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Abstract Hadronic resonances are used to probe the
hadron gas produced in the late stage of heavy-ion collisions
since they decay on the same timescale, of the order of 1-10
fm/c, as the decoupling time of the system. In the hadron gas,
(pseudo)elastic scatterings among the products of resonances
that decayed before the kinetic freeze-out and regeneration
processes counteract each other, the net effect depending on
the resonance lifetime, the duration of the hadronic phase,
and the hadronic cross sections at play. In this context, the
¥ (1385)* particle is of particular interest as models pre-
dict that regeneration dominates over rescattering despite its
relatively short lifetime of about 5.5 fm/c. The first mea-
surement of the ¥ (1385)% resonance production at midra-
pidity in Pb-Pb collisions at ,/syn = 5.02 TeV with the
ALICE detector is presented in this Letter. The resonances
are reconstructed via their hadronic decay channel, Ax, as a
function of the transverse momentum (pt) and the collision
centrality. The results are discussed in comparison with the
measured yield of pions and with expectations from the sta-
tistical hadronization model as well as commonly employed
event generators, including PYTHIA8/Angantyr and EPOS3
coupled to the UrQMD hadronic cascade afterburner. None
of the models can describe the data. For ¥ (1385)*, a sim-
ilar behaviour as K*(892) is observed in data unlike the
predictions of EPOS3 with afterburner.

1 Introduction

Relativistic heavy—ion (A—A) collisions provide an excel-
lent tool to study nuclear matter under extreme conditions
of temperature and density and the phase transition between
hadronic matter and a deconfined state of quarks and glu-
ons, the quark—gluon plasma (QGP), predicted by lattice
quantum chromodynamics (QCD) calculations [1]. As the
QGP produced in a heavy-ion collision expands, it cools
down until a phase transition occurs that confines quarks
and gluons inside hadrons around a temperature of 155-
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158 MeV [2]. Soon after hadronisation, the resulting dense
and hot gas of stable hadrons and resonances reaches the
chemical freeze-out. Afterwards, hadrons keep interacting
(pseudo-)elastically, and thus exchanging momentum, until
the final decoupling at kinetic freeze-out where their momen-
tum distribution is determined. In this stage, the hadron gas
temperature decreases from around 150 MeV to approxi-
mately 100 MeV. The late hadronic stage of heavy-ion col-
lisions represents a unique environment for the study of a
hadronic system in such conditions of high temperature and
density. The understanding of the processes occurring in the
excited hadron gas is therefore of primary relevance for the
interpretation of observables that are employed to character-
ize the chemical and kinetic freeze-outs, the hadronic phase
and more broadly speaking, the time evolution of a heavy-ion
collision. In this respect, short-lived resonances are sensitive
probes to study the hadronic phase, which is formed after
the chemical freeze-out. This is due to their different life-
times that are comparable to the expected time duration of
the hadronic phase (= 1-10 fm/c) [3].

The resonances with the shortest lifetime such as the p°
(lifetime ct ~ 1 fm [4]) decay during the hadronic phase
and their decay products are subject to rescattering effects in
the dense hadronic matter, losing memory of the resonance
from which they have decayed. Due to the lack of correla-
tion among the decay products, the result is that the resonance
cannot be reconstructed via the usual invariant-mass analysis
and the measured yield is suppressed with respect to expecta-
tions [5]. The resonances with the longest lifetime such as the
¢ (ct ~ 45 fm [4]) are likely to survive the hadronic phase
and decay in vacuum after the kinetic freeze-out. The sce-
nario is further complicated by regeneration effects for which
two particles in the hadronic phase interact via resonance for-
mation, producing an enhancement with respect to the pri-
mordial production of that resonance. The X (1385)* (c1 ~
5.01 fm for ¥ (1385)~ and ct & 5.48 fm for X (1385)" [4])
provides a crucial test case in this context. The typical mod-
eling of the hadronic phase is based on transport codes in
which hadronic cross sections are implemented to describe
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the known hadronic interactions. The widely used hadronic
cascade simulator UrQMD [6] is therefore coupled to event
generators such as EPOS [7,8] in order to predict the pro-
duction of hadronic resonances. So far, this picture has been
tested mostly with the K* (892)° resonance which has a life-
time of ct ~ 4.2 fm and its production has been measured to
be strongly suppressed [9] due to the dominance of rescat-
tering effects. Results from p° and A (1520) further support
this picture of rescattering [5,10]. Despite its relatively short
lifetime, the X (1385)F is expected to be essentially unaf-
fected by the hadronic phase, likely due to larger cross sec-
tions for the regeneration processes [11,12]. In this Letter, the
first measurement of ¥ (1385)* in heavy-ion collisions at the
LHC is reported, based on a data sample of Pb—Pb collisions
at a centre-of-mass energy per nucleon pair of ,/syn = 5.02
TeV. The measurement presented in this Letter provides an
essential test of our current understanding of the evolution of
hadronisation induced by heavy-ion collisions.

