X(m) — X(n).
Let 2'F denote the k-fold smash power. Following Definition 4.31, given Z-algebras
X1,..., X, we have the external smash product X;A...AXj. It sends an object

(ny,...,n;) of 2"% to Xi(ny) A -+ A Xi(ny), with action map 6% given by the com-
posite

AZ(mi0) A AX(mo) —s AZ(myn) A Xm,) A, AX(m)

where the first map is the appropriate shuffle. For a Z-algebra ), we consider the 2/\F-
pseudoalgebra

k

Yy
7% » 9 ——— Cat(V,).
The conditions in Definition 5.7 imply that ) o®" restricts to a strict II"*-algebra. Since
II"* is discrete, this is a functor from II"* to the underlying 1-category of Cat(V,).

Definition 5.15. Let & be a reduced pseudo-commutative category of operators over .%.
We define a (symmetric) multicategory Mult(2) of Z-algebras as follows. The objects
are Z-algebras. For objects X;, 1 <i < k, and ), a k-ary morphism X — Y consists of
a (2%, T1"*)-pseudomorphism

F: XA . . AX, ~=Y o ®F.
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Recall that this is the same as saying that F' is a V,-pseudotransformation

[74% X1 A X C (V*)/\k
Ak

®" /2 l

at
9 ——  Cat(V,)
y
that is strict when restricted to II"*.
Given a j;-ary morphism E;: (Xj1,...,&X; ;) — Y; for i = 1,...k, and a k-ary
morphism F': (V1,...,Vx) — Z, the composite is defined by the pasting diagram below,
where the right hand 2-cell is the associativity isomorphism for A on Cat(V.).

Xl,l/\'“/\Xk,jk

Zd — Cat(V,)" (5.16)
A @ AN
\\\ ﬂElA,‘,,\Ek /
@ gk D0V Cat(V,)"* = N
< f/;@k/ & X
7- E Cat(V.).

Here, 1 A --- A B} is the smash product of V,-pseudotransformations as defined in
Definition 4.13.

Finally, we specify the symmetric structure on the multicategory Mult(2). Given a
permutation o € ¥, and a k-ary morphism F: (Xi,...,X;) — Y, the k-ary morphism
Fo: (X,),..., X)) — Y is defined by the pasting diagram

Xg(l)/\---/\XU(k)

7 Cat(V.)"*

to
lo
XA AXy

okl < N ————— Cat(V,)NF <~ AR

ﬂ Vi \
® A

- Cat(V,).

X

Yy

Here the different maps called ¢, send a k-tuple (ay,...,ax) to (@o-1(1),---;8-1(k)),
and 7, is the invertible V,-pseudotransformation of Remark 4.33.

We now unpack this definition. In what follows, given a k-tuple (nq,...,ng) of natural
numbers, we write their product as n = ny - - - ng.
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A k-ary morphism F = (F,d): (X1,...,X,) — Y consists of V,-functors

F: Xi(n) A AXg(ng) — Y(n),

together with invertible V,-transformations § in the following diagrams, in which 1 <
i1 < k.

A Z(my, ;) AN Xi(my) 9N A 9 (my,n;) A Y(m) (5.17)

tl% l@k/\id

/\@(ml,nl)/\Xl(ml) ﬂ s @(m,n)/\)ﬁ(m)

- i

N Xi(n) V(n)

We require ¢ to be the identity when restricted to II"*. The § must satisfy coherence
diagrams related to composition and identities in 2"'*. The latter are subsumed in
the conditions on II. We defer writing out the details of the required conditions for
composition to Section 11.3.

Unpacking the action of o, the component of (F,d)c = (Fo,do) at an object

my,...,myg is defined by the following commutative diagram.
Fo
Xyy(my) A= A Xp gy (my,) —— Y(m) (5.18)

tal Ty(fal)

Xi(mg-11)) A A X (mg-1 ) — Y(m)

The invertible V,-transformation do is obtained by whiskering the § of (5.17), but
using the pseudocommutativity of 2. Precisely, we construct do by the following pasting
diagram, where we write v for ¢~1. Here the inner hexagon is (5.17), and the outer
hexagon is the corresponding diagram for F'o. On Z(m,n) we denote by ¢, the pre- and
postcomposition with

Tg:m:/\mi—>/\mu(i) and 7 /\nv(i>_>/\ni:n’

K2

respectively.
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idAFo

AZ(mi,ni) AN Xoi) (my) A Z(m;. n;) A Y(m)

idAF
4 A Z(myi@)nua0)) AN Xi(myp) ————— A Z(my ), 00) A V(Amy) @Aid
rl l@md inia
te caAV(T7Y)
A 2(mi, 0;) A Xy iy () —— \ D(my, ), n5-135)) A Xi(my, ) v s 2(ANmue), Angi) AY(Amyq) —— 2(m,n) A Y(m)
Y| §
ne A Xi(ny)) - Y(Any@) [
/ M)

A Xo(iy (ni) Y(n)

(5.19)
The top and bottom trapezoids commute by the definition of Fo. The left two trape-
zoids commute trivially. The bottom right trapezoid commutes since Y € Mult(2) is
a (strict) Z-algebra. The top right trapezoid is filled by an invertible V,-transformation
7 given by the pseudonaturality constraint of the appropriate (unique) composition of
instances of the pseudocommutativity of 2.
Recall Notation 4.30.

Theorem 5.20. Let (U, u): Z — & be a map of pseudo-commutative categories of oper-
ators (Definition 5.11). Then pulling back along ¥ induces a (symmetric) multifunctor

U*: Mult(&) — Mult(2).

Proof. Given a k-ary morphism F': (Xi,..., X)) — Y in Mult(&), the multimorphism
U*(F) is defined as the pasting

LNk Pk [70% X1A-AX at(V*)Ak
®" A py ®F A F AF
3 9 Cat(V.),
o y

where the 2-cell ;. denotes an appropriate composite of instances of i, which is unique by
the associativity of p. Compatibility with the identity, composition, and the symmetric
group action follows from the axioms in Definition 5.11. O

5.4. Definition of the functor R

Let O be a reduced operad in Cat(V) with associated Cat(V,)-CO Z over .#. We
define a 2-functor R: O-Algy,s — Z-Algps with the property that for an O-algebra A,
the resulting Z-algebra is defined on objects by n — A", and we show in Section 5.5
that R extends to a multifunctor.
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We have the 2-category II-Alg of II-algebras, II-morphisms, and II-transformations,
and we have the evident 2-functor R: Cat(V,) — II-Alg that sends a V,-category A
to the IT-algebra II — Cat(V,) whose value at n is A™. The injections, projections,
and permutations of Il are sent to basepoint inclusions, projections, and permutations
of the A™. For a V,-functor F': A — B, RF has component F": A" — B" at n.

The notation R records that R is right adjoint to the 2-functor IL that sends a II-
algebra to its first V,.-category, L(X) = X(1) [34, §1]. We claim that R extends to a
2-functor R: O-Alg,s — Z-Algys. When starting operadically, it is convenient to use
x instead of A. For an O-algebra A in Cat(V), we give RA a P-algebra structure via a
V-functor

0: 2(m,n) x A™ — A"

that is compatible with basepoints and therefore descends to a V,-functor on the smash
product. Writing ¢; = |¢~*(j)| again, this V-functor can be expressed as a composition

[ ( I1 O(¢j))><v4m*> I1 I1 (O((lﬁj)vaﬁj)iﬁ/ln.

¢: m—n *1<j<n ¢: m—n 1<5j<n

On each component ¢: m — n, the first map reorders A™ =2 4% x A% x ... x A%~
and projects away A%, while the second map is the product of n algebra structure maps
0(¢;): O(¢;) x A% — A.

We next define R on morphisms. Thus let (F,d.): A~~+B be a pseudomorphism of
O-algebras. We define a (2, II)-pseudomorphism

R(F,0.) = (RF,§): RA~RB.
The required V,-transformation

9(m,n) A A™ P G(m,n) A BT

el Y Smom le

A" B"

o

is obtained by passage to smash products from a coproduct of whiskerings of

idx F?i
[T (0() xA%) 100 1 (0(6) < B%)
1<j<n 1<j<n
Hi‘)l ﬂna l]‘[o
Ar pa
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along the reordering morphisms ( 11 O(¢j)) x A™ — ] ((’)(¢j) % A(bj)'
1<j<n 1<j<n
For an O-transformation w: E =— F, we define the component of the %-

transformation Rw at n as w™. We leave it to the reader to fill in the details of the
proof of the following result.

Proposition 5.21. The above data specifies a 2-functor R: O-Algys — Z-Algps.
5.5. The proof that R is a symmetric multifunctor

Now let O be a reduced pseudo-commutative operad in Cat(V) with associated
pseudo-commutative category of operators .

Theorem 5.22. The 2-functor R: O-Algys — Z-Algps extends to a symmetric multi-
functor Mult(O) — Mult(2).

Proof. Let (F,d;): (A1,...,Ax) — B, be a k-ary morphism in Mult(O). Here F' is a
V,-functor A; A --- A A — B and J; is given by V-transformations d;(n) as in (3.15).
We must construct a k-ary morphism R(F, ;) = (RF,RJ): (RAy,...,RAy) — RB as
in Definition 5.15.

Writing n = ny - - - ng as before, the component

RAl(nl) VARERIVAN RAk(nk) — RB(H)
of RF is
APEA - ANATE S (A A A A S BT

where ¢ is a based version of the map defined in Definition 3.20, using lexicographic
ordering. Next, we specify the V,-transformations R in the following specialization of
diagram (5.17).

/i\@(mi,ni)A/i\Aim% /i\@(mi,ni)ABm (5.23)
. @Aid

/\.@(ml,nz)/\A?“ ”Ré @(m, n) A B™

/_\QJ 0

A — B

Before passage to smash products, these transformations are constructed as disjoint
unions of products of compositions of the d;(n)’s. To see this, consider, for instance,
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the case in which £k = 2 and n; = ny = 1. We restrict further to the components
O(m1) € Z2(my, 1) and O(mz) € Z(my, 1) corresponding to the maps ¢: m; — 1 and
1 my —> 1 that send all non-basepoint elements to 1. Then the V,-transformation R¢
is obtained by passage to smash products from the 2-cell

O(ml) X O(mZ) X A;nl x A’gn % O(ml) X O(m2) x Bmim2

% lw

O(ml) X _ATlm x O(mg) x A72n2 ﬂ O(m1m2) x Bmim2
0><0l le
.A1 X .AQ 7 B

of (v), the axiom for commutation of cells §; and J;, in Section 11.2, where Definition 3.14
is completed. Now consider the general case of k = 2, with arbitrary n; and nsy. For the
component of Z(my,n;) X Z(my, ny) indexed by maps ¢: m; — n; and ¢: mys — ny
in .Z, the required 2-cell is of the form

ma mo ®><RF mi1Mmso
[T O)x I Ohy) x A" x A" ——— [TO((¢ A¥)(jm) x B™
1<j<n, 1<k<n, Jok
v
(116 xT16) ot 1
A?l X Agbz o Bnlng

and is a product of 2-cells of the previous type. We note that R is the identity when 2% is
restricted to I1¥, by axioms (i) and (iii) in Definition 3.14. When k = 1, the construction
above recovers that of Section 5.4. Axiom (v) of Definition 3.14 implies that R preserves
composition.

We prove that R is symmetric by a comparison of the definitions here with those of
Section 3.3. Remembering the lexicographic reordering, it is straightforward to check
by comparison of (3.16) with (5.18) that R(Fo) = (RF)o for a k-ary morphism
(F,d;) of Mult(O). The equality of pasting diagrams required to ensure that the V-
transformations in (R(F,d;))o and R((F,d;)o) are equal follows from axiom (v) of
Definition 3.14. O

6. The multicategory of Y-algebras and the multifunctor P
We introduced Cat(V)-categories of operators in Section 5, as well as the multicate-

gory Mult(2) associated to any pseudo-commutative category of operators 2. In this
section, we finally bring in equivariance, starting in Section 6.1, where we specialize the
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content of the previous sections to the category GV of G-objects in V. In Section 6.2 we
introduce Cat(GV)-categories of operators over %, the category of finite based G-sets.
A key idea here is Construction 6.7, which allows us to prolong from equivariant cate-
gories of operators over .Z to equivariant categories of operators over .%g. We introduce
the multicategory Mult(Zg) in Section 6.5 and extend the prolongation functor to a
symmetric multifunctor in Section 6.6. Much of this section is precisely parallel to the
previous one.

6.1. GV-categories and GV, -categories

So far, equivariance has not entered into the picture and yet everything we have
done applies equally well equivariantly, as we now explain. Start again with a category V
satisfying Assumptions 2.2 and 2.4, such as the category U of spaces, and let G be a finite
group. An action of G on an object X of V can be specified in several equivalent ways.
One is to regard G as a group in V via Remark 4.14 and to require a map Gx X — X in
V that satisfies the evident unit and associativity properties, expressed diagrammatically.
Another is to regard G as a category with one object and to require a functor G — V
that sends the one object to X. We have the evident notion of a G-map X — Y.

Let GV denote the category of G-objects in V and G-maps between them. Then GV
is bicomplete, with limits and colimits created in V and given the induced actions by G.
With the second description, this is a standard fact about functor categories. Therefore
GV satisfies Assumption 2.2. Similarly, we have the 2-category Cat(GV) of categories
internal to GV, which can be identified with the 2-category of G-objects in Cat()). Hence
GV satisfies Assumption 2.4 as well. Thus we can replace V by GV and everything we
have said so far applies verbatim.

Remark 6.1. As just noted, we can think of a GV-category as a V-category C together
with V-functors g: € — C for g € G. Then a GV-functor F': B — € is a V-functor F
such that the diagrams

—

' B
jF

— C
g

B
|
e

commute. A GV-transformation v: £ = F'is a V-transformation such that v: ObB —
MorC is G-equivariant. This is equivalent to having the following equality of pasting

diagrams.
i G 3,3
c——2¢ c——¢
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The terminal object of V, with trivial G-action, is terminal in GV, and we have the
category GV, of based objects in GV, which can be identified with the category of G-
objects in V.. We also have the 2-category Cat(GV.) of categories internal to GV,, which
can be identified with the 2-category of G-objects in Cat(V,); an analogue of Remark 6.1
applies in this case as well.

We also have GV-2-categories, which are defined to be categories enriched in
Cat(GV), using cartesian products, and GV,-2-categories, which are categories enriched
in Cat(GV,), defined using smash products. We emphasize that G does not act on the
collection of objects of a GV-2-category. It acts on the V-categories of morphisms.

What changes is that we now build finite G-sets into the picture. We work with
categories of operators Y over %, our chosen permutative model of the category of
based finite G-sets. We define these in Section 6.2, we define pseudo-commutativity for
them in Section 6.3, and we define algebras and pseudoalgebras over them in Section 6.4.
When Z¢ is pseudo-commutative, we define a multicategory with underlying category
Dc-Alg,s in Section 6.5. We define the prolongation functor P from Z-algebras to
PDc-algebras and show that it extends to a symmetric multifunctor P: Mult(2) —
Mult(2¢) in Section 6.6.

6.2. Categories of operators over Fg

The definition of a category of operators over .%¢ in this section is parallel to that of
a category of operators over % in Section 5.1, and it is the categorical analogue of the
definition given in [39] on the space level. After giving the relevant definitions, we show
how we can go back and forth between categories of operators over .% and categories of
operators over .

Definition 6.2. Let .#¢ be the following model of the G-category of based finite G-sets.
An object in %#¢ consists of a based set n together with a G-action prescribed by a
homomorphism «: G — ¥,,. We denote this object by n®. The morphisms are defined
to be all based functions, not just the equivariant ones, and we let G act by conjugation
on the set of morphisms. Thus % can be viewed as a G-category where G acts trivially
on objects.

