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modification factor (Raa ), measured for the first time down to pr = 1 GeV/c in the 0-10%
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quark energy loss in the quark-gluon plasma, and quark recombination in addition to
fragmentation as a hadronisation mechanism. The ratio of the non-prompt to prompt D°-
meson Raa is larger than unity for pp > 4 GeV/c in the 0-10% central Pb-Pb collisions,
as predicted by models in which beauty quarks lose less energy than charm quarks in the
quark-gluon plasma because of their larger mass.
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1 Introduction

The formation in ultra-relativistic collisions of heavy nuclei of a quark-gluon plasma (QGP),
a state in which quarks and gluons are not confined into hadrons, is supported by several
measurements at SPS, RHIC and LHC accelerators [1-9], and expected from quantum
chromodynamics (QCD) on the lattice [10-13]. Heavy quarks (charm and beauty) are
produced in hard-scattering processes occurring in the early stage of the collision. As the
medium expands, they interact with its constituents via inelastic (gluon radiation) [14, 15]
and elastic [16-18] flavour-conserving scatterings that modify their momentum towards
equilibrium with the surrounding quarks and gluons. As a consequence, high-momentum
charm and beauty quarks lose energy. This in-medium energy loss, which carries informa-
tion on the medium properties and expansion, can be investigated by measuring the nuclear
modification factor (Raa) of heavy-flavour hadrons. The Ray is defined as the ratio of the
transverse-momentum (p)-differential production yields measured in a given centrality in-
terval in nucleus-nucleus collisions (dNaa /dpr) to the cross section in proton-proton (pp)
collisions (dopp/dpr) scaled by the average nuclear overlap function (Tha) [19, 20] in the
considered centrality interval. In-medium energy loss of quarks and gluons implies a soft-
ening of the final-state hadron pt spectrum resulting in Raa < 1 at intermediate and high
pr. Several measurements in Au-Au collisions at RHIC and Pb-Pb collisions at the LHC
evidence a substantial energy loss of charm and beauty quarks due to their interactions
in the QGP [21-42]. The difference between the Raa of heavy-flavour hadrons or their
decay products and that of light hadrons, mostly originating from gluon and light-quark
fragmentation, indicates that the amount of energy loss is sensitive to the colour-charge
dependence of the strong interaction, as well as to the effects that depend on the parton
mass [29, 43-45]. In particular, beauty quarks are expected to lose less energy than charm
quarks. At high pr, where energy loss is caused mainly by radiative processes, this differ-
ence is expected to derive from the “dead-cone” effect, which suppresses gluon radiation
off massive quarks at angles smaller than mq/E (with mq and E being the quark mass



and energy, respectively) with respect to the quark direction [46-49], an effect directly ob-
served in pp collisions at the LHC [50]. This expectation is supported by experimental data
showing higher Raa for beauty than charm signals, qualitatively in line with theoretical
predictions [29, 39, 42, 44, 45, 51-55]. At low momenta, heavy-quark propagation through
the medium is described as a diffusion process, occurring via multiple low-energy-transfer
interactions, that also favours the participation of heavy quarks in the collective expan-
sion of the system [56, 57]. Because of the larger mass, beauty quarks should diffuse less
than charm quarks and have a longer relaxation time, which should increase linearly with
the quark mass [58, 59]. Therefore, the comparison of charm and beauty Ras provides a
handle to constrain the modeling of the diffusion process.

Other effects are also relevant in nuclear collisions, namely cold-nuclear-matter (CNM)
effects, that are present even without the formation of a QGP, and hadronisation effects.
The main CNM effect at LHC energies is the modification of the parton distribution func-
tions (PDF), in particular the reduction of the gluon PDF at small Bjorken-z values (“nu-
clear shadowing”) that can cause a suppression of heavy-flavour production. At midrapid-
ity, shadowing is expected to be relevant mainly at low pr (below 2-3 GeV/c¢) and stronger
for charm than beauty quarks, as suggested also from measurements performed in p-Pb
collisions [28, 60—67]. In a high quark-density environment like the QGP, low-momentum
heavy quarks may hadronise by recombining with other quarks in the medium [57, 68].
Such a “coalescence” mechanism can enhance the production of heavy-flavour baryons and
of hadrons with strange quarks relative to non-strange B and D mesons [30, 57, 69-71] and
it influences the pt and azimuthal distributions of the produced heavy-flavour hadrons in
a different way with respect to “vacuum-like” fragmentation. Several theoretical models
need to include this mechanism to describe the measured Raa and azimuthal anisotropy
of D mesons [72-83]. Hadronisation and CNM effects complicate the determination of fun-
damental parameters, such as the spatial diffusion coefficient and charm-quark relaxation
time, determined from open-charm measurements [84, 85].