This Letter is organised as follows. After a brief descrip-
tion of the ALICE detector and the data analysis in Sect. 2,
the measured transverse-momentum (p) spectra and pr-
integrated yields and ratios are presented in Sect. 3 together
with a discussion of our findings. Our conclusions are then
summarized in Sect. 4.

2 Experiment and data analysis
2.1 Experimental setup and event selection

A detailed description of the ALICE detector and its perfor-
mance can be found in Refs. [13,14]. This apparatus is opti-
mized for providing particle identification (PID) in a wide
momentum range (0.1-20 GeV/c) and high track-density
environment by using different techniques. For this analysis,
the Inner Tracking System (ITS) and the Time Projection
Chamber (TPC) are used for vertex determination and track-
ing, while the TPC and the Time-Of-Flight (TOF) systems
are employed for PID. These detectors cover the full azimuth
over a pseudorapidity region |n| < 0.9 and are located
inside a large solenoidal magnet providing a field of 0.5 T.
The ITS [15], located at a radial distance 3.9 < r < 43 cm
from the beam axis, consists of two layers of silicon pixels
(SPD), two layers of silicon drift chambers and two layers of
silicon strips. The SPD, in particular, is used to reconstruct
the track segments that serve to determine the primary ver-
tex of the collision. The TPC [16] is a large cylindrical drift
chamber covering a radial distance 85 < r < 247 cm and
the main tracking device in the central barrel. The TOF [17]
consists of a cylindrical array of MRPCs located at a radial
distance of about 380 cm from the beam axis, with an intrin-
sic resolution of 50 ps. Charged particles can be identified via
their specific energy loss, dE /dx, measured in the TPC with
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a resolution of 5%, and via their time-of-flight measured by
TOF.

On either sides of the interaction point, two scintilla-
tor hodoscopes, the VOA (2.8 < n < 5.1) and VOC
(=3.7 < n < —1.7)[18], serve for triggering, background
rejection and centrality classification, as shown in Table 3. In
addition, two Zero Degree Calorimeters (ZDC) [19] placed
at equal distances, 112.5m, from the interaction region are
used for background rejection and spectator nucleon mea-
surements.

The data samples analysed were recorded in 2018 using
Pb—Pb collisions at ,/snny = 5.02 TeV. The minimum bias
(MB) interaction trigger during the data collection requires a
coincidence of signals in the VOA and VOC. The central and
semi-central triggers require in addition to the MB trigger,
an online selection on the total signal amplitude in the VO
detectors, corresponding to collision centralities of 0-10%
and 30-50%, respectively. Background events are rejected
using the timing information from the ZDC and the VO detec-
tors [20]. For the pile-up removal, the correlations between
the number of reconstructed space points (clusters) in the
SPD, the number of reconstructed SPD track segments and
the total signal in the VOA and VOC detectors are considered.