Let Il C Z¢ be the sub G-category of morphisms ¢: m® — n? such that 9; =0
or 1 for 1 < j < n. Write n for n°, where ¢ is the trivial homomorphism. That fixes
compatible embeddings of II in IIg and % in #g. Note that 0 is a zero object in Ilg
and Z¢.

Remark 6.3. We think of ¥,, as the subset of isomorphisms in II(n,n). For a based G-set
n®, the homomorphism « thus maps G to II(n,n), which is contained in all categories
of operators of either type. We have built strictness with respect to II into all of our
structures, and the strictness with respect to permutations is crucial in dealing with
equivariance, in particular in constructing the prolongation functor P.



54 B.J. Guillou et al. / Advances in Mathematics 414 (2023) 108865

Definition 6.4. A Cat(GV)-category of operators P¢ over Z¢, which we abbreviate to
Cat(GV)-CO over %, is a GV-2-category whose objects are the based G-sets n® for
n > 0, together with GV-2-functors

3
HGL*G%@GLMQG

such that tg and £z are the identity on objects and £z o 1 is the inclusion. A morphism
vG: 9 — ég of Cat(GV)-COs over F¢ is a GV-2-functor over .#¢ and under Ilg.

For a Cat(GV)-CO Zg over F¢, let 2 denote the full subcategory on the objects
n = n® with trivial G-action. This is the underlying Cat(GV)-CO over .¥ of Zg.

Definition 6.5. A Cat(GV)-category of operators PDg is reduced if 0 is a zero object,
and we then say that & is a Cat(GV.)-category of operators over F. We shall restrict
attention to Cat(GV,)-categories of operators over .Zg.

Remark 6.6. As in Remark 5.4, a Cat(GV,)-CO Z¢ over F¢ is a GV,-2-category, with
te and € GV,-2-functors, and a morphism of reduced Cat(GV)-COs over % is reduced
and is thus a GV,-2-functor over % and under Ilg.

Construction 6.7. We construct a prolongation functor P from the category of Cat(GV;)-
COs over .Z to the category of Cat(GV,)-COs over Z¢. Let 2 be a Cat(GV,)-CO over
Z. Define the morphism GV,-category P2(m®,n?) to be a copy of Z(m,n), but with
G-action induced by conjugation and the original given G-action on 2(m, n). Explicitly,
the action of g € G on P2 (m®, n?), which we shall call Pg when a and 3 are understood,
is the composite

Pg:= @(m,n)%@(m, n)#@(m,n)&@(m,n). (6.8)

Here a(g~1)* and S(g). are defined by precomposition with a(g~!) and postcomposition
with (B(g); we think of them as prewhiskerings and postwhiskerings. Composition is
inherited from 2 and is equivariant. Observing that Ilg and .#¢ are the prolongations
of IT and %, the inclusion (g and projection g are inherited from 2 as P and Pe.
This uses the functoriality of P, which we now explain. For a map of Cat(GV,)-COs
v: 9 — &, we define

Pv: PZ2(m®, n’) — P&(m®, n?)

to just be v; it is equivariant with respect to the new action because v is a GV,-2-functor
and thus is compatible with the G-action and with precomposition and postcomposition
with maps in II.

Proposition 6.9. If P¢ is a Cat(GV,)-CO over F¢, then P = PP, where 9 is the
underlying Cat(GV,)-CO over F of Y¢.
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Proof. Let Z¢ be a Cat(GV.)-CO over Fg. Let id® € Ilg(m,m®) and id, €
I (m®, m) be the morphisms given by the identity map on the set m. They are not
identity morphisms but rather are mutual inverses in Ilg, and hence in Z¢. Since G acts
by conjugation on Il (m, m®) and I (m®*, m), the action of g sends id* and id,, to the
maps on m given by a(g) and a(g) !, respectively.

Precomposition with id® and postcomposition with idg induce an isomorphism of
V,-categories

Pa(m® n?) — J¢(m,n) = Z(m,n). (6.10)

The above observations and the fact that composition in Z¢ is G-equivariant imply
that this map becomes G-equivariant when we endow the target with the action defined
on P2(m®,n?), giving the desired isomorphism Z¢ = P2. 0O

Remark 6.11. The map of V,-categories in (6.10) induces a V,-2-functor
@G — 9.

It is an inverse up to invertible V,-2-natural transformation to the inclusion ¥ — Y.
Thus 2 and Z¢ are equivalent as V,-2-categories, but not as GV,-2-categories.

Definition 6.12. For a reduced operad O in Cat(GV), define the associated category of
operators P¢(0) over F¢ to be the prolongation P(2(0)).

A more explicit description is given on the space level in [39, Definition 5.7].
6.3. Pseudo-commutative categories of operators over F¢

Observe that IIg and % are permutative under the smash product of finite based G-
sets. On underlying sets, the smash product and its symmetry isomorphism are defined
just as for IT and .%. Recall that when we restrict to 3, we denote the smash product ®.
This can be thought of as a collection of maps X, X 3,, — ¥,,. Then homomorphisms
a: G — ¥, and B: G — X, have the product homomorphism a® S given by applying
® elementwise; that is, (o ® 8)(g) = a(g) ® S(g).

Then m® A n? = mn®®?_ and the smash product

Fe(m®, p") A Fe(n®,q°) — Fo(mn®? pq’®?)

is G-equivariant.
The following definition is precisely analogous to Definition 5.7.

Definition 6.13. A pseudo-commutative structure on a category of operators P over Fg
is a pseudo-permutative structure (Zq, 1, ®, 7) such that
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(1) ® restricts to A on IIg A Il and projects to A on F¢ (in the sense that {g o ® =

No (e Néa));
(2) ® restricts to a strict GV,-2-functor on g A D¢ and Pg A llg;
(3) 7 restricts to the symmetry on Ig.

Define a map of pseudo-commutative categories of operators over % as in Definition 5.11.

The following theorem states that the prolongation of a pseudo-commutative category
of operators is again pseudo-commutative.

Theorem 6.14. Let 2 be a pseudo-commutative Cat(GVy)-category of operators over F .
Then P2 is a pseudo-commutative Cat(GV,)-category of operators over Fg and the
inclusion (2,11) — (P2,1lg) preserves the pseudo-commutative structure.

Proof. We define the GV,-pseudofunctor ®: PZ APZP ~~PZ as follows. On objects,
@ is just A; that is, m® ® n” = mn®®%. On GV,-categories of morphisms,

®: PZ(m*,p’) AP2(n”,q°) — P2(mn"®? pq"®)
is just
®: 9(m7 p) A 9(nvq) — Q(mn,pq)

We need to show that ® is equivariant with respect to the action of G on P2 (see
Remark 6.1). The equivariance is encoded in the following commutative diagram.

PgAP
%(m,p) A (n,q) 7 9(m,p) A Z(n,q)

Wﬂ)* 7(9)-Ab(g)-

P(m,p) A Z(n,q) ~2 P(m,p) A Z(n,q)

o °| E o

@(mnv pq) ﬁ @(mna pq)

(a®B)(g™")* (7®8)(9)«

Z(mn, pq) s 2(mn, pq))

(6.15)
The central square commutes since 2 is a Cat(GV,)-category of operators, making
the displayed functors ® internal to GV, and therefore equivariant. The left and right
trapezoids commute because ® is strict when composing with morphisms in IT according
to condition (2) of Definition 5.7. The upper and lower trapezoids commute by definition,
as in (6.8).
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The pseudofunctoriality constraint

P2(n?,p") AP2(x¢,s") AP2(m, n?) APP(q’,1¢) e, P 2(nrf®¢ ps1®1) A PP (mq*®®, nrf®)

id/\t/\idlg

P20’ p") APZ2(m®, 0’) AP2(x¢,s") APZ(qQ,¢) Vg °
o/\oJ
P (m®,p7) AP (q’,s") P 2(mq®°, ps7®7)

®

is just that of 2 at the corresponding objects with trivial action (see (5.8)). The equiv-
ariance of ¥ with respect to the original action on 2 and the conditions on ¥ from
Remark 5.10 combine to show that ¥ prewhiskered with Pg is equal to ¥ postwhiskered
with Pg, as needed.

The symmetry 7 is prolonged similarly. The 1-cell at the object (m®, p?) is the per-
mutation 7, , considered as a 1-cell in PZ. The pseudonaturality constraint 7 (see (5.9))
is given by that on 2. One needs to check that this V,-transformation is G-equivariant
with respect to the prolonged action. This follows from the equivariance of 7 with respect
to the original action on 2, the compatibility of 7 with ¢, condition (2) of Definition 5.7,
and the fact that 7 restricted to II is the identity. O

The construction is functorial with respect to pseudo-commutative morphisms of
pseudo-commutative categories of operators over .%. Theorems 5.12 and 6.14 have the
following corollary.

Corollary 6.16. If O is a pseudo-commutative operad, then P (O) is pseudo-commutative
category of operators over Fg.

6.4. Algebras and pseudoalgebras over categories of operators over Fg

Just as for categories of operators over .%, Definitions 4.19, 4.24, and 4.28 specialize
to define a 2-category of algebras, pseudomorphisms, and transformations for categories
of operators Y over .

Notation 6.17. Let ¢ be a Cat(GV.)-CO over Fg. We denote by Zg-Alg,, the 2-
category of strict Zg-algebras, (Y¢q,g)-pseudomorphisms, and Zg-transformations.
This 2-category was denoted by .@G—Algpsnc in Notation 4.29. Just as in Notation 5.14
we fix B = Ilg and drop the subscript from the notation.

Again, we do not discuss general Zg-pseudoalgebras here, leaving such consideration
for [28]. However, we will need pseudoalgebras in the special case of ¢ = F¢ starting
in Section 7. Recall from Notation 4.29 that we have the 2-category #5-PsAlg of weak
Fa-pseudoalgebras, weak % g-pseudomorphisms, and .#g-transformations.
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Remark 6.18. We comment on the choice of weak pseudoalgebras. This choice is already
essential nonequivariantly. Look back at (1.2), but take G = e. With more effort, we
could have started with O-pseudoalgebras, as defined in [15]; the functor R would then
land in Z-pseudoalgebras that are strict over II. However, the section (: . % — &2
(see Proposition 7.5) loses strictness with respect to II, as explained in Remark 7.6,
so that whether the domain of (* is taken to be Z-Algys or some 2-category of Z-
pseudoalgebras, its target must still be #-PsAlg. It takes strict Z-algebras only to
weak #-pseudoalgebras.

6.5. The symmetric multicategory of Pa-algebras

Let ¢ be a pseudo-commutative category of operators over 5. We define the mul-
ticategory Mult(Zs) of Pg-algebras, which amounts to defining the k-ary morphisms.
The definition is exactly like Definition 5.15, hence we refer the reader there for details.
Again, we set it up to have its objects be Zg-algebras, although with only slightly more
work we could equally well have set it up to have its objects be Zg-pseudoalgebras.
Remember that we write

0: Po(m®,n?) A X(m®) — X(n?)
for the action of Z¢ on a Pg-algebra X. For a k-tuple of finite G-sets m3**, we write m®
for the finite G-set withm =mq---mpanda=a1 ® -+ ® ay.

Recall from Definition 4.31 that given Pg-algebras X1, ..., Xy, we have the external
smash product XjA ... AXy, which is a 25F-algebra. For a Yg-algebra ), we have the
g,k -pseudoalgebra % o ®*, which is strict over ITF.

Definition 6.19. We define a symmetric multicategory Mult(Za) of P-algebras. The

objects are the ZYg-algebras. For Yg-algebras X;, 1 < i < k, and Y, a k-ary morphism
X — Y consists of a (Z4F, II¥)-pseudomorphism

F: XN . ANXy~~Yo®@F.
Composition and the symmetric action are specified as in Definition 5.15.
Unpacking the definition, a k-ary morphism F' = (F,J) consists of GV,-functors
F: Xi(m{') A A A (mp*) — Y(m?),

together with invertible GV,-transformations ¢ as in the following diagram, in which
1<i<k.
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N\ Zc(m ?ﬂnz)/\/\?\’ ) A Dg(m nf) A Y(m®) (6.20)
lg ’ J@/\id

N\ Zc(mi" n X () /s Pc(m®, nf) A Y(m®)
J |
Xi(n 1) - Y(n?).

The strictness over Hgk is encoded by requiring § to be the identity if all factors
Y are restricted to Ilg. These transformations must satisfy coherence with respect to
composition in .@Gk , details of which can be found in Section 11.3.

We have the following analogue of Theorem 5.20; its proof is essentially the same.

Theorem 6.21. Let (¥, pn): 9o — g be a map of pseudo-commutative categories of
operators over F¢. Then pulling back along ¥ induces a (symmetric) multifunctor

U*: Mult(&g) — Mult(%¢).
6.6. The symmetric multifunctor P

Let 2 be a Cat(GV,)-category of operators over # and Y = PZ be its
prolonged category of operators over Zg, as defined in Construction 6.7. Define
U: 96-Alg,, — Z-Algps by restricting along the inclusion ¥ C %g. Then U has
a left adjoint prolongation functor on the level of algebras,

P 2-Algps — Ya-Alg,,.

For the subcategory of strict maps, this is the categorical analogue of the prolongation
functor from [39, §4.2] or [48], and it gives an equivalence of categories. We will discuss
the extension of P to (2, 1I)-pseudomorphisms in Theorem 6.23 below.

On objects, P(X)(n*) € Cat(GV,) is defined by letting P(X)(m®) be a copy of
X (m), but with the action of g € G, denoted Pg when « is understood, defined to be
the composite

g a(g)«

X (m) X (m) X(m).

Here a(g).: X(m) — X(m) is given by the action of IT on X. The enriched functor X
takes the morphisms of II, which are G-fixed, to G-equivariant functors. It follows that
we can equivalently write Pg as the composite

a(g)« g

X(m)—25 X (m)—2— X (m). (6.22)
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The action GV,—functor
PO: 9¢(m*, n’) APX(m®) — PX(n?)
is defined to be
0: 2(m,n) A X(m) — X(n).

The following diagram shows that P is equivariant because 6 is equivariant, as displayed
in the middle square.

P(m,n) A X(m) Forks 2(m,n) A X(m)

g
/ 89).

X(n) P X (n)

Since the action 6 is compatible with composition in 2, the left and right trapezoids
commute, the left one using that a(g=1). o a(g). = id.
With these preliminaries, we have the following result.

Theorem 6.23. The functor P: 2-Algys — Pa-Alg,, extends to a (symmetric) mul-
tifunctor

P: Mult(2) — Mult(Z¢).

Proof. Since the values of PX at objects in Y are the values of X but with a new
G-action, the idea of the proof is to show that the data of a map of Z-algebras remains
G-equivariant with respect to the new action.

Thus let (F,6): (X1,...,Xx) — Y be a k-ary morphism of Z-algebras. This means
that we are given GV,-functors

F: Xl(ml) /\-~-/\Xk(mk) — y(m)

and invertible GV,-transformations § is as in (5.17). We define P(F,§) = (PF,Pd) as
follows. For m{", ..., m;*, with m =m;---my and o = a1 ® - - - ® ay,, the map

PF: PX;(m$) A+ APX(mS*) — PY(m®),
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is given by F. Similarly, we define P4 in the diagram (6.20) to be ¢ in the underlying
diagram (5.17).

We must check that these give GV,-functors and GV,-transformations, respectively,
that is, that they are equivariant with respect to the prolonged action. When k = 1, this
gives the promised definition of P on pseudomorphisms of Z-algebras. We first check
that PF is equivariant. For ease of notation, we consider the case £ = 2. Recall the
G-action on PX(m®) given in (6.22). Then to check that

P Xy (m$") A PXy(mS?) 25 PY(m®)

is G-equivariant, it suffices to show that the diagram

X (my) A Xo(ms) —— Y(m

)
al(g)*NM(g)*l la(g)*

X1 (my) A Xp(my) —— Y(m

)
)

X1 (my) A Xo(my) — Y(m
commutes. The top square commutes since F' restricts to a strict transformation of II-
functors (see Definition 4.24). The bottom square commutes since F' is equivariant with
respect to the original action.

