
Advances in Mathematics 414 (2023) 108865
Contents lists available at ScienceDirect

Advances in Mathematics

journal homepage: www.elsevier.com/locate/aim

Multiplicative equivariant K-theory and the 

Barratt-Priddy-Quillen theorem ✩

Bertrand J. Guillou a, J. Peter May b, Mona Merling c,∗, 
Angélica M. Osorno d

a Department of Mathematics, University of Kentucky, Lexington, KY 40506, 
United States of America
b Department of Mathematics, The University of Chicago, Chicago, IL 60637, 
United States of America
c Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, 
United States of America
d Department of Mathematics, Reed College, Portland, OR 97202, United States of 
America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 March 2021
Received in revised form 17 
September 2022
Accepted 5 January 2023
Available online 26 January 2023
Communicated by A. Blumberg

MSC:
primary 19D23, 19L47, 55P48
secondary 18D20, 18D40, 18M65, 
55P91, 55U40

Keywords:
K-theory

We prove a multiplicative version of the equivariant Barratt-
Priddy-Quillen theorem, starting from the additive version 
proven in [13]. The proof uses a multiplicative elaboration 
of an additive equivariant infinite loop space machine that 
manufactures orthogonal G-spectra from symmetric monoidal 
G-categories. The new machine produces highly structured 
associative ring and module G-spectra from appropriate 
multiplicative input. It relies on new operadic multicategories 
that are of considerable independent interest and are defined 
in a general, not necessarily equivariant or topological, 
context. Most of our work is focused on constructing and 
comparing them. We construct a multifunctor from the 
multicategory of symmetric monoidal G-categories to the 
multicategory of orthogonal G-spectra. With this machinery 
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in place, we prove that the equivariant BPQ theorem can 
be lifted to a multiplicative equivalence. That is the heart of 
what is needed for the presheaf reconstruction of the category 
of G-spectra in [12].

© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

We can view algebraic K-theory as a machine that takes as input a category with a 
structured additive operation and produces a spectrum by group-completing the opera-
tion in a homotopy coherent way. The homotopy groups of this spectrum—the higher 
K-groups—are rich invariants which connect homotopy theory with number theory, al-
gebraic geometry, and geometric topology. For example, the homotopy groups of the 
K-theory spectrum of the category of finitely generated projective R-modules for a ring 
R are Quillen’s higher K-groups of R, which are related to important problems and 
conjectures in number theory, especially when R is a number ring.

Classically, there were two approaches for building the K-theory spectrum associated 
to a symmetric monoidal category: Segal’s approach based on Γ-spaces [47], and the 
operadic approach of [2,29,30]. These two infinite loop space machines were shown to 
be equivalent in [37,31]. One fundamental problem in infinite loop space theory is to 
determine what structure on the input category ensures that its K-theory spectrum is a 
highly structured ring spectrum. If the input has a second, related, structured multiplica-
tive operation, making it into a “ring category”, then a suitably multiplicative K-theory 
machine should yield a ring spectrum. The study of multiplicative infinite loop space 
theory saw much development early on [32,33,38,50,51]. A space level modernized sur-
vey is given in [35] and a modernized categorical treatment is given in [34]. A treatment 
of multiplicative infinite loop space theory that is structured around the use of multi-
categories and multifunctors is given in [8], and that has served for inspiration in this 
paper.

For a finite group G, the Segal infinite loop space machine has been generalized 
equivariantly by Shimakawa in [48], and the operadic infinite loop space machine has 
been generalized equivariantly by two of us in [13] to build (genuine) orthogonal G-
spectra from categories with additive operations that are suitably equivariant.1 These 
equivariant infinite loop space machines have been shown to be equivalent by three of 
us in [39].

It is a natural question to ask what kind of structure on a G-category makes its 
K-theory into an equivariant ring spectrum, and this is not addressed in any of the 

1 A much earlier operadic machine with target Lewis-May G-spectra [25] was developed by Hauschild, 
May, and Waner. It was never published, but is outlined by Costenoble and Waner [6].
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papers just mentioned. Nonequivariantly, the question can be answered without serious 
use of 2-category theory, but we have not found such an answer equivariantly. The 
multiplicative structure at the categorical level is encoded via multilinear maps that are 
distributive up to coherent natural isomorphisms and is thus intrinsically 2-categorical. 
The very different but essentially combinatorial ways around this found nonequivariantly 
in [8,34] do not appear to generalize equivariantly, or at least not easily. Our work 
involves conceptual categorical processing of 2-categorical input so that it feeds into an 
equivariant version of the 1-categorical Segal machine, whose multiplicative properties 
we have established in [14].

An equivariant version of the Barratt-Priddy-Quillen theorem, which expresses the 
suspension G-spectrum of a G-space as the equivariant algebraic K-theory of a G-
category, was proven in [13] using the equivariant operadic machine. However, this 
equivalence does not a priori preserve the multiplicative structure coming from the smash 
product of based G-spaces. The main result of [12] relies on having a multiplicative equi-
variant K-theory machine starting at the level of G-categories that is compatible with 
the Barratt-Priddy-Quillen theorem, and we provide that in this paper. An easier mul-
tiplicative version of the equivariant Barratt-Priddy-Quillen theorem is proven in [14, 
Theorem 6.7]), but that starts from categorical input that is quite different from the 
input needed in [12].

We start with an equivariant K-theory machine KG producing orthogonal G-spectra 
from structured G-categories, which we take to be algebras over a suitable operad O. In 
the nonequivariant case, the input would be permutative categories, which are algebras 
over the Barratt-Eccles operad. Conceptually, we would like to extend KG to a monoidal 
functor from structured G-categories to orthogonal G-spectra. However, the ring G-
categories that arise in nature are not the monoids for a monoidal structure on structured 
G-categories. Rather, as in [8,24] and elsewhere, we have a multicategory structure on 
structured G-categories. A multicategory structure on a category C allows one to make 
sense of the notion of monoid in C as well as module over a monoid. We will thus extend 
KG to a multifunctor, meaning that it is compatible with the multicategory structure.

We give some intuition for finding the structure on an operad that ensures that its 
category of algebras is a multicategory. We think of the operad O as parametrizing 
addition. Now suppose that we want to define a multiplication that distributes over 
addition. Just as the product of integers mn is the n-fold addition of the integer m, 
we can define a pairing O(m) × O(n) −→ O(mn) by repeating n times the variable 
in O(m) and then “adding” using the operad structure map. The diagram that we 
obtain when we compare this with the map O(n) × O(m) −→ O(nm) that we get by 
twisting in the source and using a reordering permutation in the target does not strictly 
commute in general. We define a pseudo-commutative operad to be one for which this 
comparison diagram commutes up to natural isomorphism (see Definition 3.10), and we 
show that this condition allows us to define a multicategory structure on the category 
of O-algebras. A key example is the permutativity operad PG of [15, Definition 3.4]; 
its algebras are the permutative G-categories and its pseudoalgebras are the symmetric 
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monoidal G-categories [15]. The operad PG is a categorical E∞ G-operad as defined in 
[13, Definition 2.1], and when G = e it is just the categorical E∞ Barratt-Eccles operad.

We write GU for the category of G-spaces and Cat(GU) for the 2-category of cat-
egories internal to GU , as described in Section 2.1. Fix a chaotic (Definition 2.6) E∞
G-operad O in Cat(GU). We construct a multicategory Mult(O) whose underlying cat-
egory is the category O-Algps of O-algebras and pseudomorphisms. Writing SpG for the 
category of orthogonal G-spectra, we construct a functor

KG : O-Algps −→ SpG

that group completes the additive structure, and most of the paper is devoted to estab-
lishing the following result, which appears as Theorem 9.14.

Theorem A. Let O be a chaotic E∞ G-operad in Cat(GU). Then the functor KG : O-Algps

−→ SpG extends to a multifunctor.

We have the following direct corollary of Theorem A.

Corollary. If A is a monoid in O-Algps, then KG(A) is a ring G-spectrum. If B is an 
A-module in O-Algps, then KG(B) is a KG(A)-module G-spectrum.

We warn the reader, however, that Theorem A does not assert that KG is symmetric. 
In particular, we do not claim that our version of KG produces commutative ring G-
spectra as output. Constructing a symmetric equivariant K-theory multifunctor is an 
ongoing challenge. Our multifunctor KG is a composite of multifunctors all but one of 
which are symmetric, and we shall keep track of symmetry as we go along. However, 
associative and unital multiplicative properties are all that are needed for the following 
result, which is the heart of what is needed in [12]. We prove the following theorem in 
Section 10. Here we use that GU embeds in Cat(GU), as recalled from [15, Remark 1.8]
in Remark 9.21.

Theorem B (Multiplicative equivariant Barratt-Priddy-Quillen). Let O be a topologically 
discrete chaotic E∞ G-operad in Cat(GU) and O+ the associated monad. There is a lax 
monoidal natural transformation

α : Σ∞
G+−→KGO+

of functors GU −→ SpG such that αX is a stable equivalence of orthogonal G-spectra for 
all input G-CW complexes X.

The main result of [12] gives a Quillen equivalence between the category of orthogonal 
G-spectra and the category of “spectral Mackey functors,” i.e., spectrally enriched func-
tors GA −→ Sp, where GA is a spectral version of the Burnside category. The proof 
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of that result rests on having a multiplicative machine KG which satisfies Theorem B. 
Its construction was deferred to this paper. An alternative ∞-categorical perspective on 
spectral Mackey functors as a model for G-spectra is given in [1,4,41]. Moreover, a version 
of the multiplicative equivariant Barratt-Priddy-Quillen theorem appears as [1, Theo-
rem 10.6]. As the input for their machine differs from that of ours, a direct comparison 
of their result with ours would be nontrivial but worthwhile.

Remark 1.1. An illuminating ∞-category treatment of multiplicative infinite loop space 
theory is given in [11]. We briefly compare that approach to the theory here. The input 
with that approach is symmetric monoidal ∞-categories, which are ∞-categorical gener-
alizations of Segal’s special Γ-spaces. In this paper, as classically, the input is symmetric 
monoidal 1-categories, but we need to work with the 2-category of such, in order to 
keep track of the multiplicative structure. The focus of this paper is the passage from 
there to special Γ-categories, while the machine SG ◦B from special Γ-categories to Ω-G-
spectra is taken as a black box. We view the machine SG ◦ B as essentially formal. Like 
the ∞-category machine, it is symmetric monoidal, at least in the variant form given 
in [14]. Philosophically, from the ∞-category point of view, we are showing that, even 
equivariantly, the passage from symmetric monoidal 1-categories to symmetric monoidal 
∞-categories preserves multiplicative structure, albeit with a loss of symmetry.

1.1. A technical road map

The goal is to construct a version of equivariant algebraic K-theory which takes 
as input an algebra over the equivariant categorical E∞ G-operad O and produces a 
G-spectrum in a way that preserves multiplicative structure and does so compatibly 
with the multiplicative structure in the equivariant Barrat-Priddy-Quillen theorem. As 
explained above, the source category, even nonequivariantly, does not admit a meaningful 
symmetric monoidal structure, but we can build a multicategory structure on it. So 
the task is to construct a multifunctorial version of KG, and we do so in pieces. The 
organization of this paper focuses on the multiplicative elaboration of the following 
diagram, which displays KG as the composite of a sequence of multifunctors.

O-Algps

R1

KG SpG

D-Algps

2 P

FG-GU∗

6SG

DG-Algps
3

ζ∗
G

FG-PsAlg
4

St
FG-Alg

5B

(1.2)
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We explain these steps and where the relevant definitions and notations are introduced 
in the paper. In order to motivate the choice of route let us start with explaining the 
last step, which in a way forces the rest of the route on us.
Step 6 . There are two space level equivariant infinite loop space machines, the operadic 
and the Segal one, which have been shown to be equivalent in [39]. In the last step we use 
the equivariant Segal machine of [39] since this is formally monoidal. Its domain is the 
symmetric monoidal category of FG-G-spaces FG-GU∗, which are based functors from 
finite based G-sets to based G-spaces GU∗, and its target is the symmetric monoidal 
category SpG of orthogonal G-spectra.

Now the goal is thus to get to this last step. We mediate between operadic categorical 
input and F -G-spaces using categories of operators, and the following steps are the 
quickest ones we found to get to where we want to in a multiplicative way. As a general 
comment on notation, the notation Algps is used for 2-categories of strict algebras and 
pseudomorphisms between them, while PsAlg is used for 2-categories of pseudoalgebras 
and pseudomorphisms.

We elaborate on these steps now.
Step 1 . Part of this step is constructing multicategory structures on the source and 
target categories. Even though we are ultimately interested in chaotic operads, we deter-
mine which structure on an operad makes its category of algebras a multicategory. After 
a few preliminaries setting up our categorical framework of operads and multicategories 
in Section 2, multicategories with underlying categories of the form O-Algps are defined 
in Section 3 for operads O with what we call a pseudo-commutative structure.

The target in step 1 is algebras over a category of operators D associated to the 
operad O. Categories of operators were first introduced in [37], where they mediated 
between the operadic and Segalic infinite loop space machines, and they were used again 
for the same purpose in [39] in the equivariant space level story. We introduce them here 
to let them play the same role, not only equivariantly, but on the categorical level, which 
is more subtle. We develop a general categorical framework that will specialize to an 
understanding of categories of operators over both finite sets and finite G-sets, together 
with their algebras and pseudoalgebras, in Section 4. We do this in a general framework 
that will later clarify some key distinctions. Multicategories with underlying categories 
of the form D-Algps are defined in Section 5, where D is any category of operators over 
the category F of finite sets.

Taking D to be the category of operators associated to a pseudocommutative operad 
O, the functor R which goes from O-algebras to D-algebras is constructed as a multi-
functor in Section 5.5, but with a key proof deferred to Section 12. All of this works in 
a general categorical context that a priori has nothing to do with either equivariance 
or topology. A crucial technical point is that the “pseudo-commutative pairing” on an 
operad that we have already mentioned gives rise to an analogous “pseudo-commutative 
pairing” on its category of operators. The term “pseudo-commutative” was first coined 
by Hyland and Power [17] in a monadic avatar of our categories of operators; it can be 
viewed as shorthand for “pseudo-symmetric strict monoidal”.
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Step 2 . Just as in [39] when working equivariantly on the space level, in order to 
keep track of equivariant homotopy type, we need to work with categories of operators 
DG over the category FG of finite G-sets as opposed to just categories of operators D
over finite sets F . Working equivariantly, but in fact in a specialization of our general 
categorical framework, multicategories with underlying categories of the form DG-Algps, 
where DG is a category of operators over the category FG of finite G-sets, are defined in 
Section 6. Taking DG to be the category of operators associated to a chaotic operad O, 
the prolongation multifunctor P from D-algebras to DG-algebras is also defined in that 
section.
Step 3 . Ultimately we want to get to algebras over the category of finite G-sets FG. By 
definition, the categories of operators D and DG come with projections ξ : D −→ F and 
ξG : DG −→ FG. Pulling back structure along these projections gives functors ξ∗ and ξ∗

G

that send F -algebras to D-algebras and FG-algebras to DG-algebras, and similarly for 
pseudoalgebras. Taking full advantage of the equivariant context, we construct a section 
ζG : FG −→ DG to ξG in Section 7. Pulling back along ζG gives the functor ζ∗

G. However, 
since ζG does not preserve structure as strictly as one might hope, ζ∗

G takes strict algebras 
to pseudoalgebras.
Step 4 . Since the section ζG lands us in pseudoalgebras, our next step is to strictify back 
to algebras. As we explain in Section 8, St is a specialization of a general strictification 
functor due to Power and Lack [42,20] that rectifies the loss of strictness and lands 
us in the multicategory associated to the symmetric monoidal 2-category FG-Alg of 
strict FG-algebras in categories internal to G-spaces and strict maps between them. 
Specializing general theory developed in [15], we explain in Section 8.2 how ζG extends 
to a multifunctor.
Step 5 . Lastly, to move from categorical to space level input, we apply the standard 
classifying space functor B levelwise. We treat the resulting functor in Section 9, where 
we have to take special care in the treatment of nondegenerate basepoints for the final 
passage to the spectrum level construction.

We use this sequence of composite multifunctors to complete the proof of Theorem A
in Section 9, and we combine our results here with results of [39] and [13] to prove 
Theorem B in Section 10.

All of the multifunctors in (1.2) are symmetric except St and SG. We could equally 
well have used the slightly more elaborate but equivalent choice for SG constructed in 
[14], which is symmetric. However, although ζ∗

G is itself symmetric, loss of strict structure 
along it engenders the loss of symmetry of St, as we shall explain in Section 8.3.

Remark 1.3. We alert the reader to an alternative route to Theorems A and B that 
was found at the same time as the one presented here. It will be presented in [28]. 
It is illuminating, but it is more categorically intensive since it focuses on 2-monads, 
which we have avoided here despite this being a paper that is intrinsically all about 
them. We will see in [28] that the k-ary morphisms in our operadic multicategories are 
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the pseudoalgebras over a 2-monad Mk and that the Mk form a graded comonoid of 
2-monads. Such structure also appears in other multicategorical contexts.

The alternative route uses a 2-monadic reinterpretation and generalization of the 
vertical arrows in (1.2), but it replaces the horizontal composite St ◦ ζ∗

G by a multifunc-
tor whose underlying map of 2-categories is the composite of Power-Lack strictification 
St: DG-Algps −→ DG-Alg and a derived variant of the left adjoint ξG

∗ : DG-Alg −→
FG-Alg to the forgetful functor ξ∗

G : FG-Alg −→ DG-Alg. The section ζ∗
G : DG-Alg −→

FG-PsAlg is a categorical shortcut that avoids use of ξG
∗ , whose homotopical behav-

ior is problematic. The alternative route avoids any use of pseudoalgebras over F or 
FG, but we again lose symmetry, now due to the passage from ξG

∗ to a homotopically 
well-behaved derived variant. Conceivably, a more sophisticated derived variant might 
circumvent this.
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2. Preliminaries on operads and multicategories

We begin here by introducing our categorical framework. We also recall the notions 
of operads, their algebras, and pseudomorphisms between those. Finally, we recall the 
notion of a multicategory.

Notation 2.1. Throughout the document, we will denote pseudomorphisms of various 
types (for example, see Definition 2.13 or Definition 4.5) by arrows .

2.1. V-categories

The categorical framework we begin with is the same as the one explained in more 
detail in [15, § 1], hence we shall be brief.

Assumption 2.2. We let V be a cartesian closed, bicomplete2 category.

2 This means that the category has all (small) limits and colimits.
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The examples of primary interest are V = U or V = GU , where U is the category of 
(compactly generated weak Hausdorff) spaces and GU is the category of G-spaces and 
G-maps for a finite group G. The reader focused on topology is free to read V as U , but 
nothing before Section 7 (or after Section 10) would change in any way. We defer further 
discussion of the equivariant context to Section 6.

Notation 2.3. We let Cat(V) denote the 2-category of categories, functors, and natural 
transformations internal to V. We will refer to these as V-categories, V-functors, and 
V-transformations.3

Thus any V-category C consists of objects ObC and MorC in V, and source, target, 
identity, and composition structure maps, which are all required to be morphisms in V. 
For C and D in Cat(V), a V-functor C −→ D is given by morphisms ObC −→ ObD
and MorC −→ MorD in V that are suitably compatible with the internal category struc-
ture. A V-transformation α between V-functors F1, F2 : C ⇒ D is given by a morphism 
α : ObC −→ MorD in V that makes the naturality diagrams commute. See [15, § 1.1]
for more detail.

Since V is complete, so is Cat(V).

Assumption 2.4. We assume that Cat(V) is moreover cocomplete.

This assumption holds if either V is locally presentable or if V = U [49, (3.24) and 
(3.25)]. For similar reasons, it is also true for V = GU .

Remark 2.5. We note that Cat(V) is a cartesian closed 2-category since V is assumed 
to be cartesian closed [18, Lemma B.2.3.15]. This implies in particular that it is a Cat-
enriched symmetric monoidal category.4

Definition 2.6. We say that a V-category C is chaotic, or indiscrete, if the source and 

target maps yield an isomorphism MorC 
(S,T )−−−→ ObC ×ObC. Thus, when V is the category 

of sets, there is a unique morphism between any two objects.

Chaotic V-categories and their properties are discussed in detail in [15, §1.2].

3 While Cat(V) is standard notation, our terminology for internal categories, functors, and natural trans-
formations is not; the terms we use are usually reserved for enriched categories rather than internal. Our 
choice was made for the sake of readability.

4 A Cat-enriched symmetric monoidal category is a special case of a symmetric monoidal bicategory 
(see [16]). In the latter all the bicategorical structure is weak (given by bicategories, pseudofunctors, and 
pseudonatural equivalences), and in addition, the axioms for the associators, the symmetry, and the unitors 
are satisfied up to 2-dimensional cells which in turn must satisfy certain axioms. In contrast, in the former 
the bicategorical structure is strict (given by 2-categories, 2-functors, and 2-natural isomorphisms), and the 
axioms on the associators, symmetry and unitors are satisfied strictly.
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2.2. Based V-categories

Let ∗ denote the terminal object of V. A basepoint of an object V of V is a map 
∗ −→ V in V. Write V∗ for the category of based objects of V and based maps. Let ∗
also denote the V-category whose object and morphism objects are both given by the 
object ∗ of V.

Definition 2.7. A based V-category, or V∗-category, is a category internal to V∗. Equiva-
lently, it is a category C internal to V equipped with a V-functor ∗ −→ C. Its structure 
maps source, target, identity, and composition must be in V∗. There are correspond-
ing notions of based functors, called V∗-functors, namely V-functors compatible with 
basepoints, and based V-transformations, called V∗-transformations, whose component 
morphisms ObC −→ MorD are based. As noted in [15, Remark 1.6], the resulting 2-
category, here denoted Cat(V∗), can be identified with Cat(V)∗.

Remark 2.8. For a V-category or V∗-category C, an object of C will mean a functor ∗ −→ C

or, equivalently, a morphism ∗ −→ ObC in V. We warn the reader that we are using the 
term “object” in a technical sense. For example, when V is the category of G-spaces, an 
object is a G-fixed point of the G-space ObC, hence C may have no objects.

We can form the wedge and smash product of based V-categories A and B via the 
pushout diagrams

∗ A

B A ∨ B

and A ∨ B A × B

∗ A ∧ B

just as for spaces. Since the objects functor Ob : Cat(V) −→ V has both a left and a 
right adjoint and therefore preserves limits and colimits, it follows that

Ob(A ∧ B) ∼= Ob(A) ∧ Ob(B) (2.9)

for V∗-categories A and B.
By the universal property of the smash product, a V∗-functor A ∧B −→ C corresponds 

to a V-functor A ×B −→ C whose restriction to ∗ ×B and A ×∗ is the constant functor at 
the basepoint of C. This will allow us to define maps from smash products by specifying 
basepoint conditions on V-functors defined on products.

Similarly, a V∗-transformation

A ∧ B

F

G

ϕ C



12 B.J. Guillou et al. / Advances in Mathematics 414 (2023) 108865
corresponds to a V-transformation of functors defined on A × B whose restriction to 
A × ∗ and ∗ × B is the identity.

Remark 2.10. Our assumptions further imply that the pushout is a Cat(V)-enriched 
colimit [19, §3.8], and hence a 2-categorical colimit. This means that the smash product 
extends to V∗-functors and V∗-transformations, giving rise to a 2-functor

∧ : Cat(V∗) × Cat(V∗) −→ Cat(V∗).

This 2-functor gives Cat(V∗) the structure of a Cat-enriched symmetric monoidal cat-
egory.

Remark 2.11. Our standing assumptions on V imply that Cat(V∗) is furthermore closed 
symmetric monoidal with internal hom adjoint to ∧ (see [9, Lemma 4.20], [43, Construc-
tion 3.3.14]).5

We will use the symmetric monoidal structure to enrich categories over Cat(V∗) start-
ing in Section 4.

In our applications, categories often have disjoint base objects, and we write A+ for 
the coproduct (disjoint union in the relevant examples) of ∗ with an unbased V-category 
A. Then

A+ ∧ B+ ∼= (A × B)+

(see [43, Lemma 3.3.16]).
Although × and ∧ are not strictly associative, we omit parenthesization and view 

iterated instances of these operations as parenthetisized from left to right.

2.3. Operads in Cat(V)

We will work throughout with a reduced operad O in Cat(V), reduced meaning that 
O(0) is the trivial category ∗. We will often assume that O is chaotic, meaning that each 
V-category O(n) is chaotic. We will use the notation

γ : O(k) × O(j1) × · · · × O(jk) −→ O(j1 + · · · + jk)

for the operad structure V-functors and 1 : ∗ −→ O(1) for the unit object in O(1).

Definition 2.12. An O-algebra is an object A in Cat(V) equipped with action V-functors

θ(n) : O(n) × An −→ A

5 The associativity of ∧ is not formal from the universal property of the pushout and requires Cat(V) to 
be closed.
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that are appropriately Σn-equivariant, unital, and associative, as in [29]. Since O is 
assumed to be reduced, the functor θ(0) : ∗ −→ A specifies a basepoint 0 = 0A ∈ A.

We will be using non-strict maps between O-algebras, called O-pseudomorphisms. 
The full definitions of these and of O-transformations between them are given in [5] and, 
with some minor emendations, in [15, Definitions 2.23 and 2.24]. We shall not repeat 
details, but we remind the reader of the key features.

Definition 2.13. Let A and B be O-algebras. An O-pseudomorphism A B is a V-
functor F : A −→ B such that F (0A) = 0B, together with invertible V-transformations 
∂n

O(n) × An

θ(n)

id×F n

∂n

O(n) × Bn

θ(n)

A
F

B

for n ≥ 0 such that ∂0 and the restriction of ∂1 along 1 × id : A ∼= ∗ × A −→ O(1) × A
are identity V-transformations and such that the appropriate equality of associativity 
pasting diagrams relating the ∂n to the structure maps of the operad holds (see [15, 
Definition 2.23]). It is a (strict) O-map if the ∂n are identity V-transformations.

Definition 2.14. An O-transformation between O-pseudomorphisms E and F is a V-
transformation ω : E =⇒ F such that the equality

O(n) × An

θ(n)

id×En

∂n

O(n) × Bn

θ(n)

A
E

F

ω B

=

O(n) × An

θ(n)

id×En

id×F n

id×ωn

∂n

O(n) × Bn

θ(n)

A
F

B

holds for all n. We do not require the ω to be invertible.

Notation 2.15. We will work throughout with the 2-category O-Algps of O-algebras, 
O-pseudomorphisms, and O-transformations.

There is a more general definition of O-pseudoalgebras, as defined in [5,15], but we 
choose not to introduce it since it is not needed for the purposes of this paper.
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2.4. Review of multicategories

We shall not repeat the complete definition of a multicategory given in such sources 
as [8,24,53]. A multicategory M has a class Ob(M) of objects and for each sequence 
a = {a1, . . . , ak} of objects, where k ≥ 0, and each object b, it has a set of k-ary 
morphisms

Mk(a; b) = Mk(a1, . . . , ak; b).

A quintessential example is that of k-linear maps in the category of vector spaces, which 
is why k-ary morphisms in arbitrary multicategories are sometimes called k-linear maps, 
even when there is no linear structure in sight.

Throughout, we understand multicategories to be symmetric, so that the symmetric 
group Σk acts from the right on the collection of k-ary morphisms via maps

σ : Mk(a1, . . . , ak; b) −→ Mk(aσ(1), . . . , aσ(k); b).

For each object a there is an identity 1-ary morphism a −→ a and there are composition 
functions

γ : Mk(b; c) × Mj1(a1; b1) × · · · × Mjk
(ak; bk) −→ Mj({a1, . . . , ak}; c), (2.16)

where b is a k-tuple, aq for 1 ≤ q ≤ k is a jq-tuple, and, with j = j1+· · ·+jk, {a1, . . . , ak}
is the j-tuple {a1,1, . . . , a1,j1 , . . . , ak,1, . . . , ak,jk

}.
The γ are subject to direct generalizations of the associativity, identity, and equivari-

ance properties required of an operad in [29]. These properties are spelled out diagram-
matically in [8, Definition 2.1] and, with exceptional care, in [53, Chapter 11].6

All of our multicategories are enriched in Cat, but since that is only used peripherally 
we will not go into detail.7 A multicategory with one object is then the same thing as an 
operad in Cat. Multicategories are often called colored operads, with objects thought of 
as colors. The objects and 1-ary morphisms of a multicategory M specify its underlying 
category, which is often also denoted M by abuse of notation.

Remark 2.17. There is a canonical8 multicategory Mult(C) associated to a symmetric 
monoidal category (C, ⊗). Its objects are those of C, and

Multk(C)(a1, . . . , ak; b) = C(a1 ⊗ · · · ⊗ ak, b).

6 The colored operads in [53] are symmetric multicategories with a set of objects, called colors, but the 
generalization to a class of objects is evident.

7 In fact, they are enriched in Cat(V) when V is closed.
8 There is a slight subtlety here. It has been said that there is a choice of such multicategories depending 

on the chosen order of associating variables. With an unbiased operadic definition of a symmetric monoidal 
category, the specification of Mult(C) is unambiguous.
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It has the evident symmetric group actions and units. In schematic elementwise nota-
tion, using the notations of (2.16), the composite of a k-ary morphism F : b −→ c with 
(E1, . . . , Ek), where Er : ar −→ br is a jr-ary morphism for 1 ≤ r ≤ k, is the composite

⊗
1≤r≤k

⊗
1≤s≤jr

ar,s

⊗rEr ⊗
1≤r≤k

br
F

c. (2.18)

This generalizes the example in vector spaces where k-linear maps correspond to maps 
out of the tensor product.