Events are selected only if they contain at least two tracks
and a reconstructed primary vertex located within 10 cm
with respect to the nominal interaction point along the beam
axis (z axis). A total of 26 x 107 collision events have been
accepted for the analysis. Events are further classified into
centrality classes, expressed in terms of percentiles of the
total hadronic Pb—Pb cross section, using the signal ampli-
tudes in the VO arrays [20-22]. The analysis is performed in
three centrality classes: 0—-10%, 30-50% and 50-90%. The
0-10% and 50-90% centrality classes correspond to the most
central and the most peripheral Pb—Pb collisions with small
and large impact parameters, respectively.

2.2 Resonance reconstruction and yield extraction

The resonances ¥ (1385)" and X (1385)~ are measured sep-
arately via their hadronic decay channel to A and 7% with
a branching ratio of 87% [4], by calculating their invariant
mass. The A decays weakly into a pzr pair with a branch-
ing ratio of 63.9% and a characteristic V° topology, which is
exploited for its reconstruction. In the following, when refer-
ring to X (1385)" or £ (1385)~, the sum of the particle and
antiparticle (cc, charge conjugate) is considered.

Primary charged tracks are required to fulfill the standard
criteria for good reconstruction quality described in Ref. [23].
These selections affect the 7* from the X (1385) decays,
for which itis additionally required to have pt > 120 MeV/c.
Pion identification is based on the requirement that the d £ /dx
and the time-of-flight measured in the TPC and in the TOF,
respectively, are compatible with their expected values within
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Table 1 Selection criteria of the A daughter of (1385)*

[yal < 0.5

DCA of the proton daughter to

primary vertex > 0.12cm

DCA of the pion daughter

to primary vertex > 03 cm

DCA between A decay products < 0.8 standard deviations
A cosine of pointing angle > 0.98

mppG =+ 6.7 MeV/c?
5 < Ry < 200cm
< 25cm/c

> 150 MeV/c

A invariant mass window
A decay radius (Rp)
Proper lifetime

Daughters pr

a fixed number of standard deviations (¢ Tpc, 0 Tor) [24]. In
particular, the signals are requested to be within &+ 5o Tpc,
4 30 tpc and * 20 1pc for tracks with pr < 0.35 GeV/c,
0.35 < pr < 0.5 GeV/e, and 0.5 < pr < 20 GeV/c,
respectively. If the measurement of the time-of-flight is avail-
able, this information is used in combination with the TPC
PID by applying a selection based on a + 30 Tof range if
pt < 1.5 GeV/c and on a & 2.50 ToF range otherwise.

For the decay products (daughters) of the A, a subset of
the standard track quality criteria are applied with the addi-
tion of ptr > 150 MeV/c. Furthermore, the candidate As
fulfill the criteria of the V° decay topology listed in Table 1.
The distance of closest approach (DCA) of the A daugh-
ters is measured in standard deviations of this distribution.
The pointing angle is the angle between the direction of the
momentum of the A and the line connecting the secondary
to the primary vertex. The invariant mass window is defined
so as to take into account the resolution of the reconstructed
A and R is the allowed radial distance within which the A
decay is considered. The A daughters are identified as pions
and protons based on a 4o Tpc criterium for all pr.

The A pairs are reconstructed within the region || < 0.8
and |y| < 0.5 by combining candidates from the same
event. The uncorrelated combinatorial background is esti-
mated via the mixed-event technique, by combining A and
pions belonging to different events of the same centrality
class with similar primary vertex position along the z-axis
and charged-particle multiplicity. Specifically, the difference
among the z-coordinate of the vertices of the events being
mixed must be less than 1cm and the difference of the
charged-particle multiplicities less than five. To reduce the
statistical fluctuations in the mixed-event background distri-
bution, each event is mixed with nine other events.

As the ¥ (1385)% decay products have a large mass differ-
ence, a selection on their momenta is applied which helps to
reduce the combinatorial background under the peak. This
is achieved by requiring the momentum asymmetry of the

decay products (defined as (pp — px)(pa + pr)) to be
between 0.3 and 0.95. The asymmetry selection results in
the partial removal of the correlated background remaining
after the event-mixing background subtraction.