It remains to check that P§ is equivariant with respect to the prolonged action. By
Remark 6.1, this is done by proving that prewhiskering ¢ with Pg is equal to postwhisker-
ing it. We illustrate by taking k = 1. Thus we return to Definition 4.24. Let X and ) be
9-algebras and let F': X ~+) be a (2, 1I)-pseudomorphism. The 2-cell

INF INF

2(m,n) A X(m) " 2(m,n) A Y(m) 2(m.n) A X(m) " 2(m,n) A Y(m)
B(g)«a(g™")" | Aalg)« B(g)wa(g™ )" | Aalg)« B(g)wa(g™)" | Aealg)« B(g)wa(g™ )" | Aelg)«
Z(m,n) A X(m) " Z(m,n) A Y(m) Z(m,n) A X(m) " 2(m,n) A Y(m)
gAg gy is 0 Vs 0
2(m,n) A X(m) " 2(m,n) A Y(m) X(n) —————— Y(n)
0 Vs 0 g g
X(n) ————— V(n) Xmn) —————— V(n),

by the equivariance of § with respect to the original action (note that the boundaries
agree by Remark 6.1, as §: 2(m,n) A X¥(m) — X(n) is a GV,-functor). This 2-cell also
agrees with the 2-cell
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2(m,n) A X(m) 25 2(m,n) A Y(m)

0 Vs 0

X(n) % Y(n)

by the compatibility of § with composition and the strictness of § with respect to II (the
boundaries agree since X and ) are strict Z-algebras). The equivariance of P¢ for k > 1
is deduced from the equivariance of § in a similar way. The diagrams are larger, but the
verification is essentially the same.

Since PF and PJ are just F' and § on the underlying V,-categories, it follows that P
respects composition, the identity, and the X-action. 0O

Definition 6.24. We define R to be the composite

O-Algps —— 7-Algps

e

gg—AlgpS.

Corollary 6.25. The functor Rg: O-Algps — Yg-Alg,s extends to a symmetric mul-
tifunctor.

7. From Y-algebras to .#g-pseudoalgebras

In this section we specialize to the topological case, that is, ¥V = U, the category
of spaces. Thus GV = GU, the category of G-spaces and G-maps for a finite group
G. We counsider E, operads in GU and in Cat(GU). Classically, E, operads in the
category of topological spaces encode highly coherent operations on spaces. Similarly, F
operads in G-spaces encode homotopy coherent commutative operations on G-spaces, for
which the equivariant homotopy coherence of commutativity is more subtle than in the
nonequivariant case. For a treatment of E., operads in G-spaces and equivariant infinite
loop space theory, we refer the reader to [13,39]. We recall the notion of an E., G-operad
in GU and in Cat(GU) in Section 7.1. For a category of operators % arising from a
chaotic E,, G-operad O, we produce a pseudofunctor (g: Fg~—~+% that is a section
to £g in Proposition 7.5. Finally, in Theorem 7.14, we show that pulling back along (&
defines a symmetric multifunctor from Zg-algebras to .#g-pseudoalgebras.
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7.1. Eo G-operads

So far, our chaotic operads have been quite general. We now restrict to GV = GU,
the category of G-spaces and G-maps for a finite group G, and we review the definitions
of F, G-operads and their categories of operators.

Definition 7.1. An operad O in GU is an E, G-operad if for all n > 0 and all subgroups
A of G x %, the fixed point space O(n)? is contractible if AN Y, = {e} and is empty
otherwise.

The condition on fixed-points implies that for an F., G-operad in GU, the space
O(n) is a universal principal (G, %,,)-bundle. Algebras over E,, G-operads, are, up to
group completion, equivariant infinite loop spaces with deloopings with respect to all
finite-dimensional G-representations, and thus give rise to genuine G-spectra. For more
background and examples we refer the reader to [13, § 2.1].

We define a categorical operad to be E, if its classifying space operad is so.

Definition 7.2. An operad O in Cat(GU) is an Eo, G-operad if the operad BO obtained
by applying the classifying space functor levelwise is an F,, G-operad of G-spaces.

The following result shows how chaotic categories are useful in this context.

Proposition 7.3. Let O be a chaotic operad in Cat(GU). Then O is an Es, G-operad
if and only if for all n > 0 and all subgroups A of G x %,,, the fixed point object space
(ObO(n))? is non-empty if ANY,, = {e} and is empty otherwise.

Proof. As noted in [15, Remark 1.15], the classifying space of a non-empty chaotic U-
category is contractible. Thus, the statement follows by noting that if O is chaotic, then
O(n)? is also chaotic. O

7.2. The section map (g from Fa to D
Recall that 2 comes equipped with functors
tg: g — 9¢ and &g: 90 — Fq
such that &g o 1 is the inclusion. We here define an (equivariant) section
Ca: Fag~~Pa
to &g

Definition 7.4. A pseudomorphism v: Yg ~~Eg of COs over F¢ is a GU,-pseudofunctor
over % and under Ilg.
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Proposition 7.5. Let O be a chaotic Eo, G-operad in Cat(GU) and let D¢ = P (O).
Then there exists a pseudomorphism

CG : ﬁg ’\M>@G

of COs over F¢ and an invertible GUy-pseudotransformation

Do —2 5 9.
A

Proof. On objects, we have no choice: (¢ is the identity. More generally, on IIg we must
take (¢ = tq. Given finite G-sets m® and n”, we must specify a based G-equivariant
function

(a: Fa(m® n’) — ObZg(m*,n?).

To define an equivariant function, it suffices to specify the function on each G-orbit.
Moreover, an equivariant function out of an orbit is completely determined by its value
at any point in the orbit. We thus choose, for each m® and n?, a point of each G-orbit
of the G-set F(m®,n?).

Let f € Zc(m® n?) be such a chosen element. Let H < G be the stabilizer of f.
The section (g must send f to an H-fixed object of the G-category Zg(m®,n?) that
is in the component [, ;- O(f~1(4)) of f. Since O is an E,, G-operad, the H-fixed
point subset of this component has contractible classifying space, by [39, Theorem 5.11],
hence is nonempty. Thus we can choose an H-fixed object (g (f) in the component of f.
The only exception to such use of choices is that we already know the definition of (g
on Ilg, so these choices only apply to morphisms of % that are not in Ilg.

The claim is that these choices specify an equivariant pseudofunctor (. The equivari-
ance has been forced by the definition of (g: if f is one of our distinguished points, then
Calg-f) = g-Ca(f). To see the pseudofunctor structure, we must specify a G-equivariant
natural isomorphism

Fo(0?, p") A Fo(m®,n8) % 96(mP, p7) A Z6(me,n?)

F(m®,p?) - Z¢(m?,p7).

The component of ¢ at (h, f) must be a morphism in Z¢(m®,p?) of the form

en.r: Ca(h) o Ca(f) — Ca(ho f).
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Since both of these points in D¢ (m®*, p7) live over ho f € Fg(m®,p7) and O is chaotic,
there is a unique morphism with the required source and target.

We claim that ¢ is G-equivariant. This means that ¢g.p g.5 = g - ¢n, 7 for g € G. This
again holds because O is chaotic: there is a unique morphism between any two objects,
so these two morphisms are necessarily the same. The compatibility of ¢ with triple
composition follows again from the uniqueness of these morphisms.

For an object m®, the 1-cell component yme: m® — (g o {a(m®) = m® is the
identity map. We need to construct the pseudonaturality constraint, which is an invertible
GU,-transformation

Pc(m®, n?) ﬁ P (m*, n?)

o h e

P (m?, nﬁ) —— Pc(m*, nﬂ).
(XnB )=

For a l-cell d € Zg(m®,n?), the object (g o c(d) is in the same component of the
same G-fixed point subset as d, hence there is a unique morphism x4: (g o a(d) — d,
and this assignment is continuous and equivariant. The uniqueness implies naturality
and the required compatibility with ¢. That and the evident inverse isomorphism lead
to the conclusion. O

Remark 7.6. Although the section (g is strictly functorial when restricted to g, it
is not when only one of the morphisms of a composite in ¢ is in Ilg, even when
G = e. Let p,: n — 1 be the based function that sends j to 1 for 1 < j < n. Then
C(pn) = (pn;d) for some d € O(n). For a permutation o € ¥,,, we have p, oo = p,,, while
C(pn) o ¢(0) = (pn;d- o). In the cases of interest X,, acts freely on O(n) and we cannot
have ((pn) o ¢(0) = ((pn). It is this fact that led us to the distinctions highlighted in
Remark 6.18.

Recall the definition of a map between pseudo-commutative categories of operators
over Z¢ from Definitions 5.11 and 6.13. We adapt that definition to pseudomorphisms
of COs over Zg.

Definition 7.7. A pseudomorphism of pseudo-commutative COs over F¢ consists of a
pseudomorphism v: 2 ~+& of COs over F#¢ and a GU,-pseudotransformation

IND L EenE
®9§ K/M g@g

~ v

9 > &
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satisfying analogues of all the axioms in Definition 5.11.

Proposition 7.8. Let O be a chaotic G-operad and let D¢ = P (O). Then the section

(a: Fc >Da is a pseudomorphism of pseudo-commutative COs.

Proof. We must produce a GU,-pseudotransformation p as above. Since (¢ is the identity
on objects and g must restrict to the identity on I, we take the 1-cell component of p
to be the identity. Given 1-cells f and h in %, we must produce an invertible two-cell

trn: Ca(f AR) = (e (f) ® Ca(h),

that is the component of a GU,-transformation. Since the specified source and target
live over f A h in Zg, the fact that O is chaotic implies that there is a unique choice for
tr.n; that p is natural and equivariant, and satisfies all the axioms follows for the same
reason. O

7.3. The symmetric multifunctor (5

We have elected to work with (strict) Pg-algebras but, due to Remark 7.6, when we
precompose with our section (g, we only produce weak .Z#g-pseudoalgebras; recall from
Notation 4.29 that we defined the objects and morphisms of #g-PsAlg as enriched
pseudofunctors from .#¢ to Cat(GV,) and pseudotransformations, with no strictness
conditions over Ilg. The following proposition follows immediately from the definitions.

Proposition 7.9. Pullback along the section (g defines a 2-functor
Cé} : @G-Algps — Q’G-PsAlg.

Remark 7.10. Since (g restricts to the inclusion tg on Ilg, for any Zg-algebra X, the
underlying Ilg-algebra of (5X is the underlying IIs-algebra of X'.

Corollary 7.11. Let YV be a PDg-algebra. Then the pseudonatural isomorphism x of
Proposition 7.5 induces an invertible pseudomorphism

XY =EEEY
of weak P¢g-pseudoalgebras (see Definition 4.2/ ) whose components are identity maps.
We define multimorphisms of weak .#g-pseudoalgebras following Definition 6.19, but

deleting its strictness conditions with respect to IIg. Note that ® is just A on F¢. Recall
that we are working in Cat(GU,) in this section.



B.J. Guillou et al. / Advances in Mathematics 414 (2023) 108865 67

Definition 7.12. We define a (symmetric) multicategory Mult(Fg-PsAlg) of (weak)
Fc-pseudoalgebras whose underlying category is Fg-PsAlg, as follows. For weak Z -
pseudoalgebras &;, 1 < i < k, and Y, a k-ary morphism X — Y consists of a

F 5k -pseudomorphism

F: XA ... A ~<Y o AR

Composition and the symmetric group action are given by the corresponding pasting
diagrams, as done explicitly in Definition 5.15.

The unpacking of this definition is similar to the unpackings given for Definitions 5.15
and 6.19, with the caveat that the coherence diagrams in Section 11.3 must account for
the pseudofunctoriality constraints of the weak .#g-pseudoalgebras.

Remark 7.13. We could define an analogous multicategory .#-PsAlg of weak struc-
tures, but we would not have a prolongation multifunctor P: .%#-PsAlg — Z#s-PsAlg
since we would no longer have the compatibility with II that we used in the proof of
Theorem 6.23. However, naturally occurring examples of .#-pseudoalgebras that do not
arise from use of the section often do have such compatibility with II and thus can be
prolonged to Z#g-pseudoalgebras.

We have the following theorem, whose proof is essentially the same as that of
Theorem 5.20. Recall Notation 4.30.

Theorem 7.14. Pullback along (a induces a symmetric multifunctor
(& Mult(Za) — Mult(F-PsAlg).
8. Strictification of pseudoalgebras

For clarity about what is general and what is special and also for simplicity of notation,
we revert to a general V satisfying our standard assumptions in this section. The reader
may prefer to focus on V =U or V = GU, but equivariance and topology play no role in
this section.

8.1. Power-Lack strictification

Let € be a V,-2-category, and recall the 2-categories C-Alg and C-PsAlg of C-algebras
and weak C-pseudoalgebras (Notation 4.29). We give a specialization of a general result
of Power [42], further generalized by Lack [20], about strictification of pseudoalgebras
over a 2-monad (see also [15, Theorem 0.1]).
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Theorem 8.1. Let C be a Vi-2-category. The inclusion of 2-categories
J: C-Alg — C-PsAlg
has a left 2-adjoint
Ste: C-PsAlg — C-Alg.

The component of the unit i of the 2-adjunction is a C-pseudomorphism which is a
levelwise equivalence (Definition /.27).

For brevity, we will omit the subscript € and simply write St for the strictification
functor when the category € is clear from the context.

We include a proof of this theorem, but we warn the reader that for the sake of brevity,
we omit many relevant definitions, and refer the reader to [20,15] for more context and
for the statement of the more general theorem that we are specializing. Following the
proof of the theorem, we give an explicit description of the functor St, as this is what
we will need in the sequel.

Proof of Theorem 8.1. Consider the 2-category Cat(V,)9P¢ of tuples of V,-categories
indexed by the set ObC. There is a 2-monad T on this 2-category given by

(TX)(e)= \/ €(b,c)AX(),
beObC

with structure maps induced by the composition and identity maps in €. As can be
easily verified, the 2-category of strict T-algebras, strict T-algebra maps, and T-algebra
2-cells can be identified with C-Alg, and similarly, the 2-category of (strictly unital)
T-pseudoalgebras, T-pseudoalgebra maps, and T-pseudoalgebra 2-cells can be identified
with C-PsAlg.

Lack’s general result [20, Theorem 4.10] gives sufficient conditions for the existence
of such a 2-adjunction in the general case of algebras and pseudoalgebras over a 2-
monad. The conditions are the existence of a rigid enhanced factorization system on the
underlying 2-category such the 2-monad preserves one of the classes. The authors show
in [15, Theorem 4.8] that there exists a rigid enhanced factorization system on Cat(V)
given by the pair of classes of V,-functors (bijective on objects, fully faithful).'” This
factorization system can be lifted levelwise to give a rigid enhanced factorization system
on Cat(V,)°PC¢.

Thus, to conclude the proof of the theorem, it remains to show that 1" preserves the
class of maps that are levelwise bijective on objects. Thus let f: X — Y be a morphism

17 The result in [15] is given for Cat()V), but the exact same argument works for Cat(V,).
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in Cat(V,)©PC that is levelwise bijective on objects. This means that for all ¢ € ObC,
the map

fe: Ob(X(c)) — Ob(Y(c))

is an isomorphism in V,. Then, since Ob commutes with wedges and smash products
(see (2.9)), we have that for all ¢ € ObC,

Ob(TX(c)) = \/ ObC(b,¢) A Ob(X (b)) — \/ ObE(D,c) A Ob(Y (b)) = Ob(TY (c))
b b

is an isomorphism as well. O

We now give an explicit description of the functor St, as we will need it in what
follows. This description can be obtained by following Lack’s proof with our particular
example in mind.

For a weak C-pseudoalgebra (X, 0, ), we define the (strict) C-algebra StX" as follows.