A morphism F : M −→ N of multicategories, called a multifunctor, is a function 
F : Ob(M) −→ Ob(N) together with functions

F : Mk(a1, . . . , ak; b) −→ Nk(Fa1, . . . ,Fak;Fb)

for all objects ai and b such that F(ida) = idF(a) and F preserves composition. If these 
functions are Σk-equivariant, we say that F is a symmetric multifunctor. A lax mon-
oidal (resp. lax symmetric monoidal) functor between symmetric monoidal categories 
gives rise to a multifunctor (resp. symmetric multifunctor) between the corresponsing 
multicategories.

Given a multicategory M, one can define the notion of monoid in M (see [24, Exam-
ple 2.1.11] or [53, §14.2]). This can be done using “parameter multicategories”, so that a 
monoid in M is given by a multifunctor out of the appropriate parameter multicategory 
into M. One can similarly define the notion of module over a monoid (see [8, Defini-
tion 2.5]). These notions agree with the usual ones when dealing with the multicategory 
associated to a symmetric monoidal category as in Remark 2.17. A multifunctor preserves 
associative and unital algebraic structures, and a symmetric multifunctor moreover pre-
serves commutative ones.

3. The multicategory of O-algebras

The goal of this section is to establish a multiplicative structure on the category 
O-Algps of algebras over an operad. After some initial setup in Section 3.1, we introduce 
the key concept of a pseudo-commutative operad in Section 3.2, following Corner and 
Gurski [5]. We then establish a multicategory Mult(O) for any pseudo-commutative 
operad O in Section 3.3, following Hyland and Power [17], and describe some variants in 
Section 3.4. Finally, we show that the free O-algebra functor extends to a multifunctor 
in Section 3.5.
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3.1. The intrinsic pairing of an operad

Surprisingly, the following elementary structure implicit in the definition of an operad 
is central to our work. It is present in any reduced operad O in any cartesian monoidal 
category W.

Definition 3.1. The intrinsic pairing of an operad O is given by the maps

� : O(j) × O(k) −→ O(jk)

defined as the composites

O(j) × O(k)
id×Δj

O(j) × O(k)j
γ

O(jk),

where γ is the structure map of the operad and j ≥ 0 and k ≥ 0.

Thinking of γ as specifying additive structure, the “product” � is taking seriously 
that jk = k + · · ·+k. Thus the intrinsic pairing is an operadic manifestation of the grade 
school lesson that multiplication is iterated addition.

Remark 3.2. The intrinsic pairing is not a pairing of operads in the sense originally de-
fined in [32, 1.4]. For many operads occurring naturally in topology, such as the little 
cubes or Steiner operads, the intrinsic pairing appears to be of no real interest. How-
ever, as we shall see in Section 3.3, it appears naturally when trying to construct a 
multicategory of algebras over an operad.

Proposition 3.3. Let O be an operad in a cartesian monoidal category W. Then the 
object O =

∐
j≥0 O(j) in W is a monoid with product operation � and unit the unit 

object 1 ∈ O(1). It has a zero object ∗ ∈ O(0).

Proof. The unit properties of an operad are γ(1; x) = x and γ(x; 1j) = x for x ∈ O(j). 
These say that 1 is a unit for O. The associativity of the pairing is an easy diagram 
chase from the following special case of the associativity diagram for γ in the definition 
of an operad.

O(j) × O(k)j × O(
)jk
γ×id

∼=

O(jk) × O(
)jk

γ

O(jk
)

O(j) × (O(k) × O(
)k)j

id×γj
O(j) × O(k
)j

γ
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Since O is reduced, ∗ ∈ O(0) is a zero element. �
Consider the category Σ of sets n = {1, . . . , n} and isomorphisms. This is a full 

subcategory of the category Fin∼= of all finite sets and isomorphisms. It is bipermutative 
under disjoint union and cartesian product. To be precise, the two monoidal structures, ⊕
and ⊗, are given by sum and product at the level of objects. To apply ⊕ to permutations 
σ ∈ Σj and τ ∈ Σk and regard the result as a permutation of the j + k letters j + k =
{1, . . . , j + k}, we are implicitly applying the evident isomorphism

ζj,k : j + k −→ j � k

in Fin∼=, then taking the disjoint union of σ and τ , and then applying ζ−1
j,k . That is, σ ⊕τ

is defined by the commutative diagram in Fin∼=

j + k
σ⊕τ

ζj,k

j + k

j � k
σ
τ

j � k.

ζ−1
j,k

(3.4)

Similarly, define

λ = λj,k : jk −→ j × k (3.5)

in Fin∼= to be the order-preserving bijection, where j × k is ordered lexicographically. 
Then, μ ⊗ ν is defined by the commutative diagram in Fin∼=

jk
μ⊗ν

λj,k

jk

j × k
μ×ν

j × k.

λ−1
j,k

(3.6)

Recall that the associative operad Assoc is given by Assoc(n) = Σn. Then ⊗ gives 
the intrinsic pairing of Definition 3.1 on Assoc. Moreover, if we think of the groups Σj

as categories with a single object and thus think of Assoc as an operad in Cat, then 
Assoc = Σ and the monoidal structure of Proposition 3.3 is given by ⊗.

In particular, ej ⊗ ek = ejk. The product ⊗ is a group homomorphism and so satisfies 
μσ ⊗ ντ = (μ ⊗ ν)(σ ⊗ τ). Clearly e1 ⊗ ν = ν and μ ⊗ e1 = μ.

Remark 3.7. The equivariance formulas for an operad O imply that the pairing on Σ
and the pairing on O are compatible in the sense that for all σ ∈ Σj and τ ∈ Σk the 
following diagram commutes
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O(j) × O(k)
�

σ×τ

O(jk)

σ⊗τ

O(j) × O(k) � O(jk),

where the elements σ, τ , and σ ⊗ τ are acting via the prescribed actions on the objects 
of an operad.

Definition 3.8. Let τj,k ∈ Σjk be the permutation specified by the composite

jk
λj,k

j × k
t

k × j
λ−1

k,j

kj = jk

It reorders the set j × k from lexicographic ordering to reverse lexicographic ordering. 
Clearly τ−1

j,k = τk,j and τ1,n = en = τn,1.

The τi,j are the symmetry isomorphisms for ⊗ in Σ. More precisely, for μ ∈ Σj and 
ν ∈ Σk, we have the commutative diagram (in Fin∼=)

jk

τj,k

λj,k

j × k
μ×ν

t

j × k

t

λ−1
jk

jk

τj,k

kj
λk,j

k × j
ν×μ

k × j
λ−1

k,j

kj.

That is,

τj,k(μ ⊗ ν) = (ν ⊗ μ)τj,k or equivalently (μ ⊗ ν)τk,j = τk,j(ν ⊗ μ). (3.9)

3.2. Pseudo-commutative operads

We recall the permutativity operad P from [13, Definition 4.1], also known as the 
Barrat-Eccles operad. For every natural number n, the category P(n) is defined as the 
contractible groupoid EΣn with objects the elements of Σn and with a unique morphism 
between any two objects, i.e. it is a chaotic category as in Definition 2.6. As such, we 
say that the operad P in Cat is the chaotic categorification of the associativity operad 
Assoc whose values are the sets Assoc(n) = Σn. Algebras over P are in one-to-one 
correspondence with permutative categories [30].
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Note that equation (3.9) implies that the diagram

P(j) × P(k)

t

�
P(jk)

τk,j

P(k) × P(j) � P(kj)

does not in general commute. Rather, since P(kj) is chaotic, there exists a natural 
isomorphism αj,k : τk,j ◦ � =⇒ � ◦ t. This is an example of a pseudo-commutative 
operad, as defined by Corner and Gurski [5, §4].

We summarize their definition here. As usual, when defining categorical structures, 
coherence axioms are essential for completeness and rigor. However, they can be lengthy 
and may not make for enjoyable reading. To avoid disrupting the flow of exposition, we 
generally defer their precise formulation to Section 11. In particular, we give the axioms 
needed to complete the following definition in Section 11.1.9

Definition 3.10. Let O be an operad in Cat(V). A pseudo-commutative structure on an 
operad O is a collection of invertible V-transformations, one for each (j, k), of the form

O(j) × O(k)
�

t αj,k

O(jk)

τk,j

O(k) × O(j) � O(kj).

(3.11)

The αj,k must satisfy coherence axioms for identity, symmetry, equivariance, and op-
eradic compatibility that are specified and discussed in Section 11.1.

If O is chaotic, such transformations α always exist and all conditions are automati-
cally satisfied [15, §1.2], thus giving the following result.

Lemma 3.12. ([5, Corollary 4.9]) A chaotic operad has a unique pseudo-commutative 
structure.

We will often write “pseudo-commutative operad” when we really mean “operad 
equipped with a pseudo-commutative structure”, but there is no ambiguity when O
is chaotic, and we later prefer to specialize to chaotic operads.

9 The original definition of [5] requires some minor corrections that are given there.
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3.3. The multicategory of O-algebras

Hyland and Power [17] show that there is a multicategory of algebras over a pseudo-
commutative monad, and Corner and Gurski show in [5] that the monad corresponding to 
a pseudo-commutative operad is pseudo-commutative in the sense of [17]. We follow these 
sources to describe the multicategory of algebras over a pseudo-commutative operad.

For the pairings of O-algebras we want to consider maps F : A ×B −→ C that preserve 
the algebra structure on each variable up to canonical isomorphism. For example, if +
denotes a binary operation in O, we need to make sense of a distributivity law of the 
general form

F (a, b1 + b2) ∼= F (a, b1) + F (a, b2).

Diagonal maps enter since a appears once on the left and twice on the right. The 
definition contains a number of schematic coherence diagrams to the effect that whenever 
two natural transformations have a chance to be equal they are equal. We shall explain 
the diagrams after giving the definition. The following maps si play a key role.10

Notation 3.13. Let Ai, 1 ≤ i ≤ k, be V-categories and let n ≥ 0. Define si to be the 
composite V-functor displayed in the diagram

A1 × · · · × Ai−1 × O(n) × An
i × Ai+1 × · · · × Ak

si

t ∼=

O(n) × (A1 × · · · × Ak)n

O(n) × A1 × · · · × Ai−1 × An
i × Ai+1 × · · · × Ak.

id×Δ
O(n) × An

1 × · · · × An
k

∼=

Here t is the evident transposition, Δ is obtained by applying the diagonal maps Aj −→
An

j for j �= i, and the right hand isomorphism is obtained by transposing from a product 
of nth powers to an nth power of a product.

Definition 3.14. Let O be a (reduced) pseudo-commutative operad in Cat(V). We define 
the (symmetric) multicategory Mult(O) of O-algebras and pseudomorphisms. Its under-
lying 2-category is O-Algps, so its objects, morphisms, and 2-cells are the O-algebras, 
the O-pseudomorphisms (Definition 2.13), and the O-transformations (Definition 2.14). 
Recall that since O is reduced, all O-algebras are assigned basepoints. Its 0-ary mor-
phisms are (unbased) maps ∗ −→ B, that is, they correspond to a choice of object in B. 
For k > 1, its k-ary morphisms (A1, . . . , Ak) −→ B are the tuples (F, δi), where

10 The elementary maps si correspond to the “strengths” ti in Hyland and Power [17, p. 156]; in their 
categorical treatment, the existence of ti with suitable properties is an axiom on a given 2-monad, although 
they do make the strengths explicit in the case of permutative categories.
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(a) F : A1 ∧ · · · ∧ Ak −→ B is a V∗-functor, which we may equally well express as a 
V-functor F : A1 × · · · × Ak −→ B such that F (a1, . . . , ak) is equal to 0B if any 
object ai is 0Ai

and F (f1, . . . , fk) is id0B if any fi is id0Ai
, and

(b) the δi, 1 ≤ i ≤ k, are sequences of invertible V-transformations δi(n) as indicated in 
the following diagram.

O(n) × (A1 × · · · × Ak)n
id×F n

δi(n)

O(n) × Bn

θ(n)A1 × · · · × O(n) × An
i × · · · × Ak

si

id×θ(n)×id

A1 × · · · × Ak
F

B

(3.15)

The distributivity isomorphisms δi(n) must satisfy coherence axioms that are specified 
and discussed in Section 11.2.

For σ ∈ Σk, the right action of Σk on the k-ary morphisms of Mult(O) sends 
(F, δi) : (A1, . . . , Ak) −→ B to the composite

Aσ(1) × · · · × Aσ(k)
σ A1 × · · · × Ak

F B, (3.16)

where σ denotes the reordering of terms given by σ(aσ(1), . . . , aσ(k)) = (a1, . . . , ak). 
Permuting the indices, the δi for Fσ are inherited from the δi for F . Precisely, δσ−1(i)(n)
for Fσ is induced from δi(n) for F by pasting the defining diagram (3.15) to the right of 
the following commutative diagram. To avoid confusion, we point out that in the middle 
left term of the diagram, the factor O(n) × An

i appears in the σ−1(i)th position. The 
middle horizontal map moves it to position i by the permutation σ, as i = σσ−1(i). The 
map θ(n) : O(n) × An

i → Ai is applied in the σ−1(i)th slot on the left hand side and in 
the ith slot on the right hand side.

O(n) × (Aσ(1) × · · · × Aσ(k))n
id×σn

O(n) × (A1 × · · · × Ak)n

Aσ(1) × · · · × (O(n) × An
i ) × · · · × Aσ(k)

sσ−1(i)

id×θ(n)×id

σ A1 × · · · × (O(n) × An
i ) × · · · × Ak

si

id×θ(n)×id

Aσ(1) × · · · × Aσ(k) σ
A1 × · · · × Ak

Note that (Fσ)τ = F (στ), both mapping Aστ(1) × · · · × Aστ(k) to B.
The identity functor of A gives the unit element idA ∈ Mult(O)(A; A). With the 

notation for sequences from Section 2.4, the composition multiproduct
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Mult(O)(B; C) ×
∏k

q=1 Mult(O)(Aq; Bq)
γ

Mult(O)({A1, . . . Ak}; C)

is given by

γ(F ; E1, . . . , Ek) = F ◦ (E1 ∧ · · · ∧ Ek).

We identify {(q, r)}, 1 ≤ q ≤ k and 1 ≤ r ≤ jq, with {1 ≤ i ≤ j1 + · · · jk} by letting 
(q, r) correspond to i = j1 + · · · + jq−1 + r. Then δq,r(n) for the multicomposition is 
given by pasting the diagrams for δF

q and δ
Eq
r . We show this explicitly in the case of 

(q, r) = (1, 1). The general case is shown similarly. We use the notation Âq for the 
product Aq,1 × · · · × Aq,jq

.

O(n) ×
(

Â1× · · · × Âk

)n id×(E1×···×Ek)n

O(n) × (B1 × · · · × Bk)n
id×F n

O(n) × Cn

θ(n)

O(n) × Â1
n

× Â2× · · · × Âk

s1

id×En
1 ×E2×···×Ek

δ
E1
1 (n)×id

O(n) × Bn
1 × B2 × · · · × Bk

θ(n)×id

s1

δF
1 (n)O(n) × An

1,1 × A1,2 × · · · × Ak,jk

s1×id

θ(n)×id

Â1× · · · × Âk
E1×···×Ek

B1 × · · · × Bk
F

C

(3.17)
One can check that the δ’s satisfy the coherence axioms. In addition, one checks that 

this composition is associative and unital and respects equivariance by checking the 
agreement at the level of underlying functors and the corresponding δ’s. For example, 
the δ’s corresponding to a triple composite are given by the diagram that is given by 
pasting the three appropriate instances of δ (cf. [17, Proposition 18]). Further verifications 
are needed to show that this all really does specify a multicategory. For example, the 
symmetry axiom (ii) in Section 11.1 is used in the verification that Fσ satisfies the 
axioms when F does. However, we omit further details. We have translated the axioms 
of Hyland and Power to our operadic setting. Their [17, Proposition 18] applies to show 
that Mult(O) is a multicategory enriched in the category Cat of small categories. We 
learned the central role played by pseudo-commutativity from them.

3.4. Variants of Mult(O) and comparisons

We remark that our definition of Mult(O) applies almost verbatim to define a mul-
ticategory of O-pseudoalgebras as defined in [5,15]. Pseudoalgebras over an operad are 
defined by relaxing the coherence diagrams for the operadic multiplication with the 
structure map of the algebra to only commute up to coherent natural isomorphisms. 
The only axioms in the definition of O-pseudomorphisms (listed in Section 11.2) that 
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would differ slightly for O-pseudoalgebras as opposed to O-algebras are (iv) and (v). In 
these conditions it wouldn’t make sense to ask for equality of 2-cells as written, since the 
maps on the boundary of the 2-cells would not be equal, and instead one would need to 
paste them with the coherence isomorphisms from the definition of O-pseudoalgebras.

When V = U and O is the permutativity operad P, the multicategory Mult(P) is 
not quite the same as the multicategory of symmetric strict monoidal categories defined 
by Hyland and Power [17] and the multicategory of permutative categories defined by 
Elmendorf and Mandell [8]. The difference is that we have taken our distributivity 2-
cells δi to be invertible. Neither [17] nor [8] do so, and we have drawn our arrows in the 
direction used in [17], which is opposite to the choice in [8]. This difference in the choice 
of direction of the 2-cells δi would matter if we relaxed the isomorphism requirement. For 
example, the strengths si of Notation 3.13 would no longer be relevant with the opposite 
choice, so the definition in [8] would no longer be a specialization of [17] and would not 
be compatible with the conventions of Corner and Gurski [5] or with LaPlaza’s classical 
coherence theory for symmetric bimonoidal categories [21,22]. It would therefore lead to 
some erroneous conclusions, as explained in [34, Scholium 12.3].

The work of [8] used the classical biased definition of permutative categories rather 
than its unbiased operadic equivalent, and that simplifies details when comparing op-
eradic algebraic structures to their classical biased equivalents. With our unbiased op-
eradic reformulation, the equivariant generalization is immediate. For example, we can 
take O to be the categorical equivariant Barratt-Eccles operad PG of [13] to obtain the 
multicategory Mult(PG) of genuine permutative G-categories; genuine permutative and 
symmetric monoidal G-categories are defined to be PG-algebras and PG-pseudoalgebras, 
respectively, in [13,15]. Our work also applies to the normed symmetric monoidal cate-
gories of Rubin [45], which are defined as algebras over an operad, but which also admit 
a biased definition.

3.5. The free O-algebra multifunctor O+

As explained in [35, § 4], a (reduced) operad O in a category W has two associated 
monads, O defined on the ground category W∗ and O+ defined on the ground category 
W. Their categories of algebras are isomorphic. The first takes the basepoint as given 
and requires the basepoint built in by the operad action to agree with the given one, 
and it is defined using basepoint identifications. The second just builds in the basepoint 
by the action. The first is the one central to topology and is in principle more general. 
For an unbased object X ∈ W,

O+X = O(X+) =
∐
j≥0

O(j) ×Σj
Xj . (3.18)

This is a based object with basepoint given by the inclusion of ∗ = O(0) × X0.
Starting on the category level with W = Cat(V), we prefer to avoid basepoint iden-

tifications and we therefore focus on O+. When V is U or GU , applying the classifying 
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space functor gives an operad BO, and we denote the associated monad by Otop
+ . If O

is Σ-free, in the sense that Σj acts freely on O(j) for each j, we then have the basic 
commutation relation

B(O+C) ∼= Otop
+ (BC) (3.19)

for C ∈ Cat(V), and that is essential to our applications.
Thus fix a chaotic operad O in Cat(V) in this section.

Definition 3.20. For V-categories C and D, define a V∗-functor

ω : O+C ∧ O+D −→ O+(C × D)

by passage to orbits from the maps

O(j) × Cj × O(k) × Dk t O(j) × O(k) × Cj × Dk
�×�

O(jk) × (C × D)jk. (3.21)

The map 
 here is defined using the lexicographic ordering λ of (3.5); explicitly, it is 
given by

(c1, . . . , cj), (d1, . . . , dk) �→ (c1, d1), . . . (c1, dk), . . . . . . , (cj , d1), . . . , (cj , dk).

Since O is reduced, the maps (3.21) factor through the smash product and, using the 
equivariance axiom for operad composition, they also pass to orbits with respect to 
symmetric group actions; therefore they induce a well-defined map ω.

Proposition 3.22. A pseudo-commutativity structure on O induces an invertible V∗-
transformation

O+C ∧ O+D
ω

t α

O+(C × D)

O+(t)

O+D ∧ O+C ω
O+(D × C).

(3.23)

Proof. By axiom (iii) from Definition 3.10, the transformations αj,k descend to orbits. It 
is straightforward to check that they define the claimed invertible V∗-transformation. �

We now extend ω to a binary morphism in Mult(O). We need to define the trans-
formations δi(n) for i = 1, 2. Careful inspection shows that we can take δ1(n) to be the 
identity transformation. That is, we claim that the following diagram commutes.
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O(n) × (O+C × O+D)n
id×ωn

O(n) × O+(C × D)n

θ(n)O(n) × (O+C)n × O+D

s1

θ(n)×id

O+C × O+D ω
O+(C × D)

In particular, it is important to notice that the variables in C and D are arranged 
lexicographically under either composite. The variables in the operad agree under the 
composite by iterated application of the associativity diagram for the structure maps γ, 
as in Proposition 3.3.

We define δ2(n) as the following pasting diagram

O(n) × (O+C × O+D)n
id×ωn

id×tn

id×αn

O(n) × O+(C × D)n

θ(n)

id×O+(t)n

O(n) × (O+D × O+C)n
id×ωn

O(n) × O+(D × C)n

θ(n)O+C × O(n) × (O+D)n

s2

id×θ(n)

t O(n) × (O+D)n × O+C

s1

θ(n)×id

O+D × O+C
ω

t
α

O+(D × C)
O+(t)

O+C × O+D ω
O+(C × D),

(3.24)

where the inner pentagon is δ1 = id.

Proposition 3.25. The axioms on α imply that (ω, δ1 = id, δ2) satisfies the conditions for 
a 2-ary morphism in Mult(O) given in Section 11.2.

Proof. The most difficult axiom to verify is (v). The operadic compatibility condition 
on α (Definition 3.10 (iv)) is central to this verification. We leave the details to the 
reader. �

For ease of notation we will denote this morphism by ω. The following result follows 
easily from the definition of ω.

Lemma 3.26. The pairing ω is natural, in the sense that for all V-functors F : A −→ C, 
H : B −→ D, the diagram
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(O+A,O+B) ω

(O+F,O+H)

O+(A × B)

O+(F ×H)

(O+C,O+D)
ω

O+(C × D)

in Mult(O) commutes.

Lemma 3.27. Given V-categories C, D, and E, the following diagram in Mult(O) com-
mutes.

(O+C,O+D,O+E)
(ω,id)

(id,ω)

(O+(C × D),O+E)

ω

(O+C,O+(D × E))
ω

O+(C × (D × E)) ∼=
O+((C × D) × E)

Proof. Since the intrinsic pairing � is associative, the diagram

O+C ∧ (O+D ∧ O+E)

id∧ω

∼= (O+C ∧ O+D) ∧ O+E
ω∧id

O+(C × D) ∧ O+E

ω

O+C ∧ O+(D × E)
ω

O+(C × (D × E)) ∼=
O+((C × D) × E)

commutes; the compatibility of the δi follows from the conditions on α. �
Thus, given V-categories C1, . . . , Ck, we have a corresponding k-ary morphism

ωk : (O+C1, . . . ,O+Ck) −→ O+(C1 × · · · × Ck)

in Mult(O), defined by using ω iteratively. Since this is a composition in Mult(O), the 
δi for ωk are obtained from those for ω using the pasting (3.17). We take ω1 = id and 
take ω0 to be the choice of object (1, ∗) ∈ O(1) × ∗ ⊂ O+(∗).

Theorem 3.28. The functor O+ from V-categories to O-algebras extends to a multifunctor

O+ : Mult(Cat(V)) −→ Mult(O).

We do not claim that the multifunctor we construct is symmetric, and we shall show 
that it is not in Remark 3.29.

Proof. In Mult(Cat(V)), a k-ary morphism is just a V-functor F : C1 × · · · ×Ck −→ D. 
Its image under the multifunctor is the composite
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(O+C1, . . . ,O+Ck)
ωk

O+(C1 × · · · × Ck)
O+F

O+D.

It is clear that this assignment sends the identity of C to the identity of O+(C). The 
fact that the assignment preserves composition follows from the functoriality of O+ and 
the naturality of ω (Lemma 3.26). �
Remark 3.29. The multifunctor O+ is not symmetric. To see this, consider idC×D as a 
bilinear map in Mult(Cat(V)). On one hand, if we first hit it with the symmetry t and 
then O+, we end up with a bilinear map whose V∗-functor is given by

O+D ∧ O+C
ω

O+(D × C)
O+(t)

O+(C × D).

If, on the other hand, we first do O+ and next t, we get

O+D ∧ O+C
t

O+(C) × O+(D) ω
O+(C × D).

These maps do not agree since they differ by the two-cell α.
In the upcoming book [52], Yau introduces the notion of a pseudo symmetric Cat-

multifunctor, which strictly preserves the units and composition but only preserves the 
symmetric group action up to coherent natural isomorphisms called pseudo symmetry 
isomorphisms [52, Definition 4.1.1]. We expect that our multifunctor O+ should be an ex-
ample of a pseudo symmetric multifunctor, the coherent pseudo symmetry isomorphisms 
being given by the α’s.

4. V∗-2 categories and their algebras and pseudoalgebras

This section establishes terminology and notation that will be used frequently in 
the coming sections. Much of what we do in Section 4.1 is to describe explicitly what 
it means to do enriched category theory over the 2-category Cat(V). In Section 4.2, 
we introduce algebras and pseudoalgebras in this context, and we set ourselves up to 
discuss multiplicative structures on our categories of algebras by introducing monoidal 
structures on our enriched categories in Section 4.3.

4.1. V∗-2-categories

All of our categories of operators, which we introduce in Sections 5.1 and 6.2, are 
examples of V∗-2-categories, and we explain what those are here. To define these, we work 
in the setting of categories enriched in Cat(V) and Cat(V∗). More precisely, returning 
to Section 2, we note that Cat(V) and Cat(V∗) are symmetric monoidal Cat-enriched 
categories, with cartesian and smash product, respectively. As such, they are particular 
examples of symmetric monoidal bicategories, and we can enrich and weakly enrich over 
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them, in the sense of [10]. In this section we give a self-contained treatment of these weak 
notions of enrichment.

Definition 4.1. We refer to categories, functors, and natural transformations enriched in 
Cat(V) as V-2-categories, V-2-functors, and V-2-natural transformations, respectively. 
Similarly, we call categories, functors, and natural transformations enriched in Cat(V∗)
V∗-2-categories, V∗-2-functors, and V∗-2-natural transformations, respectively.

We briefly unpack these definitions. A V-2-category C consists of a collection of ob-
jects (0-cells) and a morphism V-category C(c, d) for each pair of objects (c, d) (giving 
objects in V of 1-cells and 2-cells). For a V∗-2-category we moreover have that each 
C(c, d) has a basepoint, and the composition factors through the smash product. If C
and D are V-2-categories, a V-2-functor F : C −→ D is given by a function F on objects 
and V-functors C(c, d) −→ D(F (c), F (d)) satisfying the evident unit and associativity 
conditions (strictly). For a V∗-2-functor we further require that the latter are V∗-functors.

Finally, if E and F are V-2-functors C −→ D, where C and D are V-2-categories, a 
V-2-natural transformation ζ : E =⇒ F consists of 1-cells11 ζc : E(c) −→ F (c), meaning 
objects of D(E(c), F (c)), such that the naturality diagrams

C(c, d) E

F

D(E(c), E(d))

(ζd)∗

D(F (c), F (d))
(ζc)∗

D(E(c), F (d))

commute for all pairs (c, d) of objects of C. The same is true for a V∗-2-natural transfor-
mation, except that the diagram above lives in Cat(V∗).

As in [39, § 1.3], there is a close relationship between V-2-categories with a zero object 
and V∗-2-categories, which we now explain. For a V-2-category C, we say that 0 in C is 
a zero object if C(c, d) ∼= ∗ when either c = 0 or d = 0. If C has a zero object, each hom 
V-category C(c, d) is based with basepoint

0c,d : ∗ ∼= C(0, d) × C(c, 0) ◦
C(c, d). (4.2)

Proposition 4.3. For C a V-2-category with zero object 0, the basepoints (4.2) give C an 
enrichment in Cat(V∗).

Proof. We only need to check that composition in C factors through the smash product. 
The associativity diagram

11 As in Remark 2.8, a 1-cell here means a V-functor ∗ −→ D(E(c), F (c)).
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C(d, e) × C(0, d) × C(c, 0)
id×◦

◦×id

C(d, e) × C(c, d)

◦

∗ ∼= C(0, e) × C(c, 0) ◦ C(c, e)

shows that composition sends C(d, e) × 0c,d to 0c,e and the symmetric argument shows 
that composition also sends 0d,e × C(c, d) to 0c,e. �

The following result, whose proof we leave to the reader, characterizes V∗-2-functors 
for V-2-categories with a zero object.