The criteria used to select the Axr pairs are applied to both
same-event and mixed-event invariant mass distributions,
which are then normalized in the region 1.8—2.0 GeV/c?.
The normalised mixed-event background distributions are
subtracted from the same-event ones. The resulting invariant
mass (M ) distributions exhibit the signal peak on top of a
residual background consisting of correlated Amw pairs from
other particles or misidentified ones [25]. The residual back-
ground has a smooth shape that is described by the following
function:

f86 = [Maz —(mz+mp)]" exp(A+B x Mz +Cx M3 ),
(1)

where m, and m s are the w and A mass, respectively, taken
from Ref. [4] and A, B, C and n are free parameters.

The mixed-event subtracted invariant mass distribution is
fitted with a Breit—-Wigner function for the signal and Eq. 1
for the residual background. The width of the resonances is
kept fixed at the PDG value of 36 MeV/c? for £ (1385)T
and 39 MeV/c? for X (1385)~ [4]. This procedure is repeated
in nine intervals in the pair pt, from 1 to 9 GeV/c, and for
each centrality class. The fit range for each pr interval varies
in order to achieve a better x2 per degree of freedom. The
lower values vary between 1.26 and 1.30 GeV/c? and the
upper boundaries from 1.55 to 1.70 GeV/c?. The yields of
¥ (1385) are extracted in each pr interval and centrality
class by integrating the Breit—~Wigner function in the range
[Mp, — 5T, My + 5T"], where M), is the peak position result-
ing from the fit and I" the width of the resonance. In Fig. 1,
the mixed-event subtracted invariant mass distribution is pre-
sented for £ (1385)" (left) in the 0—10% centrality class for
3.5 < pr < 4.5 GeV/c and for X(1385)™ (right) in the
30-50% centrality class for 2.5 < pt < 3.5 GeV/c. In the
latter, the E peak is visible at & 1.321 GeV/c?, requiring for
2 (1385)™ an additional gaussian function to be used in the
fit to take into account the E particle.

2.3 Corrections

The extracted raw yields of ¥ (1385)* are normalized to
the number of events of the corresponding centrality class
and corrected for the detector acceptance (A), the recon-
struction efficiency (€rec) and the branching ratio (BR) [4].
The detector acceptance and reconstruction efficiency (called
efficiency) are determined from a Monte Carlo simulation
based on the HIJING event generator [26]. The >(1385)*
signals are injected with a flat pt distribution in the range
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Fig. 1 Left:Invariant mass distribution of A7 pairs for £ (1385)" after
subtraction of the mixed-event background in 0—10% central Pb—Pb col-
lisions and 3.5 < pr < 4.5 GeV/c. Right:Invariant mass distribution
of Am pairs for ¥(1385)~ after subtraction of the mixed-event back-
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Fig. 2 The product of efficiency x BR for % (1385)™ (left) and £ (1385)~ (right) in the three centrality classes used for the analysis. The branching
ratio, BR, is included in the correction. The error bars represent the statistical uncertainties

0—10 GeV/c? into HIJING events. The generated particles
and their decay products are propagated through the detec-
tor material using GEANT3 as transport code [27]. The same
criteria are applied to select the resonance decay products and
the pairs as for the data analysis. The product A X € XxBR
is calculated as the fraction of the generated »(1385)* at
midrapidity, reconstructed and identified after the applica-
tion of all selection criteria. The calculation is performed in
each centrality class and in Fig. 2, the A X €rec X BR (denoted
as efficiency x BR) is shown as a function of pr for the three
centrality classes. It depends on the centrality due to the cen-
trality dependence of the efficiency of both v and A particles.
Due to the flat input pt spectrum of the injected X (1385)*
resonances, an iterative procedure is applied for re-weighting
it, to remove input spectrum shape effects. The efficiencies
obtained from the above described procedure are compared
with those obtained from standard HIJING simulations and
their ratio is compatible with unity.
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2.4 Systematic uncertainties