The different impact of the aforementioned effects on beauty- and charm-hadron ob-
servables, ultimately due to the different quark masses, offers a handle to constrain these ef-
fects and understand heavy-quark diffusion in the medium. Moreover, as stated in ref. [84],
from a theoretical point of view, beauty hadrons represent a cleaner probe of the QGP com-
pared to charm hadrons, in terms of the implementation of both microscopic interactions
and transport, and as a measure of coupling strength for quarks that are unlikely to reach
thermalisation in the medium [86-89]. While several measurements of charm Raa and az-
imuthal anisotropy have been performed down to low pp [21, 22, 24, 25, 27, 31, 38, 41, 55],
the experimental information is still poor for low-momentum beauty hadrons. Existing
data on the production of B mesons [40], J/1 from beauty decays [42, 44, 55], and single
leptons from beauty decays [53, 54] are not sensitive to B mesons with pp around the
B-meson mass or lower (for the lepton case the correlation between the lepton and parent
beauty-hadron pr is very broad). This leaves unconstrained a kinetic window fundamental
to explore the effects mentioned above.

In this paper, we report the measurement of the pp-differential yield and the Raa
of D mesons from beauty-hadron decays (referred to as non-prompt D® mesons) in Pb-



Pb collisions at a center-of-mass energy per nucleon pair ,/syy = 5.02TeV, for the first
time down to pt = 1 GeV /c in central (0-10%) and semi-central (30-50%) collisions. This
represents a significant extension of the previous measurement by CMS [39] that allows us
to compute for the first time the pr-integrated yield of non-prompt D? mesons. The non-
prompt D%-meson R 4 is compared to that of prompt DY mesons, which are produced in the
hadronisation of charm quarks or from the decay of excited open-charm and charmonium
states. In what follows, when mentioning a given hadron species we implicitly refer also to
its antiparticle.

The paper is structured as follows. The experimental apparatus and data sample
used for the analysis are briefly presented in section 2. The reconstruction of non-prompt
D® mesons and all corrections applied to the raw yield are presented in section 3. The
estimation of systematic uncertainties is briefly discussed in section 4. The results are
presented in section 5 and conclusions are drawn in section 6.

2 Experimental apparatus and data sample

The data were collected with the ALICE detector during the LHC Run 2 in 2018. A detailed
description of the ALICE apparatus and of its performance can be found in refs. [90, 91].
The Time Projection Chamber (TPC) [92] is the main tracking device for the measurement
of particle momenta. The Inner Tracking System (ITS) [93] is exploited for the reconstruc-
tion of the primary interaction vertex and of the secondary decay vertices of charm- and
beauty-hadron decays. Particle identification (PID) is provided by the measurement of
the specific energy loss dE/dz in the TPC and of the flight time of charged particles from
the interaction point to the Time-Of-Flight detector (TOF) [94]. These detectors, which
cover the pseudorapidity interval |n| < 0.9 and full azimuthal angle, are enclosed in a large
solenoidal magnet providing a uniform magnetic field of 0.5 T parallel to the LHC beam
direction. The event triggers and offline selection criteria are defined in ref. [29]. About
1.0 x 10® and 8.5 x 107 events in the 0-10% and 30-50% centrality classes were selected
for further analysis, corresponding to integrated luminosities (Liy) of about 130 ub~! and
56 ub~!, respectively [20].

The correction factors for the detector acceptance and the signal reconstruction and
selection efficiency were obtained by means of Monte Carlo (MC) simulations. In order to
describe the charged-particle multiplicity and detector occupancy, underlying Pb-Pb events
at /sxn = 5.02 TeV were simulated with the HIJING v1.383 generator [95]. In order to
enrich the simulation of prompt and non-prompt D%-meson signals, pp collisions containing
a cc or bb pair in each event were simulated with the PYTHIA 8.243 event generator [96]
and the particles originating from a charm or a beauty quark were embedded into the
underlying Pb-Pb event. The pr distribution of prompt D mesons in the MC simulation
was weighted in order to match the shape measured in data for prompt D® mesons, while,
for non-prompt DY mesons, the parent beauty-hadron pr shape was weighted to match the
shape given by model calculations [72, 97, 98]. The generated particles were transported
through the apparatus, which was modelled in the simulation using the GEANT3 transport
code [99].