Proposition 4.4. If C and D have zero objects, then V∗-2-functors F : C −→ D correspond 
bijectively to V-2-functors F : C −→ D that are reduced, in the sense that F (0C) ∼= 0D. 
Moreover, V∗-2-natural transformations correspond bijectively to V-2-natural transfor-
mations between reduced V-2-functors (that is, there is no extra condition).

Following [10, §§ 3.5 and 3.7], we now introduce the weaker notions of V-pseudofunctor 
and V-pseudonatural transformation, together with their based variants.12

Definition 4.5. A V-pseudofunctor F : C D between V-2-categories consists of a func-
tion F on objects and V-functors

F : C(b, c) −→ D(F (b), F (c))

such that the following diagram commutes

∗
idc

idF (c)

C(c, c)

F

D(F (c), F (c)),

(4.6)

together with invertible coherence V-transformations

C(b, c) × C(a, b)

◦ ϕ

F ×F
D(F (b), F (c)) × D(F (a), F (b))

◦

C(a, c)
F

D(F (a), F (c))

(4.7)

12 In the language of [15], we are restricting to normal V-pseudofunctors.
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that are unital (ϕid,− and ϕ−,id are the identity) and associative in the sense that the rel-
evant equalities of pasting diagrams relating to triple composition hold (see for example 
[23, § 1.1] or [10, § 3.5]).

The based variant is defined similarly.

Definition 4.8. A V∗-pseudofunctor F : C D between V∗-2-categories is a V-pseudo-
functor such that

(1) the functors on morphisms are V∗-functors, with the unit diagram (4.6) replaced 
with the diagram of V∗-functors with source ∗ � ∗,13 and

(2) the transformations ϕ in (4.7) descend to V∗-transformations of V∗-functors with 
source C(b, c) ∧ C(a, b).

That is, in the diagram (4.7) for a V∗-pseudofunctor, both instances of × in the top 
row are replaced by ∧.

Definition 4.9. Let E and F be V-pseudofunctors C D , where C and D are V-2-
categories. Then a V-pseudotransformation14 ζ : E =⇒ F consists of 1-cells ζc : E(c) −→
F (c) for objects c ∈ C and invertible coherence V-transformations

C(b, c) F

E ζb,c

D(F (b), F (c))

(ζb)∗

D(E(b), E(c))
(ζc)∗

D(E(b), F (c))

(4.10)

for objects b, c ∈ C such that the component of ζc,c at idc is the identity 2-cell for all 
c ∈ C and the relevant coherence diagram expressing compatibility with composition 
commutes (see for example [23, § 1.2] or [10, § 3.7]).

Again, the definition is essentially the same in the based context.

Definition 4.11. Let E and F be V∗-pseudofunctors C D , where C and D are V∗-2-
categories. Then a V∗-pseudotransformation ζ : E =⇒ F is a V-pseudotransformation 
of the underlying V-pseudofunctors such that each ζb,c is a V∗-transformation, meaning 
that its component at 0b,c is the identity.

As in Proposition 4.4, we have the following characterization of V∗-pseudofunctors.

13 This is equivalent to requiring that the unit diagram (4.6) commutes as a diagram of underlying V-
functors.
14 This is meant as an abbreviation of V-pseudonatural transformation.



B.J. Guillou et al. / Advances in Mathematics 414 (2023) 108865 31
Proposition 4.12. If C and D have zero objects, then V∗-pseudofunctors C D corre-
spond bijectively to V-pseudofunctors C D that are

(1) reduced, in the sense that F (0C) ∼= 0D, and
(2) such that ϕ restricts to the identity on the subcategories 0b,c×C(a, b) and C(b, c) ×0a,b.

Moreover, V∗-pseudotransformations ζ : E =⇒ F correspond bijectively to V-
pseudotransformations between the underlying V-pseudofunctors (that is, there is no 
extra condition).

As in any enriched setting, we have the following construction.

Definition 4.13. If C and D are V-2-categories, their product V-2-category C × D has 
objects Ob(C) × Ob(D) and morphism V-categories

(C × D)((c, d), (c′, d′)) = C(c, c′) × D(d, d′),

with composition given by composing in C and D after reordering the terms appropri-
ately. If C and D have zero objects, so does C × D, with zero object (0, 0).

Similarly, if C and D are V∗-2-categories, we have a V∗-2-category C ∧D with objects 
Ob(C) × Ob(D) and with

(C ∧ D)((c, d), (c′, d′)) = C(c, c′) ∧ D(d, d′)

as the V∗-category of morphisms.
Given V∗-pseudofunctors E : C C′ and F : D D′ , with pseudofunctoriality con-

straints η and ϕ, respectively, we define the V∗-pseudofunctor

E ∧ F : C ∧ D C′ ∧ D′

as follows. On objects it is given by E × F . On morphism V∗-categories is given by

C(c, c′) ∧ D(d, d′) E∧F−−−→ C′(Ec, Ec′) ∧ D(Fd, Fd′).

The coherence V∗-transformation of (4.7) is given by

C(c′, c′′) ∧ D(d′, d′′) ∧ C(c, c′) ∧ D(d, d′)

∼=

E∧F ∧E∧F

C′(Ec′, Ec′′) ∧ D′(Fd′, Fd′′) ∧ C′(Ec, Ec′) ∧ D′(Fd, Fd′)

∼=

C(c′, c′′) ∧ C(c, c′) ∧ D(d′, d′′) ∧ D(d, d′)

◦ η∧ϕ

E∧E∧F ∧F

C′(Ec′, Ec′′) ∧ C′(Ec, Ec′) ∧ D′(Fd′, Fd′′) ∧ D′(Fd, Fd′)

◦

C(c, c′′) ∧ D(d, d′′) C′(Ec, Ec′′) ∧ D′(Fd, Fd′′)

E∧F
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Finally, given V∗-pseudotransformations ζ : E =⇒ E′ and θ : F =⇒ F ′, we define the 
V∗-pseudotransformation ζ ∧θ : E∧F =⇒ E′ ∧F ′ as follows. The component at an object 
(c, d) of C ∧D is the 1-cell ζc ∧ θd. The coherence V∗-transformation of (4.10) is given by 
ζc,c′ ∧ θd,d′ , noting that (ζc ∧ θd)∗ = (ζc)∗ ∧ (θd)∗, and similarly for postcomposition.

It is routine to verify that ∧ is strictly functorial with respect to composition of 
V∗-pseudofunctors and (vertical) composition of V∗-pseudotransformations.

We note that × and ∧ are not strictly associative. However, for convenience, and as 
we have done earlier in other settings, we make the convention to omit parenthesization 
and to view iterated instances of these operations as parenthetisized from left to right.

The following remark allows us to regard 2-categories as V-2-categories and establishes 
a convenient context.

Remark 4.14. The underlying set functor U : V −→ Set specified by UX = V(∗, X)
has left adjoint V : Set −→ V specified by VS =

∐
s∈S ∗, the coproduct of copies of the 

terminal object ∗ indexed on the elements of the set S. Thus

Set(S,UX) ∼= V(VS, X). (4.15)

When V is strongly complete [15, Definition 6.2], a mild condition that holds in all rele-
vant examples, V preserves finite limits. We can apply this with V replaced by Cat(V), 
so that

Cat(B,UX ) ∼= Cat(V)(VB, X ), (4.16)

for a category B and a V-category X . We regard categories B as discrete 2-categories, 
meaning that they have only identity 2-cells. Applying V to the hom categories of 2-
categories allows us to change their enrichment from Cat to Cat(V). Thus we may regard 
categories B as V-2-categories, and we agree to do so without change of notation. We 
then call B a discrete V-2-category. In our examples, B has a zero object and therefore 
gives rise to a V∗-2-category.

4.2. Algebras and pseudoalgebras over V∗-2-categories

Classically, algebras over a category D enriched in based spaces can be defined as 
enriched functors X : D → U∗. The “action” of the category D can be seen by translating 
this enriched functor into adjoint form as the data of a family of compatible continuous 
maps D(a, b) ∧ X (a) → X (b) indexed by objects a, b of D. Similarly, algebras over an 
operad O in U can be defined either via action maps O(j) × Xj → X or equivalently 
via a map of operads from O to the endomorphism operad End(X).
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Remark 4.17. This second interpretation can always be given when the ambient category 
is closed, as we have assumed. Indeed, if V is closed, it has an internal hom object V(V, W )
for each pair of objects and an adjunction

V(V × W, Z) ∼= V(V, V(W, Z)).

Each object V then has an endomorphism operad End(V ) with

End(V )(j) = V(V j , V ).

An action of an operad O in V on an object V ∈ V is then the same as a map of operads 
O −→ End(V ). This gives an adjoint specification of O-algebras.

As Cat(V) is cartesian closed (see Remark 2.5), we will write Cat(V) for the resulting 
V-2-category. Similarly, Cat(V∗) is closed by Remark 2.11, and we will write Cat(V∗)
for the resulting V∗-2-category.

If C is a V-2-category, it is natural to define a C-algebra X to be a V-2-functor X : C −→
Cat(V). If C has a zero object, we say that X is reduced if X (0) = ∗. We have the 
following enhancement of Propositions 4.4 and 4.12.

Proposition 4.18. Let C be a V-2-category with zero object. Then

(1) V∗-2-functors C −→ Cat(V∗) correspond bijectively to reduced V-2-functors C −→
Cat(V).

(2) V∗-pseudofunctors C Cat(V∗) correspond bijectively to reduced V-pseudofunctors 
C Cat(V) such that ϕ restricts to the identity on the subcategories 0b,c × C(a, b)
and C(b, c) × 0a,b.

Proof. To prove (1), let X : C −→ Cat(V) be a reduced V-2-functor. Then for c ∈ C, the 
adjoint of the map

C(0, c) −→ Cat(V)(X (0), X (c))

endows X (c) with a basepoint:

∗ ∼= C(0, c) × X (0) −→ X (c).

Functoriality can then be used to check that this indeed gives rise to a V∗-2-functor 
C −→ Cat(V∗). For the converse we apply Proposition 4.4 with D = Cat(V∗), and then 
forget the basepoints to get a map with target Cat(V).

The argument for (2) is similar, with the caveat that the condition on ϕ is necessary 
to ensure that we do get a map with target Cat(V∗). �
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Definition 4.19. Let C be a V∗-2-category. A (strict) C-algebra is a V∗-2-functor X : C −→
Cat(V∗). Unpacking the definition in adjoint form, this consists of a function that assigns 
a V∗-category X (c) to each object c of C, together with action V∗-functors

θ : C(c, d) ∧ X (c) −→ X (d)

such that the unit and composition diagrams of V∗-functors

(∗ � ∗) ∧ X (c)

idc∧id

∼=
X

C(c, c) ∧ X (c)
θ

and C(d, e) ∧ C(c, d) ∧ X (c) id∧θ

◦∧id

C(d, e) ∧ X (d)

θ

C(c, e) ∧ X (c)
θ

X (e)

commute.

Remark 4.20. The unit diagram can equally well be expressed as a diagram of V-functors, 
with source ∗ × X (c).

We do not discuss general C-pseudoalgebras here, leaving such consideration for [28]. 
However, we will need a version of pseudoalgebras in the special case of C = FG starting 
in Section 7. We define these now.

Definition 4.21. Let C be a V∗-2-category. A weak C-pseudoalgebra X is a V∗-pseudofunctor 
C Cat(V∗) . Unpacking the definition in adjoint form, this consists of a function that 
assigns a V∗-category X (c) to each c ∈ C, together with action V∗-functors

θ : C(c, d) ∧ X (c) −→ X (d)

and invertible V∗-transformations

C(d, e) ∧ C(c, d) ∧ X (c) id∧θ

◦∧id ϕ

C(d, e) ∧ X (d)

θ

C(c, e) ∧ X (c)
θ

X (e)

which are the identity when either morphism is the identity 1-cell. Moreover, the ϕ are 
required to be coherent as in Definition 4.5.

Remark 4.22. The strictness with respect to basepoints encoded in the definitions above 
expresses the intuition that additive zero objects should behave strictly in multiplicative 
structures. The strictness with respect to identity arrows expresses the intuition that 
identity operations should be the identity.
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Remark 4.23. Though it is not the choice made in this article, it is also possible to 
consider less general C-pseudoalgebras. As Cat(V∗) is closed, these can be described as 
V∗-pseudofunctors C Cat(V∗) that are strictly functorial on a subcategory B ⊂ C. 
Different choices of B lead to several possible versions of pseudoalgebras. While we will 
only deal with the weakest possible variant of pseudoalgebras here, the different types 
of pseudomorphisms described in the next definition will play an important role.

Definition 4.24. Let C and B be V∗-2-categories with the same objects, let i : B → C be 
a V∗-2-functor which is the identity on objects, and let X and Y be C-algebras (or weak 
C-pseudoalgebras). A (C, B)-pseudomorphism, F : X Y is a V∗-pseudotransformation 
between V∗-2-functors (or V∗-pseudofunctors) that is strict when precomposed with the 
V∗-2-functor i. Unpacking this definition in adjoint form, F consists of V∗-functors

F (c) : X (c) −→ Y(c)

together with invertible V∗-transformations δ as in the diagram

C(c, d) ∧ X (c)
id∧F (c)

θ δ

C(c, d) ∧ Y(c)

θ

X (d)
F (d)

Y(d)

(4.25)

that are the identity transformation after whiskering with the map induced by i as 
depicted in the following diagram:

B(c, d) ∧ X (c)
id∧F (c)

i∧id

B(c, d) ∧ Y(c)

i∧id

C(c, d) ∧ X (c)
id∧F (c)

θ δ

C(c, d) ∧ Y(c)

θ

X (d)
F (d)

Y(d).

(4.26)

The δ must satisfy the relevant equalities of pasting diagrams relating to composition in 
C. If δ is always the identity, then F is a (strict) C-map. Thus the condition on B says that 
F restricts to a strict B-algebra map. We refer to the extreme case, in which B consists 
only of identity morphisms and basepoint morphisms, as weak C-pseudomorphisms.

The following notion will also be needed later.
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Definition 4.27. A C-pseudomorphism F : X Y of C-pseudoalgebras is said to be a 
level equivalence if each component F (c) : X (c) −→ Y(c) is an (internal) equivalence of 
V∗-categories.

Definition 4.28. A C-transformation ω between C-pseudomorphisms E and F consists 
of V∗-transformations ωc : E(c) =⇒ F (c) that are suitably compatible with the V∗-
transformations δE and δF , as in [10, § 3.10]. We do not require the ωc to be isomor-
phisms.

This definition is just a translation of the notion of a V∗-modification between V∗-
pseudotransformations. We will only use the explicit description just given.

These notions assemble to form various 2-categories of interest to us.

Notation 4.29. For a given V∗-2-category C with a V∗-2-functor i : B → C which is the 
identity on objects, we define the following 2-categories, with C-transformations as the 
2-cells in all cases.

• C-Alg of C-algebras and strict C-maps;
• C-AlgpsB of C-algebras and (C, B)-pseudomorphisms;
• C-PsAlg of weak C-pseudoalgebras and weak C-pseudomorphisms.

We have inclusions

C-Alg ⊂ C-AlgpsB ⊂ C-PsAlg.

This article largely focuses on the 2-categories C-AlgpsB in the case that C is a 
category of operators. As noted in Notations 5.14 and 6.17, we will then fix the relevant 
B and drop the subscript B from the notation. However, pulling back along the section 
ζG in Section 7 will land in a category of type C-PsAlg, and the strictification theorem 
in Section 8 will land in a category of type C-Alg.

We end this subsection with two constructions on (pseudo)algebras.

Notation 4.30. Given a V∗-pseudofunctor ξ : D C and a C-pseudoalgebra X , we define 
the D-pseudoalgebra ξ∗X as the composite

D
ξ

C
X Cat(V∗).

Whiskering by ξ extends this construction to C-pseudomorphisms and C-transformations, 
giving a 2-functor15

15 Even though ξ is not strict, the process of prewhiskering with it induces a strict 2-functor because it is 
essentially given by evaluation. See [10, § 4.2] for further information. In contrast, note that postwhiskering 
is only a pseudofunctor.
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ξ∗ : C-PsAlg −→ D-PsAlg.

If ξ is a strict V∗-2-functor, this construction restricts to give a 2-functor

ξ∗ : C-Alg −→ D-Alg.

The 2-functor ξ∗ preserves level equivalences of pseudoalgebras as defined in Defini-
tion 4.27.

Definition 4.31. Suppose given V∗-2-categories C and D. Given a C-pseudoalgebra X and 
an D-pseudoalgebra Y, we define their external smash product X ∧ Y to be the C ∧ D-
pseudoalgebra given by the composite

C ∧ D
X ∧Y

Cat(V∗) ∧ Cat(V∗) ∧ Cat(V∗),

where X ∧ Y is the smash product of V∗-pseudofunctors as defined in Definition 4.13. If 
X and Y are strict algebras, so is X ∧ Y.

This construction extends to pseudomorphisms and transformations.

4.3. Permutative structures on V∗-2-categories

In order to encode multiplicative structures on algebras, we use monoidal structures 
on V∗-2-categories, as defined in this section. Even in the case when V = Set, what we 
present here is not the most general definition of a symmetric monoidal structure on a 
2-category (see [3,16]). Here, we present a rather strict notion in which the monoidal 
product is allowed to be a pseudofunctor, but must strictly satisfy associativity and 
unitality; while the symmetry is allowed to be a pseudotransformation, it must satisfy 
the symmetry axiom strictly.

Definition 4.32. A strict pseudo-monoidal V∗-2-category consists of a V∗-2-category C
together with an object I, and a V∗-pseudofunctor

� : C ∧ C C

that is strictly associative and strictly unital with respect to I. A pseudo-permutative 
V∗-2-category is a strict pseudo-monoidal V∗-2-category together with a V∗-pseudo-
transformation

C ∧ C

�

t
C ∧ C

�
C

τ

such that the following axioms hold.
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(i) The following pasting diagram is equal to the identity of �:

C ∧ C

�

t
C ∧ C

�

t
C ∧ C

�
C.

τ τ

(ii) The 2-cell

C∧3 id∧t
C∧3

�∧id

C∧3

t∧id

id∧�

�∧id

C∧2 t

�

C∧2

�
C∧2

� C

τ

is equal to the 2-cell

C∧3 id∧t

�∧id

id∧�

C∧3

�∧id

id∧�

C∧3

t∧id

�∧id

C∧2

�

id∧τ

C∧2

�

C∧2
�

τ∧id

C.

The unlabeled regions in both diagrams commute, the quadrilaterals by the strict 
associativity of � and the pentagon by the naturality of t.

If � is a strict V∗-2-functor and τ is a strict V∗-transformation, we say (C, I, �, τ) is a 
permutative V∗-2-category.

Remark 4.33. Classically, a permutative category is a symmetric strict monoidal cat-
egory, strict meaning that the product is strictly associative and unital. The defini-
tion above is similar, just done in the context of the 2-category of V∗-2-categories, 
V∗-pseudofunctors, and V∗-pseudotransformations. Thus “strict pseudo-monoidal” here 
means that � is a strictly associative and unital operation given by a V-pseudofunctor; 
it respects composition only up to coherent isomorphisms. The standard coherence the-
orem for permutative categories still applies in this case: for any permutation σ ∈ Σk, 
there exists a unique composite of instances of τ that fits in the diagram below.
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C∧k

�k

tσ

C∧k

�k

C

τσ

Here �k denotes the k-ary product induced by iterating �, and the map tσ sends a 
k-tuple (c1, . . . , ck) to (cσ−1(1), . . . , cσ−1(k)). The 1-cell component of τσ is the (unique) 
composite of instances of the 1-cell of τ that reorders

c1 � · · · � ck −→ cσ−1(1) � · · · � cσ−1(k).

Definition 4.34. Let (C, I, �, τ) and (D, I ′, �′, τ ′) be pseudo-permutative V∗-2-categories. 
A symmetric monoidal pseudofunctor (Ψ, μ) : C D consists of a V∗-pseudofunctor 
Ψ: C D such that Ψ(I) = I ′, together with a V∗-pseudotransformation

C ∧ C
Ψ∧Ψ

� μ

D ∧ D

�′

C
Ψ

D

such that the following axioms hold.

(i) μ is unital, meaning that its restrictions to {I} ∧ C and C ∧ {I} are the identity 
transformation, where {I} ⊂ C denotes the discrete V∗-2-category on the single 
object I.16

(ii) μ is associative, meaning that

C ∧ C ∧ C
Ψ∧Ψ∧Ψ

�∧id μ∧id

D ∧ D ∧ D

�′∧id

C ∧ C
Ψ∧Ψ

� μ

D ∧ D

�′

C
Ψ

D

=

C ∧ C ∧ C
Ψ∧Ψ∧Ψ

id∧� id∧μ

D ∧ D ∧ D

id∧�′

C ∧ C
Ψ∧Ψ

� μ

D ∧ D

�′

C
Ψ

D.

The vertical boundaries of these diagrams are equal because of the associativity of 
� and �′.

16 The V∗-object of morphisms in {I} is V{0I , idI } ∼= ∗ 
 ∗. Thus, {I} ∧ C ∼= C.
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(iii) The following equality of pasting diagrams holds:

C ∧ C
Ψ∧Ψ

�
μ

D ∧ D

�′

t

τ ′ D ∧ D

�′

C
Ψ

D

=

C ∧ C

�

t

τ

Ψ∧Ψ
D ∧ D

t

C ∧ C

�

Ψ∧Ψ

μ

D ∧ D

�′

C
Ψ

D.

If Ψ is a strict V∗-2-functor, we refer to (Ψ, μ) as a symmetric monoidal 2-functor.

5. The multicategory of D-algebras and the multifunctor R

Nonequivariantly, categories of operators were introduced on the space level in order 
to mediate the passage from algebras over an E∞-operad in spaces to special F -spaces 
when comparing the operadic and Segalic infinite loop space machines [37]. Algebras over 
a category of operators are a generalization of both F -spaces (aka Γ-spaces) and algebras 
over an E∞-operad. In this section we discuss their categorical analogues. Equivariant 
categories of operators were studied in [46,39], and their categorical analogues will be 
introduced in Section 6.

We show that for a category of operators D with pseudo-commutative structure, as 
defined in Section 5.2, there is a multicategory of algebras over D . For categories of op-
erators coming from operads, the necessary structure arises from a pseudo-commutative 
structure on the operad, as in Definition 3.10. We make all of this precise in this section.

5.1. Categories of operators over F

The definitions in this subsection are categorical analogues of definitions in [37]. We 
give the definitions in the setting of V-2-categories.

Definition 5.1. Recall that F denotes the category of based sets n = {0, 1, . . . , n} with 
basepoint 0 and let Π denote its subcategory of morphisms φ : m −→ n such that 
|φ−1(j)| = 0 or 1 for 1 ≤ j ≤ n. We often use the abbreviated notation φj = |φ−1(j)|. 
We regard F and Π as discrete 2-categories, meaning that they have only identity 2-cells. 
Via Remark 4.14, we then regard them as V∗-2-categories.

Definition 5.2. A Cat(V)-category of operators D over F , abbreviated Cat(V)-CO over 
F , is a V-2-category whose objects are the based sets n for n ≥ 0 together with V-2-
functors

Π ι
D

ξ
F
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such that ι and ξ are the identity on objects and ξ ◦ ι is the inclusion. A morphism 
ν : D −→ E of Cat(V)-COs over F is a V-2-functor over F and under Π.

Definition 5.3. A Cat(V)-CO D over F is reduced if 0 is a zero object, and we then 
say that D is a Cat(V∗)-category of operators over F . We shall restrict attention to 
Cat(V∗)-categories of operators over F .

Remark 5.4. By Propositions 4.3 and 4.4, if D is a Cat(V∗)-CO over F , then D is a 
V∗-2-category and ι and ξ are V∗-2-functors; that is, D is a V∗-2-category over F and 
under Π. A morphism D −→ E of reduced Cat(V)-COs over F is necessarily reduced 
since it must send 0 to 0; thus it is a V∗-2-functor over F and under Π.

Let O be an operad in Cat(V). We can associate to it a category of operators D =
D(O) over F by letting

D(m, n) =
∐

φ∈F(m,n)

∏
1≤j≤n

O(φj).

Composition is induced from the structural maps γ of O. To write formulas instead of 
diagrams, we use elementwise notation, writing ci ∈ O(φj) for objects and morphisms 
in O(φj). For (φ, c1, . . . , cn) : m −→ n and (ψ, d1, . . . , dp) : n −→ p, define

(ψ, d1, . . . , dp) ◦ (φ, c1, . . . , cn) =
(

ψ ◦ φ,
∏

1≤j≤p

γ(dj ;
∏

ψ(i)=j

ci)ρj(ψ, φ)
)

. (5.5)

The ci with ψ(i) = j are ordered by the natural order on their indices i, and ρj(ψ, φ)
is that permutation of |(ψ ◦ φ)−1(j)| letters which converts the natural ordering of 
(ψ ◦ φ)−1(j) as a subset of {1, . . . , m} to its ordering obtained by regarding it as ∐

ψ(i)=j φ−1(i), so ordered that elements of φ−1(i) precede elements of φ−1(i′) if i < i′

and each φ−1(i) has its natural ordering as a subset of {1, . . . , m}. When it is clear which 
φ and ψ are being composed, we abbreviate the notation for the permutation ρj(ψ, φ)
to ρj .

Proposition 5.6. [37, Construction 4.1] The above specification makes D(O) into a cat-
egory of operators over F , and it is reduced if O is reduced.

Proof. The map ξ : D −→ F sends (φ, c1, . . . , cn) to φ. Recall that any morphism φ in Π
satisfies φj ≤ 1 for j > 0. The inclusion ι : Π −→ D sends φ : m −→ n to (φ, c1, . . . , cn), 
where cj = 1 ∈ O(1) if φj = 1 and cj = ∗ ∈ O(0) if φj = 0. �
5.2. Pseudo-commutative categories of operators over F

In analogy with our definition of pseudo-commutativity of an operad, we define a 
compatible notion of pseudo-commutativity of a category of operators D over F . The 
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categories Π and F are permutative under the smash product of finite based sets, as 
we now recall. On objects, m ∧ p is defined to be mp, where we identify the latter 
with the actual smash product of finite based sets via lexicographical ordering. More 
precisely, on elements that are not the basepoint, the identification uses the map in 
(3.5). Given φ ∈ F (m, n) and ψ ∈ F (p, q) their smash product φ ∧ ψ ∈ F (mp, nq)
is thus defined analogously to (3.6) using these reordering isomorphisms of finite based 
sets. The symmetry isomorphisms τ are given by the permutations τm,p of Definition 3.8
which reorder the sets mp from lexicographic to reversed lexicographic ordering. If φ
and τ are permutations, outside of the basepoint φ ∧ ψ coincides with the formula (3.6), 
so the inclusion of Σ in F identifies ⊗ with ∧. We will continue to use the symbol ⊗ for 
emphasis when dealing with permutations.

Recall the notion of pseudo-permutative V∗-2-category from Definition 4.32.

Definition 5.7. A pseudo-commutative structure on D is a pseudo-permutative structure 
(D , 1, �, τ) such that

(1) � restricts to ∧ on Π ∧Π and projects to ∧ on F (in the sense that ξ◦� = ∧ ◦(ξ∧ξ));
(2) � restricts to a strict V∗-2-functor on Π ∧ D and D ∧ Π;
(3) τ restricts to the symmetry on Π given in Definition 3.8.

We identify the pieces of this definition explicitly. First note that condition (1) implies 
in particular that � = ∧ on objects. The fact that � is a V∗-pseudofunctor means that 
there is a collection of invertible V∗-transformations

D(n, p) ∧ D(r, s) ∧ D(m, n) ∧ D(q, r)
�∧�

id∧t∧id ∼=

ϑ

D(n ∧ r, p ∧ s) ∧ D(m ∧ q, n ∧ r)

◦D(n, p) ∧ D(m, n) ∧ D(r, s) ∧ D(q, r)

◦∧◦

D(m, p) ∧ D(q, s) � D(m ∧ q, p ∧ s)

(5.8)
relating � to composition.

Condition (2), which is necessary for Theorem 6.14, translates to requiring ϑ to be 
the identity (so that the diagram commutes) when either both D(n, p) and D(r, s) are 
restricted to Π or both D(m, n) and D(q, r) are restricted to Π.

Writing this out elementwise, on 1-cells it means that, whenever the composites are 
defined,

(c � d) ◦ (a ∧ b) = (c ◦ a) � (d ◦ b)
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and

(a ∧ b) ◦ (c � d) = (a ◦ c) � (b ◦ d)

where c and d are morphisms of D and a and b are morphisms of Π. We think of this as 
saying that the monoidal structure on � is strict relative to Π. As the pseudofunctoriality 
constraint for �, the V∗-transformations ϑ must satisfy a condition with respect to 
triple composition. The condition on � being strictly associative imposes another set of 
conditions on ϑ.

Condition (3) means that the 1-cell constraint of τ at the object (m, p) is the permu-
tation τm,p thought of as a morphism in D , and the pseudonaturality constraint is an 
invertible V∗-transformation

D(m, n) ∧ D(p, q)
�◦t

� τ̂

D(pm, qn)

(τm,p)∗

D(mp, nq)
(τn,q)∗

D(mp, qn)

(5.9)

that is the identity when restricted to the subcategory Π(m, n) ∧Π(p, q). These pseudo-
naturality constraints must be compatible with composition in D and the pseudofunc-
toriality constraint ϑ.