For ¢ in €, the V,-category StX(c) has V,.-object of objects

Ob(StX(c)) = \/ ObE(b, c) A Ob(X (b)), (8.2)
b

where b ranges over all objects of C.
The action of € on X defines a morphism

0: Ob(StX(c)) — Ob(X(c)), (8.3)

and this allows us to define the V,-object of morphisms of StX(c¢) as the pullback dis-
played in the diagram

Mor(StX(c)) Mor(X(c)) (8.4)

(T»S)l J(T»S)

Ob(StX () x Ob(St¥(c)) —— Ob(X(c)) x Ob(X(c)).

Composition is induced by composition in X(c).
To describe the pullback more explicitly, writing elementwise for the sake of exposition,
let
(f,z) € ObC(b,c) AOb(X (b)) and (f',z') € ObC(¥,c) AN Ob(X(V)).
Then

Mor (St (0)) ((f,2), (f',2')) = Mor(x(c)) (6(f.2), 6(f'.2) ).
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The action map
Sté: C(b,c) A StX(b) — StX(c)

descends to the smash product from the map on the product given on objects by
(StO)(h, (f,z)) = (ho f,x) for h € C(b,c).

For a morphism « : (f,z) — (f’,2') in StX(b) and A\: h — K’ in C(b,c), the
corresponding morphism St0(h, (f,z)) — StO(h', (f',2")) is defined to be

Oho f,2) L 0, 0(f,2)) 222 o1, 6(1",2')) £ 6(H o f, ).

Then St# gives StX a strict C-algebra structure by the strict functoriality of composition
in C.

For a C-pseudomorphism (F,0): X ~=), we define St(F,d): StX¥ — StY by letting
St(F, ). : StX(c) — StY(c) be the functor sending (f,z) to (f, Fz) and a: (f,z) —
(g,y) to the composite

Oy (f, F) 25 F(Ox(f,2)) 22 F(0x(g,)) S Oy (g, Fy).

It is straightforward to check that these form the components of a strict C-morphism.
We can similarly define the action of St on C-transformations.
For a weak C-pseudoalgebra (), 6, p), we define C-pseudomorphisms

71 Y~ Sty and m: Sty ~~Y

as follows. The component V,-functor i.: Y(c) — StY(c) is given by i.(y) = (id.,y) on
objects y of Y(c) and i.(y) = v on morphisms v of Y(c). The latter makes sense since
0(id¢, y) = y. The component of the pseudonaturality V,-transformation

id Ay

C(b,c) A V(b) —2 €(b, ¢) A StY(b)

el Vi, . lsw

V(o) % StY(c)

c

at (f,y) is the morphism (f,y) — (idc, 0(f,y)) in StY(c) corresponding to the identity
map of 6(f,y) in Y(c).

The component V,-functors m.: Sty (c) — Y(c) are given by (8.3) on the V,-object
of objects and by the top horizontal arrow in (8.4) on the V.-object of morphisms. The
pseudonaturality constraint
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idAmy

C(b, ¢) A StY(B) —% C(b, ¢) A V(b)

swl ¥ le

StY(c) — Y(c)
is induced by the invertible V,.-transformation ¢ that witnesses the C-pseudoalgebra
structure of ).

As is easily checked directly, m oi is the identity, and in addition, ¢« and m are inverse
equivalences in C-PsAlg. Thus, in particular, ¢ is a level equivalence. The map i is 2-
natural with respect to C-pseudomorphisms and C-transformations and is the unit of
the adjunction. If ) is a strict C-algebra and thus of the form ) = JX, then m is a
strict C-morphism, and moreover, it is 2-natural with respect to strict C-morphisms and
C-transformations; it is the counit of the adjunction.

Remark 8.5. The C-pseudomorphism m: St) ~+ Y of the proof of Theorem 8.1 is not
strictly natural with respect to C-pseudomorphisms of weak C-pseudoalgebras. With
slightly extra work, one can prove that it gives the components of a pseudonatural
transformation m: JSt = id of endo-2-functors of C-PsAlg. As it is not necessary for
our work, we shall not pursue this route. However, we will use the fact, noted in the
proof, that m.: StY(c) — Y(c) is an equivalence of V,.-categories.

Recall Notation 4.30. We shall apply the following result to an iterated monoidal
product C"* — € in Section 8.2 and to {g: Do — F¢ in Section 10.2.

Lemma 8.6. Let D and € be V,-2-categories and let £: D — C be a V,-2-functor. Given
a C-pseudoalgebra ), there is a D-morphism

¥ = e Stp(§7Y) — £ (Sted)

that is 2-natural with respect to C-pseudomorphisms and C-transformations. Moreover,
the diagram

£y
o
IN A
Stp(£°Y) " £ (Sted)

commutes, hence 1 is a levelwise equivalence.

Proof. We can specify ¢ as the D-morphism corresponding to the D-pseudomorphism

{rie: £V~ (Sted)
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under the adjunction of Theorem 8.1. The claim about 2-naturality then follows from
the 2-naturality of . The commutativity of the diagram can be verified directly from the
definition. O

Remark 8.7. Again, for building intuition, we give an explicit description of ¥ in terms
of elements, which we can use in our example of interest in Section 10 where we work
internally to categories of based G-spaces. For an object d € D, 14: Stp(£*Y)(d) —
&*(SteY)(d) sends an object (f,y), with f: d — d in D and y € Y(£(d)), to the object

&) y)-

The following lemma records the compatibility of the morphism v of Lemma 8.6 with
composition of V,-2-functors; it follows directly from the definitions.

Lemma 8.8. Let v: &€ — D and &: D — € be Vi-2-functors. Then the diagram

P(ev)

Ste ((€v)*Y) (§v)* (Sted)

Ste (17€"Y) —— v (Stn(E°V)) o V€ (Ste)
v v I3

commutes for every C-pseudoalgebra Y.

The following observation about the interaction of strictification with the external
smash product (Definition 4.31) generalizes [32, Lemma 3.5].

Lemma 8.9. Let C and D be V.-2-categories, X a C-pseudoalgebra and Y a D-
pseudoalgebra. Then there is a canonical isomorphism

SteaDd (Xﬁy) = (SteX)K(St@y),

which is 2-natural with respect to the respective pseudomorphisms and pseudotransforma-
tions. In particular, up to composing with this canonical isomorphism, for a C-
pseudomorphism E: X ~>X' and an D-pseudomorphism F:Y~Y', the C N D-
morphism Stean (EAF) corresponds to (SteE) A (Stp F).

Proof. On the level of objects, the identification follows from (2.9) and (8.2). Intuitively,
if we are writing elementwise, it is just the twist that sends an object ((e, f), (x,y)) of
Stean (X AY)(c,d) to the object ((e,z), (f,y)) of (SteX)(c) A (Stp)(d).

Note that since the V,-functor

me Amp: (SteX(c)) A (StpY(d)) = X(c) A Y(d)
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is an equivalence (Remark 8.5), it is fully faithful [44, Lemma 4.17], in the sense that
the diagram

Mor((SteX(c)) A (Stgy(d))) s Mor(X(¢) A Y(d))

(T7S)J l(Tﬁ)

Ob((SteX(c)) A (St@y(d))> L Ob(X(e) A V(d)*?

is a pullback square which is isomorphic to the pullback square in (8.4) that de-
fines Mor(Stean (X AY)). This shows that the V.-categories Stean(XAY)(c,d) and
(SteX)(c) A (StpY')(d) are isomorphic. One can check that these isomorphisms respect
the action of € A D, thus proving the result. O

We record the relationship between the 2-natural transformation 1 of Lemma 8.6 and
the canonical isomorphism of Lemma 8.9.

Lemma 8.10. Let C, €', D, and D', be V.-2-categories, let £: @ — C and (: D' — D
be V.-2-functors, and let X be a C-pseudoalgebra and Y be a D-pseudoalgebra. Then the
following diagram commutes, where the unnamed isomorphisms are those of Lemma 8.9.

Yenc

Sternnr (€1 O (XRY)) = (€A Q) Stern(XRY)

Sternn ((€°X) R (C°D)) (€A Q) (SteX A StnY)

y

(Ste &*X) A (St C*Y) W (&*SteX) A (C*StpY)

3 S

8.2. The extension of strictification to a multifunctor

We now assume that (€, I,®,7) is a permutative V,-2-category (Definition 4.32).
We extend St to a multifunctor from the multicategory Mult(C-PsAlg) of (weak)
C-pseudoalgebras to the multicategory Mult(C-Alg) of strict C-algebras and strict mul-
tilinear maps. The former is defined by replacing .#¢ by € in Definition 7.12, and we
now define the latter.

Definition 8.11. The multicategory Mult(C-Alg) is constructed by using the symmetric
monoidal structure on C-Alg given by Day convolution along iterations of the monoidal
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product ® on C. Reinterpreting this externally, via the universal property of Day convo-
lution, we see that for strict C-algebras X7, ..., X, and )V, a k-ary morphism is given by
a strict € *-morphism

F: X0A - AXp — YVodF.

We remark that the definition above differs from Definitions 5.15 and 6.19 in that the
multimorphisms are pseudotransformations in those cases, and strict here.

Theorem 8.12. The strictification functor St induces a (non-symmetric) multifunctor
St: Mult(C-PsAlg) — Mult(C-Alg).

Proof. For a C-pseudoalgebra X', we set StX = SteX'. For multimorphisms, we use the

2-functor Stear, which for brevity we denote by Sty to strictify €/

-pseudomorphisms.
More precisely, recall that a k-ary morphism in Mult(C-PsAlg) is given by a C/k-

pseudomorphism
F: XA - AXp~o Yo @F.
We define the k-ary morphism St(F') in Mult(C) as the composite

_ _ o _ _ Stk (F) & P k
StX1 A --- AStX, —— Stk(X1/\ /\Xk)  — Stk(yOGB ) e (Sty)o(@ ,

where the unnamed isomorphism is that of Lemma 8.9, and the map ) is the one defined
in Lemma 8.6.

Note that on l-ary morphisms, St is just the 2-functor Ste, so in particular this
assignment sends the identity to itself.

It remains to prove that St preserves multicomposition. Let

F: A AV~ Zo@
be a C f-pseudomorphism and, for 1 < r < k, let
Eo: Xod N A&y~ Yy o @

be a €"r-pseudomorphism. The composite in Mult(C-PsAlg) is given by the pasting
diagram in (5.16). In terms of the external smash product of Definition 4.31 and the
pullback of Notation 4.30, this €"/-pseudomorphism can be expressed as the composite
of GJ-pseudomorphisms

NEr (AN&'")*F

—_ —_ r

Ay~ @)Yy = (A& (AYr) s (N7 (89) 2 = (@) 2.

T T T
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Consider the following diagram of €”J-morphisms.

r J—

AStX,; ——— ASt;, (K%) —— A\St;, ((®j'”)*%)

T, T i r
l/\w@)jr
r

A(@®)*StY,

st; (@) 9) (A" (Astd)

e YA @ir) - —
st; (A @) (AY)) (N@i) sty (A
T T T T
st ((A ®"T)*F)J (A®&'r) Sty F
st; (A @) (&%) 2) (N&) st (@) 2)
r Ypeir) T
(A @) Pgn
Stj((@)j)*z) — (®7)*StZ ————= (\®")*(®")*StZ
®J r
Strictifying F1,..., E, and F and then composing is equal to going around clockwise.

Using that St; is a 2-functor, we get that going around counter-clockwise is equal to
strictifying the composite. The diagram commutes; indeed, going from top to bottom, the
regions commute by associativity of A in Cat(V,), Lemma 8.9, Lemma 8.10, naturality
of ¥, and Lemma 8.8, respectively. O

Remark 8.13. This proof depends crucially on the fact that the monoidal product on €
is a strict V,-2-functor and not just a pseudofunctor. It does not work for our pseudo-
commutative categories of operators & or Z¢. This is the crux of why the route in this
paper is less categorically intensive than the monadic route of [28], which simultaneously
strictifies and transfers structure from %2¢ to Zg.

8.3. St is not a symmetric multifunctor
As stated in Theorem 8.12, St is not a symmetric multifunctor. We explain why in

this parenthetical subsection. We consider the case when k = 2, with ¢ the non-trivial
element of Y. Since the problem already appears nonequivariantly, we take G = e
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and specialize to € = %#. Thus let F': X1 A Xo~+ Y be a (weak) F-pseudomorphism
between (weak) % -pseudoalgebras. Following (5.18), for an object (m, p) of # A.Z, the
1-cell component of Fo is the composite

Xa(m) A Xy (p) — X1(p) A Xa(m) —— Y(pm) 22 Y(mp).

We claim that the 1-cell components of St(Fo) and (StF)o do not agree. For an object
(m,p) of Z# A Z, these are V,-functors

StAXs (m) A StX, (p) — Sty(mp)

We compare them at the level of objects, writing elementwise. An object of the source
has the form

((f2,932)a (fl,ﬂcl))

where f1: @ — p and fo: n — m are morphisms of % and x; and x5 are objects of
X1(q) and X(n), respectively.

Then St(F')o sends <(f27 x2), (f1, x1)> to ((Tp’mo(fl Afa), F(x, xg)) We can rewrite
the output as

((f2 A fi)o Tqm,F(l‘l,l‘g)).

On the other hand, St(Fo) sends (( o, 2), ( fl,xl)) to

((fz A f1),0(7q,ns F(%@z)))-

We conclude that the multifunctor St is not symmetric. Just as in Remark 3.29 we expect
that these isomorphisms assemble into a pseudo symmetric structure as defined by Yau
[52].

Remark 8.14. This failure of symmetry is forced by our need to use weak pseudostructure
in the target of (. If we instead use pseudofunctors which are strict relative to II when
we strictify, then we do have symmetry. Symmetry is also studied in the 2-monadic
context in [28], where the problem is entirely different.

9. From .#g-algebras in Cat to G-spectra
In this section, we describe how we pass from categorical to topological .#-algebras

and Zg-algebras, and then to G-spectra, keeping track of multiplicative structure.
Nonequivariantly, .#-spaces (aka I-spaces) were introduced by Segal in his treatment of
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infinite loop space theory. These generalize to .%g-G-spaces, which are the input of the
equivariant version of the Segal infinite loop space machine. For a detailed treatment of
F-G-spaces, we refer the reader to [39], and for a treatment of its symmetric monoidal
structure to [14]. Topological categories of operators ¥ and Z-spaces were introduced
in [37] as an intermediary between .#-spaces and operadic algebras in the proof of the
uniqueness of infinite loop space machines. The topological equivariant analogues, Zg-
spaces, are treated extensively in [39] in the comparison of equivariant infinite loop space
machines.

In Section 9.1, we discuss the classifying space functor multiplicatively. We recall the
equivariant Segal machine in Section 9.2. Using that the classifying space functor and the
Segal machine are both lax monoidal, we restate and prove Theorem A as Theorem 9.14.
In effect, it gives a multiplicative equivariant infinite loop space machine starting from
operadic categorical input.

Some technicalities ensuring that our passage from categorical to space-level input
is homotopically well-behaved are postponed to Section 9.3. The point is just to give
conditions on the categorical input that ensure that the output .#g-G-spaces have non-
degenerate basepoints. We briefly discuss a related open question about Day convolution
in Section 9.4. The brief Section 9.5 shows how to obtain homotopies between maps of
G-spectra from operadic categorical input.

9.1. The multifunctor B

In order to construct equivariant spectra from O-algebras in a multiplicative way, we
need to understand the multiplicative properties of the classifying space functor B.

The classifying space functor B does not commute with smash products in general.
However, we have the following result, which allows us to use B to change enrichment.
Recall Definition 2.7.

Proposition 9.1. The classifying space functor B: Cat(GU,) — GU, is lax symmetric
monoidal.