3 Data analysis

The D mesons were reconstructed via the decay channel D® — K~#t with a branching
ratio (BR) equal to (3.950+£0.031)% [100]. The candidates were defined by combining pairs
of tracks with opposite charge, each with |n| < 0.8, pp > 0.5 (0.4) GeV/c for the 0-10%
(30-50%) centrality class, a number of crossed TPC pad rows larger than 70 (out of 159),
and a minimum number of two hits (out of six) in the ITS, with at least one in either of
the two innermost layers, as the main selections.

To reduce the combinatorial background and separate the prompt and non-prompt
contributions, a two-step machine-learning classification based on the Boosted Decision
Tree (BDT) algorithm provided by the TMVA library [101] was utilised. Variables sensitive
to the typical topology of the prompt and non-prompt decay vertices were chosen as input
for the BDT algorithm, similarly to what is described in more detail in ref. [102]. Before
the training, a +3 o selection around the expected mean dE/dx in the TPC and time of
flight in the TOF was applied to identify pions and kaons, where o is the resolution on the
measured quantities. The BDT algorithm was trained in each pr interval, using samples of
non-prompt and prompt DY mesons from the MC simulation, and a sample of background
candidates with an invariant mass in the sidebands of the D%-meson peak from the data. In
the first step the BDT was trained to separate non-prompt and prompt D? mesons, while
in the second step it was trained to separate non-prompt D° mesons and combinatorial
background. By tuning the selection on the BDT outputs, the fraction of non-prompt D°
can be varied from about 5% up to 90% maintaining a reliable signal extraction.

The raw yield was extracted in each pr interval via a binned maximum-likelihood fit
to the candidate invariant-mass distribution. The invariant-mass (M) distributions from
which the raw yields with enhanced contribution of non-prompt DY mesons are extracted
are reported in figure 1. The non-prompt D° enriched invariant-mass distributions were
fitted with a function composed of a Gaussian term for the signal and an exponential
function to describe the background shape. For transverse-momentum (pr) intervals 2—
6 GeV /e, a second-order polynomial function was used and below 2 GeV/c a third-order
polynomial function was used to describe the background shape. The contribution of
signal candidates that are present in the invariant-mass distribution with the wrong decay-
particle mass assignment (reflection) was parameterised by fitting the simulated reflection
invariant-mass distributions with a double Gaussian function, and it was included in the
total fit function. The ratio between the reflections and the signal yields was taken from
simulations. To improve the stability of the fits, the widths of the D°-meson signal peaks
were fixed to the values extracted from data samples dominated by prompt candidates,
given the naturally larger abundance of prompt compared to non-prompt D° mesons.

The fraction of non-prompt D® mesons in the raw yield fron-prompt Was estimated by
sampling the raw yield at different values of the BDT output related to the candidate
probability of being a non-prompt D? meson. In this way, a set of raw yields Y, with
different contributions of prompt and non-prompt D° was obtained. The Y; can be related
to the corrected yields of prompt (Nprompt) and non-prompt (Nnon-prompt ) D? mesons via
the acceptance-times-efficiency (Acc x €) factors as follows

(Acc x )P ™' ¢ Nprompt + (Ace x €)1 PPt 5 Noonprompt — Yi = 0. (3.1)
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Figure 1. Invariant-mass distributions for D® candidates in selected pr intervals for the centrality
class 0-10% and 30-50%. Fitted values for the D® meson mass p, width o, and raw yield S are also
given, the fraction of D° candidates in the measured raw yield is reported with its statistical and
systematic uncertainties. Top row: non-prompt D° mesons with 1 < pt < 2GeV/c in the 0-10%
centrality class, before (left) and after (right) subtraction of the background fit function. Bottom
row: non-prompt D’ mesons with 1 < pr < 2GeV/c (left) and 7 < pr < 8 GeV/c (right) in the
30-50% centrality class.