The sources of systematic uncertainties in the measurement
of the X (1385)% resonances are the yield extraction, the
tracking efficiency of the pion daughter, the selection criteria
of A particles, the pion PID, the knowledge of the detector
material budget, the asymmetry selection of the resonance
daughter particles and the branching ratio to the decay chan-
nel used in the analysis. The uncertainties, except those of
the asymmetry and the branching ratio, are pt and central-
ity dependent. The uncertainty on the raw yield extraction
comprises variations of the fit range, of the background fit
function and of the mixed-event background normalization
range, the use of bin counting instead of the integration of
the signal function, as well as letting the width of the Breit—
Wigner free in the fit. From all variations, the maximum
deviation from the nominal value is assigned as systematic
uncertainty. The difference between the global tracking effi-
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Table 2 Sources of systematic uncertainties on the ¥ (1385)* resonance yields in 0-10% most central Pb—Pb collisions at \/s\y = 5.02 TeV,

given for two different pr intervals, 1-2 GeV/c and 5.5-7 GeV/c

Systematic variation 2 (1385)" +cc

2(1385)" +cc

pt (GeV/c) pr (GeV/e)

1-2 5.5-7 1-2 5.5-7
Yield extraction (%) 13.0 13.2 15.5 13.6
Global tracking efficiency (%) 5.0 3.0 5.0 3.0
A topological cuts (%) 33 5.1 2.6 4.3
Pion PID (%) 4.1 4.2 2.1 7.7
Material budget (%) 5.2 1.5 5.2 1.5
Daughters asymmetry (%) 5.0 5.0 5.0 5.0
Branching ratio (%) 1.1 1.1 1.1 1.1
Total (%) 16.0 15.8 17.6 17.1
Total multipl. uncorrelated (%) 9.8 5.3 9.7 6.1

ciency in the data and the Monte Carlo simulation contributes
to the total uncertainty by affecting the pion daughter and it
varies from 5% at pr = 1 GeV/c to 3% at pt = 6 GeV/c.
The uncertainty due to the A topological selection is calcu-
lated by varying the DCA of the A daughters to the primary
vertex, the DCA of the A daughters and the cosine of point-
ing angle. This uncertainty has a value ranging from 2-3%
at the lowest pt to 4-5% at the highest pt. The uncertainty
associated with the pion identification is quantified by vary-
ing the selections in the TPC and the TOF detectors, and
reaches a maximum value of 8% for X (1385)~ in central
collisions. The uncertainty on the yields occurring from the
implementation of the material budget in the detector simula-
tion was evaluated by increasing and decreasing the material
amount within its systematic uncertainty [14], resulting in a
variation of +4.5%. Reconstruction in data and Monte Carlo
was done in the two extreme cases and the systematic uncer-
tainty has been estimated on the final observables, which
are the pr distributions of the resonances. The asymmetry
uncertainty is 5%, regardless of pr and centrality, and is
evaluated by varying the accepted asymmetry range. Finally,
the branching ratio uncertainty is 1.1% [28]. In Table 2, the
uncertainties entering the measurement are given for two pt
intervals in 0-10% central collisions. The total systematic
uncertainty of 3 (1385)7 is slightly higher than the uncer-
tainty of ¥ (1385)™ mainly due to the fact that in the yield
extraction of the former an additional gaussian function has
to be taken into account in the fit to parametrise the E peak.
In the other centrality classes the uncertainties are lower.

3 Results and discussion
The transverse-momentum distributions of ¥(1385)% and

¥ (1385)™ in Pb—Pb collisions are reported in Fig. 3 and
compared to the measurements in inelastic pp collisions at

A/s = 7TeV [25] and in non-single diffractive (NSD) p-Pb
collisions at \/sny = 5.02 TeV [28].