Remark 5.10. For later use, we emphasize a particular consequence of the strictness 
relative to Π here. Let a ∈ Π(m′, m) and b ∈ Π(q′, q). The compatibility of ϑ with triple 
composition together with condition (2) implies that

D(n, p) ∧ D(r, s) ∧ D(m, n) ∧ D(q, r)
�∧�

id∧id∧a∗∧b∗

D(n ∧ r, p ∧ s) ∧ D(m ∧ q, n ∧ r)

id∧(a∧b)∗

D(n, p) ∧ D(r, s) ∧ D(m′, n) ∧ D(q′, r)
�∧�

id∧t∧id ∼=

ϑ

D(n ∧ r, p ∧ s) ∧ D(m′ ∧ q′, n ∧ r)

◦D(n, p) ∧ D(m′, n) ∧ D(r, s) ∧ D(q′, r)

◦∧◦

D(m′, p) ∧ D(q′, s) � D(m′ ∧ q′, p ∧ s)

is equal to
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D(n, p) ∧ D(r, s) ∧ D(m, n) ∧ D(q, r)
�∧�

id∧t∧id ∼=

ϑ

D(n ∧ r, p ∧ s) ∧ D(m ∧ q, n ∧ r)

◦D(n, p) ∧ D(m, n) ∧ D(r, s) ∧ D(q, r)

◦∧◦

D(m, p) ∧ D(q, s) �

a∗∧b∗

D(m ∧ q, p ∧ s)

(a∧b)∗

D(m′, p) ∧ D(q′, s) � D(m′ ∧ q′, p ∧ s)

The two unlabeled squares have instances of ϑ that are the identity because of condition 
(2). The boundaries on both diagrams are equal since composition in D is strict. This 
equality expresses a condition on ϑ for when the first terms of a triple composition come 
from Π. There are similar conditions for when the middle and the last terms come from 
Π.

Definition 5.11. We define a map (Ψ, μ) : D −→ E of pseudo-commutative categories of 
operators to be a symmetric monoidal 2-functor (Definition 4.34) such that Ψ is a map 
of Cat(V∗)-COs over F and the restriction of μ to the subcategory Π ∧Π is the identity 
transformation.

We defer the proof of the following theorem to Section 12. It ensures that our defini-
tions of pseudo-commutativity for operads and for their associated categories of operators 
are compatible. The verification is essentially combinatorial bookkeeping and is painstak-
ing rather than hard.

Theorem 5.12. Let O be a pseudo-commutative operad in Cat(V). Then D = D(O) is a 
pseudo-commutative category of operators.

Remark 5.13. The construction is functorial. With the appropriate definition of a pseudo-
commutative morphism O −→ P of pseudo-commutative operads, the map D(O) −→
D(P) is pseudo-commutative. In analogy with Lemma 3.12, when O and P are chaotic, 
any morphism of operads between them is necessarily pseudo-commutative.

5.3. The multicategory of D-algebras

For a category of operators D over F , we consider D-algebras as defined in 
Definition 4.19. As indicated in Remark 4.23, there is a more general notion of D-
pseudoalgebra, which is discussed in [28]. Recall that we have the notions of (D , Π)-
pseudomorphism and D-transformation from Definitions 4.24 and 4.28.
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Notation 5.14. For a category of operators D over F , we denote by D-Algps the 2-
category of strict D-algebras, (D , Π)-pseudomorphisms, and D-transformations. This 
2-category was denoted by D-AlgpsΠ in Notation 4.29, but we now fix B = Π and drop 
it from the notation.

This notion, with its strictness with respect to Π, is essential for the construction of 
P in the left column of (1.2), as we explain in Remark 6.3.

Let D be a reduced pseudo-commutative category of operators over F . We define 
the multicategory Mult(D) of D-algebras, which amounts to defining the k-ary mor-
phisms. As said before, we set it up to have its objects be D-algebras, although with 
only slightly more work we could equally well have set it up to have its objects be 
D-pseudoalgebras.

Recall from Section 4.2 that a D-algebra is given by a V∗-2-functor X : D −→
Cat(V∗), which can be expressed in adjoint form as in Definition 4.19. Thus the ac-
tion of D on X is given by V∗-functors

θ : D(m, n) ∧ X (m) −→ X (n).

Let D∧k denote the k-fold smash power. Following Definition 4.31, given D-algebras 
X1, . . . , Xk, we have the external smash product X1∧ . . . ∧Xk. It sends an object 
(n1, . . . , nk) of D∧k to X1(n1) ∧ · · · ∧ Xk(nk), with action map θk given by the com-
posite

∧
i

D(mi, ni) ∧
∧
i

X (mi)
t

∼=

∧
i

D(mi, ni) ∧ X (mi)
∧

θ ∧
i

X (ni),

where the first map is the appropriate shuffle. For a D-algebra Y, we consider the D∧k-
pseudoalgebra

D∧k
�k

D
Y

Cat(V∗).

The conditions in Definition 5.7 imply that Y ◦�k restricts to a strict Π∧k-algebra. Since 
Π∧k is discrete, this is a functor from Π∧k to the underlying 1-category of Cat(V∗).

Definition 5.15. Let D be a reduced pseudo-commutative category of operators over F . 
We define a (symmetric) multicategory Mult(D) of D-algebras as follows. The objects 
are D-algebras. For objects Xi, 1 ≤ i ≤ k, and Y, a k-ary morphism X −→ Y consists of 
a (D∧k, Π∧k)-pseudomorphism

F : X1∧ . . . ∧Xk Y ◦ �k .
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Recall that this is the same as saying that F is a V∗-pseudotransformation

D∧k
X1∧···∧Xk

�k
F

Cat(V∗)∧k

∧k

D
Y

Cat(V∗)

that is strict when restricted to Π∧k.
Given a ji-ary morphism Ei : (Xi,1, . . . , Xi,ji

) −→ Yi for i = 1, . . . k, and a k-ary 
morphism F : (Y1, . . . , Yk) −→ Z, the composite is defined by the pasting diagram below, 
where the right hand 2-cell is the associativity isomorphism for ∧ on Cat(V∗).

D∧j
X1,1∧···∧Xk,jk

�j

∧
i
�ji

E1∧···∧Ek

Cat(V∗)∧j∧
i

∧ji

∧jD∧k
Y1∧···∧Yk

F�k

Cat(V∗)∧k

∧k

D
Z

Cat(V∗).

(5.16)

Here, E1 ∧ · · · ∧ Ek is the smash product of V∗-pseudotransformations as defined in 
Definition 4.13.

Finally, we specify the symmetric structure on the multicategory Mult(D). Given a 
permutation σ ∈ Σk and a k-ary morphism F : (X1, . . . , Xk) −→ Y, the k-ary morphism 
Fσ : (Xσ(1), . . . , Xσ(k)) −→ Y is defined by the pasting diagram

D∧k

�k

tσ

τ−1
σ

Xσ(1)∧···∧Xσ(k)

tσ

Cat(V∗)∧k

tσ

∧kD∧k
X1∧···∧Xk

F�k

Cat(V∗)∧k

∧k

D
Y

Cat(V∗).

Here the different maps called tσ send a k-tuple (a1, . . . , ak) to (aσ−1(1), . . . , aσ−1(k)), 
and τσ is the invertible V∗-pseudotransformation of Remark 4.33.

We now unpack this definition. In what follows, given a k-tuple (n1, . . . , nk) of natural 
numbers, we write their product as n = n1 · · · nk.
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A k-ary morphism F = (F, δ) : (X1, . . . , Xk) −→ Y consists of V∗-functors

F : X1(n1) ∧ · · · ∧ Xk(nk) −→ Y(n),

together with invertible V∗-transformations δ in the following diagrams, in which 1 ≤
i ≤ k.

∧
i

D(mi, ni) ∧
∧
i

Xi(mi) id∧F

t ∼=

δ

∧
i

D(mi, ni) ∧ Y(m)
�k∧id∧

i

D(mi, ni) ∧ Xi(mi)∧
i

θ

D(m, n) ∧ Y(m)

θ∧
i

Xi(ni)
F

Y(n)

(5.17)

We require δ to be the identity when restricted to Π∧k. The δ must satisfy coherence 
diagrams related to composition and identities in D∧k. The latter are subsumed in 
the conditions on Π. We defer writing out the details of the required conditions for 
composition to Section 11.3.

Unpacking the action of σ, the component of (F, δ)σ = (Fσ, δσ) at an object 
m1, . . . , mk is defined by the following commutative diagram.

Xσ(1)(m1) ∧ · · · ∧ Xσ(k)(mk) F σ

tσ

Y(m)

X1(mσ−1(1)) ∧ · · · ∧ Xk(mσ−1(k))
F

Y(m)

Y(τ−1
σ )

(5.18)

The invertible V∗-transformation δσ is obtained by whiskering the δ of (5.17), but 
using the pseudocommutativity of D . Precisely, we construct δσ by the following pasting 
diagram, where we write υ for σ−1. Here the inner hexagon is (5.17), and the outer 
hexagon is the corresponding diagram for Fσ. On D(m, n) we denote by cσ the pre- and 
postcomposition with

τσ : m =
∧

i

mi −→
∧

i

mυ(i) and τ−1
σ :

∧
i

nυ(i) −→
∧

i

ni = n,

respectively.
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∧
i

D(mi, ni) ∧
∧
i

Xσ(i)(mi)
id∧F σ

tσ∧tσ

t

τ̂∧id

∧
i

D(mi, ni) ∧ Y(m)

�∧id
∧
i

D(mυ(i), nυ(i)) ∧
∧
i

Xi(mυ(i))

t

id∧F

δ

∧
i

D(mυ(i), nυ(i)) ∧ Y(
∧
i

mυ(i))

�∧id

t−1
σ ∧Y(τ−1

σ )

∧
i

D(mi, ni) ∧ Xσ(i)(mi)

∧
i

θ

tσ ∧
i

D(mυ(i), nσ−1(i)) ∧ Xi(mυ(i))
∧
i

θ

D(
∧
i

mυ(i),
∧
i

nυ(i)) ∧ Y(
∧
i

mυ(i))
cσ∧Y(τ−1

σ )

θ

D(m, n) ∧ Y(m)

θ
∧
i

Xi(nυ(i))
F

Y(
∧
i

nυ(i))

Y(τ−1
σ )∧

i

Xσ(i)(ni)
F σ

tσ

Y(n)

(5.19)
The top and bottom trapezoids commute by the definition of Fσ. The left two trape-

zoids commute trivially. The bottom right trapezoid commutes since Y ∈ Mult(D) is 
a (strict) D-algebra. The top right trapezoid is filled by an invertible V∗-transformation 
τ̂ given by the pseudonaturality constraint of the appropriate (unique) composition of 
instances of the pseudocommutativity of D .

Recall Notation 4.30.

Theorem 5.20. Let (Ψ, μ) : D −→ E be a map of pseudo-commutative categories of oper-
ators (Definition 5.11). Then pulling back along Ψ induces a (symmetric) multifunctor

Ψ∗ : Mult(E ) −→ Mult(D).

Proof. Given a k-ary morphism F : (X1, . . . , Xk) −→ Y in Mult(E ), the multimorphism 
Ψ∗(F ) is defined as the pasting

E ∧k Ψ∧k

�k
μk

D∧k
X1∧···∧Xk

�k
F

Cat(V∗)∧k

∧k

E
Ψ

D
Y

Cat(V∗),

where the 2-cell μk denotes an appropriate composite of instances of μ, which is unique by 
the associativity of μ. Compatibility with the identity, composition, and the symmetric 
group action follows from the axioms in Definition 5.11. �
5.4. Definition of the functor R

Let O be a reduced operad in Cat(V) with associated Cat(V∗)-CO D over F . We 
define a 2-functor R : O-Algps −→ D-Algps with the property that for an O-algebra A, 
the resulting D-algebra is defined on objects by n �→ An, and we show in Section 5.5
that R extends to a multifunctor.
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We have the 2-category Π-Alg of Π-algebras, Π-morphisms, and Π-transformations, 
and we have the evident 2-functor R : Cat(V∗) −→ Π-Alg that sends a V∗-category A
to the Π-algebra Π −→ Cat(V∗) whose value at n is An. The injections, projections, 
and permutations of Π are sent to basepoint inclusions, projections, and permutations 
of the An. For a V∗-functor F : A −→ B, RF has component F n : An −→ Bn at n.

The notation R records that R is right adjoint to the 2-functor L that sends a Π-
algebra to its first V∗-category, L(X ) = X (1) [34, §1]. We claim that R extends to a 
2-functor R : O-Algps −→ D-Algps. When starting operadically, it is convenient to use 
× instead of ∧. For an O-algebra A in Cat(V), we give RA a D-algebra structure via a 
V-functor

θ : D(m, n) × Am −→ An

that is compatible with basepoints and therefore descends to a V∗-functor on the smash 
product. Writing φj = |φ−1(j)| again, this V-functor can be expressed as a composition

∐
φ : m→n

( ∏
1≤j≤n

O(φj)
)

× Am
∐

φ : m→n

∏
1≤j≤n

(
O(φj) × Aφj

) θ An.

On each component φ : m −→ n, the first map reorders Am ∼= Aφ0 × Aφ1 × · · · × Aφn

and projects away Aφ0 , while the second map is the product of n algebra structure maps 
θ(φj) : O(φj) × Aφj −→ A.

We next define R on morphisms. Thus let (F, ∂∗) : A B be a pseudomorphism of 
O-algebras. We define a (D , Π)-pseudomorphism

R(F, ∂∗) = (RF, δ) : RA RB .

The required V∗-transformation

D(m, n) ∧ Am id∧F m

θ δm,n

D(m, n) ∧ Bm

θ

An

F n
Bn

is obtained by passage to smash products from a coproduct of whiskerings of

∏
1≤j≤n

(
O(φj) × Aφj

) ∏
id×F φj

∏
θ ∏

∂

∏
1≤j≤n

(
O(φj) × Bφj

)
∏

θ

An

F n
Bn
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along the reordering morphisms 
( ∏

1≤j≤n

O(φj)
)

× Am −→
∏

1≤j≤n

(
O(φj) × Aφj

)
.

For an O-transformation ω : E =⇒ F , we define the component of the D-
transformation Rω at n as ωn. We leave it to the reader to fill in the details of the 
proof of the following result.

Proposition 5.21. The above data specifies a 2-functor R : O-Algps −→ D-Algps.

5.5. The proof that R is a symmetric multifunctor

Now let O be a reduced pseudo-commutative operad in Cat(V) with associated 
pseudo-commutative category of operators D .

Theorem 5.22. The 2-functor R : O-Algps −→ D-Algps extends to a symmetric multi-
functor Mult(O) −→ Mult(D).

Proof. Let (F, δi) : (A1, . . . , Ak) −→ B, be a k-ary morphism in Mult(O). Here F is a 
V∗-functor A1 ∧ · · · ∧ Ak −→ B and δi is given by V-transformations δi(n) as in (3.15). 
We must construct a k-ary morphism R(F, δi) = (RF, Rδ) : (RA1, . . . , RAk) −→ RB as 
in Definition 5.15.

Writing n = n1 · · · nk as before, the component

RA1(n1) ∧ · · · ∧ RAk(nk) −→ RB(n)

of RF is

An1
1 ∧ · · · ∧ Ank

k
�−→ (A1 ∧ · · · ∧ Ak)n F n

−−→ Bn,

where 
 is a based version of the map defined in Definition 3.20, using lexicographic 
ordering. Next, we specify the V∗-transformations Rδ in the following specialization of 
diagram (5.17).

∧
i

D(mi, ni) ∧
∧
i

Ai
mi id∧RF

t ∼=

Rδ

∧
i

D(mi, ni) ∧ Bm

�∧id

∧
i

D(mi, ni) ∧ Ami
i

∧
i

θ

D(m, n) ∧ Bm

θ∧
i

Ani
i

RF
Bn.

(5.23)

Before passage to smash products, these transformations are constructed as disjoint 
unions of products of compositions of the δi(n)’s. To see this, consider, for instance, 
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the case in which k = 2 and n1 = n2 = 1. We restrict further to the components 
O(m1) ⊆ D(m1, 1) and O(m2) ⊆ D(m2, 1) corresponding to the maps φ : m1 −→ 1 and 
ψ : m2 −→ 1 that send all non-basepoint elements to 1. Then the V∗-transformation Rδ

is obtained by passage to smash products from the 2-cell

O(m1) × O(m2) × Am1
1 × Am2

2

∼=

id×RF
O(m1) × O(m2) × Bm1m2

�×id

O(m1) × Am1
1 × O(m2) × Am2

2

θ×θ

O(m1m2) × Bm1m2

θ

A1 × A2
F

B

of (v), the axiom for commutation of cells δi and δj , in Section 11.2, where Definition 3.14
is completed. Now consider the general case of k = 2, with arbitrary n1 and n2. For the 
component of D(m1, n1) ×D(m2, n2) indexed by maps φ : m1 −→ n1 and ψ : m2 −→ n2
in F , the required 2-cell is of the form

∏
1≤j≤n1

O(φj) ×
∏

1≤k≤n2

O(ψk) × Am1
1 × Am2

2

(Πθ×Πθ)◦t

�×RF ∏
j,k

O((φ ∧ ψ)(j,k)) × Bm1m2

Πθ

An1
1 × An2

2
RF

Bn1n2

and is a product of 2-cells of the previous type. We note that Rδ is the identity when Dk is 
restricted to Πk, by axioms (i) and (iii) in Definition 3.14. When k = 1, the construction 
above recovers that of Section 5.4. Axiom (v) of Definition 3.14 implies that R preserves 
composition.

We prove that R is symmetric by a comparison of the definitions here with those of 
Section 3.3. Remembering the lexicographic reordering, it is straightforward to check 
by comparison of (3.16) with (5.18) that R(Fσ) = (RF )σ for a k-ary morphism 
(F, δi) of Mult(O). The equality of pasting diagrams required to ensure that the V∗-
transformations in (R(F, δi))σ and R((F, δi)σ) are equal follows from axiom (v) of 
Definition 3.14. �
6. The multicategory of DG-algebras and the multifunctor P

We introduced Cat(V)-categories of operators in Section 5, as well as the multicate-
gory Mult(D) associated to any pseudo-commutative category of operators D . In this 
section, we finally bring in equivariance, starting in Section 6.1, where we specialize the 
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content of the previous sections to the category GV of G-objects in V. In Section 6.2 we 
introduce Cat(GV)-categories of operators over FG, the category of finite based G-sets. 
A key idea here is Construction 6.7, which allows us to prolong from equivariant cate-
gories of operators over F to equivariant categories of operators over FG. We introduce 
the multicategory Mult(DG) in Section 6.5 and extend the prolongation functor to a 
symmetric multifunctor in Section 6.6. Much of this section is precisely parallel to the 
previous one.

6.1. GV-categories and GV∗-categories

So far, equivariance has not entered into the picture and yet everything we have 
done applies equally well equivariantly, as we now explain. Start again with a category V
satisfying Assumptions 2.2 and 2.4, such as the category U of spaces, and let G be a finite 
group. An action of G on an object X of V can be specified in several equivalent ways. 
One is to regard G as a group in V via Remark 4.14 and to require a map G ×X −→ X in 
V that satisfies the evident unit and associativity properties, expressed diagrammatically. 
Another is to regard G as a category with one object and to require a functor G −→ V
that sends the one object to X. We have the evident notion of a G-map X −→ Y .

Let GV denote the category of G-objects in V and G-maps between them. Then GV
is bicomplete, with limits and colimits created in V and given the induced actions by G. 
With the second description, this is a standard fact about functor categories. Therefore 
GV satisfies Assumption 2.2. Similarly, we have the 2-category Cat(GV) of categories 
internal to GV, which can be identified with the 2-category of G-objects in Cat(V). Hence 
GV satisfies Assumption 2.4 as well. Thus we can replace V by GV and everything we 
have said so far applies verbatim.

Remark 6.1. As just noted, we can think of a GV-category as a V-category C together 
with V-functors g : C −→ C for g ∈ G. Then a GV-functor F : B −→ C is a V-functor F
such that the diagrams

B
g

F

B

F

C
g

C

commute. A GV-transformation ν : E =⇒ F is a V-transformation such that ν : ObB −→
MorC is G-equivariant. This is equivalent to having the following equality of pasting 
diagrams.

B
g

EF
ν

B

E

C
g

C

=

B
g

F

B

EF
ν

C
g

C
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The terminal object of V, with trivial G-action, is terminal in GV, and we have the 
category GV∗ of based objects in GV, which can be identified with the category of G-
objects in V∗. We also have the 2-category Cat(GV∗) of categories internal to GV∗, which 
can be identified with the 2-category of G-objects in Cat(V∗); an analogue of Remark 6.1
applies in this case as well.

We also have GV-2-categories, which are defined to be categories enriched in 
Cat(GV), using cartesian products, and GV∗-2-categories, which are categories enriched 
in Cat(GV∗), defined using smash products. We emphasize that G does not act on the 
collection of objects of a GV-2-category. It acts on the V-categories of morphisms.

What changes is that we now build finite G-sets into the picture. We work with 
categories of operators DG over FG, our chosen permutative model of the category of 
based finite G-sets. We define these in Section 6.2, we define pseudo-commutativity for 
them in Section 6.3, and we define algebras and pseudoalgebras over them in Section 6.4. 
When DG is pseudo-commutative, we define a multicategory with underlying category 
DG-Algps in Section 6.5. We define the prolongation functor P from D-algebras to 
DG-algebras and show that it extends to a symmetric multifunctor P : Mult(D) −→
Mult(DG) in Section 6.6.

6.2. Categories of operators over FG

The definition of a category of operators over FG in this section is parallel to that of 
a category of operators over F in Section 5.1, and it is the categorical analogue of the 
definition given in [39] on the space level. After giving the relevant definitions, we show 
how we can go back and forth between categories of operators over F and categories of 
operators over FG.

Definition 6.2. Let FG be the following model of the G-category of based finite G-sets. 
An object in FG consists of a based set n together with a G-action prescribed by a 
homomorphism α : G −→ Σn. We denote this object by nα. The morphisms are defined 
to be all based functions, not just the equivariant ones, and we let G act by conjugation 
on the set of morphisms. Thus FG can be viewed as a G-category where G acts trivially 
on objects.

Let ΠG ⊂ FG be the sub G-category of morphisms φ : mα −→ nβ such that φj = 0
or 1 for 1 ≤ j ≤ n. Write n for nε, where ε is the trivial homomorphism. That fixes 
compatible embeddings of Π in ΠG and F in FG. Note that 0 is a zero object in ΠG

and FG.

Remark 6.3. We think of Σn as the subset of isomorphisms in Π(n, n). For a based G-set 
nα, the homomorphism α thus maps G to Π(n, n), which is contained in all categories 
of operators of either type. We have built strictness with respect to Π into all of our 
structures, and the strictness with respect to permutations is crucial in dealing with 
equivariance, in particular in constructing the prolongation functor P .
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Definition 6.4. A Cat(GV)-category of operators DG over FG, which we abbreviate to 
Cat(GV)-CO over FG, is a GV-2-category whose objects are the based G-sets nα for 
n ≥ 0, together with GV-2-functors

ΠG

ιG

DG

ξG

FG

such that ιG and ξG are the identity on objects and ξG ◦ ιG is the inclusion. A morphism 
νG : DG −→ EG of Cat(GV)-COs over FG is a GV-2-functor over FG and under ΠG.

For a Cat(GV)-CO DG over FG, let D denote the full subcategory on the objects 
n = nε with trivial G-action. This is the underlying Cat(GV)-CO over F of DG.

Definition 6.5. A Cat(GV)-category of operators DG is reduced if 0 is a zero object, 
and we then say that D is a Cat(GV∗)-category of operators over FG. We shall restrict 
attention to Cat(GV∗)-categories of operators over FG.

Remark 6.6. As in Remark 5.4, a Cat(GV∗)-CO DG over FG is a GV∗-2-category, with 
ιG and ξG GV∗-2-functors, and a morphism of reduced Cat(GV)-COs over FG is reduced 
and is thus a GV∗-2-functor over FG and under ΠG.

Construction 6.7. We construct a prolongation functor P from the category of Cat(GV∗)-
COs over F to the category of Cat(GV∗)-COs over FG. Let D be a Cat(GV∗)-CO over 
F . Define the morphism GV∗-category PD(mα, nβ) to be a copy of D(m, n), but with 
G-action induced by conjugation and the original given G-action on D(m, n). Explicitly, 
the action of g ∈ G on PD(mα, nβ), which we shall call Pg when α and β are understood, 
is the composite

Pg := D(m, n)
α(g−1)∗

D(m, n)
g

D(m, n)
β(g)∗

D(m, n). (6.8)

Here α(g−1)∗ and β(g)∗ are defined by precomposition with α(g−1) and postcomposition 
with β(g); we think of them as prewhiskerings and postwhiskerings. Composition is 
inherited from D and is equivariant. Observing that ΠG and FG are the prolongations 
of Π and F , the inclusion ιG and projection ξG are inherited from D as P ι and Pε.
This uses the functoriality of P , which we now explain. For a map of Cat(GV∗)-COs 
ν : D → E , we define

Pν : PD(mα, nβ) −→ PE (mα, nβ)

to just be ν; it is equivariant with respect to the new action because ν is a GV∗-2-functor 
and thus is compatible with the G-action and with precomposition and postcomposition 
with maps in Π.

Proposition 6.9. If DG is a Cat(GV∗)-CO over FG, then DG
∼= PD , where D is the 

underlying Cat(GV∗)-CO over F of DG.
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Proof. Let DG be a Cat(GV∗)-CO over FG. Let idα ∈ ΠG(m, mα) and idα ∈
ΠG(mα, m) be the morphisms given by the identity map on the set m. They are not 
identity morphisms but rather are mutual inverses in ΠG, and hence in DG. Since G acts 
by conjugation on ΠG(m, mα) and ΠG(mα, m), the action of g sends idα and idα to the 
maps on m given by α(g) and α(g)−1, respectively.

Precomposition with idα and postcomposition with idβ induce an isomorphism of 
V∗-categories

DG(mα, nβ) −→ DG(m, n) = D(m, n). (6.10)

The above observations and the fact that composition in DG is G-equivariant imply 
that this map becomes G-equivariant when we endow the target with the action defined 
on PD(mα, nβ), giving the desired isomorphism DG

∼= PD . �
Remark 6.11. The map of V∗-categories in (6.10) induces a V∗-2-functor

DG −→ D .

It is an inverse up to invertible V∗-2-natural transformation to the inclusion D −→ DG. 
Thus D and DG are equivalent as V∗-2-categories, but not as GV∗-2-categories.

Definition 6.12. For a reduced operad O in Cat(GV), define the associated category of 
operators DG(O) over FG to be the prolongation P (D(O)).

A more explicit description is given on the space level in [39, Definition 5.7].

6.3. Pseudo-commutative categories of operators over FG

Observe that ΠG and FG are permutative under the smash product of finite based G-
sets. On underlying sets, the smash product and its symmetry isomorphism are defined 
just as for Π and F . Recall that when we restrict to Σ, we denote the smash product ⊗. 
This can be thought of as a collection of maps Σm ×Σn −→ Σmn. Then homomorphisms 
α : G −→ Σm and β : G −→ Σn have the product homomorphism α⊗β given by applying 
⊗ elementwise; that is, (α ⊗ β)(g) = α(g) ⊗ β(g).

Then mα ∧ nβ = mnα⊗β , and the smash product

FG(mα, pγ) ∧ FG(nβ , qδ) −→ FG(mnα⊗β , pqγ⊗δ)

is G-equivariant.
The following definition is precisely analogous to Definition 5.7.

Definition 6.13. A pseudo-commutative structure on a category of operators DG over FG

is a pseudo-permutative structure (DG, 1, �, τ) such that
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(1) � restricts to ∧ on ΠG ∧ ΠG and projects to ∧ on FG (in the sense that ξG ◦ � =
∧ ◦ (ξG ∧ ξG));

(2) � restricts to a strict GV∗-2-functor on ΠG ∧ DG and DG ∧ ΠG;
(3) τ restricts to the symmetry on ΠG.

Define a map of pseudo-commutative categories of operators over FG as in Definition 5.11.

The following theorem states that the prolongation of a pseudo-commutative category 
of operators is again pseudo-commutative.

Theorem 6.14. Let D be a pseudo-commutative Cat(GV∗)-category of operators over F . 
Then PD is a pseudo-commutative Cat(GV∗)-category of operators over FG and the 
inclusion (D , Π) −→ (PD , ΠG) preserves the pseudo-commutative structure.

Proof. We define the GV∗-pseudofunctor � : PD ∧ PD PD as follows. On objects, 
� is just ∧; that is, mα � nβ = mnα⊗β . On GV∗-categories of morphisms,

� : PD(mα, pγ) ∧ PD(nβ, qδ) −→ PD(mnα⊗β , pqγ⊗δ)

is just

� : D(m, p) ∧ D(n, q) −→ D(mn, pq).

We need to show that � is equivariant with respect to the action of G on PD (see 
Remark 6.1). The equivariance is encoded in the following commutative diagram.