In the above equation, d; represents a residual that accounts for the equation not holding
exactly because of the uncertainties on Y;, (Acc x €)!"P*™P' "and (Acc x )P, With
n > 2 sets, starting from eq. (3.1) a x? function can be defined, which can be minimised
to obtain Nprompt and Npon-prompt- More details can be found in ref. [102]. However,
rather than using the Npon-prompt parameter from the x? minimisation, one of the n sets
with a high non-prompt component was selected as a working point (wp), and Npon-prompt
and Nprompt Were used to calculate the fhon-prompt, wp fraction of the related raw yield
Yuwp- This choice facilitates the estimate of systematic uncertainties. Then, to obtain the
corrected non-prompt D%-meson yield, the product Yip X fnon-prompt, wp Was corrected for
the corresponding acceptance-times-efficiency (Acc x e)?v%“‘pmmpt and divided by a factor
2 x BR x Apt X Ay X Ney, where Apr and Ay are the widths of the pr and rapidity
intervals, BR is the branching ratio of the decay channel, N, represents the number of
analyzed events, and the factor 2 accounts for the fact that both particles and anti-particles
are counted in the raw yield.



4 Systematic uncertainties

Several sources of systematic uncertainties on the non-prompt D°-meson corrected yields
were studied. The systematic uncertainty on the raw yield extraction ranges from 4%
to 14% depending on pr and collision centrality class. It was evaluated by varying the
lower and upper limits of the fit range, and the background fit function. The contribution
due to the uncertainty on track reconstruction efficiency (4-11%) was evaluated by mod-
ifying the track-quality selections and by comparing the probability to prolong the TPC
tracks to the ITS hits in data and simulation. To estimate the uncertainty on the PID
selection efficiency, the no distributions for “pure” samples of pions, kaons, and protons
were compared in data and MC, and found to be compatible [29]. Besides the analysis
was repeated without PID selection, the resulting corrected yields were compatible with
those obtained with the PID selection and no systematic uncertainty was assigned. The
uncertainty on the selection efficiency (5-8%) originates from imperfections in description
in the MC simulation of the topological variables used for preselections and in the BDT. It
was estimated by comparing the corrected yields obtained by repeating the analysis with
different D%-meson topological preselections, as well as the selection on the BDT response,
resulting in a significant modification of the efficiency. The systematic uncertainty on the
Jnon-prompt fraction estimation (2-8%) was evaluated by changing the selections defining
the sets used for the x? minimisation calculation. The systematic effect on the efficiency
due to a possible difference between the real and simulated D%-meson pr distributions (1-
8%) was evaluated by reweighting the D°-meson spectrum in the simulation so to match
alternative pr distributions. The contributions of the different sources were summed in
quadrature to obtain the total systematic uncertainty (8-19%).

5 Results

The pr-differential production yields of non-prompt D mesons in the 0-10% and 30-50%
centrality classes in Pb-Pb collisions at /sxy = 5.02TeV for pr > 1GeV/c are shown
in the top panel of figure 2. They are compared to the corresponding pp reference cross
section [102] multiplied by (Taa) in the given centrality range. For 24 < pr < 36 GeV/c,
the pp reference cross section was extrapolated exploiting FONLL predictions in a similar
way to that used in refs. [22, 27]. To get an indication of the typical B-meson p probed in
the non-prompt D pr intervals, a simulation was done in which B? and BT mesons were
generated according to the pp-differential spectrum expected from FONLL [97, 98] and
decayed with the PYTHIA 8.243 event generator. As an example, for non-prompt D° with
1 < pr <2 (10 < pr < 12) GeV/c the parent B-meson pr distribution has a median of
pr =~ 3.3 (18.2) GeV/c and an RMS of about 1.9 (6.2) GeV /c. Thus, the measured spectra
probe B mesons down to pt lower than the B meson mass.

The Raa of non-prompt DY mesons as a function of pr is shown in the middle and
bottom panels of figure 2 for the 0-10% and 30-50% centrality classes, respectively. The
uncertainty on the Raa normalisation results from the quadratic sum of the pp normal-
isation uncertainty, the uncertainty on (Taa), and the centrality interval definition un-
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Figure 2. Top panel: non-prompt D%-meson pp-differential production yields in Pb-Pb collisions
at /sNN = 5.02 TeV in the 0-10% and 30-50% centrality classes. The pp reference spectra, (Tas) X
dopp/dpr [20, 102], are also shown. Middle and bottom panels: pr-differential Raa in the 0-10%
(middle) and 30-50% (bottom) centrality classes, compared with model predictions [72, 73, 85, 103,
104]. Open markers indicate the points for which the pp reference is extrapolated (see text). Vertical
bars, empty boxes, and the shaded box around Raa = 1 represent the statistical, systematic, and
normalisation uncertainty, respectively.