Each of the Pb—Pb distributions in this figure is fitted indi-
vidually with a Blast-Wave function [29]. The pr-integrated
yields and the mean transverse momentum, (pr), are calcu-
lated based on the data where the spectra are measured and
on the extrapolation of the Blast-Wave function at low pr.
The fraction of the integrated yields in the high- pt extrapo-
lation region is negligible, while this fraction for the low- pt
one ranges from 28 to 37%, depending on the collision cen-
trality. The statistical and systematic uncertainties of the pr-
integrated yields and the mean pr are evaluated by repeat-
ing the fit after moving the spectra within their statistical
and systematic uncertainties, respectively. The procedure of
the fitting and the calculation of the pr-integrated yields
and the mean pt described above is repeated with Boltz-
mann, Fermi—Dirac, mt-exponential and Lévy-Tsallis [30]
functions to calculate an additional systematic uncertainty
defined as the maximum deviation of these quantities from
the ones obtained with the Blast-Wave fit. The dN/dy and
(pr) are reported in Tables 3 and 4, respectively, for the
three centrality classes of this analysis. As a part of the total
systematic uncertainty is correlated across multiplicity, the
uncorrelated part of the uncertainties has been calculated by
following a similar procedure as the calculation of the total
uncertainty. The multiplicity-uncorrelated uncertainties are
represented by the third number in Tables 3 and 4. The mean
charged-particle multiplicity density for each centrality class,
(dN¢h/dn), is also reported in Table 3. Both dN/dy and (pr)
increase with (dNch/dn) in Pb—Pb collisions.

From pp to central heavy-ion collisions, the spectra
become harder with increasing charged-particle multiplic-
ity, following a similar trend as observed for the other mea-
sured light-flavour particles and resonances [9,24]. The (pT)
increases from about 1.15 GeV/c in pp collisions to about
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Table 3 Average charged-particle multiplicity density per central-
ity class at midrapidity (|| < 0.5) and pr-integrated yields for
3 (1385)*. The first, second and third uncertainty in the pr-integrated

ties, respectively. The Blast-Wave fit functions are plotted up to 7 GeV/c.
The measurements in pp collisions at /s = 7 TeV [25] and in p—Pb
collisions at /s = 5.02 TeV (NSD) [28] are quoted for comparisons

yields indicate the statistical, the total systematic uncertainty and the
multiplicity-uncorrelated systematic uncertainty, respectively

Class (dNch/dn) dN/dy
2 (1385)" +cc 3(1385)" +cc
0-10% 1756.6 = 51.5 4.956 £+ 0.005 +£ 0.839 £ 0.550 4.746 £ 0.005 + 0.871 £ 0.536
30-50% 415.0 £ 13.5 1.851 £ 0.003 £ 0.311 £ 0.158 1.599 £ 0.002 % 0.266 £ 0.160
50-90% 854+ 95 (3.357 4 0.007 £ 0.494 4+ 0.308) x 107! (2.800 # 0.006 4+ 0.471 4 0.251) x 107!

Table 4 (pr) of (1385)F per centrality class. The first, second, and third uncertainty indicate the statistical, the total systematic uncertainty and

the multiplicity-uncorrelated systematic uncertainty, respectively

Class (pt) (GeV/c)
2(1385)" +cc ¥ (1385)" +cc
0-10% (17.185 £ 0.007 £ 0.812 £ 0.748) x 107! (16.974 4+ 0.007 £ 1.067 £ 0.974) x 107!
30-50% 1.556 £ 0.001 % 0.068 + 0.057 1.587 £ 0.001 £+ 0.082 + 0.075
50-90% 1.465 £ 0.001 % 0.086 + 0.079 1.551 £ 0.002 £+ 0.103 £ 0.070

1.37 GeV/c in p—Pb and further increases with centrality in
Pb—Pb as reported in Table 4.

Figure 4 presents the ratios of the measured spectra of
the summed X (1385)T resonance states to the distributions
obtained from the EPOS3 and PYTHIAS8/Angantyr Monte
Carlo event generators in the three Pb—Pb centrality classes.