D(m, p) ∧ D(n, q)

�

α(g−1)∗∧β(g−1)∗

Pg∧Pg
D(m, p) ∧ D(n, q)

�

D(m, p) ∧ D(n, q)

�

g∧g
D(m, p) ∧ D(n, q)

�

γ(g)∗∧δ(g)∗

D(mn, pq)
g

D(mn, pq)

(γ⊗δ)(g)∗

D(mn, pq)
(α⊗β)(g−1)∗

Pg
D(mn, pq))

(6.15)
The central square commutes since D is a Cat(GV∗)-category of operators, making 
the displayed functors � internal to GV∗ and therefore equivariant. The left and right 
trapezoids commute because � is strict when composing with morphisms in Π according 
to condition (2) of Definition 5.7. The upper and lower trapezoids commute by definition, 
as in (6.8).
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The pseudofunctoriality constraint

PD(nβ, pγ) ∧ PD(rζ , sη) ∧ PD(mα, nβ) ∧ PD(qδ, rζ)
�∧�

id∧t∧id ∼=

ϑ

PD(nrβ⊗ζ , psγ⊗η) ∧ PD(mqα⊗δ, nrβ⊗ζ)

◦PD(nβ, pγ) ∧ PD(mα, nβ) ∧ PD(rζ , sη) ∧ PD(qδ, rζ)

◦∧◦

PD(mα, pγ) ∧ PD(qδ, sη) � PD(mqα⊗δ, psγ⊗η)

is just that of D at the corresponding objects with trivial action (see (5.8)). The equiv-
ariance of ϑ with respect to the original action on D and the conditions on ϑ from 
Remark 5.10 combine to show that ϑ prewhiskered with Pg is equal to ϑ postwhiskered 
with Pg, as needed.

The symmetry τ is prolonged similarly. The 1-cell at the object (mα, pβ) is the per-
mutation τm,p considered as a 1-cell in PD . The pseudonaturality constraint τ̂ (see (5.9)) 
is given by that on D . One needs to check that this V∗-transformation is G-equivariant 
with respect to the prolonged action. This follows from the equivariance of τ̂ with respect 
to the original action on D , the compatibility of τ̂ with ϑ, condition (2) of Definition 5.7, 
and the fact that τ̂ restricted to Π is the identity. �

The construction is functorial with respect to pseudo-commutative morphisms of 
pseudo-commutative categories of operators over F . Theorems 5.12 and 6.14 have the 
following corollary.

Corollary 6.16. If O is a pseudo-commutative operad, then DG(O) is pseudo-commutative 
category of operators over FG.

6.4. Algebras and pseudoalgebras over categories of operators over FG

Just as for categories of operators over F , Definitions 4.19, 4.24, and 4.28 specialize 
to define a 2-category of algebras, pseudomorphisms, and transformations for categories 
of operators DG over FG.

Notation 6.17. Let DG be a Cat(GV∗)-CO over FG. We denote by DG-Algps the 2-
category of strict DG-algebras, (DG, ΠG)-pseudomorphisms, and DG-transformations. 
This 2-category was denoted by DG-AlgpsΠG

in Notation 4.29. Just as in Notation 5.14
we fix B = ΠG and drop the subscript from the notation.

Again, we do not discuss general DG-pseudoalgebras here, leaving such consideration 
for [28]. However, we will need pseudoalgebras in the special case of DG = FG starting 
in Section 7. Recall from Notation 4.29 that we have the 2-category FG-PsAlg of weak 
FG-pseudoalgebras, weak FG-pseudomorphisms, and FG-transformations.
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Remark 6.18. We comment on the choice of weak pseudoalgebras. This choice is already 
essential nonequivariantly. Look back at (1.2), but take G = e. With more effort, we 
could have started with O-pseudoalgebras, as defined in [15]; the functor R would then 
land in D-pseudoalgebras that are strict over Π. However, the section ζ : F −→ D

(see Proposition 7.5) loses strictness with respect to Π, as explained in Remark 7.6, 
so that whether the domain of ζ∗ is taken to be D-Algps or some 2-category of D-
pseudoalgebras, its target must still be F -PsAlg. It takes strict D-algebras only to 
weak F -pseudoalgebras.

6.5. The symmetric multicategory of DG-algebras

Let DG be a pseudo-commutative category of operators over FG. We define the mul-
ticategory Mult(DG) of DG-algebras, which amounts to defining the k-ary morphisms. 
The definition is exactly like Definition 5.15, hence we refer the reader there for details. 
Again, we set it up to have its objects be DG-algebras, although with only slightly more 
work we could equally well have set it up to have its objects be DG-pseudoalgebras. 
Remember that we write

θ : DG(mα, nβ) ∧ X (mα) −→ X (nβ)

for the action of DG on a DG-algebra X . For a k-tuple of finite G-sets mαi
i , we write mα

for the finite G-set with m = m1 · · · mk and α = α1 ⊗ · · · ⊗ αk.
Recall from Definition 4.31 that given DG-algebras X1, . . . , Xk, we have the external 

smash product X1∧ . . . ∧Xk, which is a D∧k
G -algebra. For a DG-algebra Y, we have the 

D∧k
G -pseudoalgebra Y ◦ �k, which is strict over Π∧k

G .

Definition 6.19. We define a symmetric multicategory Mult(DG) of DG-algebras. The 
objects are the DG-algebras. For DG-algebras Xi, 1 ≤ i ≤ k, and Y, a k-ary morphism 
X −→ Y consists of a (D∧k

G , Π∧k
G )-pseudomorphism

F : X1∧ . . . ∧Xk Y ◦ �k .

Composition and the symmetric action are specified as in Definition 5.15.

Unpacking the definition, a k-ary morphism F = (F, δ) consists of GV∗-functors

F : X1(mα1
1 ) ∧ · · · ∧ Xk(mαk

k ) −→ Y(mα),

together with invertible GV∗-transformations δ as in the following diagram, in which 
1 ≤ i ≤ k.
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∧
i

DG(mαi
i , nβi

i ) ∧
∧
i

Xi(mαi
i ) id∧F

t ∼=

δ

∧
i

DG(mαi
i , nβi

i ) ∧ Y(mα)
�∧id

∧
i

DG(mαi
i , nβi

i ) ∧ Xi(mαi
i )

∧
i

θ

DG(mα, nβ) ∧ Y(mα)

θ∧
i

Xi(nβi

i )
F

Y(nβ).

(6.20)

The strictness over Π∧k
G is encoded by requiring δ to be the identity if all factors 

DG are restricted to ΠG. These transformations must satisfy coherence with respect to 
composition in D∧k

G , details of which can be found in Section 11.3.
We have the following analogue of Theorem 5.20; its proof is essentially the same.

Theorem 6.21. Let (Ψ, μ) : DG −→ EG be a map of pseudo-commutative categories of 
operators over FG. Then pulling back along Ψ induces a (symmetric) multifunctor

Ψ∗ : Mult(EG) −→ Mult(DG).

6.6. The symmetric multifunctor P

Let D be a Cat(GV∗)-category of operators over F and DG = PD be its 
prolonged category of operators over FG, as defined in Construction 6.7. Define 
U : DG-Algps −→ D-Algps by restricting along the inclusion D ⊂ DG. Then U has 
a left adjoint prolongation functor on the level of algebras,

P : D-Algps −→ DG-Algps.

For the subcategory of strict maps, this is the categorical analogue of the prolongation 
functor from [39, §4.2] or [48], and it gives an equivalence of categories. We will discuss 
the extension of P to (D , Π)-pseudomorphisms in Theorem 6.23 below.

On objects, P (X )(nα) ∈ Cat(GV∗) is defined by letting P (X )(mα) be a copy of 
X (m), but with the action of g ∈ G, denoted Pg when α is understood, defined to be 
the composite

X (m)
g

X (m)
α(g)∗ X (m).

Here α(g)∗ : X (m) −→ X (m) is given by the action of Π on X . The enriched functor X
takes the morphisms of Π, which are G-fixed, to G-equivariant functors. It follows that 
we can equivalently write Pg as the composite

X (m)
α(g)∗ X (m)

g
X(m). (6.22)
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The action GV∗–functor

Pθ : DG(mα, nβ) ∧ PX (mα) −→ PX (nβ)

is defined to be

θ : D(m, n) ∧ X (m) −→ X (n).

The following diagram shows that Pθ is equivariant because θ is equivariant, as displayed 
in the middle square.

D(m, n) ∧ X (m)

θ

α(g−1)∗∧α(g)∗

Pg∧Pg
D(m, n) ∧ X (m)

θ

D(m, n) ∧ X (m)

θ

g∧g
D(m, n) ∧ X (m)

θ

β(g)∗∧id

X (n)
g

X (n)

β(g)∗

X (n)
Pg

X (n)

Since the action θ is compatible with composition in D , the left and right trapezoids 
commute, the left one using that α(g−1)∗ ◦ α(g)∗ = id.

With these preliminaries, we have the following result.

Theorem 6.23. The functor P : D-Algps −→ DG-Algps extends to a (symmetric) mul-
tifunctor

P : Mult(D) −→ Mult(DG).

Proof. Since the values of PX at objects in DG are the values of X but with a new 
G-action, the idea of the proof is to show that the data of a map of D-algebras remains 
G-equivariant with respect to the new action.

Thus let (F, δ) : (X1, . . . , Xk) −→ Y be a k-ary morphism of D-algebras. This means 
that we are given GV∗-functors

F : X1(m1) ∧ · · · ∧ Xk(mk) −→ Y(m)

and invertible GV∗-transformations δ is as in (5.17). We define P (F, δ) = (PF, Pδ) as 
follows. For mα1

1 , . . . , mαk

k , with m = m1 · · · mk and α = α1 ⊗ · · · ⊗ αk, the map

PF : PX1(mα1
1 ) ∧ · · · ∧ PXk(mαk

k ) −→ PY(mα),



B.J. Guillou et al. / Advances in Mathematics 414 (2023) 108865 61
is given by F . Similarly, we define Pδ in the diagram (6.20) to be δ in the underlying 
diagram (5.17).

We must check that these give GV∗-functors and GV∗-transformations, respectively, 
that is, that they are equivariant with respect to the prolonged action. When k = 1, this 
gives the promised definition of P on pseudomorphisms of D-algebras. We first check 
that PF is equivariant. For ease of notation, we consider the case k = 2. Recall the 
G-action on PX (mα) given in (6.22). Then to check that

PX1(mα1
1 ) ∧ PX2(mα2

2 ) PF−−→ PY(mα)

is G-equivariant, it suffices to show that the diagram

X1(m1) ∧ X2(m2) F

α1(g)∗∧α2(g)∗

Y(m)

α(g)∗

X1(m1) ∧ X2(m2) F

g∧g

Y(m)

g

X1(m1) ∧ X2(m2)
F

Y(m)

commutes. The top square commutes since F restricts to a strict transformation of Π-
functors (see Definition 4.24). The bottom square commutes since F is equivariant with 
respect to the original action.

It remains to check that Pδ is equivariant with respect to the prolonged action. By 
Remark 6.1, this is done by proving that prewhiskering δ with Pg is equal to postwhisker-
ing it. We illustrate by taking k = 1. Thus we return to Definition 4.24. Let X and Y be 
D-algebras and let F : X Y be a (D , Π)-pseudomorphism. The 2-cell

D(m, n) ∧ X (m) 1∧F

β(g)∗α(g−1)∗ ∧α(g)∗

D(m, n) ∧ Y(m)

β(g)∗α(g−1)∗ ∧α(g)∗

D(m, n) ∧ X (m) 1∧F

g∧g

D(m, n) ∧ Y(m)

g∧g

D(m, n) ∧ X (m) 1∧F

θ δ

D(m, n) ∧ Y(m)

θ

X (n)
F

Y(n)

is

D(m, n) ∧ X (m) 1∧F

β(g)∗α(g−1)∗ ∧α(g)∗

D(m, n) ∧ Y(m)

β(g)∗α(g−1)∗ ∧α(g)∗

D(m, n) ∧ X (m) 1∧F

θ δ

D(m, n) ∧ Y(m)

θ

X (n)
F

g

Y(n)

g

X (n)
F

Y(n),

by the equivariance of δ with respect to the original action (note that the boundaries 
agree by Remark 6.1, as θ : D(m, n) ∧ X (m) → X (n) is a GV∗-functor). This 2-cell also 
agrees with the 2-cell
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D(m, n) ∧ X (m) 1∧F

θ δ

D(m, n) ∧ Y(m)

θ

X (n)
F

β(g)∗

Y(n)

β(g)∗

X (n)
F

g

Y(n)

g

X (n)
F

Y(n)

by the compatibility of δ with composition and the strictness of δ with respect to Π (the 
boundaries agree since X and Y are strict D-algebras). The equivariance of Pδ for k > 1
is deduced from the equivariance of δ in a similar way. The diagrams are larger, but the 
verification is essentially the same.

Since PF and Pδ are just F and δ on the underlying V∗-categories, it follows that P
respects composition, the identity, and the Σ-action. �
Definition 6.24. We define RG to be the composite

O-Algps

RG

R
D-Algps

P

DG-Algps.

Corollary 6.25. The functor RG : O-Algps −→ DG-Algps extends to a symmetric mul-
tifunctor.

7. From DG-algebras to FG-pseudoalgebras

In this section we specialize to the topological case, that is, V = U , the category 
of spaces. Thus GV = GU , the category of G-spaces and G-maps for a finite group 
G. We consider E∞ operads in GU and in Cat(GU). Classically, E∞ operads in the 
category of topological spaces encode highly coherent operations on spaces. Similarly, E∞
operads in G-spaces encode homotopy coherent commutative operations on G-spaces, for 
which the equivariant homotopy coherence of commutativity is more subtle than in the 
nonequivariant case. For a treatment of E∞ operads in G-spaces and equivariant infinite 
loop space theory, we refer the reader to [13,39]. We recall the notion of an E∞ G-operad 
in GU and in Cat(GU) in Section 7.1. For a category of operators DG arising from a 
chaotic E∞ G-operad O, we produce a pseudofunctor ζG : FG DG that is a section 
to ξG in Proposition 7.5. Finally, in Theorem 7.14, we show that pulling back along ζG

defines a symmetric multifunctor from DG-algebras to FG-pseudoalgebras.



B.J. Guillou et al. / Advances in Mathematics 414 (2023) 108865 63
7.1. E∞ G-operads

So far, our chaotic operads have been quite general. We now restrict to GV = GU , 
the category of G-spaces and G-maps for a finite group G, and we review the definitions 
of E∞ G-operads and their categories of operators.

Definition 7.1. An operad O in GU is an E∞ G-operad if for all n ≥ 0 and all subgroups 
Λ of G × Σn, the fixed point space O(n)Λ is contractible if Λ ∩ Σn = {e} and is empty 
otherwise.

The condition on fixed-points implies that for an E∞ G-operad in GU , the space 
O(n) is a universal principal (G, Σn)-bundle. Algebras over E∞ G-operads, are, up to 
group completion, equivariant infinite loop spaces with deloopings with respect to all 
finite-dimensional G-representations, and thus give rise to genuine G-spectra. For more 
background and examples we refer the reader to [13, § 2.1].

We define a categorical operad to be E∞ if its classifying space operad is so.

Definition 7.2. An operad O in Cat(GU) is an E∞ G-operad if the operad BO obtained 
by applying the classifying space functor levelwise is an E∞ G-operad of G-spaces.

The following result shows how chaotic categories are useful in this context.

Proposition 7.3. Let O be a chaotic operad in Cat(GU). Then O is an E∞ G-operad 
if and only if for all n ≥ 0 and all subgroups Λ of G × Σn, the fixed point object space 
(ObO(n))Λ is non-empty if Λ ∩ Σn = {e} and is empty otherwise.

Proof. As noted in [15, Remark 1.15], the classifying space of a non-empty chaotic U-
category is contractible. Thus, the statement follows by noting that if O is chaotic, then 
O(n)Λ is also chaotic. �
7.2. The section map ζG from FG to DG

Recall that DG comes equipped with functors

ιG : ΠG −→ DG and ξG : DG −→ FG

such that ξG ◦ ιG is the inclusion. We here define an (equivariant) section

ζG : FG DG

to ξG.

Definition 7.4. A pseudomorphism ν : DG EG of COs over FG is a GU∗-pseudofunctor 
over FG and under ΠG.
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Proposition 7.5. Let O be a chaotic E∞ G-operad in Cat(GU) and let DG = DG(O). 
Then there exists a pseudomorphism

ζG : FG DG

of COs over FG and an invertible GU∗-pseudotransformation

DG

ξG

id

χ

DG.

FG

ζG

Proof. On objects, we have no choice: ζG is the identity. More generally, on ΠG we must 
take ζG = ιG. Given finite G-sets mα and nβ, we must specify a based G-equivariant 
function

ζG : FG(mα, nβ) −→ ObDG(mα, nβ).

To define an equivariant function, it suffices to specify the function on each G-orbit. 
Moreover, an equivariant function out of an orbit is completely determined by its value 
at any point in the orbit. We thus choose, for each mα and nβ, a point of each G-orbit 
of the G-set FG(mα, nβ).

Let f ∈ FG(mα, nβ) be such a chosen element. Let H ≤ G be the stabilizer of f . 
The section ζG must send f to an H-fixed object of the G-category DG(mα, nβ) that 
is in the component 

∏
1≤j≤k O(f−1(j)) of f . Since O is an E∞ G-operad, the H-fixed 

point subset of this component has contractible classifying space, by [39, Theorem 5.11], 
hence is nonempty. Thus we can choose an H-fixed object ζG(f) in the component of f . 
The only exception to such use of choices is that we already know the definition of ζG

on ΠG, so these choices only apply to morphisms of FG that are not in ΠG.
The claim is that these choices specify an equivariant pseudofunctor ζG. The equivari-

ance has been forced by the definition of ζG: if f is one of our distinguished points, then 
ζG(g ·f) = g ·ζG(f). To see the pseudofunctor structure, we must specify a G-equivariant 
natural isomorphism

FG(nβ , pγ) ∧ FG(mα, nβ)

◦

ζG∧ζG

ϕ

DG(nβ , pγ) ∧ DG(mα, nβ)

◦

FG(mα, pγ)
ζG

DG(mα, pγ).

The component of ϕ at (h, f) must be a morphism in DG(mα, pγ) of the form

ϕh,f : ζG(h) ◦ ζG(f) −→ ζG(h ◦ f).
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Since both of these points in DG(mα, pγ) live over h ◦f ∈ FG(mα, pγ) and O is chaotic, 
there is a unique morphism with the required source and target.

We claim that ϕ is G-equivariant. This means that ϕg·h,g·f = g · ϕh,f for g ∈ G. This 
again holds because O is chaotic: there is a unique morphism between any two objects, 
so these two morphisms are necessarily the same. The compatibility of ϕ with triple 
composition follows again from the uniqueness of these morphisms.

For an object mα, the 1-cell component χmα : mα −→ ζG ◦ ξG(mα) = mα is the 
identity map. We need to construct the pseudonaturality constraint, which is an invertible 
GU∗-transformation

DG(mα, nβ)

id

ζG◦ξG

χ

DG(mα, nβ)

(χmα )∗

DG(mα, nβ)
(χ

nβ )∗
DG(mα, nβ).

For a 1-cell d ∈ DG(mα, nβ), the object ζG ◦ ξG(d) is in the same component of the 
same G-fixed point subset as d, hence there is a unique morphism χd : ζG ◦ ξG(d) −→ d, 
and this assignment is continuous and equivariant. The uniqueness implies naturality 
and the required compatibility with ϕ. That and the evident inverse isomorphism lead 
to the conclusion. �
Remark 7.6. Although the section ζG is strictly functorial when restricted to ΠG, it 
is not when only one of the morphisms of a composite in FG is in ΠG, even when 
G = e. Let pn : n −→ 1 be the based function that sends j to 1 for 1 ≤ j ≤ n. Then 
ζ(pn) = (pn; d) for some d ∈ O(n). For a permutation σ ∈ Σn, we have pn ◦σ = pn, while 
ζ(pn) ◦ ζ(σ) = (pn; d · σ). In the cases of interest Σn acts freely on O(n) and we cannot 
have ζ(pn) ◦ ζ(σ) = ζ(pn). It is this fact that led us to the distinctions highlighted in 
Remark 6.18.

Recall the definition of a map between pseudo-commutative categories of operators 
over FG from Definitions 5.11 and 6.13. We adapt that definition to pseudomorphisms 
of COs over FG.

Definition 7.7. A pseudomorphism of pseudo-commutative COs over FG consists of a 
pseudomorphism ν : D E of COs over FG and a GU∗-pseudotransformation

D ∧ D
ν∧ν

�D μ

E ∧ E

�E

D
ν

E



66 B.J. Guillou et al. / Advances in Mathematics 414 (2023) 108865
satisfying analogues of all the axioms in Definition 5.11.

Proposition 7.8. Let O be a chaotic G-operad and let DG = DG(O). Then the section 
ζG : FG DG is a pseudomorphism of pseudo-commutative COs.

Proof. We must produce a GU∗-pseudotransformation μ as above. Since ζG is the identity 
on objects and μ must restrict to the identity on ΠG, we take the 1-cell component of μ
to be the identity. Given 1-cells f and h in FG, we must produce an invertible two-cell

μf,h : ζG(f ∧ h) ∼= ζG(f) � ζG(h),

that is the component of a GU∗-transformation. Since the specified source and target 
live over f ∧ h in FG, the fact that O is chaotic implies that there is a unique choice for 
μf,h; that μ is natural and equivariant, and satisfies all the axioms follows for the same 
reason. �
7.3. The symmetric multifunctor ζ∗

G

We have elected to work with (strict) DG-algebras but, due to Remark 7.6, when we 
precompose with our section ζG, we only produce weak FG-pseudoalgebras; recall from 
Notation 4.29 that we defined the objects and morphisms of FG-PsAlg as enriched 
pseudofunctors from FG to Cat(GV∗) and pseudotransformations, with no strictness 
conditions over ΠG. The following proposition follows immediately from the definitions.

Proposition 7.9. Pullback along the section ζG defines a 2-functor

ζ∗
G : DG-Algps −→ FG-PsAlg.

Remark 7.10. Since ζG restricts to the inclusion ιG on ΠG, for any DG-algebra X , the 
underlying ΠG-algebra of ζ∗

GX is the underlying ΠG-algebra of X .

Corollary 7.11. Let Y be a DG-algebra. Then the pseudonatural isomorphism χ of 
Proposition 7.5 induces an invertible pseudomorphism

χ : Y ∼= ξ∗
Gζ∗

GY

of weak DG-pseudoalgebras (see Definition 4.24) whose components are identity maps.

We define multimorphisms of weak FG-pseudoalgebras following Definition 6.19, but 
deleting its strictness conditions with respect to ΠG. Note that � is just ∧ on FG. Recall 
that we are working in Cat(GU∗) in this section.
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Definition 7.12. We define a (symmetric) multicategory Mult(FG-PsAlg) of (weak) 
FG-pseudoalgebras whose underlying category is FG-PsAlg, as follows. For weak FG-
pseudoalgebras Xi, 1 ≤ i ≤ k, and Y, a k-ary morphism X −→ Y consists of a 
F ∧k

G -pseudomorphism

F : X1∧ . . . ∧Xk Y ◦ ∧k .

Composition and the symmetric group action are given by the corresponding pasting 
diagrams, as done explicitly in Definition 5.15.

The unpacking of this definition is similar to the unpackings given for Definitions 5.15
and 6.19, with the caveat that the coherence diagrams in Section 11.3 must account for 
the pseudofunctoriality constraints of the weak FG-pseudoalgebras.

Remark 7.13. We could define an analogous multicategory F -PsAlg of weak struc-
tures, but we would not have a prolongation multifunctor P : F -PsAlg −→ FG-PsAlg
since we would no longer have the compatibility with Π that we used in the proof of 
Theorem 6.23. However, naturally occurring examples of F -pseudoalgebras that do not 
arise from use of the section often do have such compatibility with Π and thus can be 
prolonged to FG-pseudoalgebras.

We have the following theorem, whose proof is essentially the same as that of 
Theorem 5.20. Recall Notation 4.30.

Theorem 7.14. Pullback along ζG induces a symmetric multifunctor

ζ∗
G : Mult(DG) −→ Mult(FG-PsAlg).

8. Strictification of pseudoalgebras

For clarity about what is general and what is special and also for simplicity of notation, 
we revert to a general V satisfying our standard assumptions in this section. The reader 
may prefer to focus on V = U or V = GU , but equivariance and topology play no role in 
this section.

8.1. Power-Lack strictification

Let C be a V∗-2-category, and recall the 2-categories C-Alg and C-PsAlg of C-algebras 
and weak C-pseudoalgebras (Notation 4.29). We give a specialization of a general result 
of Power [42], further generalized by Lack [20], about strictification of pseudoalgebras 
over a 2-monad (see also [15, Theorem 0.1]).
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Theorem 8.1. Let C be a V∗-2-category. The inclusion of 2-categories

J : C-Alg −→ C-PsAlg

has a left 2-adjoint

StC : C-PsAlg −→ C-Alg.

The component of the unit i of the 2-adjunction is a C-pseudomorphism which is a 
levelwise equivalence (Definition 4.27).

For brevity, we will omit the subscript C and simply write St for the strictification 
functor when the category C is clear from the context.

We include a proof of this theorem, but we warn the reader that for the sake of brevity, 
we omit many relevant definitions, and refer the reader to [20,15] for more context and 
for the statement of the more general theorem that we are specializing. Following the 
proof of the theorem, we give an explicit description of the functor St, as this is what 
we will need in the sequel.

Proof of Theorem 8.1. Consider the 2-category Cat(V∗)ObC of tuples of V∗-categories 
indexed by the set ObC. There is a 2-monad T on this 2-category given by

(TX)(c) =
∨

b∈ObC

C(b, c) ∧ X(b),

with structure maps induced by the composition and identity maps in C. As can be 
easily verified, the 2-category of strict T -algebras, strict T -algebra maps, and T -algebra 
2-cells can be identified with C-Alg, and similarly, the 2-category of (strictly unital) 
T -pseudoalgebras, T -pseudoalgebra maps, and T -pseudoalgebra 2-cells can be identified 
with C-PsAlg.

Lack’s general result [20, Theorem 4.10] gives sufficient conditions for the existence 
of such a 2-adjunction in the general case of algebras and pseudoalgebras over a 2-
monad. The conditions are the existence of a rigid enhanced factorization system on the 
underlying 2-category such the 2-monad preserves one of the classes. The authors show 
in [15, Theorem 4.8] that there exists a rigid enhanced factorization system on Cat(V∗)
given by the pair of classes of V∗-functors (bijective on objects, fully faithful).17 This 
factorization system can be lifted levelwise to give a rigid enhanced factorization system 
on Cat(V∗)ObC.

Thus, to conclude the proof of the theorem, it remains to show that T preserves the 
class of maps that are levelwise bijective on objects. Thus let f : X −→ Y be a morphism 

17 The result in [15] is given for Cat(V), but the exact same argument works for Cat(V∗).
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in Cat(V∗)ObC that is levelwise bijective on objects. This means that for all c ∈ ObC, 
the map

fc : Ob(X(c)) −→ Ob(Y (c))

is an isomorphism in V∗. Then, since Ob commutes with wedges and smash products 
(see (2.9)), we have that for all c ∈ ObC,

Ob(TX(c)) ∼=
∨
b

ObC(b, c) ∧ Ob(X(b)) −→
∨
b

ObC(b, c) ∧ Ob(Y (b)) ∼= Ob(TY (c))

is an isomorphism as well. �
We now give an explicit description of the functor St, as we will need it in what 

follows. This description can be obtained by following Lack’s proof with our particular 
example in mind.

For a weak C-pseudoalgebra (X , θ, ϕ), we define the (strict) C-algebra StX as follows.
For c in C, the V∗-category StX (c) has V∗-object of objects

Ob(StX (c)) =
∨
b

ObC(b, c) ∧ Ob(X (b)), (8.2)

where b ranges over all objects of C.
The action of C on X defines a morphism

θ : Ob(StX (c)) −→ Ob(X (c)), (8.3)

and this allows us to define the V∗-object of morphisms of StX (c) as the pullback dis-
played in the diagram

Mor(StX (c))

(T,S)

Mor(X (c))

(T,S)

Ob(StX (c)) × Ob(StX (c))
θ×θ

Ob(X (c)) × Ob(X (c)).

(8.4)

Composition is induced by composition in X (c).
To describe the pullback more explicitly, writing elementwise for the sake of exposition, 

let

(f, x) ∈ ObC(b, c) ∧ Ob(X (b)) and (f ′, x′) ∈ ObC(b′, c) ∧ Ob(X (b′)).

Then

Mor(StX (c))
(

(f, x), (f ′, x′)
)

= Mor(X (c))
(

θ(f, x), θ(f ′, x′)
)

.



70 B.J. Guillou et al. / Advances in Mathematics 414 (2023) 108865
The action map

Stθ : C(b, c) ∧ StX (b) −→ StX (c)

descends to the smash product from the map on the product given on objects by 
(Stθ)(h, (f, x)) = (h ◦ f, x) for h ∈ C(b, c).

For a morphism α : (f, x) −→ (f ′, x′) in StX (b) and λ : h −→ h′ in C(b, c), the 
corresponding morphism Stθ(h, (f, x)) −→ Stθ(h′, (f ′, x′)) is defined to be

θ(h ◦ f, x) ϕ−1

−−→ θ(h, θ(f, x)) θ(λ,α)−−−−→ θ(h′, θ(f ′, x′)) ϕ−→ θ(h′ ◦ f, x).

Then Stθ gives StX a strict C-algebra structure by the strict functoriality of composition 
in C.

For a C-pseudomorphism (F, δ) : X Y , we define St(F, δ) : StX −→ StY by letting 
St(F, δ)c : StX (c) −→ StY(c) be the functor sending (f, x) to (f, Fx) and α : (f, x) −→
(g, y) to the composite

θY (f, Fx) δ−1

−−→ F (θX(f, x)) F α−−→ F (θX(g, y)) δ−→ θY (g, Fy).