certainty [27]. The BR uncertainty is cancelled in the ratio, while all other sources are
propagated as uncorrelated. For pr larger than about 5 GeV /¢, the Raa does not change
significantly with pp and it shows a suppression of the yields by a factor about 3 (2) in
the 0-10% (30-50%) centrality class with respect to the pp reference scaled by (Tap).
At lower pr, the Raa increases with decreasing pr. Within a 1o uncertainty, it is com-
patible with unity in the interval 1 < pp < 3GeV/c (1 < pr < 4GeV/c) in the 0-10%
(30-50%) centrality class. Values above unity are slightly favoured by data in the range
1 < pr < 2GeV/c. The measured Raa is compared with predictions from various models,
namely MC@QsHQ+EPOS2 [73], LGR [85, 103], TAMU [72], and CUJET3.1 [104]. In the
TAMU model, the heavy-quark interactions with the medium are described by elastic col-
lisions only. The LGR, MC@sHQ+EPOS2, and CUJET3.1 models include both radiative
and collisional processes. The contribution of hadronisation via quark recombination, in
addition to independent fragmentation, is considered in the TAMU, MC@QsHQ+EPOS2,
and LGR models. All predictions describe the data within uncertainties in both centrality
classes, except for TAMU, which tends to underestimate the suppression in the interval
5 < pp < 12GeV/c in central collisions. This comparison suggests that both radiative
and collisional processes are important for beauty quark in-medium energy loss at LHC
energies.

Shadowing and a modification of hadronisation can also modify the pr-integrated
yield of the final-state beauty hadrons, which is not influenced by the quark energy loss,
and cause pr-integrated Raa (pr > 0) to deviate from unity. In order to test this, an
extrapolation of the measured spectrum to the intervals 0 < pp < 1 GeV /¢ was performed.
The total non-prompt D%-meson yields in |y| < 0.5 for pr > 0 in the 0-10% and 30-50%
centrality classes are calculated by adding to the “visible yields”, computed by integrating
in pr the pr-differential yields measured for pr > 1GeV/¢, an estimate of the yield in
0 < pr < 1GeV/c reckoned as

- - t - t
dN |pow prompt RHOH promp do |Ron-promp
__ pprompt AA
T (0<pr<1GeV/e) = RiA. easured X — pprompt X (Tan) X Tom .
PT |Pb-Pb, extrap. AA model PT lpp, extrap.

(5.1)
In the above equation, all terms on the right side are evaluated in 0 < pp < 1GeV/ec.
The value of the non-prompt DY cross section in pp collisions at /s = 5.02 TeV, do/dpr,
is retrieved from ref. [102] (tables 3 and 4) by scaling the cross section measured in 1 <
pr < 24GeV/c by 1 —a = O.28J_r818411, where « represents the ratio of the cross section
for 1 < pp < 24GeV/c to pr > 0 calculated using FONLL predictions [97, 98]. The
contribution of non-prompt D° with pt > 24 GeV/c to the total yield is below 0.1% and
significantly smaller than the uncertainty on the estimate of the yield in 0 < pp < 1 GeV /¢,
described later. Therefore, a correction to avoid the double counting of the contribution of
the yield in the interval 24 < pp < 36 GeV /¢, which is already accounted for in the visible
Pb-Pb yield, as well as a specific extrapolation for pp > 36 GeV/c were not considered
necessary. In eq. (5.1) the pp cross section is multiplied by the nuclear overlap function
(Taa) for the considered centrality interval and by an estimate of the non-prompt DP-
meson Rxa obtained as the product of the measured prompt D’-meson Raa [29] and an



assumption for the “double R4 ratio” RN PP/ RRW™P For the latter, the pr shape of

the prediction of the LGR model [85, 103], which describes the measured double Rpx ratio
for pr > 1GeV /c within uncertainties, is exploited. The model prediction is parametrised
with a 5%P-order polynomial function, which is then used to fit the data in the interval
1 < pr < 12GeV /¢, leaving an overall scaling factor as the only free parameter of the fit.
The value of the function at pp = 0.5 GeV/c is assumed as the estimate of the double Raa
ratio in 0 < pp < 1GeV/e. The rescaling of the LGR prediction is performed mainly to
avoid a potential unphysical discontinuity in the double Raa ratio between the measured
and extrapolated ranges. It was verified that the original value of LGR at pp = 0.5 GeV /¢
gives a value of the prp-integrated yield that is compatible with that obtained with the
default procedure within 1o of the extrapolation uncertainty. The latter is obtained by