Proof. The map
BC x BD =2 B(€x D) — B(CAD)
sends the subspace BCV BD to the basepoint and therefore induces a based map
BCABD — B(CAD). O

Definition 9.2. Let Y be a Cat(GU,)-category of operators over .Z¢, as defined in
Definition 6.5. Let @g’ P denote the category enriched in GU, obtained by applying B to
morphism based categories to change the enrichment. When 9¢ = %, the morphism
categories are discrete (identity morphisms only). Since the classifying space of a discrete
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category is isomorphic to itself, we can identify Z5* with Zg. It follows that 257 is a
category of operators over % in the sense of [39, § 4.1].

Notation 9.3. The category GU, is closed symmetric monoidal with internal homs given
by the spaces of all nonequivariant based maps, based at the constant maps at the base-
point, with G acting by conjugation. The internal homs make GU, into a GU,-enriched
category. We denote this enriched category by GU, to emphasize the enrichment. We
denote by 25"-GU, the category of GU,-enriched functors X': 25* — GU,. The en-
richment over based G-spaces implies that X'(0) = * [39, Lemma 1.17]. To emphasize that
these are just (enriched) functors to G-spaces, we call them @é? P_G-spaces. In particular,
an Zg-G-space will mean an object of Fg-GU,.

Recall that we write Y-Alg as shorthand for the category of Zg-algebras and strict
maps in Cat(GU..).

Proposition 9.4. Applying the classifying space functor levelwise induces a functor
B: 96-Alg — 257-GU,.

Proof. By Proposition 9.1 the classifying space functor B is lax symmetric monoidal. It
follows formally that it induces a map on functor categories. Explicitly, if X is a Yg-
algebra in Cat(GU,), we obtain the _@éop -G-space BX by applying B levelwise, with
action maps given by the composites

2% Bx(n?),

B%2¢(m®,n®) A BX(m?®) — B(2¢(m%,n?) A X(m®))
where the first map is the monoidal constraint for B. The commutativity of the com-
position and unit diagrams follows from their analogs for X (see Definition 4.19) and
the axioms for a lax monoidal functor. The functoriality of B on strict algebra maps is
obtained by applying B levelwise. O

We now concentrate on the case of 5. The categories .%g-GU, and Fo-Alg are
symmetric monoidal via Day convolution.

Proposition 9.5. The functor
B: Fg-Alg — Fo-GU.
of Proposition 9./ is lax symmetric monoidal.

Proof. This follows formally from Proposition 9.1, but we sketch the argument. The
induced functor B on our categories of algebras preserves the monoidal unit, which in
both the source and the target is given by the representable functor .Z¢(1, —). Given X
and Y in .#-Alg, we construct a map
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BXABY — B(X AY)

in #g-GU, by applying the universal property of Day convolution to the map of (Fg A
F)-G-spaces with components given by the composites

BX(m®) A BY(n®) — B(X(m®) A Y(1n?)) — B(X AY)(mn®®?).

Here the first map is the lax monoidal constraint for B and the second map is obtained by
applying B to the components of the unit of the Day convolution adjunction. It is routine
to check that this map satisfies the required compatibilities with the unit, associativity
and symmetry isomorphisms. O

Remark 9.6. Note that if 7 is a Cat(GU, )-category of operators over F¢ equipped with
a pseudo-commutative structure (Definition 6.13), this does not give rise to a symmetric
monoidal structure on Qg’ P As a result, we do not have a monoidal structure on the
category of _@g)” -algebras, and so we cannot expect an analogue of Proposition 9.5 for
Y-algebras.

9.2. From Za-G-spaces to G-spectra

In this section, we first recall the properties of the equivariant Segal machine, whose
construction is given in detail in [39]. A treatment that deals with multiplicative prop-
erties can be found in [14]. In this paper, we treat the Segal machine as a black box, and
we refer the reader to those sources for details.

All homotopical versions of the Segal machine come in the form of bar constructions,
which are only homotopically well-behaved when the input functors X: %o — GU,
take values in nondegenerately based G-spaces. However, in the previous subsection, we
concentrated on formal properties of our constructions.

Notation 9.7. Write G and Jg for the full subcategories of nondegenerately based
G-spaces in GU, and in GU,. Since these categories are not bicomplete, they are less
useful for formal purposes. We note that unlike GU,, since G.7 is not closed, we cannot
enrich it over itself as in Notation 9.3. This is why we avoid the parallel notation G.7,
which would have denoted this formal procedure, and instead use the notation .7 for
the GU,-enriched category, which is the notation that was used in previous papers such
as [39].

Since we have introduced several notations for different target categories of G-spaces,
we collect these notations in a table to make them easier to keep track of in what follows.
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Notation Description Enrichment
GU, based G-spaces and based G-maps  over Sets
GU, based G-spaces and all based maps over GU,

GZ C GU, nondegenerately based G-spaces over Sets
and based G-maps
nondegenerately based G-spaces over GU,
and all based maps

We introduce notations and definitions to help deal with the resulting dichotomy.

Notation 9.8. Let @gp be a GU,-category of operators over %, such as the one in
Definition 9.2. A .@éop-G—space is levelwise nondegenerately based if each X (n®) is non-
degenerately based. We write @g)p -G.7 for the full subcategory of Z47-GU, whose
objects are levelwise nondegenerately based. In particular, starting with the commu-
tativity operad, whose terms are one-point G-spaces, this defines the full subcategory
yg—Gﬁ of ﬁg—Gu*.

Definition 9.9. Define T to be the composite functor
T = Stgc o CE‘ oRg: O—Algps — yg—Alg.

Then define (Q—Alggsy to be the full subcategory of O-Algps consisting of those O-
algebras A such that BT A is in .#¢-G .7 . Thus, by definition, the composite BT restricts
to a functor O—Algssy — F-GT.

The functor T collates the categorical functors studied in previous sections, B passes
from categorical data to space level data, and the Segal machine passes from there
to spectra. That machine will be well-behaved when we restrict it to Fo-G<, and
(’)—Alggf specifies those O algebras that feed into #5-G.7. We will show in the next
subsection that most O-algebras of interest are in (’)—Alggsg.

To define the notion of a Segal machine S¢, we need the key notion of a special F-G-
space. To give a conceptual setting for this notion, observe first that, just as we had on
categories, we have a composite functor Ri;? = PPR!P from O'°P-algebras in G.7 to
92;01) -G-spaces, where O™P is an operad in GU with associated category of operators
24" We specialize this to the initial operad O'?, which has O*?(0) = O'°(1) = * and
all other O'P(j) = (). Its associated category of operators is IIg. Applying Rg’p to this
operad, we obtain a functor th?p: GT — lg-GT.

For a based G-space X, Ri5?(X) sends n® to the G-space X** = G.7(n®, X). More
explicitly, this is X™ with G-action given by

g(al, ey an) = (gaa(gfl)(l), ce ,gaa(gfl)(n)). (910)
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The functor Rté’p is right adjoint to the functor Lg)p that evaluates a IIg-G-space at 1.
For a IIg-G-space Y, the unit

5: Y — REP(V(1))

of the adjunction is a map of Ilg-G-spaces called the Segal map. At level n®, it is induced
by the n projections n* — 1 [39, Definition 2.34].

Definition 9.11. We say that a Ilg-G-space ) is special if § is a levelwise weak G-
homotopy equivalence. We say that a .@tGOp -G-space, and in particular an .#g-G-space,
is special if its underlying Il5-G-space is special.

Recall that an orthogonal G-spectrum E is a positive Q-G-spectrum if its adjoint
structure maps

EV — QWEV@W

are weak G-equivalences when V& # 0 and is connective if the negative homotopy groups
of its fixed point spectra are all zero.

Definition 9.12. A Segal machine is a functor Sg: Fe-GU, — Sp together with a
natural map of G-spaces

v: X(1) — (SgX)o
such that the following properties hold when X is a special .#-G-space in %#g-G7 .

(i) Sg& is a connective positive Q-G-spectrum.
(ii) The composite of v with the adjoint structure map

(SaX)o — QY (SaX)v
is a group completion for all V such that V& £ 0.

Remark 9.13. It is equivalent to replace general V by V =R in (ii).

The notion of a group completion of a Hopf G-space is defined as a group completion
on all fixed point maps (see [13, Definition 1.9]). The nonequivariant construction of the
Segal machine was introduced in [47]. The equivariant construction is due to Shimakawa
[48], who started from an unpublished version that is also due to Segal. It is given a
self-contained modernized treatment in [39]. A multiplicative version is given in [14]. We
refer the reader to those sources for details.

From now on, we set Sg to be the Segal machine from [39], which is lax monoidal by
[14]. We could just as well use the equivalent symmetric monoidal version from [14], but
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that would not be of any benefit since we lost symmetry with the multifunctor Stz .
Moreover, using the machine from [39] will be convenient in Section 10, where we will use
several results from [39]. We repeat that we mostly treat the Segal machine S¢ as a black
box. The only detail from [39] that we will need to make explicit is a partial description of
the construction that allows us to define the natural map v: X (1) — (SgX)o required
in Definition 9.12. That will be given where it is used in Section 10.

We now restate and prove Theorem A.

Theorem 9.14. Let O be a chaotic E, G-operad in Cat(GU). The functor
K¢ =S o BoSta, o(5oRg: O-Algys — Spg (9.15)
from (1.2) extends to a multifunctor
K¢g: Mult(O) — Mult(Spe).

For an O-algebra A € (’)—Alggsy, KgA is a connective positive Q2-G-spectrum with a
group completion map

BA — QY (KgA)y
for all V such that V& # 0.

Proof. By Corollary 6.25, Theorem 7.14, Theorem 8.12, Proposition 9.5, and [14, § 5.2],
K¢ is a composition of multifunctors and is thus a multifunctor. When A is in (’)—Algg’f7
BTAisin #g-G.7, and we claim that it is special. That will imply the second statement.
Since T A is level G-equivalent to RgA, by Theorem 8.1, the claim follows from the fact
that B takes equivalences of G-categories to homotopy equivalences of G-spaces and

commutes with R¢g, in the sense that BRg = Rtng. O
9.8. The identification of objects in (Q—Alggsy

When the operad O and an O-algebra A are topologically discrete, in the sense that
they are categories internal to GSet, A is in (Q—Alggsy since all of our categorical con-
structions retain discreteness and the geometric realization of a based simplicial set is
nondegenerately based. We show here that many topologically non-trivial examples, such
as those that appear in Section 10, are also in O—Alggsy.

We require the following definition. Nonequivariantly, its use goes back at least to
Milnor’s classical paper [40], and it was studied in more detail by Dyer and Eilenberg [7]
and later Lewis [26]. Details of equivariant cofibrations are in [2, § A.2].

Definition 9.16. A G-space X is G-locally equiconnected (G-LEC for short) if the diagonal
map A: X — X x X is a G-cofibration.
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Examples of G-LEC G-spaces include G-CW-complexes [7,26]. Every basepoint of a
G-LEC G-space is nondegenerate [7, Corollary I1.8]. The following lemma gives sufficient
conditions for the classifying space of a chaotic category to be nondegenerately based.

Lemma 9.17. Suppose that C € Cat(GU,) is chaotic and that ObC is G-LEC. Then BC
has a nondegenerate basepoint.

Proof. Since Ob(C is G-LEC and C is chaotic, the nerve of C is levelwise G-LEC. Then
BC is G-LEC by [26, Corollary 2.4(b)], and in particular it has a nondegenerate base-
point. O

We also need the following two general results about G-LEC G-spaces.

Lemma 9.18. Let X be a G-LEC based G-space and n® be a finite based G-set. Then
X" = GU,(n*, X) is G-LEC.

Proof. The G-space X™" can be viewed as the restriction along the homomorphism
G — G %, of the G1X,-space X™. It then follows from [2, Proposition A.2.6] that

o

X"" {s G-LEC. O

Lemma 9.19. Let H be a subgroup of G, and let'Y be an H-LEC space. Then G xgY 1is
G-LEC.

Proof. The diagonal on G x g Y factors as

o~

GxHY*> (GxpgY)x(GxpgY) — (GXG) xXgxu (Y XY)
Gxg (Y xY).

The map id x A is the induction from H to G of the H-cofibration Ay, and it follows that
it is a G-cofibration. On the other hand, we claim that the map A x id is the inclusion of
a coproduct summand and is therefore a G-cofibration. To see this, note that the subset
{(g,9h) | g € G,h € H} C G x G is a (G, H x H)-invariant subset, and it is precisely
the image under the right (H x H)-action of A(G) C G x G. Since G is discrete, it
follows that we may decompose G x G as a (G, H x H)-equivariant disjoint union of this
subset and its complement. Crossing with Y x Y and passing to (H x H)-orbits gives a
G-equivariant decomposition of (G X G) X gx g (Y x Y) into the image of A x id and its
complement. O

In the remainder of this section, we let O be an operad in Cat(GU), and A be an
O-algebra.
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Proposition 9.20. If ObA is G-LEC and has a disjoint basepoint, then A is in O-Alggsg.

Proof. We first prove that each object G-space TA(n®) of TA is G-LEC. Write W for
CERGA, so that TA = Stz W. The G-space ObW(n®) can be identified with (ObA)™",
and is thus G-LEC by Lemma 9.18. Moreover, it has a disjoint basepoint. Recall from
Theorem 8.1 that

ObSt 7, W(n*) = \/ Zc(k’,n*) A ObW(K?).
kB

Since ObW(k”) is G-LEC, it follows that Z¢(k”?,n%) A ObW(k?) is G-LEC. Since
the basepoint of Z¢(k?, n®) A ObW(k?) is disjoint, the infinite wedge is in fact an
infinite disjoint union, with an adjoined disjoint basepoint. Since an arbitrary coproduct
of G-LEC G-spaces is again G-LEC, ObT A(n®) is G-LEC.

In the proof of Theorem 8.1, we defined a pseudomorphism

m: TA = St g, W~sW,

each of whose components is an equivalence of categories. Let Y(n®) C TA(n%) be
the subcategory Y(n®) = mpa (*). Since mye is an equivalence of categories, Y(n®) is
equivalent to the trivial category and is therefore chaotic. The fact that the basepoint
splits off of ObW(n®) implies that ObY(n®) splits off from ObTA(n®*) and is therefore
G-LEC since ObT A(n®) is G-LEC. Since the basepoint of BT A(n®) lies in BY(n®) and
BY(n®) has a nondegenerate basepoint by Lemma 9.17, this gives the conclusion. O

The following example will be used in Theorem 10.1.

Remark 9.21. We embed GU in Cat(GU) by regarding an unbased G-space X as an
object of Cat(GU) with X as both the object and the morphism G-space and with the
source, target, identity and composition maps all the identity. Similarly, we regard X
as an object of Cat(GU,). The free O-algebra generated by X is the disjoint union of
the categories O(j) x5, X7 with base object * the Oth term.

Proposition 9.22. If X € GU is G-LEC and ObO(j) is a (discrete) free ¥;-set for each
J, then O4(X) is in O—Alggsg.

Proof. By Proposition 9.20, it suffices to show that ObQO, (X) is G-LEC. This holds if
each G-space

Ob(O(j) X3, Xj) ~ ObO(j) x5, X’

is G-LEC. Since ObO(j) is discrete with free ¥ ;-action, we can write it as a disjoint union
of (G x Ej)-sets (G x £;)/A, where A C G x ¥ is a subgroup such that ANe x X; =e.
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In other words, the subgroup A is the graph of a homomorphism a: H — 3; for some
subgroup H < G. For each such A, we have an isomorphism of G-spaces

((G X EJ)/A) XE]- Xj =G Xy Xja.