The EPOS3 model [7,8,31] describes the evolution of a
heavy-ion collision with the reaction volume being divided
into a core and a corona part. For high string densities,
the model does not allow the strings to decay indepen-
dently, instead, if the energy density from string segments
is high enough, these fuse into the so-called “core” region,
which evolves hydrodynamically. The low energy density
region forms the “corona”, which hadronizes according to
the unmodified string fragmentation. After hadronization,
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hadrons are fed into the UrQMD hadron cascade after-
burner, which describes hadronic interactions in a micro-
scopic approach [6]. Previous ALICE measurements of
0(770)°, K*(892)° and A(1520) in Pb-Pb collisions at
/SNN 2.76 TeV were compared with predictions from
the EPOS 3.107 event generator [5, 10, 11], indicating that the
UrQMD afterburner is necessary for the model to describe
the spectral shape of these resonances in central collisions,
especially atlow pt. Remarkably, the model calculation with
UrQMD in [11] predicted that regeneration effects could bal-
ance rescattering in the hadronic phase for the >(1385)*
decay products, resulting in no suppression for this resonance
as a function of centrality. The new X (1385)* data reported
in this Letter are compared with the latest version of EPOS3
(EPOS 3.4) both with and without coupling it to the UrQMD
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Fig. 4 Ratio of the measured pr distributions of summed X (1385)%*
to model predictions from PYTHIA8/Angantyr (green) and EPOS with
(blue) and without (red) the UrQMD afterburner. Each panel corre-
sponds to one of the three centrality classes in Pb—Pb collisions at
/SNN = 5.02 TeV. Shaded bands represent the model statistical uncer-
tainty, while bars correspond to the data total uncertainties

afterburner in Fig. 4. No significant difference is observed
between the calculation with the UrQMD afterburner and
without it in semicentral and peripheral Pb—Pb collisions at
JSNN = 5.02 TeV. A difference in the two predictions is
observed for most central collisionsfor 1 < pr < 5GeV/e.
The model largely overestimates the production of X (1385)*
resonances for pt < 5 GeV/c in 0-10% central Pb—Pb colli-
sions, &~ 60% in the lowest pt interval, whereas it describes
the data within 20-30% in semicentral and peripheral colli-
sions.

PYTHIAS8/Angantyr [32] is an extension of the PYTHIA
8 [33] event generator to the case of heavy-ion collisions.
PYTHIA describes nucleon—nucleon interaction at the parton
level, based on multiple partonic interactions and Lund-string
hadronization. In Angantyr, PYTHIA is extended to model
nucleon—nucleus and nucleus—nucleus collisions in a three
steps procedure. First, the number of participating nucleons
in a collision is calculated from a Glauber-like model. Sec-
ond, PYTHIA is used to simulate the collision at the partonic
level according to the results of the Glauber calculation as a
sum of incoherent inelastic, diffractive and/or elastic colli-
sions. Third, the partonic state is allowed to have final state
interactions before it is hadronized according to the Lund-
string model in PYTHIA. Hadronic rescattering and regen-
eration processes like those implemented in UrQMD are not
considered in the version of PYTHIAS8/Angantyr employed
here. The data-to-model ratios reported in Fig. 4 show that
PYTHIAS8/Angantyr underpredicts the ¥ (1385)* produc-
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Fig. 5 )3(1385):t to pion yield ratio measured in ALICE [25,28]
together with the STAR measurements [34,35] in various collision
systems and energies are reported as a function of the charged-
particle multiplicity density at midrapidity, (dNeh/dniab) |y <0.5)- Data
are compared with model calculations for LHC energies from the
GSI-Heidelberg grand canonical statistical hadronization model [2],
PYTHIA 8.2 [33], PYTHIA8/Angantyr [32] and EPOS3 with and with-
out UrQMD [31]

tion at low momenta by a factor of 3—4 and exhibits a softer
spectrum. It only tends to describe the data reasonably well
at momenta above pt >~ 7 GeV/c.

The pr-integrated yield ratios of X (1385)* to pions are
shown in Fig. 5 for different collision systems as measured
by the ALICE [25,28] and the STAR collaborations [34,35].
In general, no particular trend with multiplicity is observed
given the uncertainties. A fit with a zeroth order polynomial
of all data points reported in Fig. 5 yields a x2/NDF of
20.2/10, whereas the exclusion of the Pb—Pb most central
point from the fit leads to a x>/NDF of 14.6/9. In addition,
for the ratio of the most central Pb—Pb point to the pp one, we
obtain 0.86 4= 0.16 by taking into account both the statistical
and systematic uncertainties, with the latter having the largest
contribution to the error of this ratio.