prompt 11)

summing in quadrature i) the statistical and systematic uncertainties on Ry "7 . o 4,

the statistical and systematic uncertainties on do/dpr, which include the uncertainty on
the extrapolation factor a as well as the uncertainties on the visible cross section, and iii)
the uncertainty on the double Raa ratio. The latter is determined by the sum in quadrature
of the statistical uncertainty on the scaling factor of the LGR-based parametrisation of the
double Raa ratio and the modeling uncertainty, which is determined from the envelope of
the values obtained by reparametrising the double Raa ratio using the lower and upper
predictions of LGR, as well as the TAMU [72] model, which also reproduces the data within
uncertainties for pp > 1 GeV/c. Moreover, also the values evaluated at pp = 0.63 GeV/c
rather than pp = 0.5 GeV /¢ are considered, with the former value representing the average
pr of non-prompt D? mesons with 0 < pr < 1 GeV/c according to a simulation performed
by decaying with PYTHIA 8.243 [96] B mesons generated according to the expected pr

spectrum of FONLL. The envelope spreads around the value of the double Raa ratio

t +19% (+62%)

obtained with the default LGR prediction covering a relative variation of about ™56 (T 475/

in the 0-10% (30-50%) centrality class.

The systematic uncertainties on the visible yield are determined by summing those
of the pr-differential yields assuming that all uncertainty sources provide uncertainties
correlated with pp, with the exception of the yield-extraction uncertainties, which are
assumed as uncorrelated with pr and summed in quadrature. The statistical uncertainty
is calculated by summing in quadrature those on the pp-differential yields.

The uncertainties on the visible yield and on the estimate of the yield in 0 < pr <
1 GeV/c obtained with the procedure described above, are considered as uncorrelated in
the sum performed to calculate the yield in pr > 0. The partial correlation induced by
constraining the parametrisation of the double Raa ratio to the data is assumed to be
negligible. Thanks to the low-pr reach of the measurement, the visible yields represent
about 77% and 82% of the estimated total yields in the 0-10% and 30-50% centrality
classes, respectively, and the extrapolation uncertainties are 10% and 13%, respectively.

The non-prompt D yields estimated in the 0-10% and 30-50% centrality classes with
the above procedure are divided by the non-prompt D° pp cross section for pt > 0 [102]
scaled by the (Taa) value specific to each centrality class to get the non-prompt Raa for
pt > 0. The uncertainty on the Rapa is calculated taking properly into account that the
a factor and the visible pp cross section are used for determining both the Pb-Pb and pp
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Figure 3. Nuclear modification factor (Raa) of non-prompt DY mesons in the centrality classes
0-10% (left) and 30-50% (right), compared with the Raa of prompt DY mesons [29]. The statistical
and total systematic uncertainties are shown as error bars and boxes, respectively. The normalisa-
tion uncertainties are shown as boxes around unity.

pr-integrated yields. All other sources of uncertainties are considered uncorrelated between
the Pb-Pb and pp yields, with exception of that on the BR, which cancels in the ratio.

The resulting total yields per unity of rapidity are 0.428 + 0.033 (stat.) +
0.050 (syst.)*3937 (extr.) +0.004 (BR) and 0.079 4 0.007 (stat.) +0.009 (syst.) 9900 (extr.) +
0.001 (BR) in the 0-10% and 30-50% centrality classes, respectively. The Raa for
pr > 0 s 1.00 £ 0.10 (stat.) £ 0.13 (syst.) 908 (extr.) £ 0.02 (norm.) in the 0-10% and
1.10 4 0.12 (stat.) 4 0.15 (syst.)"00g (extr.) +0.03 (norm.) in the 30-50% centrality class.
Considering the statistical and systematic uncertainties, in both centrality classes, the Raa
is compatible with unity within less than 1o and with the prompt D%-meson pr-integrated
Rana [29] within less than 1.50.

Figure 3 shows the Raa of non-prompt D° mesons in Pb-Pb collisions at V5NN =
5.02 TeV, compared with the Ryn of prompt D° mesons [29] in the 0-10% and 30-50%
centrality classes. The non-prompt D? R4 is systematically higher than the prompt D°
one for pr > 5GeV/c in both 0-10% and 30-50% centrality classes, indicating that non-
prompt D? mesons are less suppressed than prompt DY ones and supporting the expectation
that beauty quarks lose less energy than charm quarks because of their larger mass.