Since X is G-LEC, Lemma 9.18 implies that X7° is H-LEC. Then by Lemma 9.19, we
have that G xy X7” is G-LEC as wanted. 0O

Consider the category of operators 9o = Z2(0). The following analogue of
Proposition 9.20, with Z¢ replaced by Z¢, will be needed in Section 10.2. There we
use comparisons between infinite loop space machines Sg defined on .%g-G-spaces and
Sgc defined on 25-G-spaces, where 2" is the topological version of Z¢, as specified
in Definition 9.2. The machine Sgc has good properties when its domain is restricted to
@g’ P-G.7 . Just as for F¢, we have categories Zg-Alg, of strict Zg-algebras and pseu-
domorphisms and a subcategory Zg-Alg of strict Pg-algebras and strict morphisms.
Section 8 specializes to give a strictification functor

Stgg: Ya-Alg,s — Da-Alg.
The composite
St@GRgi O—Algps — gg—Alg

plays a role analogous to that of T in the earlier results of this subsection, and we let
O—Alggf(.@g) be the full subcategory of O-Alggs consisting of those O-algebras A such
that BStg,ReA is in Z57-G.Z. Thus, by definition, BStg,Rg restricts to a functor
0-A1g57 (%) — 957-GT.

Proposition 9.23. If ObO(j) for each j and ObA are G-LEC, and ObA has a disjoint
basepoint, then A is in (’)-Algg‘y(@@).

S

Proof. We need a modification of the first step of the proof of Proposition 9.20 to account
for strictification over Y rather than .%g. Writing Z = RgA, we have

ObStg, Z(n”) = \/ ObZg(k”, n*) A ObZ (k")
kB

But Ob%g(k?,n®) is a finite coproduct of finite products of G-spaces ObQO(j), each of
which has a disjoint basepoint and is assumed to be G-LEC. Therefore ObStg, Z(n®)
is G-LEC. The rest of the proof of Proposition 9.20 goes through unchanged. 0O

The proof of Proposition 9.22 applies directly to give the following analog.

Proposition 9.24. If X € GU is G-LEC and ObO(j) is a (discrete) free ¥;-set for each
j, then O4(X) is in O-AlgS.(Zc).
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9.4. Nondegenerate basepoints and Day convolution

This brief parenthetical section highlights a question that seems to have been over-
looked in all previous papers dealing with the use of Day convolution in topology, even
nonequivariantly, whether for spectra or for categories of operators. We concentrate on
the latter and restrict attention to .%, thinking nonequivariantly for simplicity.

Of course, smash products are constructed as quotient spaces X x Y/X VY in U,.
It is essential to be working in compactly generated spaces since otherwise the smash
product is not even associative [36, Theorem 1.7.1]. It follows from Lillig’s union theorem
[27] that X AY is nondegenerately based if X and Y are. Therefore both U, and its full
subcategory .7 are symmetric monoidal under the smash product. By Remark 2.17, we
have associated multicategories Mult (i) and Mult(.7).

An Z-space is an (enriched) functor &% — U, and the category Z-U, of F-spaces
is symmetric monoidal under the internal smash product given by Day convolution. By
Remark 2.17, it also has an associated multicategory Mult(.%-U, ). That can be defined
using either the internal smash product as in Remark 2.17 or using the external smash
product as in Definition 5.15. These definitions give isomorphic multicategories by the
universal property of Day convolution.

Now consider the category .#-.7 of (enriched) functors .# — 7. It has been asserted
in many places, including our own [14], that #-7 is symmetric monoidal under the
internal smash product. We do not know whether or not that is true, and we believe that
it is not. The external smash product X AY: . % A % — U, of functors X,Y: F —
T clearly takes values in .77, but it does not follow that the internal smash product
X ANY: F — U, takes values in 7. That is, we do not believe that Day convolution
preserves levelwise nondegeneracy of basepoints. We cannot use the universal property to
prove that it does, and we have not succeeded in proving that it does by direct inspection
of the construction.

That problem does not affect applications since, using the external smash product as in
Definition 5.15, we have the full submulticategory Mult(.%#-.7) of Mult(.#-U..), whose
objects are levelwise nondegenerately based functors. When we reinterpret internally,
using Day convolution, we may leave that world. The same holds for the functors from
Z or, equivariantly, %4 to topological G-categories that are the focus of this paper.

9.5. From O-transformations to homotopies of maps of G-spectra

It is classical that the classifying space functor takes G-categories, G-functors and G-
natural transformations to G-spaces, G-maps, and G-homotopies. For the last, G-natural
transformations are functors € x .# — D, where .# is the category with two objects
[0] and [1] and one non-identity morphism [0] — [1]. For based G-categories, based
G-transformations are given by based G-functors C A #y — D.

Recall the definition of O-transformations from Definition 2.14.
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Proposition 9.25. The functor Kg takes O-transformations to homotopies of maps of
G-spectra.

Proof. We showed in [14, Proposition 6.16] that the topological Segal machine S¢ pre-
serves homotopies. If we start with Fg-algebras in Cat(GU,), which of course are
themselves G-functors, then maps between them are G-natural transformations and maps
between those are G-modifications. These are given levelwise by G-categories, G-functors,
and G-natural transformations. Since B commutes with products, it takes .%g-G-algebras
in Cat(GU,), Fg-functors, and Fg-transformations between them to GU,-enriched
functors ¢ — GU,, enriched natural transformations, and homotopies between those.
As Rg, (5, and St are all 2-functors, with St#, converting pseudostructure to strict
structure, their composite takes O-transformations to .#g-transformations, which are
levelwise G-natural transformations. O

The result above is used in [12, Remark 2.9], but it will surely find other uses.
10. The multiplicative Barratt-Priddy-Quillen theorem

In this section, we prove Theorem B. We begin by producing the transformation «
in Section 10.1. We show that ax is a stable equivalence of orthogonal G-spectra for
all G-LEC G-spaces X in Section 10.2 and we finish by showing that « is monoidal in
Section 10.3.

10.1. The construction of «

We restate and begin the proof of Theorem B.

Theorem 10.1. Let O be a topologically discrete chaotic Eo, G-operad in Cat(GU). Then
there is a lax monoidal natural transformation

[0 EOGO+ — KG@+

of functors GU — Spg such that ax is a stable equivalence of orthogonal G-spectra for
all G-LEC G-spaces X.

Recall that we write T for the composite

* S
T: O-Algps 2% 96-Alg,, <% Fo-PsAlg ——% F-Alg,

so that K¢ is given by Kg = SgoBoT. We shall exploit the fact that ¥g, : GU — Spg
is left adjoint to the zeroth G-space functor (—)g, with basepoint forgotten, to construct
a. Therefore, to define a : X%, — KgO4 in Theorem 10.1, it suffices to define a map
of unbased G-spaces
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dx : X — S¢(BT04X),

for each unbased G-space X. We define ax to be the following composite:

X Se(BTO.X),

BX v
BnJ/
3] [4]

BO,X = (BRg 04X)(1) —— (BTO4X)(1).

K2

We explain the numbered maps in this composite in order:

(1) Regarding X as an object of Cat(GU) as in Remark 9.21, the top left isomorphism
is immediate.

(2) The map 7 in |2 |is the unit of the monad Q.

(3) For the bottom left equality , it is true by definition that A = (RgA)(1) for any
O-algebra A in Cat(GU), such as A = O X.

(4) Next, for any strict Zg-algebra ), such as Y = RO, X, the map

i: Y(1) — Stz (eY(1)
appearing in is given by

V(1) = ¢EY(A) 5 Str Y1),

where 7 is a component of the unit of the adjunction of Theorem 8.1.
This map is an equivalence by Theorem 8.1.
(5) Finally, the map v in is the natural map required by Definition 9.12; it will be
specified in Section 10.2.

The adjoints of the maps & x define the natural transformation «, and we must verify
that « is monoidal and homotopical, the latter meaning that « is a stable G-equivalence.

10.2. The proof that « is a stable equivalence

We will show that ax is an equivalence by comparing it with the equivariant Barratt-
Priddy-Quillen equivalence for the equivariant operadic machine proven in [13] and the
equivalence between the equivariant operadic and Segal machines proven in [39]. Consider
the following diagram of G-spectra, in which @tfp denotes the monad on unbased G-
spaces associated to the operad BO introduced in Section 3.5, [E¢ denotes the operadic
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infinite loop space machine of [13, Definition 2.7], Egc denotes the category of operators
infinite loop space machine of [39, Definition 5.28.], and Sgc denotes the Segal machine
on 9&0 P_G-spaces of [39, §4.4]. The dotted arrows signify zig-zags of maps.

ax

SRX Se¢BT 04X (10.2)
4
1) |
EcOPX S&¢BRcO X
2] |
EZ°REPOPX — — — — - + SZEREPOIP X

The arrows through are specified as follows.

(1) The map is the stable equivalence of orthogonal G-spectra given in [13, Theorem
6.1], which is an operadic version of the Barratt-Priddy-Quillen Theorem.

(2) The isomorphism of is a comparison between operad level and category of oper-
ators level infinite loop space machines given by [39, Corollary 5.31].

(3) The dashed arrow is a zig-zag of stable equivalences between the generalized
operadic and Segal machines, both defined on Qg’ P_G-spaces. This is given by [39,
Theorem 6.1].

(4) The isomorphism |4 |is induced by the isomorphism Rté’p B = BRg, the isomorphism
(O)pr =~ BO4 from (3.19), which holds since our operad is E and thus 3, acts
freely on O(n), and lastly, the isomorphism X = BX from (1) in Section 10.1.

(5) The zig-zag of level equivalences | 5 | is described in (10.3) below.

Write Y for the Zg-algebra RO X. Theorem 8.1, Corollary 7.11, and Lemma 8.6
give a zig-zag of strict maps of Pg-algebras in Cat(GU,) that are level equivalences

YV —— StgeY — StogfaChY — €58t (LY.
m St@gX P

We apply B to this and use that { commutes with B to obtain a zigzag of level
equivalences of 92;0 P_G-spaces

BY +~— B - s ¢5B =Y.
y Bm St@cy BuoBStog x gg Stg?ggcy

The @gm -G-space B)Y has levelwise disjoint basepoints, whereas the basepoints of
BStg,Y and £ BSt#, (LY are levelwise nondegenerate according to Propositions 9.24
and 9.22, respectively. By [39, Proposition 4.30], the Segal machine Sgc on .@g’p -G-spaces
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converts this to a zig-zag of level equivalences of orthogonal G-spectra. By [39, Theo-
rem 4.31], we have a natural stable equivalence Sgc &6 — Sg relating the Segal machine
on 92,0” -G-spaces to the Segal machine on #g-G-spaces. Applying this to the last term
in the sequence above and remembering that T = Stz (iR and Y = RO X, we
obtain the final zig-zag of stable equivalences of orthogonal G-spectra:

SZ°BRcO4 X +—— SZ°BStg ,RaO1 X —— SZé¢LBTOLX —— SgBT O, X.
(10.3)

In order to deduce that ax is a stable equivalence, we need only show that (10.2)
yields a commutative diagram in the homotopy category. We remind the reader that
(10.2) consists of a zigzag of maps that are all specified at the point-set level. We will
decompose (10.2) into several smaller diagrams, and show that each smaller diagram
commutes, at least up to homotopy. It follows that the image of (10.2) in the homotopy
category is a commutative diagram, and that ax is a stable equivalence.

Rather than working with maps of G-spectra, as the initial vertex in (10.2) is a
suspension G-spectrum, we can instead consider the diagram on zeroth G-spaces, by
adjunction. For this, we only need to know that the operadic and Segal machines are given
by two-sided monadic and categorical bar constructions with easily described zeroth
spaces and maps between them. We use the notations from [39], and we refer the reader
to that source for more details of the definitions of the constructions and maps between
them. Abbreviating by writing ¢ = Bt o BStg, X, the adjoint of (10.2) is a diagram of
unbased G-spaces that takes the following form:

B 0 v
X ——" 5 (BRGO,X)(1) —— (BSts.(4Rc04 X)(1) —— B((S°)*, Fg, BTO, X) (10.4)
\\\ N : - _ o N
\ ~ -~
\ S T~
" S T B((S°)", 7", € BT 04.X)
\ T~ - T -
\ ~ o =~ _ q| ~
\ S T
(O)E:PX \ N B((SO).7@gm«,BSt@(;RG@+X)

< B | ~

\ ~ . B((8%)°*, 257, BRcO, X)
~ \ S ~

- \ > o =

\ B((8°)*, 257 RO X)

| 2!

oYX & B(*(8°), 257 RgOLPX) — B((8%)*, 257, RcOYPX) = B(Ly A (), 287, RcOPX).

Here the numbers labelling solid arrows are the induced maps on Oth G-spaces from
the maps in (10.2). The zig-zag of morphisms starting from the bottom left of the
diagram and ending at the source of | 4 |is the zig-zag of maps of Oth G-spaces induced
by in (10.2), while the top three vertical maps on the right are the zig-zag induced
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by . The top horizontal composite is the adjoint of ax. In the middle entry of the left
vertical composition, we use the identification explained in [13, Remark 2.9]; the map
is just ptr: X — (O)j_OPX ~ B0, X, the isomorphism being that of (3.19). At the
top, (BRg04X)(1) = BO, X, and Bn = n'P.

We will define the dotted arrow maps @, , and and show that each subdia-
gram commutes, at least up to homotopy. The maps @, , and each map into the
summand labeled by 1 in the space of O-simplices of its corresponding (categorical) bar
construction. These two-sided bar constructions are of the form B(Y, &, Z), where & is
a GU,-enriched category, and Y: &P — GU, and Z: & — GU, are GU,-enriched
functors. The space of 0-simplices is given by

\ Y (1) A Z(n),

where n ranges over the objects of &. In all but one of the bar constructions in the
diagram (the bottom right corner), Y(1) = S° hence the summand Y (1) A Z(1) is
isomorphic to Z(1). Taking & = %, the Segal machine S¢Z is constructed as

(SqZ)v = B((SV)*, Za, Z).

Taking V' = 0, the map
v: Z(1) — (Sa¢Z)o

is given by the inclusion of Z(1) in the space of 0-simplices of the bar construction. The
map wyp in (10.4) is given by projection to the relevant component, as in [39, § 6.6].

Replacing bar constructions in (10.4) by the components of their zero simplices that
serve as targets for the maps with domain X, the diagram can be written as

x -, Bo,x P, BTO,X(1) ———— BTO, X(1) (10.5)
AN
\ A < O~ -
\ ~ T~ -~
\ ~ =~
n| S = \ ~ [D] £,BTO,X(1)
\ ~ =<
\ S ~ N = - ~|q
\ ~ ~ 3
orx ~ BSto R0, X (1)
A
@ \ N ~ | Bm
\ ~
| ~ BR;O, X(1)
\ ~
\ > ~ o =
\« [B] 0" X
|
| L1
4
oPx oPx ofrx I, NOYPX
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We take @ and| 7 |both to be n, making diagram commute and diagram commute
up to homotopy. We take to be the composite

X 2% BO, X = BRGO, X (1) 22 BSty RO, X(1).

Region of the diagram commutes by the triangle identity, since ¢ and m are the unit
and counit for the adjunction in Theorem 8.1. Region \El is obtained by applying the
classifying space functor B to the following diagram.

X 04X TOLX(1)
n
EGiz

X
RO, X (1) — 5 5RO, X (1) — 5 €St 2, (R0, X (1)

St Rc0 X (1) m St@GiéCéRG@+X(1)
kel

The top rectangle commutes because the components of x (Corollary 7.11) are identity
maps. The lower rectangle commutes by the naturality of 7, and the triangle commutes
by Lemma 8.6.

10.3. The proof that o is monoidal

Since the adjoint of ay,, is easily seen to be the unit map of the lax monoidal functor
Kg Oy, it suffices to verify that the following diagram commutes for G-spaces X and
Y. Recall again that (X xY); 2 X, AY,.

SXX, ADXY, 2N Ke0, X AKGOLY

IR
©

EEAX xY) ——— KeO4 (X xY)

The map ¢ is constructed by applying the composite of the multifunctors from Theo-
rems 3.28 and 9.15 to the identity map X XY — X XY considered as a 2-ary morphism
in Mult(GU).
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By passage to adjoints, and since the adjunction is monoidal, we are reduced to
showing that the following diagram of maps of G-spaces commutes.