In the same figure, models applicable to different charged-
particle multiplicities are also presented. The comparison to
the models, concerning especially the higher multiplicities,
can give insight to the dominating mechanism in the hadronic
phase that results in the observed behaviour. The statisti-
cal hadronization model [2] (indicated as GSI-Heidelberg
in Fig. 5) describes the process of hadron formation at the
scale where perturbative QCD is no longer applicable. It
is assumed that near hadronization the fireball created in
heavy-ion collisions is close to thermal equilibrium and
hadron yields can be characterized by a grand canonical par-
tition function. The prediction compared to data in Fig. 5

@ Springer
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is obtained for a chemical freeze-out temperature of T=156
MeV, which results from a fit to the light-flavour hadron and
nucleus yields measured by ALICE at the LHC [2]. For the
0 (770)° [5], K*(892)° [9] and A (1520) [10] short-lived reso-
nances, a suppression with respect to the grand canonical sta-
tistical hadronization model expectation is observed for cen-
tral Pb—Pb collisions, while the data in peripheral collisions
are well described. This behaviour, which is also observed
for ©(1385)* in Fig. 5, is typically attributed to rescattering
in the hadronic phase. In 0-10% central Pb—Pb collisions,
the X (1385)* to pion ratio is 3.60 lower than the statistical
hadronization model prediction, whereas the difference of the
zeroth order polynomial fit (without taking into account the
most central event class) from the same model is a 3.30 effect.
The calculations from EPOS3 with UrQMD, which is able to
describe qualitatively the suppression of the K*(892)°/K and
A(1520)/A yield ratios from central to peripheral Pb—Pb col-
lisions [5,9,10], reproduce qualitatively also the weak cen-
trality dependence of the ¥ (1385)* /x yield ratio. Its mag-
nitude, however, is overpredicted for all centralities.

It is to be noted that the pr-integrated X (1385)*/x yield
ratio (see Fig. 5) in the model exhibits a discrepancy with
respect to data that is consistent with the one observed for
the ¥ (1385)* spectrum alone. In both cases, EPOS3 with
UrQMD overestimates the production.

The centrality dependence of the ¥ (1385)*/x ratio is
qualitatively captured also by PYTHIAS8/Angantyr, within
the current uncertainties. As PYTHIAS8/Angantyr underpre-
dicts the production at low transverse momenta of both
¥ (1385)* and pions, it consequently underpredicts the
pr-integrated production. Interestingly, this discrepancy is
already present in pp collisions [25], indicating that it is
not related to the heavy-ion modeling part. The semicen-
tral Pb—Pb point is closer to PYTHIA8/Angantyr prediction
because the pion yield is underestimated to a greater degree
than the sigma yield.

4 Conclusions

We have presented the first measurement of ¥ (1385)% pro-
duction in heavy-ion collisions at LHC energies. An evidence
of suppression with respect to the grand canonical thermal
model is observed in central collisions as for the K*(892)°
meson, which has a similar lifetime. While the EPOS3 model
coupled to the UrQMD afterburner describes the centrality
dependence of the K*(892)° data, it clearly overestimates
the production of ¥ (1385)*. This may either be caused by a
missing element in the model that is common to all centrali-
ties or due to the fact that the rescattering and (the seemingly
dominant) regeneration effects that EPOS3 withUrQMD pre-
dicts for ¥ (1385)* do not manifest themselves in the data.
The current implementation of PY THIA8/Angantyr does not

@ Springer

reproduce the X (1385)F vyield either, while capturing the
centrality dependence of ¥ (1385)* /7 within the uncertain-
ties. It remains to be seen if ongoing developments of the
model to include hadron rescattering will provide a better
agreement with the data.

On the experimental side, future higher precision mea-
surements will clarify if a suppression with respect to pp
or peripheral Pb—Pb collisions is present and thus will allow
for a model-independent investigation of the rescattering and
regeneration picture. In addition, detailed comparisons with
future A measurements will elucidate if the observed data-
model discrepancies are driven by the strangeness content
of the hadron under study or the modeling of the hadronic
phase.
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