The RYYPO™PY/RR™ ratio as a function of py is presented in figure 4 for the
0-10% central Pb-Pb collisions. In the computation of the ratio, the tracking-efficiency
and normalisation uncertainties get cancelled. All other sources of systematic uncertain-
ties were propagated as uncorrelated. As visible in the top panel, the pr trends of the
ROOIPIOmP/ RRIOMPY patio predicted by the LGR, MC@sHQ+EPOS2, and TAMU models
at low pr are similar. They have a minimum close to unity in 2 < pp < 3GeV/c and in-
crease towards lower and higher pr, a trend resembling the data one, which however cannot
be assessed in a conclusive way given the uncertainties. For pp > 5GeV/c the measured
values do not vary significantly with pr: their average is 1.70 £0.18, thus about 3.90 above
unity. All considered models, including CUJETS.1, predict a mild decrease of the ratio for
pr 2, 10GeV /¢, which is steeper for CUJET3.1 and TAMU, with the latter predicting a
maximum at pr ~ 5GeV/c. All models describe the data within uncertainties.
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Figure 4. Non-prompt to prompt [29] D%-meson Raa ratio as a function of pr in the 0-10% central
Pb-Pb collisions at /syn = 5.02 TeV, compared to model predictions [72, 73, 85, 103, 104] (top),
and to different modifications of LGR calculations (bottom).

In the bottom panel of figure 4, the ratio of the non-prompt to prompt D°-meson Raa
is compared with predictions from the default LGR calculations as well as four different
modifications of the LGR model:
beauty-quark energy loss, ii) using the charm-quark mass in beauty-quark coalescence, iii)

i) using the charm-quark mass in the calculation of the

excluding shadowing effects for both charm and beauty quarks, and iv) excluding quark
coalescence in both charm and beauty-quark hadronisation. The configurations (ii) and
(iii) give results similar to the default LGR calculation and can describe the data well. The
effect of shadowing is relevant mainly at low pp and it largely gets cancelled in the Raa
ratio [103]. The usage of the charm-quark mass in beauty coalescence reduces the Raa ratio
at high pr, as expected from the reduced coalescence probability, while it has a marginal
effect for pp < 7GeV/c. By removing the quark recombination in hadronisation of both
charm and beauty quarks (case iv), the Raa ratio is instead significantly enhanced for
pr > 1GeV/c and reduced at lower pp. This suggests that the minimum of the Rpp ratio
at pr ~ 2.5 GeV /c in the default LGR calculations is mainly due to the formation of prompt
D mesons via charm-quark coalescence. In this process, D mesons acquire a momentum
larger than that of the parent charm quarks, causing a hardening of the prompt D’-meson
pr spectrum. By replacing the beauty-quark mass with that of the charm quark in the
beauty-quark energy loss (case i), the Raa ratio reduces significantly for pr > 2.5 GeV/c
and becomes lower than unity in 2 < pr < 8GeV/c, which is inconsistent with data.
This supports the interpretation that the mass-dependence of quark in-medium energy-
loss causes the Raa ratio to be significantly larger than unity at intermediate pr.
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6 Conclusions

In summary, the Raa of non-prompt D? mesons from beauty-hadron decays was measured
at midrapidity, |y| < 0.5, for 1 < pr < 36 GeV/c in Pb-Pb collisions at /syy = 5.02 TeV
in the 0-10% and 30-50% centrality classes. While pp-integrated Raa (pr > 0), which
is not directly sensitive to partonic energy loss, is compatible with unity, a significant
suppression up to a factor of about three is observed for pyr > 5GeV/c in the 0-10%
central Pb-Pb collisions. The data are described by models that include both collisional
and radiative processes in the calculation of beauty quark in-medium energy loss and
quark recombination as a hadronisation mechanism. The non-prompt D°%-meson Raa is
significantly larger than the prompt one. Models that describe their ratio as a function of
pr encode a quark-mass dependence of energy loss, both at high pp, where beauty quarks
lose less energy than charm quarks via radiative processes, and at low pr, a region in
which collisional processes are more relevant and the interaction of heavy quarks with the
medium can be described as a diffusion process.
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