X xY 22 (K0, X)o x (KeO4 Yo

= UK0()+XTAIKGq)+YjO

XxY —— 4 (KgO4 (X x Y))o

AX XY

Here, the top right map is the lax monoidal constraint for the zeroth space functor.
The proof is concluded by checking that the following diagram commutes.

BnxBn Bix Bi
XXY — BO,XxBO,Y — BTO,X(1)xBTO,Y (1)
Bn vXv
BO,(XxY) (S¢BTO4+ X)ox(SeBTO,Y)o
Bi

BTO(XxY)(1) — = (S¢BTO4(XxY))o ¢ ((S¢BTO; X)A(S¢BTO.Y)),

11. Coherence axioms

We collect the coherence axioms we need in this section. Those for pseudo-
commutative operads, deferred from Definition 3.10, appear in Section 11.1; those
for Mult(O), deferred from Definition 3.14, appear in Section 11.2; and those for
Mult(2), deferred from the unpacking of Definition 5.15 in Section 5.3, are gathered in
Section 11.3.

11.1. Coherence azxioms for pseudo-commutative operads

Here we complete Definition 3.10 by specifying coherence axioms for the oy of dia-
gram (3.11).

(i) The component of a4, at (1,y) is the identity map.
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(ii) The composite

0(j) x O(k) —— O(jk)

t ﬂ A5k Tk.j
O(k) x O(j) —— O(kj)

t Y o, ik

O(j) x Ok) ——— O(jk)

is the identity V-transformation.
(iii) For permutations p; € ¥y and ps € 3;,

0(j) x O(k) —— O(jk) O(j) x O(k) —— O(jk)

t Voaye |9 p2x 1 p2&p1
O(k) x O(G) —— O(kj) = O(j) x O(k) —— O(jk)
p1xp2 p1®p2 ¢ Vo | ™
O(j) x Ok) —— O(jk). O(k) x O(j) — O(kj).

Note that the boundaries agree according to (3.9).
(iv) Let

[Tow) < o) 25T ((’)(k:i) x (’)(6))

s
Il
_
o
_

and

O(K)xf[ A—>ﬁ( O(k))

<.
—

be the morphisms whose ith components are the products p; x id and id x p;,
respectively. We require the 2-cell
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0) x 1 0(ki) x 0() —Z2 o) x [T (0(k) x 010) 2115 o)) x [] Ok)
= EJ ﬂ idx[] ok, e idx [T 7e,x;
O®) x O(¢) x j]i[lo(ki) a0 X j]i[l ((9(6) X O(ki)) e 00 % ;O%)
idx[]Ag ol
O3j) x O) x ﬁ Okt — 2 o3je) x _j o) —— 2 O(tk)
= Ve, 0 xid Te,j Xid
0() x 0() x T Ok ————— 0(tj) x [T Ok’ Du,
i=1 X1 i=1
o) x 04) x ( [T o) ———— ot x (1T ok) —————— o)
i=1 1d i=1
to be equal to the 2-cell
0 x 110k x 010 5 04) x IT (k) x 0(0) 5 0() x 11 000
'yXidJ/ J/’Y
Ok) x Of) ® O(kt)
Nl U Qg J/Te,k
Ot) x O(k) - O(k0).

Here, in the first 2-cell above, Dy, is the distributivity isomorphism specified in
Definition 11.1. Combining the definition of D, with the equivariance axiom for
shows that the sources of the two 2-cells agree. As the pairing ® is defined via the
structure map -y, the associativity axiom for v shows that the targets of the two 2-cells

agree.
Definition 11.1. Given ¢, j, and ki, ..., k;, let k =) k; and define

:f@(kl@"'@kj)—>(£®ﬁ)®"'@(£®ﬁ)

X

in the bipermutative category X. It is given explicitly as the permutation

Doje. = (Thyo @+ D T, ) Te -

3o
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Alternatively, using the operad structure on Assoc, we can identify Dy j, as

Dy, = ’V(Te,j;Az(ekl,...,ekj)).

It is the permutation in ¥y that permutes blocks of sizes k1,...,kj,..., k1,...,k; ac-
cording to 7 ;.

Remark 11.2. In the language of Corner and Gurski [5, Theorem 4.6], axiom (ii) states
that we require pseudo-commutativity structures to be symmetric. Axiom (iii) is an
equivariance axiom that is necessary in order for o to induce a map at the monad level
(Proposition 3.22), but which was unfortunately omitted in [5].

Axiom (iv) encodes the compatibility of o with operadic composition, and is given in
[5, Theorem 4.4]. Unpacking axiom (iv), it states that given = € O(j), y; € O(k;), and
z € O({), the following diagram commutes:

Y@y ® 2,y ®2) (Tep, - B 7oy ) Do, == v(@191 ® 2,...,Y; ® )Tk

’Y(ﬂ (y1 ® 2)Te gy, (Y; ® Z)T/éJc])Dl,k*

~(id;a,...,a) Dy i, J

Y& z®@y1,...,2®y;) Dy, (w(a:;yl,-..,yj) ®Z)Tf.k

Y(x® 2z Ay), ..., AN y;)) De.
(2 ® 2)7e,5: A Y1, .-, y5))
'y(a;idw.,id)l

1z @z Ay, -, y5)) 2@ y( Y1, Y)-
This formulation is closer to what is stated in [5]. We can summarize it by the equation
(ag,. ®idy) o [(ide ® 0y 2) Dpk.] = Qay,-.

This axiom plays the role of a hexagon axiom in our context. (There is a second axiom
relating a to operadic composition in [5, Theorem 4.4], but the two axioms are equivalent
in the presence of the symmetry axiom (ii).)

11.2. Coherence axioms for Mult(O)

Here we return to the diagram (3.15), which defines the invertible V-transformations
d; central to Definition 3.14, and complete that definition. In axioms (ii) and (iv), we
will use the shorthand notation A; ; for the product A; x A;11 x --- x A;. The map p
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appearing in (iv) and (v) is defined immediately following the axioms. We use x rather
than A throughout since the O(n) are unbased and their algebras are defined using
powers rather than smash powers.

Warning 11.3. The axioms require certain pasting diagrams to be equal, and in some
cases, it will not be immediately apparent that the boundaries are equal; we address
that issue after the axioms as well.

(i) (Unit Object) The V-transformation 4;(0) is the identity.
(ii) (Equivariance) For any permutation p € X,,, we require the 2-cell

idx (pxid) xid
-Al,i—l X O(n) X A;ﬂ X Ai+1,k _——> Al,i—l X (9(n) X .AZ:L X Ai+1?k

idx (idx p) xid idx0(n)xid

idx@(n)xid
n

Aic1 X O(n) x A} x Ajj1p ————— Aric1 X A X A

En

(’)(n) X (.Alﬂj_l X .Al X .AH_Lk)n ﬂ bi(n) F
idx F™
O(n) x B B
(n) oo

to be equal to the 2-cell

idx (pxid)xid idx 6 (n)xid

Avic1 x O(n) x AP X Ay ———— Aric1 x O(n) x AP X Ay ———— Ao X A X Aigag

l l 7 3i(n)

pxid

Om) X (Ariot % A; X A1) —22 O(m) x (Arics X Ai X Aipr)" "
i(le"J id><F“J
O(n) x B g O(n) x B = B.

(iii) (Operadic Identity): The component of §;(1) at an object

(ala ceey Qi—1, (]lva'i)aai-i-h .. -7ak)

is the identity map, where 1 € O(1) is the unit of the operad O.

(iv) (Operadic Composition): We require d; to be compatible with composition in the
operad. In order to save space, we choose to display only the case of i =k, but the
general case is analogous.
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The composite 2-cell

ideO(mr-) idx6(n)
A -1 x O(n) x [ <O(mr) X AZ“’) A X O X AL —————— A X A

"
Sk Sk

idx[[(idx6(m,))
Om) x ] <A1,k71 x O(my) x AL”T) —————— 0(n) x (A -1 X Ap)"

idXH Sk ﬂ Ok (n) F
O x T1 (0me) x (Auaes x A ) 70 e
dx[J(idxF™r)
O(n) x ]:[ (O(mr) x B > T O(n) x B oo B

is equal to the 2-cell

id idx6(m)
-Al.k—l X O(TL) X H (O(mr) X A;nT> # -Al‘k—l X O(m) X .AZL X—> -Al,kfl X Ak
O(n) x [1 (ALk—l x O(m,) X AL"’) sk
idx]] sk /7(5k(m) F

o) x 1 <0(m,,,) X (Appo1 X Ak)"“> L O(m) X (A X Ap)™

idx[J(idx F™) idx ™
”

" O(m) x B pr B

On) %1 (0(m,) x &)

r

(v) (Commutation of §; and J;): For ¢ < j, and omitting the inactive variables A;, for
h # i or j in order to save space, the 2-cell
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idx6(n) 0(m)xid
O(m) x A7* x O(n) x A} O(m) x A" x Aj ——— A; x A;

idx (idx0(n))™
O(m) x (A; x O(n) x A})™ O(m) x (A; x Aj)™

idx s idx3;(m)™ 4) idx ™ 5i(m) 4 P

O(m) x (O(n) x (A; x A;)")" —— O(m) x (O(n) x B")™ ——— O(m) x B™

idx (idx Fm)™ idx0(n)™
w W
6(m)
O(mn) xs,,, (Ai x A})™ —— O(mn) xx,,, B™ B
idx Fmm 6(mn)
is equal to the 2-cell obtained by pasting the 2-cell
O(m) x AP" x O(n) x A}
O(m) x (A; x O(n) x A})™ O(n) x (O(m) x A" x A;)"
;dx(s7)"¢ oy Jidx(s,)"
O(m) x (O(n) x (A; x Aj)™)™ O(n) x (O(m) x (A; x Aj)™)™
w w
O(mn) xx,,., (A x A;)™"
to the left of the pasting diagram
0(m)xid idx60(n)
O(m) x A" x O(n) x A} Ai x O(n) x A} ——— A; x A;
idx (6(m)xid)™
O(n) x (O(m) x A" x A;)" O(n) x (Ai x A;)"
idxs? idx8:(m)" ) - 5 4 »
O(n) x (O(m) x (A; x A;)™)" —— O(n) x (O(m) x B"™)" ————— O(n) x B"
idx (idx F™)" idx6(m)"
W w
0(n)
O(nm) xx,,,. (A;i x Aj)"™ ET—— O(nm) xx,,,, B"™ P B.

These axioms require explanation. They encode the idea that whenever the §; combine
to give two transformations with the same source functor and the same target functor,
both with target category B, then they are equal. In all of our diagrams, the interior



100 B.J. Guillou et al. / Advances in Mathematics 414 (2023) 108865

subdiagrams unoccupied by a 2-cell commute either by the definition of an operad or by
a naturality diagram.

Axioms (i) and (ii) give the compatibilities with basepoints and equivariance necessary
for these multimorphisms to give rise to multimorphisms of Q-algebras, as defined by
Hyland and Power [17]. In (ii), we must check that the source and target functors of
the two diagrams displayed are equal. The target functors agree trivially. The source
functors agree by the Equivariance Axiom for 6, the naturality of s;, and the fact that
F"op = poF" Axiom (iii) corresponds to the Operadic Identity Axiom and requires
no explanation.

In (iv), we define the map u to be the map that shuffles the operad variables to the
left and applies the structure map of the operad in those variables. The source and target
functors of the two diagrams agree by the compatibility axioms for O-algebras.

In (v), we abuse notation and again write p for the effect of passing to orbits from
the p used above. Here the target functors of the first and third diagrams agree trivially
but their source functors do not; their left vertical composites differ. After pasting the
second diagram to the third, the source functors of the first diagram and the composite
agree. We note that passage to X,,,-orbits in the second diagram is essential, as in
Proposition 3.22; without that, the pseudo-commutativity isomorphism o, , would not
mediate between its source and target functors.

Remark 11.4. These axioms imply further compatibilities of the §; with the unit object
0. In particular, it follows that the component of §;(n) at an object

(@1, .. (@G0, s Qin)s -, Q)

is idg if either a; € A; is 0 for some j # 4 or all coordinates a; , of the ith object a; € A}
are 0. Moreover, employing the notation o, from [15, Definition 2.9] for 1 < r < n, the
2-cell

idx (o, xid) xid
.A17i_1 X O(n) X A,LTHl X Ai+1,k _ ALv‘,—l X (’)(n - 1) X A?71 X -Ai+1,k

dxlidxem)xid idx0(n—1)xid
idx0(n)xid
Al,i—l X O(n) X A? X Av‘,+l,n Alﬂ;_l x A; x Ai+1,k
S1
O(n) x (Ari—1 x A; X Aip1,6)" 7% »
idx F™
O(n) x B™ B
0(n)

is equal to the 2-cell
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idx (o, xid) xid idx@(n—1)xid
.A17i,1 X O(TL) X A?’71 X -Ai+1,k E— Alyifl X O(’IL — 1) X .A;171 X «Ai+1,k B Alyifl x A; x -A'L+1J<7

“l SJ A 8n=1)

o xid
O(’VL) X (A1‘171 X A, X .A1'+1‘k)"71 $ O(TL — 1) X (A17¢71 X .Ai X A¢+17}€)7171 F
idxF"’ll idxF"’ll
O(n) x B! - O(n—1) x Bt B.
oy xid o(n—1)

The targets of these 2-cells are identical, and the sources of these 2-cells agree because
F strictly preserves 0 objects and because the action maps 6 interact well with the maps
or, as in [15, Axiom 2.17].

11.3. Coherence azioms for Mult(2)

Here we return to the diagram (5.17), which defines the invertible V,-transformations
0 in the k-ary morphisms of Definition 5.15, and give the necessary coherence conditions.
The condition on II in that definition already incorporates conditions on basepoints and
identity morphisms. These are the analogues of axioms (i) and (iii) of Section 11.2. We
require the following condition on composition in 2, which is analogous to the operadic
composition axiom (iv) there.

(Categorical Composition Axiom) We write 8% for the left vertical composite

/_\9
A 2(m; ;) A A Xi(my)—— A (2(mi, ;) A Xi(my))—— A X ()

% % i i

IR

P

in (5.17). We write C for the composition in 2"\*

Ao
A2, p:) A\ 2(mi n)—— A (2(0:,p:) A 2(my, 1)) —— A Z(mi, pi).

7 3

R

The right vertical composite

A2 (mi,n0) A V)" 7 (m,0) A Y (m) LV (m)

in (5.17) is the action Oy of 2% on Y o ®*.
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With these notations, the pasting diagram

P 00) NN mim) A X (m) %Mni P A A2 (m ) A V(m)

CAid idAO
. Hrans
idno*

/\f(mz pi) A/\X m;) /\ﬁ n;,p; A/\X n;) A 2(ni,pi) A Y(n)

idAF

S A

/\/Y pi)

is required to be equal to the pasting diagram

7005,p1) A\ (a0 mi) A A\ (o) %/\ml P AN 7 (mism) A Y(om

A (mi. o) A Xi(ms) e A (i, pi) A Y(m N (i) A Y (m)

The unmarked regions in these diagrams commute. For instance, the rhombus in the
first diagram commutes because X, ..., X are strict Z-algebras, and hence XA ... AX
is a strict .@Ak—algebra as well. The unlabeled V,-transformation in the rhombus in the

second diagram is the constraint for the 2"\*-pseudoalgebra ) o ®*. More precisely, it is
given by the following whiskering of ¢}, which denotes an iterated version of the coherence
V,-pseudotransformation from (5.8).