It is straightforward to check that these form the components of a strict C-morphism. 
We can similarly define the action of St on C-transformations.

For a weak C-pseudoalgebra (Y, θ, ϕ), we define C-pseudomorphisms

i : Y StY and m : StY Y

as follows. The component V∗-functor ic : Y(c) −→ StY(c) is given by ic(y) = (idc, y) on 
objects y of Y(c) and ic(γ) = γ on morphisms γ of Y(c). The latter makes sense since 
θ(idc, y) = y. The component of the pseudonaturality V∗-transformation

C(b, c) ∧ Y(b)
id∧ib

θ ib,c

C(b, c) ∧ StY(b)

Stθ

Y(c)
ic

StY(c)

at (f, y) is the morphism (f, y) −→ (idc, θ(f, y)) in StY(c) corresponding to the identity 
map of θ(f, y) in Y(c).

The component V∗-functors mc : StY(c) −→ Y(c) are given by (8.3) on the V∗-object 
of objects and by the top horizontal arrow in (8.4) on the V∗-object of morphisms. The 
pseudonaturality constraint



B.J. Guillou et al. / Advances in Mathematics 414 (2023) 108865 71
C(b, c) ∧ StY(b)
id∧mb

Stθ ϕ̃

C(b, c) ∧ Y(b)

θ

StY(c)
mc

Y(c)

is induced by the invertible V∗-transformation ϕ that witnesses the C-pseudoalgebra 
structure of Y.

As is easily checked directly, m ◦ i is the identity, and in addition, i and m are inverse 
equivalences in C-PsAlg. Thus, in particular, i is a level equivalence. The map i is 2-
natural with respect to C-pseudomorphisms and C-transformations and is the unit of 
the adjunction. If Y is a strict C-algebra and thus of the form Y = JX , then m is a 
strict C-morphism, and moreover, it is 2-natural with respect to strict C-morphisms and 
C-transformations; it is the counit of the adjunction.

Remark 8.5. The C-pseudomorphism m : StY Y of the proof of Theorem 8.1 is not 
strictly natural with respect to C-pseudomorphisms of weak C-pseudoalgebras. With 
slightly extra work, one can prove that it gives the components of a pseudonatural 
transformation m : JSt =⇒ id of endo-2-functors of C-PsAlg. As it is not necessary for 
our work, we shall not pursue this route. However, we will use the fact, noted in the 
proof, that mc : StY(c) −→ Y(c) is an equivalence of V∗-categories.

Recall Notation 4.30. We shall apply the following result to an iterated monoidal 
product C∧k −→ C in Section 8.2 and to ξG : DG −→ FG in Section 10.2.

Lemma 8.6. Let D and C be V∗-2-categories and let ξ : D −→ C be a V∗-2-functor. Given 
a C-pseudoalgebra Y, there is a D-morphism

ψ = ψξ : StD(ξ∗Y) −→ ξ∗(StCY)

that is 2-natural with respect to C-pseudomorphisms and C-transformations. Moreover, 
the diagram

ξ∗Y
iD ξ∗iC

StD(ξ∗Y)
ψ

ξ∗(StCY)

commutes, hence ψ is a levelwise equivalence.

Proof. We can specify ψ as the D-morphism corresponding to the D-pseudomorphism

ξ∗iC : ξ∗Y ξ∗(StCY)
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under the adjunction of Theorem 8.1. The claim about 2-naturality then follows from 
the 2-naturality of i. The commutativity of the diagram can be verified directly from the 
definition. �
Remark 8.7. Again, for building intuition, we give an explicit description of ψ in terms 
of elements, which we can use in our example of interest in Section 10 where we work 
internally to categories of based G-spaces. For an object d ∈ D, ψd : StD(ξ∗Y)(d) −→
ξ∗(StCY)(d) sends an object (f, y), with f : d′ → d in D and y ∈ Y(ξ(d′)), to the object 
(ξ(f), y).

The following lemma records the compatibility of the morphism ψ of Lemma 8.6 with 
composition of V∗-2-functors; it follows directly from the definitions.

Lemma 8.8. Let ν : E −→ D and ξ : D −→ C be V∗-2-functors. Then the diagram

StE((ξν)∗Y)
ψ(ξν)

(ξν)∗(StCY)

StE(ν∗ξ∗Y)
ψν

ν∗(StD(ξ∗Y))
ν∗ψξ

ν∗ξ∗(StCY)

commutes for every C-pseudoalgebra Y.

The following observation about the interaction of strictification with the external 
smash product (Definition 4.31) generalizes [32, Lemma 3.5].

Lemma 8.9. Let C and D be V∗-2-categories, X a C-pseudoalgebra and Y a D-
pseudoalgebra. Then there is a canonical isomorphism

StC∧D(X ∧ Y) ∼= (StCX ) ∧ (StDY),

which is 2-natural with respect to the respective pseudomorphisms and pseudotransforma-
tions. In particular, up to composing with this canonical isomorphism, for a C-
pseudomorphism E : X X ′ and an D-pseudomorphism F : Y Y ′ , the C ∧ D-
morphism StC∧D(E ∧ F ) corresponds to (StCE) ∧ (StDF ).

Proof. On the level of objects, the identification follows from (2.9) and (8.2). Intuitively, 
if we are writing elementwise, it is just the twist that sends an object ((e, f), (x, y)) of 
StC∧D(X ∧ Y)(c, d) to the object ((e, x), (f, y)) of (StCX )(c) ∧ (StDY)(d).

Note that since the V∗-functor

mC ∧ mD : (StCX (c)) ∧ (StDY(d)) → X (c) ∧ Y(d)
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is an equivalence (Remark 8.5), it is fully faithful [44, Lemma 4.17], in the sense that 
the diagram

Mor
(

(StCX (c)) ∧ (StDY(d))
)

(T,S)

Mor(X (c) ∧ Y(d))

(T,S)

Ob
(

(StCX (c)) ∧ (StDY(d))
)×2

Ob(X (c) ∧ Y(d))×2

is a pullback square which is isomorphic to the pullback square in (8.4) that de-
fines Mor(StC∧D(X ∧ Y)). This shows that the V∗-categories StC∧D(X∧Y )(c, d) and 
(StCX)(c) ∧ (StDY )(d) are isomorphic. One can check that these isomorphisms respect 
the action of C ∧ D, thus proving the result. �

We record the relationship between the 2-natural transformation ψ of Lemma 8.6 and 
the canonical isomorphism of Lemma 8.9.

Lemma 8.10. Let C, C′, D, and D′, be V∗-2-categories, let ξ : C′ −→ C and ζ : D′ −→ D

be V∗-2-functors, and let X be a C-pseudoalgebra and Y be a D-pseudoalgebra. Then the 
following diagram commutes, where the unnamed isomorphisms are those of Lemma 8.9.

StC′∧D′

(
(ξ ∧ ζ)∗(X ∧ Y)

) ψξ∧ζ

(ξ ∧ ζ)∗StC∧D(X ∧ Y)

∼=

StC′∧D′

(
(ξ∗X ) ∧ (ζ∗Y)

)
∼=

(ξ ∧ ζ)∗(StCX ∧ StDY)

(StC′ξ∗X ) ∧ (StD′ζ∗Y)
ψξ ∧ ψζ

(ξ∗StCX ) ∧ (ζ∗StDY)

8.2. The extension of strictification to a multifunctor

We now assume that (C, I, �, τ) is a permutative V∗-2-category (Definition 4.32). 
We extend St to a multifunctor from the multicategory Mult(C-PsAlg) of (weak) 
C-pseudoalgebras to the multicategory Mult(C-Alg) of strict C-algebras and strict mul-
tilinear maps. The former is defined by replacing FG by C in Definition 7.12, and we 
now define the latter.

Definition 8.11. The multicategory Mult(C-Alg) is constructed by using the symmetric 
monoidal structure on C-Alg given by Day convolution along iterations of the monoidal 
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product � on C. Reinterpreting this externally, via the universal property of Day convo-
lution, we see that for strict C-algebras X1, . . . , Xk and Y, a k-ary morphism is given by 
a strict C∧k-morphism

F : X1 ∧ · · · ∧ Xk −→ Y ◦ �k.

We remark that the definition above differs from Definitions 5.15 and 6.19 in that the 
multimorphisms are pseudotransformations in those cases, and strict here.

Theorem 8.12. The strictification functor St induces a (non-symmetric) multifunctor

St: Mult(C-PsAlg) −→ Mult(C-Alg).

Proof. For a C-pseudoalgebra X , we set StX = StCX . For multimorphisms, we use the 
2-functor StC∧k , which for brevity we denote by Stk, to strictify C∧k-pseudomorphisms. 
More precisely, recall that a k-ary morphism in Mult(C-PsAlg) is given by a C∧k-
pseudomorphism

F : X1 ∧ · · · ∧ Xk Y ◦ �k.

We define the k-ary morphism St(F ) in Mult(C) as the composite

StX1 ∧ · · · ∧ StXk

∼= Stk(X1 ∧ · · · ∧ Xk)
Stk(F )

Stk(Y ◦ �k)
ψ

(StY) ◦ �k,

where the unnamed isomorphism is that of Lemma 8.9, and the map ψ is the one defined 
in Lemma 8.6.

Note that on 1-ary morphisms, St is just the 2-functor StC, so in particular this 
assignment sends the identity to itself.

It remains to prove that St preserves multicomposition. Let

F : Y1 ∧ · · · ∧ Yk Z ◦ �k

be a C∧k-pseudomorphism and, for 1 ≤ r ≤ k, let

Er : Xr,1 ∧ · · · ∧ Xr,jr
Yr ◦ �jr

be a C∧jr -pseudomorphism. The composite in Mult(C-PsAlg) is given by the pasting 
diagram in (5.16). In terms of the external smash product of Definition 4.31 and the 
pullback of Notation 4.30, this C∧j-pseudomorphism can be expressed as the composite 
of Cj-pseudomorphisms

∧
r,i

Xr,i

∧
r

Er ∧
r

(�jr )∗Yr = (
∧
r
�jr )∗(

∧
r

Yr)
(
∧
r
�jr )∗F

(
∧
r
�jr )∗(�k)∗Z = (�j)∗Z.
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Consider the following diagram of C∧j-morphisms.

∧
r,i

StXr,i

∼=

∼=

∧
r

Stjr

(∧
i

Xr,i

) ∧
r

Stjr (Er)

∼=

∧
r

Stjr

(
(�jr )∗Yr

)
∧
r

ψ�jr

∼=
Stj

(∧
r,i

Xr,i

)
Stj

(∧
r

Er

)
∧
r

(�jr )∗StYr

Stj

(∧
r

(�jr )∗Yr

)
(
∧
r
�jr )∗

(∧
r

StYr

)
∼=

Stj

(
(
∧
r
�jr )∗(

∧
r

Yr)
)

Stj

(
(
∧
r
�jr )∗F

)

ψ(
∧ �jr )

(
∧
r
�jr )∗Stk

(∧
r

Yr

)
(
∧
r
�jr )∗StkF

Stj

(
(
∧
r
�jr )∗(�k)∗Z

)
ψ(

∧ �jr )

(
∧
r
�jr )∗Stk

(
(�k)∗Z

)
(
∧
r
�jr )∗ψ�k

Stj

(
(�j)∗Z

)
ψ�j

(�j)∗StZ (
∧
r
�jr )∗(�k)∗StZ

Strictifying E1, . . . , Er and F and then composing is equal to going around clockwise. 
Using that Stj is a 2-functor, we get that going around counter-clockwise is equal to 
strictifying the composite. The diagram commutes; indeed, going from top to bottom, the 
regions commute by associativity of ∧ in Cat(V∗), Lemma 8.9, Lemma 8.10, naturality 
of ψ, and Lemma 8.8, respectively. �
Remark 8.13. This proof depends crucially on the fact that the monoidal product on C
is a strict V∗-2-functor and not just a pseudofunctor. It does not work for our pseudo-
commutative categories of operators D or DG. This is the crux of why the route in this 
paper is less categorically intensive than the monadic route of [28], which simultaneously 
strictifies and transfers structure from DG to FG.

8.3. St is not a symmetric multifunctor

As stated in Theorem 8.12, St is not a symmetric multifunctor. We explain why in 
this parenthetical subsection. We consider the case when k = 2, with σ the non-trivial 
element of Σ2. Since the problem already appears nonequivariantly, we take G = e
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and specialize to C = F . Thus let F : X1 ∧ X2 Y be a (weak) F -pseudomorphism 
between (weak) F -pseudoalgebras. Following (5.18), for an object (m, p) of F ∧ F , the 
1-cell component of Fσ is the composite

X2(m) ∧ X1(p) t X1(p) ∧ X2(m) F Y(pm)
Y(τp,m)

Y(mp).

We claim that the 1-cell components of St(Fσ) and (StF )σ do not agree. For an object 
(m, p) of F ∧ F , these are V∗-functors

StX2(m) ∧ StX1(p) −→ StY(mp).

We compare them at the level of objects, writing elementwise. An object of the source 
has the form (

(f2, x2), (f1, x1)
)

where f1 : q −→ p and f2 : n −→ m are morphisms of F and x1 and x2 are objects of 
X1(q) and X2(n), respectively.

Then St(F )σ sends 
(

(f2, x2), (f1, x1)
)

to 
(

(τp,m ◦(f1 ∧f2), F (x1, x2)
)

. We can rewrite 
the output as (

(f2 ∧ f1) ◦ τq,n, F (x1, x2)
)

.

On the other hand, St(Fσ) sends 
(

(f2, x2), (f1, x1)
)

to

(
(f2 ∧ f1), θ(τq,n, F (x1, x2))

)
.

We conclude that the multifunctor St is not symmetric. Just as in Remark 3.29 we expect 
that these isomorphisms assemble into a pseudo symmetric structure as defined by Yau 
[52].

Remark 8.14. This failure of symmetry is forced by our need to use weak pseudostructure 
in the target of ζ∗

G. If we instead use pseudofunctors which are strict relative to Π when 
we strictify, then we do have symmetry. Symmetry is also studied in the 2-monadic 
context in [28], where the problem is entirely different.

9. From FG-algebras in Cat to G-spectra

In this section, we describe how we pass from categorical to topological FG-algebras 
and DG-algebras, and then to G-spectra, keeping track of multiplicative structure. 
Nonequivariantly, F -spaces (aka Γ-spaces) were introduced by Segal in his treatment of 
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infinite loop space theory. These generalize to FG-G-spaces, which are the input of the 
equivariant version of the Segal infinite loop space machine. For a detailed treatment of 
FG-G-spaces, we refer the reader to [39], and for a treatment of its symmetric monoidal 
structure to [14]. Topological categories of operators D and D-spaces were introduced 
in [37] as an intermediary between F -spaces and operadic algebras in the proof of the 
uniqueness of infinite loop space machines. The topological equivariant analogues, DG-
spaces, are treated extensively in [39] in the comparison of equivariant infinite loop space 
machines.

In Section 9.1, we discuss the classifying space functor multiplicatively. We recall the 
equivariant Segal machine in Section 9.2. Using that the classifying space functor and the 
Segal machine are both lax monoidal, we restate and prove Theorem A as Theorem 9.14. 
In effect, it gives a multiplicative equivariant infinite loop space machine starting from 
operadic categorical input.

Some technicalities ensuring that our passage from categorical to space-level input 
is homotopically well-behaved are postponed to Section 9.3. The point is just to give 
conditions on the categorical input that ensure that the output FG-G-spaces have non-
degenerate basepoints. We briefly discuss a related open question about Day convolution 
in Section 9.4. The brief Section 9.5 shows how to obtain homotopies between maps of 
G-spectra from operadic categorical input.

9.1. The multifunctor B

In order to construct equivariant spectra from O-algebras in a multiplicative way, we 
need to understand the multiplicative properties of the classifying space functor B.

The classifying space functor B does not commute with smash products in general. 
However, we have the following result, which allows us to use B to change enrichment. 
Recall Definition 2.7.

Proposition 9.1. The classifying space functor B : Cat(GU∗) −→ GU∗ is lax symmetric 
monoidal.

Proof. The map

BC × BD ∼= B(C × D) −→ B(C ∧ D)

sends the subspace BC ∨ BD to the basepoint and therefore induces a based map

BC ∧ BD −→ B(C ∧ D). �
Definition 9.2. Let DG be a Cat(GU∗)-category of operators over FG, as defined in 
Definition 6.5. Let D top

G denote the category enriched in GU∗ obtained by applying B to 
morphism based categories to change the enrichment. When DG = FG, the morphism 
categories are discrete (identity morphisms only). Since the classifying space of a discrete 
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category is isomorphic to itself, we can identify F top
G with FG. It follows that D top

G is a 
category of operators over FG in the sense of [39, § 4.1].

Notation 9.3. The category GU∗ is closed symmetric monoidal with internal homs given 
by the spaces of all nonequivariant based maps, based at the constant maps at the base-
point, with G acting by conjugation. The internal homs make GU∗ into a GU∗-enriched 
category. We denote this enriched category by GU∗ to emphasize the enrichment. We 
denote by D top

G -GU∗ the category of GU∗-enriched functors X : D top
G −→ GU∗. The en-

richment over based G-spaces implies that X (0) = ∗ [39, Lemma 1.17]. To emphasize that 
these are just (enriched) functors to G-spaces, we call them D top

G -G-spaces. In particular, 
an FG-G-space will mean an object of FG-GU∗.

Recall that we write DG-Alg as shorthand for the category of DG-algebras and strict 
maps in Cat(GU∗).

Proposition 9.4. Applying the classifying space functor levelwise induces a functor

B : DG-Alg −→ D top
G -GU∗.

Proof. By Proposition 9.1 the classifying space functor B is lax symmetric monoidal. It 
follows formally that it induces a map on functor categories. Explicitly, if X is a DG-
algebra in Cat(GU∗), we obtain the D top

G -G-space BX by applying B levelwise, with 
action maps given by the composites

BDG(mα, nβ) ∧ BX (mα) −→ B(DG(mα, nβ) ∧ X (mα)) Bθ−−→ BX (nβ),

where the first map is the monoidal constraint for B. The commutativity of the com-
position and unit diagrams follows from their analogs for X (see Definition 4.19) and 
the axioms for a lax monoidal functor. The functoriality of B on strict algebra maps is 
obtained by applying B levelwise. �

We now concentrate on the case of FG. The categories FG-GU∗ and FG-Alg are 
symmetric monoidal via Day convolution.

Proposition 9.5. The functor

B : FG-Alg −→ FG-GU∗

of Proposition 9.4 is lax symmetric monoidal.

Proof. This follows formally from Proposition 9.1, but we sketch the argument. The 
induced functor B on our categories of algebras preserves the monoidal unit, which in 
both the source and the target is given by the representable functor FG(1, −). Given X
and Y in F -Alg, we construct a map
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BX ∧ BY −→ B(X ∧ Y)

in FG-GU∗ by applying the universal property of Day convolution to the map of (FG ∧
FG)-G-spaces with components given by the composites

BX (mα) ∧ BY(nβ) −→ B(X (mα) ∧ Y(nβ)) −→ B(X ∧ Y)(mnα⊗β).

Here the first map is the lax monoidal constraint for B and the second map is obtained by 
applying B to the components of the unit of the Day convolution adjunction. It is routine 
to check that this map satisfies the required compatibilities with the unit, associativity 
and symmetry isomorphisms. �
Remark 9.6. Note that if DG is a Cat(GU∗)-category of operators over FG equipped with 
a pseudo-commutative structure (Definition 6.13), this does not give rise to a symmetric 
monoidal structure on D top

G . As a result, we do not have a monoidal structure on the 
category of D top

G -algebras, and so we cannot expect an analogue of Proposition 9.5 for 
DG-algebras.

9.2. From FG-G-spaces to G-spectra

In this section, we first recall the properties of the equivariant Segal machine, whose 
construction is given in detail in [39]. A treatment that deals with multiplicative prop-
erties can be found in [14]. In this paper, we treat the Segal machine as a black box, and 
we refer the reader to those sources for details.

All homotopical versions of the Segal machine come in the form of bar constructions, 
which are only homotopically well-behaved when the input functors X : FG −→ GU∗
take values in nondegenerately based G-spaces. However, in the previous subsection, we 
concentrated on formal properties of our constructions.

Notation 9.7. Write GT and TG for the full subcategories of nondegenerately based 
G-spaces in GU∗ and in GU∗. Since these categories are not bicomplete, they are less 
useful for formal purposes. We note that unlike GU∗, since GT is not closed, we cannot 
enrich it over itself as in Notation 9.3. This is why we avoid the parallel notation GT , 
which would have denoted this formal procedure, and instead use the notation TG for 
the GU∗-enriched category, which is the notation that was used in previous papers such 
as [39].

Since we have introduced several notations for different target categories of G-spaces, 
we collect these notations in a table to make them easier to keep track of in what follows.
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Notation Description Enrichment
GU∗ based G-spaces and based G-maps over Sets
GU∗ based G-spaces and all based maps over GU∗
GT ⊆ GU∗ nondegenerately based G-spaces over Sets

and based G-maps
TG ⊆ GU∗ nondegenerately based G-spaces over GU∗

and all based maps

We introduce notations and definitions to help deal with the resulting dichotomy.

Notation 9.8. Let D top
G be a GU∗-category of operators over FG, such as the one in 

Definition 9.2. A D top
G -G-space is levelwise nondegenerately based if each X (nα) is non-

degenerately based. We write D top
G -GT for the full subcategory of D top

G -GU∗ whose 
objects are levelwise nondegenerately based. In particular, starting with the commu-
tativity operad, whose terms are one-point G-spaces, this defines the full subcategory 
FG-GT of FG-GU∗.

Definition 9.9. Define T to be the composite functor

T = StFG
◦ ζ∗

G ◦ RG : O-Algps −→ FG-Alg.

Then define O-AlgGT
ps to be the full subcategory of O-Algps consisting of those O-

algebras A such that BTA is in FG-GT . Thus, by definition, the composite BT restricts 
to a functor O-AlgGT

ps −→ FG-GT .

The functor T collates the categorical functors studied in previous sections, B passes 
from categorical data to space level data, and the Segal machine passes from there 
to spectra. That machine will be well-behaved when we restrict it to FG-GT , and 
O-AlgGT

ps specifies those O algebras that feed into FG-GT . We will show in the next 
subsection that most O-algebras of interest are in O-AlgGT

ps .
To define the notion of a Segal machine SG, we need the key notion of a special FG-G-

space. To give a conceptual setting for this notion, observe first that, just as we had on 
categories, we have a composite functor Rtop

G = P topRtop from Otop-algebras in GT to 
D top

G -G-spaces, where Otop is an operad in GU with associated category of operators 
D top

G . We specialize this to the initial operad Otop, which has Otop(0) = Otop(1) = ∗ and 
all other Otop(j) = ∅. Its associated category of operators is ΠG. Applying Rtop

G to this 
operad, we obtain a functor Rtop

G : GT −→ ΠG-GT .
For a based G-space X, Rtop

G (X) sends nα to the G-space Xnα = GT (nα, X). More 
explicitly, this is Xn with G-action given by

g(a1, . . . , an) = (gaα(g−1)(1), . . . , gaα(g−1)(n)). (9.10)
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The functor Rtop
G is right adjoint to the functor Ltop

G that evaluates a ΠG-G-space at 1. 
For a ΠG-G-space Y, the unit

δ : Y −→ Rtop
G (Y(1))

of the adjunction is a map of ΠG-G-spaces called the Segal map. At level nα, it is induced 
by the n projections nα → 1 [39, Definition 2.34].

Definition 9.11. We say that a ΠG-G-space Y is special if δ is a levelwise weak G-
homotopy equivalence. We say that a D top

G -G-space, and in particular an FG-G-space, 
is special if its underlying ΠG-G-space is special.

Recall that an orthogonal G-spectrum E is a positive Ω-G-spectrum if its adjoint 
structure maps

EV −→ ΩW EV ⊕W

are weak G-equivalences when V G �= 0 and is connective if the negative homotopy groups 
of its fixed point spectra are all zero.

Definition 9.12. A Segal machine is a functor SG : FG-GU∗ −→ SpG together with a 
natural map of G-spaces

ν : X (1) −→ (SGX )0

such that the following properties hold when X is a special F -G-space in FG-GT .

(i) SGX is a connective positive Ω-G-spectrum.
(ii) The composite of ν with the adjoint structure map

(SGX )0 −→ ΩV (SGX )V

is a group completion for all V such that V G �= 0.

Remark 9.13. It is equivalent to replace general V by V = R in (ii).

The notion of a group completion of a Hopf G-space is defined as a group completion 
on all fixed point maps (see [13, Definition 1.9]). The nonequivariant construction of the 
Segal machine was introduced in [47]. The equivariant construction is due to Shimakawa 
[48], who started from an unpublished version that is also due to Segal. It is given a 
self-contained modernized treatment in [39]. A multiplicative version is given in [14]. We 
refer the reader to those sources for details.

From now on, we set SG to be the Segal machine from [39], which is lax monoidal by 
[14]. We could just as well use the equivalent symmetric monoidal version from [14], but 



82 B.J. Guillou et al. / Advances in Mathematics 414 (2023) 108865
that would not be of any benefit since we lost symmetry with the multifunctor StFG
. 

Moreover, using the machine from [39] will be convenient in Section 10, where we will use 
several results from [39]. We repeat that we mostly treat the Segal machine SG as a black 
box. The only detail from [39] that we will need to make explicit is a partial description of 
the construction that allows us to define the natural map ν : X (1) −→ (SGX )0 required 
in Definition 9.12. That will be given where it is used in Section 10.

We now restate and prove Theorem A.

Theorem 9.14. Let O be a chaotic E∞ G-operad in Cat(GU). The functor

KG = SG ◦ B ◦ StFG
◦ ζ∗

G ◦ RG : O-Algps −→ SpG (9.15)

from (1.2) extends to a multifunctor

KG : Mult(O) −→ Mult(SpG).

For an O-algebra A ∈ O-AlgGT
ps , KGA is a connective positive Ω-G-spectrum with a 

group completion map

BA −→ ΩV (KGA)V

for all V such that V G �= 0.

Proof. By Corollary 6.25, Theorem 7.14, Theorem 8.12, Proposition 9.5, and [14, § 5.2], 
KG is a composition of multifunctors and is thus a multifunctor. When A is in O-AlgGT

ps , 
BTA is in FG-GT , and we claim that it is special. That will imply the second statement. 
Since TA is level G-equivalent to RGA, by Theorem 8.1, the claim follows from the fact 
that B takes equivalences of G-categories to homotopy equivalences of G-spaces and 
commutes with RG, in the sense that BRG

∼= Rtop
G B. �

9.3. The identification of objects in O-AlgGT
ps

When the operad O and an O-algebra A are topologically discrete, in the sense that 
they are categories internal to GSet, A is in O-AlgGT

ps since all of our categorical con-
structions retain discreteness and the geometric realization of a based simplicial set is 
nondegenerately based. We show here that many topologically non-trivial examples, such 
as those that appear in Section 10, are also in O-AlgGT

ps .
We require the following definition. Nonequivariantly, its use goes back at least to 

Milnor’s classical paper [40], and it was studied in more detail by Dyer and Eilenberg [7]
and later Lewis [26]. Details of equivariant cofibrations are in [2, § A.2].

Definition 9.16. A G-space X is G-locally equiconnected (G-LEC for short) if the diagonal 
map Δ: X −→ X × X is a G-cofibration.
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Examples of G-LEC G-spaces include G-CW-complexes [7,26]. Every basepoint of a 
G-LEC G-space is nondegenerate [7, Corollary II.8]. The following lemma gives sufficient 
conditions for the classifying space of a chaotic category to be nondegenerately based.

Lemma 9.17. Suppose that C ∈ Cat(GU∗) is chaotic and that ObC is G-LEC. Then BC
has a nondegenerate basepoint.

Proof. Since ObC is G-LEC and C is chaotic, the nerve of C is levelwise G-LEC. Then 
BC is G-LEC by [26, Corollary 2.4(b)], and in particular it has a nondegenerate base-
point. �

We also need the following two general results about G-LEC G-spaces.

Lemma 9.18. Let X be a G-LEC based G-space and nα be a finite based G-set. Then 
Xnα = GU∗(nα, X) is G-LEC.

Proof. The G-space Xnα can be viewed as the restriction along the homomorphism 
G −→ G � Σn of the G � Σn-space Xn. It then follows from [2, Proposition A.2.6] that 
Xnα is G-LEC. �
Lemma 9.19. Let H be a subgroup of G, and let Y be an H-LEC space. Then G ×H Y is 
G-LEC.

Proof. The diagonal on G ×H Y factors as

G ×H Y
Δ

id×Δ

(G ×H Y ) × (G ×H Y )
∼= (G × G) ×H×H (Y × Y )

G ×H (Y × Y ).
Δ×id

The map id×Δ is the induction from H to G of the H-cofibration ΔY , and it follows that 
it is a G-cofibration. On the other hand, we claim that the map Δ × id is the inclusion of 
a coproduct summand and is therefore a G-cofibration. To see this, note that the subset 
{(g, gh) | g ∈ G, h ∈ H} ⊂ G × G is a (G, H × H)-invariant subset, and it is precisely 
the image under the right (H × H)-action of Δ(G) ⊂ G × G. Since G is discrete, it 
follows that we may decompose G × G as a (G, H × H)-equivariant disjoint union of this 
subset and its complement. Crossing with Y × Y and passing to (H × H)-orbits gives a 
G-equivariant decomposition of (G × G) ×H×H (Y × Y ) into the image of Δ × id and its 
complement. �

In the remainder of this section, we let O be an operad in Cat(GU), and A be an 
O-algebra.
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Proposition 9.20. If ObA is G-LEC and has a disjoint basepoint, then A is in O-AlgGT
ps .

Proof. We first prove that each object G-space TA(nα) of TA is G-LEC. Write W for 
ζ∗

GRGA, so that TA = StFG
W. The G-space ObW(nα) can be identified with (ObA)nα , 

and is thus G-LEC by Lemma 9.18. Moreover, it has a disjoint basepoint. Recall from 
Theorem 8.1 that

ObStFG
W(nα) =

∨
kβ

FG(kβ , nα) ∧ ObW(kβ).

Since ObW(kβ) is G-LEC, it follows that FG(kβ , nα) ∧ ObW(kβ) is G-LEC. Since 
the basepoint of FG(kβ , nα) ∧ ObW(kβ) is disjoint, the infinite wedge is in fact an 
infinite disjoint union, with an adjoined disjoint basepoint. Since an arbitrary coproduct 
of G-LEC G-spaces is again G-LEC, ObTA(nα) is G-LEC.

In the proof of Theorem 8.1, we defined a pseudomorphism

m : TA = StFG
W W ,

each of whose components is an equivalence of categories. Let Y(nα) ⊂ TA(nα) be 
the subcategory Y(nα) = m−1

nα (∗). Since mnα is an equivalence of categories, Y(nα) is 
equivalent to the trivial category and is therefore chaotic. The fact that the basepoint 
splits off of ObW(nα) implies that ObY(nα) splits off from ObTA(nα) and is therefore 
G-LEC since ObTA(nα) is G-LEC. Since the basepoint of BTA(nα) lies in BY(nα) and 
BY(nα) has a nondegenerate basepoint by Lemma 9.17, this gives the conclusion. �

The following example will be used in Theorem 10.1.

Remark 9.21. We embed GU in Cat(GU) by regarding an unbased G-space X as an 
object of Cat(GU) with X as both the object and the morphism G-space and with the 
source, target, identity and composition maps all the identity. Similarly, we regard X+
as an object of Cat(GU∗). The free O-algebra generated by X+ is the disjoint union of 
the categories O(j) ×Σj

Xj with base object ∗ the 0th term.

Proposition 9.22. If X ∈ GU is G-LEC and ObO(j) is a (discrete) free Σj-set for each 
j, then O+(X) is in O-AlgGT

ps .

Proof. By Proposition 9.20, it suffices to show that ObO+(X) is G-LEC. This holds if 
each G-space

Ob
(

O(j) ×Σj
Xj

)
∼= ObO(j) ×Σj

Xj

is G-LEC. Since ObO(j) is discrete with free Σj-action, we can write it as a disjoint union 
of (G × Σj)-sets (G × Σj)/Λ, where Λ ⊂ G × Σj is a subgroup such that Λ ∩ e × Σj = e. 
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In other words, the subgroup Λ is the graph of a homomorphism α : H −→ Σj for some 
subgroup H ≤ G. For each such Λ, we have an isomorphism of G-spaces

(
(G × Σj)/Λ

)
×Σj

Xj ∼= G ×H Xjα

.

Since X is G-LEC, Lemma 9.18 implies that Xjα is H-LEC. Then by Lemma 9.19, we 
have that G ×H Xjα is G-LEC as wanted. �

Consider the category of operators DG = DG(O). The following analogue of 
Proposition 9.20, with FG replaced by DG, will be needed in Section 10.2. There we 
use comparisons between infinite loop space machines SG defined on FG-G-spaces and 
SDG

G defined on D top
G -G-spaces, where D top

G is the topological version of DG, as specified 
in Definition 9.2. The machine SDG

G has good properties when its domain is restricted to 
D top

G -GT . Just as for FG, we have categories DG-Algps of strict DG-algebras and pseu-
domorphisms and a subcategory DG-Alg of strict DG-algebras and strict morphisms. 
Section 8 specializes to give a strictification functor

StDG
: DG-Algps −→ DG-Alg.

The composite

StDG
RG : O-Algps −→ DG-Alg

plays a role analogous to that of T in the earlier results of this subsection, and we let 
O-AlgGT

ps (DG) be the full subcategory of O-Algps consisting of those O-algebras A such 
that BStDG

RGA is in D top
G -GT . Thus, by definition, BStDG

RG restricts to a functor 
O-AlgGT

ps (DG) −→ D top
G -GT .

Proposition 9.23. If ObO(j) for each j and ObA are G-LEC, and ObA has a disjoint 
basepoint, then A is in O-AlgGT

ps (DG).

Proof. We need a modification of the first step of the proof of Proposition 9.20 to account 
for strictification over DG rather than FG. Writing Z = RGA, we have

ObStDG
Z(nα) =

∨
kβ

ObDG(kβ , nα) ∧ ObZ(kβ).

But ObDG(kβ , nα) is a finite coproduct of finite products of G-spaces ObO(j), each of 
which has a disjoint basepoint and is assumed to be G-LEC. Therefore ObStDG

Z(nα)
is G-LEC. The rest of the proof of Proposition 9.20 goes through unchanged. �

The proof of Proposition 9.22 applies directly to give the following analog.

Proposition 9.24. If X ∈ GU is G-LEC and ObO(j) is a (discrete) free Σj-set for each 
j, then O+(X) is in O-AlgGT

ps (DG).
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9.4. Nondegenerate basepoints and Day convolution

This brief parenthetical section highlights a question that seems to have been over-
looked in all previous papers dealing with the use of Day convolution in topology, even 
nonequivariantly, whether for spectra or for categories of operators. We concentrate on 
the latter and restrict attention to F , thinking nonequivariantly for simplicity.

Of course, smash products are constructed as quotient spaces X × Y/X ∨ Y in U∗. 
It is essential to be working in compactly generated spaces since otherwise the smash 
product is not even associative [36, Theorem 1.7.1]. It follows from Lillig’s union theorem 
[27] that X ∧ Y is nondegenerately based if X and Y are. Therefore both U∗ and its full 
subcategory T are symmetric monoidal under the smash product. By Remark 2.17, we 
have associated multicategories Mult(U∗) and Mult(T ).

An F -space is an (enriched) functor F −→ U∗ and the category F -U∗ of F -spaces 
is symmetric monoidal under the internal smash product given by Day convolution. By 
Remark 2.17, it also has an associated multicategory Mult(F -U∗). That can be defined 
using either the internal smash product as in Remark 2.17 or using the external smash 
product as in Definition 5.15. These definitions give isomorphic multicategories by the 
universal property of Day convolution.

Now consider the category F -T of (enriched) functors F −→ T . It has been asserted 
in many places, including our own [14], that F -T is symmetric monoidal under the 
internal smash product. We do not know whether or not that is true, and we believe that 
it is not. The external smash product X � Y : F ∧ F −→ U∗ of functors X, Y : F −→
T clearly takes values in T , but it does not follow that the internal smash product 
X ∧ Y : F −→ U∗ takes values in T . That is, we do not believe that Day convolution 
preserves levelwise nondegeneracy of basepoints. We cannot use the universal property to 
prove that it does, and we have not succeeded in proving that it does by direct inspection 
of the construction.

That problem does not affect applications since, using the external smash product as in 
Definition 5.15, we have the full submulticategory Mult(F -T ) of Mult(F -U∗), whose 
objects are levelwise nondegenerately based functors. When we reinterpret internally, 
using Day convolution, we may leave that world. The same holds for the functors from 
F or, equivariantly, FG to topological G-categories that are the focus of this paper.

9.5. From O-transformations to homotopies of maps of G-spectra

It is classical that the classifying space functor takes G-categories, G-functors and G-
natural transformations to G-spaces, G-maps, and G-homotopies. For the last, G-natural 
transformations are functors C × I −→ D, where I is the category with two objects 
[0] and [1] and one non-identity morphism [0] −→ [1]. For based G-categories, based 
G-transformations are given by based G-functors C ∧ I+ −→ D.

Recall the definition of O-transformations from Definition 2.14.
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Proposition 9.25. The functor KG takes O-transformations to homotopies of maps of 
G-spectra.

Proof. We showed in [14, Proposition 6.16] that the topological Segal machine SG pre-
serves homotopies. If we start with FG-algebras in Cat(GU∗), which of course are 
themselves G-functors, then maps between them are G-natural transformations and maps 
between those are G-modifications. These are given levelwise by G-categories, G-functors, 
and G-natural transformations. Since B commutes with products, it takes FG-G-algebras 
in Cat(GU∗), FG-functors, and FG-transformations between them to GU∗-enriched 
functors FG −→ GU∗, enriched natural transformations, and homotopies between those. 
As RG, ζ∗

G, and StFG
are all 2-functors, with StFG

converting pseudostructure to strict 
structure, their composite takes O-transformations to FG-transformations, which are 
levelwise G-natural transformations. �

The result above is used in [12, Remark 2.9], but it will surely find other uses.

10. The multiplicative Barratt-Priddy-Quillen theorem

In this section, we prove Theorem B. We begin by producing the transformation α
in Section 10.1. We show that αX is a stable equivalence of orthogonal G-spectra for 
all G-LEC G-spaces X in Section 10.2 and we finish by showing that α is monoidal in 
Section 10.3.

10.1. The construction of α

We restate and begin the proof of Theorem B.

Theorem 10.1. Let O be a topologically discrete chaotic E∞ G-operad in Cat(GU). Then 
there is a lax monoidal natural transformation

α : Σ∞
G+ −→ KGO+

of functors GU −→ SpG such that αX is a stable equivalence of orthogonal G-spectra for 
all G-LEC G-spaces X.

Recall that we write T for the composite

T : O-Algps
RG−−→ DG-Algps

ζ∗
G−−→ FG-PsAlg

StFG−−−→ FG-Alg,

so that KG is given by KG = SG◦B◦T . We shall exploit the fact that Σ∞
G+ : GU −→ SpG

is left adjoint to the zeroth G-space functor (−)0, with basepoint forgotten, to construct 
α. Therefore, to define α : Σ∞

G+ −→ KGO+ in Theorem 10.1, it suffices to define a map 
of unbased G-spaces



88 B.J. Guillou et al. / Advances in Mathematics 414 (2023) 108865
α̃X : X −→ SG

(
BTO+X

)
0

for each unbased G-space X. We define α̃X to be the following composite:

X

∼= 1

α̃X

SG

(
BTO+X

)
0

BX

Bη 2

BO+X
3 (

BRG O+X
)
(1)

Bi

4 (
BTO+X

)
(1).

ν5

We explain the numbered maps in this composite in order:

(1) Regarding X as an object of Cat(GU) as in Remark 9.21, the top left isomorphism 
1 is immediate.

(2) The map η in 2 is the unit of the monad O+.
(3) For the bottom left equality 3 , it is true by definition that A = (RGA)(1) for any 

O-algebra A in Cat(GU), such as A = O+X.
(4) Next, for any strict DG-algebra Y, such as Y = RGO+X, the map

i : Y(1) −→ StFG
ζ∗

GY(1)

appearing in 4 is given by

Y(1) = ζ∗
GY(1) i−→ StFG

ζ∗
GY(1),

where i is a component of the unit of the adjunction of Theorem 8.1.
This map is an equivalence by Theorem 8.1.

(5) Finally, the map ν in 5 is the natural map required by Definition 9.12; it will be 
specified in Section 10.2.

The adjoints of the maps α̃X define the natural transformation α, and we must verify 
that α is monoidal and homotopical, the latter meaning that α is a stable G-equivalence.

10.2. The proof that α is a stable equivalence

We will show that αX is an equivalence by comparing it with the equivariant Barratt-
Priddy-Quillen equivalence for the equivariant operadic machine proven in [13] and the 
equivalence between the equivariant operadic and Segal machines proven in [39]. Consider 
the following diagram of G-spectra, in which Otop

+ denotes the monad on unbased G-
spaces associated to the operad BO introduced in Section 3.5, EG denotes the operadic 
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infinite loop space machine of [13, Definition 2.7], EDG

G denotes the category of operators 
infinite loop space machine of [39, Definition 5.28.], and SDG

G denotes the Segal machine 
on D top

G -G-spaces of [39, §4.4]. The dotted arrows signify zig-zags of maps.

Σ∞
G X+

1

αX

SGBTO+X

EGO
top
+ X

2 ∼=

SDG

G BRGO+X

5

EDG

G Rtop
G Otop

+ X
3

SDG

G Rtop
G Otop

+ X

∼= 4

(10.2)

The arrows 1 through 5 are specified as follows.

(1) The map 1 is the stable equivalence of orthogonal G-spectra given in [13, Theorem 
6.1], which is an operadic version of the Barratt-Priddy-Quillen Theorem.

(2) The isomorphism of 2 is a comparison between operad level and category of oper-
ators level infinite loop space machines given by [39, Corollary 5.31].

(3) The dashed arrow 3 is a zig-zag of stable equivalences between the generalized 
operadic and Segal machines, both defined on D top

G -G-spaces. This is given by [39, 
Theorem 6.1].

(4) The isomorphism 4 is induced by the isomorphism Rtop
G B ∼= BRG, the isomorphism 

Otop
+ B ∼= BO+ from (3.19), which holds since our operad is E∞ and thus Σn acts 

freely on O(n), and lastly, the isomorphism X ∼= BX from (1) in Section 10.1.
(5) The zig-zag of level equivalences 5 is described in (10.3) below.

Write Y for the DG-algebra RGO+X. Theorem 8.1, Corollary 7.11, and Lemma 8.6
give a zig-zag of strict maps of DG-algebras in Cat(GU∗) that are level equivalences

Y StDG
Y∼

m

∼

StDG
χ

StDG
ξ∗

Gζ∗
GY ∼

ψ
ξ∗

GStFG
ζ∗

GY.

We apply B to this and use that ξ∗
G commutes with B to obtain a zigzag of level 

equivalences of D top
G -G-spaces

BY BStDG
Y∼

Bm

∼

Bψ◦BStDG
χ

ξ∗
GBStFG

ζ∗
GY.

The D top
G -G-space BY has levelwise disjoint basepoints, whereas the basepoints of 

BStDG
Y and ξ∗

GBStFG
ζ∗

GY are levelwise nondegenerate according to Propositions 9.24
and 9.22, respectively. By [39, Proposition 4.30], the Segal machine SDG

G on D top
G -G-spaces 
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converts this to a zig-zag of level equivalences of orthogonal G-spectra. By [39, Theo-
rem 4.31], we have a natural stable equivalence SDG

G ξ∗
G −→ SG relating the Segal machine 

on D top
G -G-spaces to the Segal machine on FG-G-spaces. Applying this to the last term 

in the sequence above and remembering that T = StFG
ζ∗

GRG and Y = RGO+X, we 
obtain the final zig-zag 5 of stable equivalences of orthogonal G-spectra:

SDG

G BRGO+X SDG

G BStDG
RGO+X

∼∼
SDG

G ξ∗
GBTO+X

∼
SGBTO+X.

(10.3)
In order to deduce that αX is a stable equivalence, we need only show that (10.2)

yields a commutative diagram in the homotopy category. We remind the reader that 
(10.2) consists of a zigzag of maps that are all specified at the point-set level. We will 
decompose (10.2) into several smaller diagrams, and show that each smaller diagram 
commutes, at least up to homotopy. It follows that the image of (10.2) in the homotopy 
category is a commutative diagram, and that αX is a stable equivalence.

Rather than working with maps of G-spectra, as the initial vertex in (10.2) is a 
suspension G-spectrum, we can instead consider the diagram on zeroth G-spaces, by 
adjunction. For this, we only need to know that the operadic and Segal machines are given 
by two-sided monadic and categorical bar constructions with easily described zeroth 
spaces and maps between them. We use the notations from [39], and we refer the reader 
to that source for more details of the definitions of the constructions and maps between 
them. Abbreviating by writing q = Bψ ◦ BStDG

χ, the adjoint of (10.2) is a diagram of 
unbased G-spaces that takes the following form:

X

1

Bη

8

6
7

(BRGO+X)(1) Bi (BStFG
ζ∗

GRGO+X)(1) ν
B((S0)•, FG, BTO+X)

B((S0)•, D top
G , ξ∗

GBTO+X)

∼

Otop
+ X

2 ∼=

B((S0)•, D top
G , BStDG

RGO+X)

∼q

∼Bm

B((S0)•, D top
G , BRGO+X)

B((S0)•, D top
G ,RGO

top
+ X)

∼= 4

ι1

Otop
+ X B(•(S0), D top

G ,RGO
top
+ X)

ω0
B((S0)•, D top

G ,RGO
top
+ X)

ι0
B(I+ ∧ (S0)•, D top

G ,RGO
top
+ X).

(10.4)

Here the numbers n labelling solid arrows are the induced maps on 0th G-spaces from 
the maps n in (10.2). The zig-zag of morphisms starting from the bottom left of the 
diagram and ending at the source of 4 is the zig-zag of maps of 0th G-spaces induced 
by 3 in (10.2), while the top three vertical maps on the right are the zig-zag induced 
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by 5 . The top horizontal composite is the adjoint of αX . In the middle entry of the left 
vertical composition, we use the identification explained in [13, Remark 2.9]; the map 
1 is just ηtop : X −→ Otop

+ X ∼= BO+X, the isomorphism being that of (3.19). At the 
top, (BRGO+X)(1) = BO+X, and Bη = ηtop.

We will define the dotted arrow maps 6 , 7 , and 8 and show that each subdia-
gram commutes, at least up to homotopy. The maps 6 , 7 , and 8 each map into the 
summand labeled by 1 in the space of 0-simplices of its corresponding (categorical) bar 
construction. These two-sided bar constructions are of the form B(Y, E , Z), where E is 
a GU∗-enriched category, and Y : E op −→ GU∗ and Z : E −→ GU∗ are GU∗-enriched 
functors. The space of 0-simplices is given by∨

n

Y (n) ∧ Z(n),

where n ranges over the objects of E . In all but one of the bar constructions in the 
diagram (the bottom right corner), Y (1) = S0, hence the summand Y (1) ∧ Z(1) is 
isomorphic to Z(1). Taking E = FG, the Segal machine SGZ is constructed as

(SGZ)V = B((SV )•, FG, Z).

Taking V = 0, the map

ν : Z(1) −→ (SGZ)0

is given by the inclusion of Z(1) in the space of 0-simplices of the bar construction. The 
map ω0 in (10.4) is given by projection to the relevant component, as in [39, § 6.6].

Replacing bar constructions in (10.4) by the components of their zero simplices that 
serve as targets for the maps with domain X, the diagram can be written as

X

η

Bη

8

6
7

BO+X
Bi

BTO+X(1) BTO+X(1)

D ξ∗
GBTO+X(1)

Otop
+ X C BStDG

RGO+X(1)

∼ q

∼ Bm

BRGO+X(1)

A B Otop
+ X

∼= 4

ι1

Otop
+ X Otop

+ X
ω

Otop
+ X

ι
I+ ∧ Otop

+ X

(10.5)
0 0
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We take 6 and 7 both to be η, making diagram A commute and diagram B commute 
up to homotopy. We take 8 to be the composite

X
Bη−−→ BO+X = BRGO+X(1) BiD−−−→ BStDG

RGO+X(1).

Region C of the diagram commutes by the triangle identity, since i and m are the unit 
and counit for the adjunction in Theorem 8.1. Region D is obtained by applying the 
classifying space functor B to the following diagram.

X

η

η
O+X

iF

TO+X(1)

RGO+X(1)

iD

χ
ξ∗

Gζ∗
GRGO+X(1)

ξ∗
GiF

iD

ξ∗
GStFG

ζ∗
GRGO+X(1)

StDG
RGO+X(1)

StDG
χ

StDG
ξ∗

Gζ∗
GRGO+X(1)

ψ

The top rectangle commutes because the components of χ (Corollary 7.11) are identity 
maps. The lower rectangle commutes by the naturality of i, and the triangle commutes 
by Lemma 8.6.

10.3. The proof that α is monoidal

Since the adjoint of α̃{∗} is easily seen to be the unit map of the lax monoidal functor 
KG O+, it suffices to verify that the following diagram commutes for G-spaces X and 
Y . Recall again that (X × Y )+ ∼= X+ ∧ Y+.

Σ∞
G X+ ∧ Σ∞

G Y+
α∧α

∼=

KGO+X ∧ KGO+Y

ϕ

Σ∞
G (X × Y )+ α

KGO+(X × Y )

The map ϕ is constructed by applying the composite of the multifunctors from Theo-
rems 3.28 and 9.15 to the identity map X ×Y −→ X ×Y considered as a 2-ary morphism 
in Mult(GU).
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By passage to adjoints, and since the adjunction is monoidal, we are reduced to 
showing that the following diagram of maps of G-spaces commutes.

X × Y
α̃X ×α̃Y

=

(KGO+X)0 × (KGO+Y )0

(KGO+X ∧ KGO+Y )0

ϕ0

X × Y
α̃X×Y

(KGO+(X × Y ))0

Here, the top right map is the lax monoidal constraint for the zeroth space functor.
The proof is concluded by checking that the following diagram commutes.

X×Y
Bη×Bη

Bη

BO+X×BO+Y
Bi×Bi

BTO+X(1)×BTO+Y (1)

ν×ν

BO+(X×Y )

Bi

(SGBTO+X)0×(SGBTO+Y )0

BTO+(X×Y )(1)
ν

(SGBTO+(X×Y ))0
(
(SGBTO+X)∧(SGBTO+Y )

)
0ϕ0

11. Coherence axioms

We collect the coherence axioms we need in this section. Those for pseudo-
commutative operads, deferred from Definition 3.10, appear in Section 11.1; those 
for Mult(O), deferred from Definition 3.14, appear in Section 11.2; and those for 
Mult(D), deferred from the unpacking of Definition 5.15 in Section 5.3, are gathered in 
Section 11.3.

11.1. Coherence axioms for pseudo-commutative operads

Here we complete Definition 3.10 by specifying coherence axioms for the αj,k of dia-
gram (3.11).

(i) The component of α1,n at (1, y) is the identity map.
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(ii) The composite

O(j) × O(k)
�

t αj,k

O(jk)

τk,j

O(k) × O(j)
�

t αk,j

O(kj)

τj,k

O(j) × O(k) � O(jk)

is the identity V-transformation.
(iii) For permutations ρ1 ∈ Σk and ρ2 ∈ Σj ,

O(j) × O(k)
�

t αj,k

O(jk)

τk,j

O(k) × O(j)
�

ρ1×ρ2

O(kj)

ρ1⊗ρ2

O(j) × O(k) � O(jk).

=

O(j) × O(k)
�

ρ2×ρ1

O(jk)

ρ2⊗ρ1

O(j) × O(k)
�

t αj,k

O(jk)

τk,j

O(k) × O(j) � O(kj).

Note that the boundaries agree according to (3.9).
(iv) Let

j∏
i=1

O(ki) × O(
) Δ	−−→
j∏

i=1

(
O(ki) × O(
)

)

and

O(
) ×
j∏

i=1
O(ki)

Δ′
	−−→

j∏
i=1

(
O(
) × O(ki)

)

be the morphisms whose ith components are the products pi × id and id × pi, 
respectively. We require the 2-cell
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O(j) ×
j∏

i=1
O(ki) × O(
)

∼=

id×Δ	 O(j) ×
j∏

i=1

(
O(ki) × O(
)

) id×
∏ �

∼= id×
∏

αki,	

O(j) ×
j∏

i=1
O(ki
)

id×
∏

τ	,ki

O(j) × O(
) ×
j∏

j=1
O(ki)

id×
∏

Δ	

id×Δ′
	

O(j) ×
j∏

j=1

(
O(
) × O(ki)

)
id×

∏�
O(j) ×

j∏
i=1

O(
ki)

γ

O(j) × O(
) ×
j∏

j=1
O(ki)�

�×id

∼= αj,	×id

O(j
) ×
j∏

i=1
O(ki)�

γ

τ	,j×id

O(
k)

D	,k∗O(
) × O(j) ×
j∏

i=1
O(ki)�

�×id

∼=

O(
j) ×
j∏

i=1
O(ki)�

∼=

O(
) × O(j) ×
( j∏

i=1
O(ki)

)�

�×id
O(
j) ×

( j∏
i=1

O(ki)
)�

γ
O(
k)

to be equal to the 2-cell

O(j) ×
j∏

i=1
O(ki) × O(
)

γ×id

id×Δ	 O(j) ×
j∏

i=1

(
O(ki) × O(
)

) id×
∏�

O(j) ×
j∏

i=1
O(ki
)

γ

O(k) × O(
)
�

∼= αk,	

O(k
)

τ	,k

O(
) × O(k) � O(k
).

Here, in the first 2-cell above, D�,k∗ is the distributivity isomorphism specified in 
Definition 11.1. Combining the definition of D�,k∗ with the equivariance axiom for γ

shows that the sources of the two 2-cells agree. As the pairing � is defined via the 
structure map γ, the associativity axiom for γ shows that the targets of the two 2-cells 
agree.

Definition 11.1. Given 
, j, and k1, . . . , kj , let k =
∑

ki and define

D�,k∗ : 
 ⊗ (k1 ⊕ · · · ⊕ kj) −→ (
 ⊗ k1) ⊕ · · · ⊕ (
 ⊗ kj)

in the bipermutative category Σ. It is given explicitly as the permutation

D�,k∗ =
(
τk1,� ⊕ · · · ⊕ τkj ,�

)
τ�,k.
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Alternatively, using the operad structure on Assoc, we can identify D�,k∗ as

D�,k∗ = γ(τ�,j ; Δ�(ek1 , . . . , ekj
)).

It is the permutation in Σ�k that permutes blocks of sizes k1, . . . , kj , . . . , k1, . . . , kj ac-
cording to τ�,j .

Remark 11.2. In the language of Corner and Gurski [5, Theorem 4.6], axiom (ii) states 
that we require pseudo-commutativity structures to be symmetric. Axiom (iii) is an 
equivariance axiom that is necessary in order for α to induce a map at the monad level 
(Proposition 3.22), but which was unfortunately omitted in [5].

Axiom (iv) encodes the compatibility of α with operadic composition, and is given in 
[5, Theorem 4.4]. Unpacking axiom (iv), it states that given x ∈ O(j), yi ∈ O(ki), and 
z ∈ O(
), the following diagram commutes:

γ(x; y1 � z, . . . , yj � z)
(
τ�,k1 ⊕ · · · ⊕ τ�,kj

)
D�,k∗ γ(x; y1 � z, . . . , yj � z)τ�,k

γ
(

x; (y1 � z)τ�,k1 , . . . , (yj � z)τ�,kj

)
D�,k∗

γ(id;α,...,α)D	,k∗

γ(x; z � y1, . . . , z � yj)D�,k∗

(
γ(x; y1, . . . , yj) � z

)
τ�,k

α

γ(x � z; Δ�(y1), . . . , Δ�(yj))D�,k∗

γ((x � z)τ�,j ; Δ�(y1, . . . , yj))

γ(α;id,...,id)

γ(z � x; Δ�(y1, . . . , yj)) z � γ(x; y1, . . . , yj).

This formulation is closer to what is stated in [5]. We can summarize it by the equation

(αx,z � idy) ◦ [(idx � αy,z)D�,k∗ ] = αxy,z.

This axiom plays the role of a hexagon axiom in our context. (There is a second axiom 
relating α to operadic composition in [5, Theorem 4.4], but the two axioms are equivalent 
in the presence of the symmetry axiom (ii).)

11.2. Coherence axioms for Mult(O)

Here we return to the diagram (3.15), which defines the invertible V-transformations 
δi central to Definition 3.14, and complete that definition. In axioms (ii) and (iv), we 
will use the shorthand notation Ai,j for the product Ai × Ai+1 × · · · × Aj . The map μ
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appearing in (iv) and (v) is defined immediately following the axioms. We use × rather 
than ∧ throughout since the O(n) are unbased and their algebras are defined using 
powers rather than smash powers.

Warning 11.3. The axioms require certain pasting diagrams to be equal, and in some 
cases, it will not be immediately apparent that the boundaries are equal; we address 
that issue after the axioms as well.

(i) (Unit Object) The V-transformation δi(0) is the identity.
(ii) (Equivariance) For any permutation ρ ∈ Σn, we require the 2-cell

A1,i−1 × O(n) × An
i × Ai+1,k

id×(ρ×id)×id

id×(id×ρ)×id

A1,i−1 × O(n) × An
i × Ai+1,k

id×θ(n)×id

A1,i−1 × O(n) × An
i × Ai+1,n

id×θ(n)×id

si

A1,i−1 × Ai × Ai+1,k

FO(n) × (A1,i−1 × Ai × Ai+1,k)n

id×F n

O(n) × Bn

θ(n)
B

δi(n)

to be equal to the 2-cell

A1,i−1 × O(n) × An
i × Ai+1,k

id×(ρ×id)×id

si

A1,i−1 × O(n) × An
i × Ai+1,k

id×θ(n)×id

si

A1,i−1 × Ai × Ai+1,k

FO(n) × (A1,i−1 × Ai × Ai+1,k)n
ρ×id

id×F n

O(n) × (A1,i−1 × Ai × Ai+1,k)n

id×F n

O(n) × Bn

ρ×id
O(n) × Bn

θ(n)
B.