A 205,00 AN 2 (mim) AV (m) N G p) n 2m,m) AV 0m) L A Do) A V()

i
Ll l@*‘/\id
idAO

NG )
A (2(0;,p:) A Z2(mi,m)) AV(m) ¢ Z(n,p) A 2(m,n) A Y(m) ————— P(n,p) A Y(n)
) )

®"Aid

oAnid

k2
Aonid
f

)A
A 2(m;, p;) A Y(m) - Z(m,p) A Y(m
i ®"Aid 0

Y(p)-
Note that the bottom right rectangle commutes because ) is a strict Z-algebra.
12. The pseudo-commutativity of Z(O)
We prove Theorem 5.12 here. Thus let O be a pseudo-commutative operad in Cat(V)

and 2 = 2(0O) the associated category of operators, as in Proposition 5.6. We must con-
struct a V,-pseudofunctor ®: 2 A ¥ ~~+2 and prove that it gives a pseudo-commutative
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structure. For the sake of clarity, we work with x rather than A in this section; the
statements about II build in basepoint conditions that imply that all the constructions
descend to the smash product. We break the proof into several parts. Recall that for a
morphism ¢: m — n of Z and 1 < j < n, we write ¢; = |¢~*(j)|.

When restricted to II, ® must be A. Thus, on objects, m ® p = mp. At the level of
Hom categories, the map

®: 2(m,n) x Z(p,q) — Z(mp,nq)

sends the summand in the source labeled by ¢: m — n and ¥: p — q to the one
labeled by ¢ A t¢: mp — nq in the target. Therein, the V-functor

II o) = ] ows) — [ oUerv)),

1<j<n 1<k<q 1<t<ng

is such that its projection onto the fth factor is given by first projecting onto O(¢;) x
O(¢r), where ¢ maps to the pair (j, k) under the lexicographic ordering of n A q, and
then applying the pairing ® of O. The definition makes sense since

(@A) = (o A)THOI = o7 DI T (k)] = @j¢n-

It is immediate from the definition that & restricts to A on II (along ¢) and projects to
A on Z (via £), as required.

To complete the construction of the V,-pseudofunctor ®, we must prove the following
result, which is the heart of the proof that & is pseudo-commutative.

Proposition 12.1. The following diagram of V-functors relating ® to composition com-
mutes up to an invertible V-transformation 9.

P (n,p) x Z(r,s) x 2(m,n) x Z(q,r) o 9 (nr,ps) x 2(mq, nr)
1d><t><1dJN
P(n,p) x Z(m,n) x 2(r,s) X 2(q,r) Yy °

ol

The collection of such V-transformations descends to the smash product and makes
®: DND~>D into a V.-pseudofunctor.

q,s) - 2(mq, ps)

Proof. The essential combinatorial claim is that the pseudo-commutativity isomorphisms
a of O from Definition 3.10 assemble to give the required invertible V-transformations 9.
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This is not obvious since the a give maps that are not obviously relevant to the diagram.
The strategy is to express the results of the source and target V-functors of the diagram
in such a way that the invertible V-transformation between them becomes obvious. In
the following equations, we will use the associativity and equivariance formulas from the
definition of an operad to massage the two composites into comparable form.

Since II and % are permutative categories regarded as V-2-categories, the diagram
clearly commutes when 2 =11 or ¥ = .#. That is, fixing morphisms

Y:n—p, vir—sS, ¢:m—mn, and u:q —r
in %, we have

(W AV)o(pAp)= (o) A(vop). (12.2)

Thus, for the summand labeled by our fixed morphisms v, v, ¢, and p in %, the
clockwise and counterclockwise directions land in the same summand of the target. It
follows that it suffices to restrict the diagram to these summands. Let

1<j<n, 1<k<p, 1<h<r,and1<:i<s.

Looking at the definition of the composition o in & (5.5) and the definition of ®, we see
that on the component labeled by v, v, ¢, and u in %, the V-functors in the diagram
from the statement of the proposition have source and target V-categories

[Towe) x [Tow) x [TO@;) x [T Oun) = [T O((% © ¢)i(v 0 p)i).
k 7 7 h ki

It suffices to consider these V-functors after projecting to each factor of the target. Thus,
we fix k and ¢ and compose with the projection onto that factor of the product in the
target V-category in order to construct the V-transformation +J. That projection depends
only on the factors in the source V-category indexed by k, i, j € ¥~ 1(k), and h € v=1(i),
respectively. The source and target V-functors of ¥ are depicted below, fully in terms of
the operad structure. To simplify we index over j to mean {j € ¥ ~!(k)} and similarly
for h.

OW) x Ow) x TL, O(5) x TT, Olpan) —— Oh) x Ows) x Tl (O05) x Oun)) 5 O(wser) Tl ) O65010)

O) % IT, 0(6;) x Ows) x [T, Oun) )
wmi o
O(X; ¢5) x O, pa) Oy Pitin)
Pk(’[’dﬁ)xﬁh(’*#)l lm.z)(mAu.o‘mu)
O((t 0 d)e) x O((v o n)y) O((4 o D)l o 1))

®

(12.3)
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Here the top left horizontal map is given by the identity on the first two factors, and on
the factor labeled by (4, h) is given by projecting to the j and h factors of the indexed
products, respectively. Going around both ways, we land in the term O(((zp Av)o (oA
,u)) e) of the target, where (k,i) € p A's corresponds to ¢ € ps under lexicographical
ordering.

Consider the following diagram, which is constructed by taking instances of a from
Definition 3.10 of the pseudocommutativity of O. We claim that the whiskered 2-cell
depicted has the same boundary as required by our desired ¢ above. For legibility, we
omit the indices on the a’s. Here the permutation 74, ,, is as in Definition 3.8.

Or) x Owi) x [1; 0(¢;) x 111, On)
idx AYk xidx AVk

O(hr) x O(v;)¥* x [T, 0(¢;) x (IT), O(un))¥*

O x T, (O() x xO(6;) x TT, Olun))

idx [T, (idxidx]], A%)
idx]]; (®xid)

O(yw) x I1; (O(wi) x xO(;) x (ITj, O(kn)?7) ) —— O(Wn) x I1; (O(vicrs) x (I, O(un)?) )

= W} idxIT; (axid) idx T, (mp,, Xid)

O(r) x I1; (O(5) x O(wi) x (IT;, O(kn)?7) ) —— O(x) x I1; (O(¢5vi) x (IT), O(un) 7))

idx]]; (®xid)

idx]; v
O(r) x II; O, djmm)
O(Z] Zh ¢]/j‘h)

PE®pi

O((¥ o @)r(vop)i)

(12.4)

where we abbreviated pg (v, @) = pr. and p; (v, p) = p;.
The proof of the claim that the boundaries of (12.3) and (12.4) do agree follows exclu-
sively by using the axioms for an operad, which can all be expressed using commutative
diagrams in the ambient category. However, in order to make the reconciliation easier to

follow, we will use elements and write formulas.
Let

ce OWy), a€O(y), dj € O(p;), and by € O(up),
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and recall the permutations p defined in (5.5). Going clockwise in (12.3), the tuple
(c;a,[1;d;j. I1;, bn) gets sent to

Yewa T di®b)ppaAvonp), (12.5)
(WAV)(5,h)=(Fk,)

and going counterclockwise, it gets sent to

(v T dpe(@.0)) @ (via TT b)pilvm)). (12.6)

Y=k v(h)=i

We first verify that the source V-functors of (12.3) and (12.4) agree. In what follows,
we use the notation Afx) to denote the ¢-tuple (z,...,z). Using the definition of ®, the
associativity axiom from the definition of an operad twice, we have that

'y(c ® a; 11 d; ® bh)
(YA (G,h)=(k,i)

= 7(7(0; A’a)); I1 v(dj; A% (bh))>

(¥Av)(G,h)=(k,7)

i T1 (os T +ds: 50n))))

Y=k v(h)=

gl

Y (j)=k v(h)=i

(
=y(e T v(v(ea(d)); T A(on))
(

o T1 ve®ds T &%)

Y=k v(h)=i

Recall the permutation Dy, ,, from Definition 11.1, with * running through the set

v~1(i). This is precisely the permutation of ¢; - Zu(h):i pr = ¢; - (v op); elements

which permutes according to 74, ,, the ¢; - v; blocks of lengths given by the tuple
A‘f’j(HV(h):i pn)- A straightforward computation, which we omit, gives that

Pkiy(W AV, O A p) = (@D¢7 ) (pr @ pi).
»(j)=k

Plugging this into (12.5) and using the above computation and the equivariance axiom
from the definition of an operad twice, we can thus identify the expression (12.5) as
follows:

'y(c@)a; 11 d; ®bh> P,y (W AV, O A )
(bAv)(5,h)=(k,i)

=v(a T vle®di T &%900) ) (B Dos ) - (on € pi)

Y=k v(h)=i
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zv(c; II ve®d; ] A“’J‘(bh))D@,u*)'(Pk@Pi)

P(j)=k v(h)=i
:’Y(C; H v(a@dj;v((a@)d T, i H by, )) (pr ® pi) (12.7)
P(j)=k V(h) i

The equality of expressions (12.5) and (12.7) reconciles the source V-functors of the
2-cells in (12.3) and (12.4). Next we reconcile the target V-functors.

As above, we abbreviate p (¢, ¢) = px and p;(v, u) = p;. Using Remark 3.7 and the
associativity axiom of the operad, we identify the expression (12.6) as follows:

(W(C; [I dj)ﬂk)@‘)('Y(a; [1 bh) )

p(i)=k v(h)=
= (e T dy@yia T b)(o®p)
Y(j)=k v(h)=1

=7(W(C; [ dj); AY?x(y(a; [] bh)))(pk®Pi)
W)=k v(h)=

7(0; [T ~(ds; A%(y(a;

W

[T ) (o p)

)=k v(h)=t

<.

:fy(@; H fy('y(dj;A¢.7‘(a)) ( H bh)))(ﬂk@)/’z)

P(j)=Fk v(h)=
- 7( [T (dj®a a0 I] bh))) (or ® pi) (12.8)
p(i)=k v(h)=i

The equality of expressions (12.6) and (12.8) reconciles the target V-functors of the
2-cells in (12.3) and (12.4). This concludes the proof of the claim that the boundaries of
the two diagrams coincide, and thus the construction of the desired V-transformation 9.

Compatibility of ¢ with identity morphisms and the fact that it descends to the smash
product follow from Lemma 12.11 below. Compatibility with composition in Z A Z is
tedious to check, but boils down to repeated use of Axiom (iv) of Definition 3.10. This
completes the proof that ®: 2 A 2 ~~2 is a V,.-pseudofunctor. 0O

Condition (2) of Definition 5.7 holds as a result of the following more general lemma.

Lemma 12.9. After restricting the domain of the functors in the diagram of Proposition 12.1
to

2(n,p) X 2(r,s) x [I(m,n) x 2(q,r) — 2(mq, ns)
P (n,p) x U(r,s) x Z(m,n) x Z(q,r) — Z2(mq,ns),

the transformation ¥ is the identity.
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Proof. We use the notation of the construction of ¢ in Proposition 12.1. The first re-
striction is the case when the d; are all * or 1, and the second restriction is the case
when e is * or 1. The key is that if either e or d; is *, then

a: (e®dj)Ty,,,, — dj®e

is the identity map of *. Similarly, by Definition 3.10 (i), if e = 1, then « is the identity
map of dj, whereas if d; = 1, then « is the identity map of e. O

Note that this result in particular implies that as a V,-pseudofunctor, ® restricts to
A on II.

Lemma 12.10. The V.-pseudofunctor ® is strictly associative in the sense that the fol-
lowing diagram of V.-pseudofunctors commutes.

idA®
PG

9/\3 9/\2

@Aid ®

hd v

DN~y D
®

Proof. Since this is an equality of V,-pseudofunctors, we need to check equality of the
level of assignments on objects, V,-functors on morphisms, and pseudofunctoriality con-
straints. The equality of assignments on objects follows from the strict associativity of
A in II. At the level of morphisms, we must check that each diagram of V,-functors

2(k,p) A Z(m,r) A D(n,s) 1dne, 2(k,p) A Z(mn,rs)

i | |

2(km, pr) A Z(n,s) RN 2(kmn, prs)

commutes. This follows from the strict associativity of the pairing of O (Proposition 3.3).

For each composite, the pseudofunctoriality constraint is given by a pasting of two
instances of the V,-transformation ¢ of Proposition 12.1. The constraint for the compo-
sition ® o (id A ®) is

idA®AIdA® OA®
P(n,p) AND(r,s) A Z(u,v) A Z(m,n) A Z(q,r) A 2(t,u) —— Z(n,p) A Z(ru,sv) A Z(m,n) A Z(qt,ru) one, % (nru, psv) A Z(mqt, nru)

l ¢ F

Z(n,p) A Z(m,n) A Z(r,s) A Z(q,r) A Z(u,v) A Z(t,u) Z(n,p) A Z(m,n) A Z(ru,sv) A Z(qt, ru) Vo °

13

oAoAo oA

2(m,p) A Z(q,s) A 2(t,v) e 2(m,p) A Z(qt,sv) . N 2(mqt, psv),
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where | 1 |is the whiskering of id A9 by a reordering isomorphism. Similary the constraint
for the composed V,-pseudofunctor ® o (® A id) is

@AidA®AId BA® N
P(n,p) AN D(r,s) AN Z(u,v) A Z(m,n) A Z(q,r) A Z(t,u) —— Z(nr,ps) A Z(u,v) A Z(mq,nr) A Z(t,u) one, 2 (nru, psv) A Z(mqt, nru)

JE )ﬂ JE

Z(n,p) A Z(m,n) A Z(r,s) AN Z(q,r) A Z(u,v) A Z(t,u Z(nr,ps) A Z(mq,nr) A Z(u,v) A Z(t,u) o o

lo/\om lo/\o

®Aid ®

2(m,p) A 2(q,s) AN D(t,v) 2(mq, ps) A Z(t,v)

2(mqt, psv),

where is the whiskering of ¥ A id by a reordering isomorphism. As demonstrated in
the proof of Proposition 12.1, the V,-transformation ¥ is constructed using instances
of the pseudo-commutativity constraint a. We leave it to the reader to verify that the
identification of these 2-cells follows from the operad axioms, together with axiom (iv)
of Definition 3.10. O

Lemma 12.11. The V.-pseudofunctor ®: PN D ~2 has a symmetry Vi-pseudo-
transformation T such that the strict monoidal V,-2-functors 1: 1l — 2 and £: 9 —
F preserve the symmetry.

Proof. The V,-pseudofunctors ® and ®ot: P N P ~~>2 we are comparing have the
same object functions. Given objects m and p, the 1-cell component of 7 is given by the
permutation 7., ,: mp — pm of Definition 3.8, thought of as a morphism in II C Z.
We need invertible V,-transformations

®ot
2(m,n) A 2(p,q) —— Z(pm,qn)

@l /2 J(rm,pr‘

%(mp,nq) ——— Z(mp, qn).

Tn,q)*
As in the previous proofs, we can restrict to the components of 2(m,n) and Z(p,q),

which are indexed on morphisms ¢: m — n and ¢: p — q of .#. Note that both
maps send the component of (¢,) in the source to that of

(1/) A ¢) O Tm,p = Tn,q © (¢ A 7/’)

in the target (see (3.9)). We thus fix such ¢ and ¢ and start with [[; O(¢;) x [, O(¢x),
where 1 < j <nand 1 <k < ¢. Again for simplicity we work with elements ¢; € O(¢;)
and di, € O(¢y).

Considering permutations as morphisms of II C & and using the definition of compo-
sition in 2, we find that the clockwise composite sends ((c1,...,cn), (d1,...,dg)) to

f}lﬂ(@ ® di) Ty s
Js
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and the counterclockwise composite sends it to

[1(dx ® ¢;),
7,k

with both products ordered in reverse lexicographical order.

Applying a product of maps « gives the invertible V,-transformation 7 indicated in
the diagram. Note that, similar to Lemma 12.9, we have that the 2-cell 7 is the identity
when either copy of & is restricted to II. We leave to the reader the verification of
compatibility with composition, and axioms (i) and (ii) of Definition 4.32. O
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