δi(n)

(iii) (Operadic Identity): The component of δi(1) at an object

(a1, . . . , ai−1, (1, ai), ai+1, . . . , ak)

is the identity map, where 1 ∈ O(1) is the unit of the operad O.
(iv) (Operadic Composition): We require δi to be compatible with composition in the 

operad. In order to save space, we choose to display only the case of i = k, but the 
general case is analogous.
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The composite 2-cell

A1,k−1 × O(n) ×
∏
r

(
O(mr) × Amr

k

)

sk

id×
∏
r

θ(mr)

A1,k−1 × O(n) × An
k

sk

id×θ(n)
A1,k−1 × Ak

F

O(n) ×
∏
r

(
A1,k−1 × O(mr) × Amr

k

)

id×
∏
r

sk

id×
∏
r

(id×θ(mr))

O(n) × (A1,k−1 × Ak)n

id×F nO(n) ×
∏
r

(
O(mr) × (A1,k−1 × Ak)mr

)

id×
∏
r

(id×F mr )

δk(n)

O(n) ×
∏
r

(
O(mr) × Bmr

)
id×

∏
r

θ(mr)
O(n) × Bn

θ(n)

id×
∏
r

δk(mr)

B

is equal to the 2-cell

A1,k−1 × O(n) ×
∏
r

(
O(mr) × Amr

k

)

sk

id×μ
A1,k−1 × O(m) × Am

k

sk

id×θ(m)
A1,k−1 × Ak

F

O(n) ×
∏
r

(
A1,k−1 × O(mr) × Amr

k

)

id×
∏
r

sk

O(n) ×
∏
r

(
O(mr) × (A1,k−1 × Ak)mr

)

id×
∏
r

(id×F mr )

μ
O(m) × (A1,k−1 × Ak)m

id×F m

δk(m)

O(n) ×
∏
r

(
O(mr) × Bmr

)
μ

O(m) × Bm

θ(m)
B

(v) (Commutation of δi and δj): For i < j, and omitting the inactive variables Ah for 
h �= i or j in order to save space, the 2-cell



B.J. Guillou et al. / Advances in Mathematics 414 (2023) 108865 99
O(m) × Am
i × O(n) × An

j

id×θ(n)

si

O(m) × Am
i × Aj

θ(m)×id

si

Ai × Aj

F

O(m) × (Ai × O(n) × An
j )m

id×sm
j

id×(id×θ(n))m

O(m) × (Ai × Aj)m

id×F m

O(m) × (O(n) × (Ai × Aj)n)m

μ

id×(id×F n)m

O(m) × (O(n) × Bn)m

μ

id×θ(n)m

O(m) × Bm

θ(m)

id×δj(n)m δi(m)

O(mn) ×Σmn
(Ai × Aj)mn

id×F mn
O(mn) ×Σmn

Bmn

θ(mn)
B

is equal to the 2-cell obtained by pasting the 2-cell

O(m) × Am
i × O(n) × An

j

sjsi

O(m) × (Ai × O(n) × An
j )m

id×(sj)m

O(n) × (O(m) × Am
i × Aj)n

id×(si)n

O(m) × (O(n) × (Ai × Aj)n)m

μ

αm,n

O(n) × (O(m) × (Ai × Aj)m)n

μ

O(mn) ×Σmn
(Ai × Aj)mn

to the left of the pasting diagram

O(m) × Am
i × O(n) × An

j

θ(m)×id

sj

Ai × O(n) × An
j

id×θ(n)

sj

Ai × Aj

F

O(n) × (O(m) × Am
i × Aj)n

id×sn
i

id×(θ(m)×id)n

O(n) × (Ai × Aj)n

id×F n

O(n) × (O(m) × (Ai × Aj)m)n

μ

id×(id×F m)n

O(n) × (O(m) × Bm)n

μ

id×θ(m)n

O(n) × Bn

θ(n)

id×δi(m)n δj(n)

O(nm) ×Σnm
(Ai × Aj)nm

id×F nm
O(nm) ×Σnm

Bnm

θ(nm)
B.

These axioms require explanation. They encode the idea that whenever the δi combine 
to give two transformations with the same source functor and the same target functor, 
both with target category B, then they are equal. In all of our diagrams, the interior 
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subdiagrams unoccupied by a 2-cell commute either by the definition of an operad or by 
a naturality diagram.

Axioms (i) and (ii) give the compatibilities with basepoints and equivariance necessary 
for these multimorphisms to give rise to multimorphisms of O-algebras, as defined by 
Hyland and Power [17]. In (ii), we must check that the source and target functors of 
the two diagrams displayed are equal. The target functors agree trivially. The source 
functors agree by the Equivariance Axiom for θ, the naturality of si, and the fact that 
F n ◦ ρ = ρ ◦ F n. Axiom (iii) corresponds to the Operadic Identity Axiom and requires 
no explanation.

In (iv), we define the map μ to be the map that shuffles the operad variables to the 
left and applies the structure map of the operad in those variables. The source and target 
functors of the two diagrams agree by the compatibility axioms for O-algebras.

In (v), we abuse notation and again write μ for the effect of passing to orbits from 
the μ used above. Here the target functors of the first and third diagrams agree trivially 
but their source functors do not; their left vertical composites differ. After pasting the 
second diagram to the third, the source functors of the first diagram and the composite 
agree. We note that passage to Σmn-orbits in the second diagram is essential, as in 
Proposition 3.22; without that, the pseudo-commutativity isomorphism αm,n would not 
mediate between its source and target functors.

Remark 11.4. These axioms imply further compatibilities of the δi with the unit object 
0. In particular, it follows that the component of δi(n) at an object

(a1, . . . , (x; ai,1, . . . , ai,n), . . . , ak)

is id0 if either aj ∈ Aj is 0 for some j �= i or all coordinates ai,r of the ith object ai ∈ An
i

are 0. Moreover, employing the notation σr from [15, Definition 2.9] for 1 ≤ r ≤ n, the 
2-cell

A1,i−1 × O(n) × An−1
i × Ai+1,k

id×(σr×id)×id

id×(id×σr)×id

A1,i−1 × O(n − 1) × An−1
i × Ai+1,k

id×θ(n−1)×id

A1,i−1 × O(n) × An
i × Ai+1,n

id×θ(n)×id

s1

A1,i−1 × Ai × Ai+1,k

FO(n) × (A1,i−1 × Ai × Ai+1,k)n

id×F n

O(n) × Bn

θ(n)
B

δi(n)

is equal to the 2-cell
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A1,i−1 × O(n) × An−1
i × Ai+1,k

id×(σr×id)×id

si

A1,i−1 × O(n − 1) × An−1
i × Ai+1,k

id×θ(n−1)×id

si

A1,i−1 × Ai × Ai+1,k

FO(n) × (A1,i−1 × Ai × Ai+1,k)n−1 σr×id

id×F n−1

O(n − 1) × (A1,i−1 × Ai × Ai+1,k)n−1

id×F n−1

O(n) × Bn−1
σr×id

O(n − 1) × Bn−1
θ(n−1)

B.

δi(n−1)

The targets of these 2-cells are identical, and the sources of these 2-cells agree because 
F strictly preserves 0 objects and because the action maps θ interact well with the maps 
σr, as in [15, Axiom 2.17].

11.3. Coherence axioms for Mult(D)

Here we return to the diagram (5.17), which defines the invertible V∗-transformations 
δ in the k-ary morphisms of Definition 5.15, and give the necessary coherence conditions. 
The condition on Π in that definition already incorporates conditions on basepoints and 
identity morphisms. These are the analogues of axioms (i) and (iii) of Section 11.2. We 
require the following condition on composition in D , which is analogous to the operadic 
composition axiom (iv) there.

(Categorical Composition Axiom) We write θk for the left vertical composite

∧
i

D(mi, ni) ∧
∧
i

Xi(mi)
t

∼=

∧
i

(
D(mi, ni) ∧ Xi(mi)

) ∧
i

θ ∧
i

X (ni)

in (5.17). We write C for the composition in D∧k

∧
i

D(ni, pi) ∧
∧
i

D(mi, ni)
t

∼=

∧
i

(
D(ni, pi) ∧ D(mi, ni)

) ∧
i

◦ ∧
i

D(mi, pi).

The right vertical composite

∧
i

D(mi, ni) ∧ Y(m)
�k∧id

D(m, n) ∧ Y(m) θ Y(n)

in (5.17) is the action Θk of D∧k on Y ◦ �k.
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With these notations, the pasting diagram

∧
i

D(ni, pi) ∧
∧
i

D(mi, ni) ∧
∧
i

Xi(mi)
id∧id∧F

id∧θk

C∧id
id∧δ

∧
i

D(ni, pi) ∧
∧
i

D(mi, ni) ∧ Y(m)

id∧Θk

∧
i

D(mi, pi) ∧
∧
i

Xi(mi)

θk

∧
i

D(ni, pi) ∧
∧
i

Xi(ni) id∧F

θk

δ

∧
i

D(ni, pi) ∧ Y(n)

Θk

∧
i

Xi(pi)
F

Y(p)

is required to be equal to the pasting diagram

∧
i

D(ni, pi) ∧
∧
i

D(mi, ni) ∧
∧
i

Xi(mi)
id∧id∧F

C∧id

∧
i

D(ni, pi) ∧
∧
i

D(mi, ni) ∧ Y(m)

id∧ΘkC∧id

∧
i

D(mi, pi) ∧
∧
i

Xi(mi)

θk

id∧F

δ

∧
i

D(mi, pi) ∧ Y(m)

Θk

∧
i

D(ni, pi) ∧ Y(n)

Θk

∧
i

Xi(pi)
F

Y(p).

The unmarked regions in these diagrams commute. For instance, the rhombus in the 
first diagram commutes because X1, . . . , Xk are strict D-algebras, and hence X1∧ . . . ∧Xk

is a strict D∧k-algebra as well. The unlabeled V∗-transformation in the rhombus in the 
second diagram is the constraint for the D∧k-pseudoalgebra Y ◦�k. More precisely, it is 
given by the following whiskering of ϑ, which denotes an iterated version of the coherence 
V∗-pseudotransformation from (5.8).

∧
i

D(ni, pi) ∧
∧
i

D(mi, ni) ∧ Y(m)
id∧�k∧id

t

ϑ

∧
i

D(ni, pi) ∧ D(m, n) ∧ Y(m) id∧θ

�k∧id

∧
i

D(ni, pi) ∧ Y(n)

�k∧id

∧
i

(
D(ni, pi) ∧ D(mi, ni)

)
∧ Y(m)

∧
i

◦∧id

D(n, p) ∧ D(m, n) ∧ Y(m) id∧θ

◦∧id

D(n, p) ∧ Y(n)

θ

∧
i

D(mi, pi) ∧ Y(m)
�k∧id

D(m, p) ∧ Y(m)
θ

Y(p).

Note that the bottom right rectangle commutes because Y is a strict D-algebra.

12. The pseudo-commutativity of D(O)

We prove Theorem 5.12 here. Thus let O be a pseudo-commutative operad in Cat(V)
and D = D(O) the associated category of operators, as in Proposition 5.6. We must con-
struct a V∗-pseudofunctor � : D ∧ D D and prove that it gives a pseudo-commutative 
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structure. For the sake of clarity, we work with × rather than ∧ in this section; the 
statements about Π build in basepoint conditions that imply that all the constructions 
descend to the smash product. We break the proof into several parts. Recall that for a 
morphism φ : m −→ n of F and 1 ≤ j ≤ n, we write φj = |φ−1(j)|.

When restricted to Π, � must be ∧. Thus, on objects, m � p = mp. At the level of 
Hom categories, the map

� : D(m, n) × D(p, q) −→ D(mp, nq)

sends the summand in the source labeled by φ : m −→ n and ψ : p −→ q to the one 
labeled by φ ∧ ψ : mp −→ nq in the target. Therein, the V-functor

∏
1≤j≤n

O(φj) ×
∏

1≤k≤q

O(ψk) −→
∏

1≤�≤nq

O((φ ∧ ψ)�),

is such that its projection onto the 
th factor is given by first projecting onto O(φj) ×
O(φk), where 
 maps to the pair (j, k) under the lexicographic ordering of n ∧ q, and 
then applying the pairing � of O. The definition makes sense since

(φ ∧ ψ)� = |(φ ∧ ψ)−1(
)| = |φ−1(j)||ψ−1(k)| = φjψk.

It is immediate from the definition that � restricts to ∧ on Π (along ι) and projects to 
∧ on F (via ξ), as required.

To complete the construction of the V∗-pseudofunctor �, we must prove the following 
result, which is the heart of the proof that D is pseudo-commutative.

Proposition 12.1. The following diagram of V-functors relating � to composition com-
mutes up to an invertible V-transformation ϑ.

D(n, p) × D(r, s) × D(m, n) × D(q, r)
�×�

id×t×id ∼=

ϑ

D(nr, ps) × D(mq, nr)

◦D(n, p) × D(m, n) × D(r, s) × D(q, r)

◦×◦

D(m, p) × D(q, s) � D(mq, ps)

The collection of such V-transformations descends to the smash product and makes 
� : D ∧ D D into a V∗-pseudofunctor.

Proof. The essential combinatorial claim is that the pseudo-commutativity isomorphisms 
α of O from Definition 3.10 assemble to give the required invertible V-transformations ϑ. 



104 B.J. Guillou et al. / Advances in Mathematics 414 (2023) 108865
This is not obvious since the α give maps that are not obviously relevant to the diagram. 
The strategy is to express the results of the source and target V-functors of the diagram 
in such a way that the invertible V-transformation between them becomes obvious. In 
the following equations, we will use the associativity and equivariance formulas from the 
definition of an operad to massage the two composites into comparable form.

Since Π and F are permutative categories regarded as V-2-categories, the diagram 
clearly commutes when D = Π or D = F . That is, fixing morphisms

ψ : n −→ p, ν : r −→ s, φ : m −→ n, and μ : q −→ r

in F , we have

(ψ ∧ ν) ◦ (φ ∧ μ) = (ψ ◦ φ) ∧ (ν ◦ μ). (12.2)

Thus, for the summand labeled by our fixed morphisms ψ, ν, φ, and μ in F , the 
clockwise and counterclockwise directions land in the same summand of the target. It 
follows that it suffices to restrict the diagram to these summands. Let

1 ≤ j ≤ n, 1 ≤ k ≤ p, 1 ≤ h ≤ r, and 1 ≤ i ≤ s.

Looking at the definition of the composition ◦ in D (5.5) and the definition of �, we see 
that on the component labeled by ψ, ν, φ, and μ in F , the V-functors in the diagram 
from the statement of the proposition have source and target V-categories∏

k

O(ψk) ×
∏

i

O(νi) ×
∏

j

O(φj) ×
∏

h

O(μh) →
∏
k,i

O((ψ ◦ φ)k(ν ◦ μ)i).

It suffices to consider these V-functors after projecting to each factor of the target. Thus, 
we fix k and i and compose with the projection onto that factor of the product in the 
target V-category in order to construct the V-transformation ϑ. That projection depends 
only on the factors in the source V-category indexed by k, i, j ∈ ψ−1(k), and h ∈ ν−1(i), 
respectively. The source and target V-functors of ϑ are depicted below, fully in terms of 
the operad structure. To simplify we index over j to mean {j ∈ ψ−1(k)} and similarly 
for h.

O(ψk) × O(νi) ×
∏

j O(φj) ×
∏

h O(μh)

∼=

O(ψk) × O(νi) ×
∏

(j,h)
(
O(φj) × O(μh)

) �×
∏�

O(ψkνi) ×
∏

(j,h) O(φjμh)

γO(ψk) ×
∏

j O(φj) × O(νi) ×
∏

h O(μh)

γ×γ ϑ

O(
∑

j φj) × O(
∑

h μh)

ρk(ψ,φ)×ρi(ν,μ)

O(
∑

(j,h) φjμh)

ρ(k,i)(ψ∧ν,φ∧μ)

O((ψ ◦ φ)k) × O((ν ◦ μ)i) � O((ψ ◦ φ)k(ν ◦ μ)i)

(12.3)
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Here the top left horizontal map is given by the identity on the first two factors, and on 
the factor labeled by (j, h) is given by projecting to the j and h factors of the indexed 

products, respectively. Going around both ways, we land in the term O
((

(ψ ∧ ν) ◦ (φ ∧

μ)
)

�

)
of the target, where (k, i) ∈ p ∧ s corresponds to 
 ∈ ps under lexicographical 

ordering.
Consider the following diagram, which is constructed by taking instances of α from 

Definition 3.10 of the pseudocommutativity of O. We claim that the whiskered 2-cell 
depicted has the same boundary as required by our desired ϑ above. For legibility, we 
omit the indices on the α’s. Here the permutation τφj ,νi

is as in Definition 3.8.

O(ψk) × O(νi) ×
∏

j O(φj) ×
∏

h O(μh)

id×Δψk ×id×Δψk

O(ψk) × O(νi)ψk ×
∏

j O(φj) × (
∏

h O(μh))ψk

∼=

O(ψk) ×
∏

j

(
O(νi) × ×O(φj) ×

∏
h O(μh)

)
id×

∏
j(id×id×

∏
h Δφj )

O(ψk) ×
∏

j

(
O(νi) × ×O(φj) ×

(∏
h O(μh)φj

) )id×
∏

j(�×id)

∼= id×
∏

j(α×id)

O(ψk) ×
∏

j

(
O(νiφj) ×

(∏
h O(μh)φj

) )
id×

∏
j(τφj ,νi

×id)

O(ψk) ×
∏

j

(
O(φj) × O(νi) ×

(∏
h O(μh)φj

) )
id×

∏
j(�×id)

O(ψk) ×
∏

j

(
O(φjνi) ×

(∏
h O(μh)φj

) )
id×

∏
j γ

O(ψk) ×
∏

j O(
∑

h φjμh)

γ

O(
∑

j

∑
h φjμh)

ρk⊗ρi

O((ψ ◦ φ)k(ν ◦ μ)i)

(12.4)
where we abbreviated ρk(ψ, φ) = ρk and ρi(ν, μ) = ρi.

The proof of the claim that the boundaries of (12.3) and (12.4) do agree follows exclu-
sively by using the axioms for an operad, which can all be expressed using commutative 
diagrams in the ambient category. However, in order to make the reconciliation easier to 
follow, we will use elements and write formulas.

Let

c ∈ O(ψk), a ∈ O(νi), dj ∈ O(φj), and bh ∈ O(μh),
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and recall the permutations ρ defined in (5.5). Going clockwise in (12.3), the tuple 
(c, a, 

∏
j dj , 

∏
h bh) gets sent to

γ
(

c � a;
∏

(ψ∧ν)(j,h)=(k,i)
dj � bh

)
ρ(k,i)(ψ ∧ ν, φ ∧ μ), (12.5)

and going counterclockwise, it gets sent to
(

γ(c;
∏

ψ(j)=k

dj)ρk(ψ, φ)
)
�

(
γ(a;

∏
ν(h)=i

bh)ρi(ν, μ)
)

. (12.6)

We first verify that the source V-functors of (12.3) and (12.4) agree. In what follows, 
we use the notation Δ	(x) to denote the 
-tuple (x, . . . , x). Using the definition of �, the 
associativity axiom from the definition of an operad twice, we have that

γ
(

c � a;
∏

(ψ∧ν)(j,h)=(k,i)
dj � bh

)

= γ
(

γ(c; Δψk(a));
∏

(ψ∧ν)(j,h)=(k,i)
γ(dj ; Δφj(bh))

)

= γ
(

c;
∏

ψ(j)=k

γ
(
a;

∏
ν(h)=i

γ(dj ; Δφj(bh))
))

= γ
(

c;
∏

ψ(j)=k

γ
(
γ(a; Δνi(dj));

∏
ν(h)=i

Δφj(bh)
))

= γ
(

c;
∏

ψ(j)=k

γ
(
a � dj ;

∏
ν(h)=i

Δφj(bh)
))

.

Recall the permutation Dφj ,μ∗ from Definition 11.1, with ∗ running through the set 
ν−1(i). This is precisely the permutation of φj ·

∑
ν(h)=i μh = φj · (ν ◦ μ)i elements 

which permutes according to τφj ,νi
the φj · νi blocks of lengths given by the tuple 

Δφj(
∏

ν(h)=i μh). A straightforward computation, which we omit, gives that

ρ(k,i)(ψ ∧ ν, φ ∧ μ) =
( ⊕

ψ(j)=k

Dφj ,μ∗

)
· (ρk ⊗ ρi).

Plugging this into (12.5) and using the above computation and the equivariance axiom 
from the definition of an operad twice, we can thus identify the expression (12.5) as 
follows:

γ
(

c � a;
∏

(ψ∧ν)(j,h)=(k,i)
dj � bh

)
ρ(k,i)(ψ ∧ ν, φ ∧ μ)

= γ
(

c;
∏

γ
(
a � dj ;

∏
Δφj(bh)

))( ⊕
ψ(j)=k Dφj ,μ∗

)
· (ρk ⊗ ρi)
ψ(j)=k ν(h)=i
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1

= γ
(

c;
∏

ψ(j)=k

γ
(
a � dj ;

∏
ν(h)=i

Δφj(bh)
)
Dφj ,μ∗

)
· (ρk ⊗ ρi)

= γ
(

c;
∏

ψ(j)=k

γ
(
a � dj ; γ

(
(a � dj)τφj ,νi

; Δφj(
∏

ν(h)=i

bh)
))

· (ρk ⊗ ρi) (12.7)

The equality of expressions (12.5) and (12.7) reconciles the source V-functors of the 
2-cells in (12.3) and (12.4). Next we reconcile the target V-functors.

As above, we abbreviate ρk(ψ, φ) = ρk and ρi(ν, μ) = ρi. Using Remark 3.7 and the 
associativity axiom of the operad, we identify the expression (12.6) as follows:(

γ(c;
∏

ψ(j)=k

dj)ρk

)
�

(
γ(a;

∏
ν(h)=i

bh)ρi

)

=
(

γ(c;
∏

ψ(j)=k

dj) � γ(a;
∏

ν(h)=i

bh)
)

(ρk ⊗ ρi)

= γ
(

γ(c;
∏

ψ(j)=k

dj); Δ(ψ◦φ)k(γ(a;
∏

ν(h)=i

bh))
)

(ρk ⊗ ρi)

= γ
(

c;
∏

ψ(j)=k

γ(dj ; Δφj(γ(a;
∏

ν(h)=i

bh)))
)

(ρk ⊗ ρi)

= γ
(

c;
∏

ψ(j)=k

γ
(
γ(dj ; Δφj(a)); Δφj(

∏
ν(h)=i

bh)
))

(ρk ⊗ ρi)

= γ
(

c;
∏

ψ(j)=k

γ
(
dj � a; Δφj(

∏
ν(h)=i

bh)
))

(ρk ⊗ ρi) (12.8)

The equality of expressions (12.6) and (12.8) reconciles the target V-functors of the 
2-cells in (12.3) and (12.4). This concludes the proof of the claim that the boundaries of 
the two diagrams coincide, and thus the construction of the desired V-transformation ϑ.

Compatibility of ϑ with identity morphisms and the fact that it descends to the smash 
product follow from Lemma 12.11 below. Compatibility with composition in D ∧ D is 
tedious to check, but boils down to repeated use of Axiom (iv) of Definition 3.10. This 
completes the proof that � : D ∧ D D is a V∗-pseudofunctor. �

Condition (2) of Definition 5.7 holds as a result of the following more general lemma.

Lemma 12.9. After restricting the domain of the functors in the diagram of Proposition 12.
to

D(n, p) × D(r, s) × Π(m, n) × D(q, r) −→ D(mq, ns)

or

D(n, p) × Π(r, s) × D(m, n) × D(q, r) −→ D(mq, ns),

the transformation ϑ is the identity.
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Proof. We use the notation of the construction of ϑ in Proposition 12.1. The first re-
striction is the case when the dj are all ∗ or 1, and the second restriction is the case 
when e is ∗ or 1. The key is that if either e or dj is ∗, then

α : (e � dj)τφj ,νi
−→ dj � e

is the identity map of ∗. Similarly, by Definition 3.10 (i), if e = 1, then α is the identity 
map of dj , whereas if dj = 1, then α is the identity map of e. �

Note that this result in particular implies that as a V∗-pseudofunctor, � restricts to 
∧ on Π.

Lemma 12.10. The V∗-pseudofunctor � is strictly associative in the sense that the fol-
lowing diagram of V∗-pseudofunctors commutes.

D∧3 id∧�

�∧id

D∧2

�

D∧2
� D

Proof. Since this is an equality of V∗-pseudofunctors, we need to check equality of the 
level of assignments on objects, V∗-functors on morphisms, and pseudofunctoriality con-
straints. The equality of assignments on objects follows from the strict associativity of 
∧ in Π. At the level of morphisms, we must check that each diagram of V∗-functors

D(k, p) ∧ D(m, r) ∧ D(n, s)
id∧�

�∧id

D(k, p) ∧ D(mn, rs)

�

D(km, pr) ∧ D(n, s)
�

D(kmn, prs)

commutes. This follows from the strict associativity of the pairing of O (Proposition 3.3).
For each composite, the pseudofunctoriality constraint is given by a pasting of two 

instances of the V∗-transformation ϑ of Proposition 12.1. The constraint for the compo-
sition � ◦ (id ∧ �) is

D(n, p) ∧ D(r, s) ∧ D(u, v) ∧ D(m, n) ∧ D(q, r) ∧ D(t, u)
id∧�∧id∧�

∼=
1

D(n, p) ∧ D(ru, sv) ∧ D(m, n) ∧ D(qt, ru)
�∧�

∼=

ϑ

D(nru, psv) ∧ D(mqt, nru)

◦D(n, p) ∧ D(m, n) ∧ D(r, s) ∧ D(q, r) ∧ D(u, v) ∧ D(t, u)

◦∧◦∧◦

D(n, p) ∧ D(m, n) ∧ D(ru, sv) ∧ D(qt, ru)

◦∧◦

D(m, p) ∧ D(q, s) ∧ D(t, v)
id∧�

D(m, p) ∧ D(qt, sv)
�

D(mqt, psv),
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where 1 is the whiskering of id∧ϑ by a reordering isomorphism. Similary the constraint 
for the composed V∗-pseudofunctor � ◦ (� ∧ id) is

D(n, p) ∧ D(r, s) ∧ D(u, v) ∧ D(m, n) ∧ D(q, r) ∧ D(t, u)
�∧id∧�∧id

∼=
2

D(nr, ps) ∧ D(u, v) ∧ D(mq, nr) ∧ D(t, u)
�∧�

∼=

ϑ

D(nru, psv) ∧ D(mqt, nru)

◦D(n, p) ∧ D(m, n) ∧ D(r, s) ∧ D(q, r) ∧ D(u, v) ∧ D(t, u)

◦∧◦∧◦

D(nr, ps) ∧ D(mq, nr) ∧ D(u, v) ∧ D(t, u)

◦∧◦

D(m, p) ∧ D(q, s) ∧ D(t, v)
�∧id

D(mq, ps) ∧ D(t, v)
�

D(mqt, psv),

where 2 is the whiskering of ϑ ∧ id by a reordering isomorphism. As demonstrated in 
the proof of Proposition 12.1, the V∗-transformation ϑ is constructed using instances 
of the pseudo-commutativity constraint α. We leave it to the reader to verify that the 
identification of these 2-cells follows from the operad axioms, together with axiom (iv) 
of Definition 3.10. �
Lemma 12.11. The V∗-pseudofunctor � : D ∧ D D has a symmetry V∗-pseudo-
transformation τ such that the strict monoidal V∗-2-functors ι : Π −→ D and ξ : D −→
F preserve the symmetry.

Proof. The V∗-pseudofunctors � and � ◦ t : D ∧ D D we are comparing have the 
same object functions. Given objects m and p, the 1-cell component of τ is given by the 
permutation τm,p : mp −→ pm of Definition 3.8, thought of as a morphism in Π ⊂ D . 
We need invertible V∗-transformations

D(m, n) ∧ D(p, q)
�◦t

� τ̂

D(pm, qn)

(τm,p)∗

D(mp, nq)
(τn,q)∗

D(mp, qn).

As in the previous proofs, we can restrict to the components of D(m, n) and D(p, q), 
which are indexed on morphisms φ : m −→ n and ψ : p −→ q of F . Note that both 
maps send the component of (φ, ψ) in the source to that of

(ψ ∧ φ) ◦ τm,p = τn,q ◦ (φ ∧ ψ)

in the target (see (3.9)). We thus fix such φ and ψ and start with 
∏

j O(φj) ×
∏

k O(φk), 
where 1 ≤ j ≤ n and 1 ≤ k ≤ q. Again for simplicity we work with elements cj ∈ O(φj)
and dk ∈ O(ψk).

Considering permutations as morphisms of Π ⊂ D and using the definition of compo-
sition in D , we find that the clockwise composite sends 

(
(c1, . . . , cn), (d1, . . . , dq)

)
to

∏
(cj � dk)τψj ,φk

,

j,k
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and the counterclockwise composite sends it to

∏
j,k

(dk � cj),

with both products ordered in reverse lexicographical order.
Applying a product of maps α gives the invertible V∗-transformation τ̂ indicated in 

the diagram. Note that, similar to Lemma 12.9, we have that the 2-cell τ̂ is the identity 
when either copy of D is restricted to Π. We leave to the reader the verification of 
compatibility with composition, and axioms (i) and (ii) of Definition 4.32. �
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