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ABSTRACT

First measurements of balance functions (BFs) of all combinations of identified charged hadron (7, K, p)
pairs in Pb-Pb collisions at /5, = 2.76 TeV recorded by the ALICE detector are presented. The BF
measurements are carried out as two-dimensional differential correlators versus the relative rapidity
(Ay) and azimuthal angle (A¢) of hadron pairs, and studied as a function of collision centrality. The Ag
dependence of BFs is expected to be sensitive to the light quark diffusivity in the quark-gluon plasma.
While the BF azimuthal widths of all pairs substantially decrease from peripheral to central collisions, the
longitudinal widths exhibit mixed behaviors: BFs of w7 and cross-species pairs narrow significantly in
more central collisions, whereas those of KK and pp are found to be independent of collision centrality.
This dichotomy is qualitatively consistent with the presence of strong radial flow effects and the existence
of two stages of quark production in relativistic heavy-ion collisions. Finally, the first measurements of
the collision centrality evolution of BF integrals are presented, with the observation that charge balancing
fractions are nearly independent of collision centrality in Pb-Pb collisions. Overall, the results presented
provide new and challenging constraints for theoretical models of hadron production and transport in

relativistic heavy-ion collisions.
© 2022 European Organization for Nuclear Research, ALICE. Published by Elsevier B.V. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Convincing evidence for the production of strongly interacting
quark-gluon plasma (QGP) in heavy-ion (AA) collisions has been
reported from a variety of measurements at the Relativistic Heavy
Ion Collider (RHIC) and the Large Hadron Collider (LHC) [1-4], in-
cluding observations of strong elliptic flow [5-7], suppression of
high transverse momentum (prt) hadron production [8-13], sup-
pression of quarkonium states [14-19], as well as dihadron corre-
lation functions [20,21]. Many of these findings are quantitatively
explained by hydrodynamic calculations in which the QGP mat-
ter undergoes radial and azimuthally anisotropic collective motion.
The existence of the latter is well established based on measure-
ments of flow coefficients with finite pseudorapidity (n) gap and
multi-particle cumulants, whereas the presence of the former is
inferred in part from the increase of average transverse momenta
with the mass of hadrons [22], the centrality dependence of event-
by-event pr fluctuations [23,24], as well as the observed narrowing
of the near-side peak of balance functions (BFs) in central col-
lisions relative to that observed in peripheral collisions [25-30].
Balance functions essentially amount to differences of correlation
functions of like-sign and unlike-sign charges. They are measured,
typically, as functions of particle pair separation in azimuth an-
gle and rapidity. They indicate the degree to which the production
of a positive charge is accompanied by the production of a neg-
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ative charge somewhere in phase space. As such, BFs probe the
balancing of charge distributions in momentum space and theoret-
ical studies show they are sensitive to the details of the time (i.e.,
whether particles are produced early or late), production mecha-
nisms, and transport of balancing charges.

Measurements of BFs were originally proposed as a tool to in-
vestigate the delayed hadronization and two stages of quark pro-
duction in the QGP formed in AA collisions [31]. These terms refer
to the notion that quark production occurs in two distinct stages,
the first at the onset, and the second at the very end (just be-
fore hadronization and freeze-out) of AA collisions. The two stages
are posited to be separated by a period of isentropic expansion
whose duration depends on the multiplicity of produced quarks
and gluons and thus the collision impact parameter. Hadron pairs
produced at the onset of collisions feature large longitudinal sep-
aration (i.e., rapidity differences Ay) whereas pairs produced after
the expansion have smaller Ay separations determined by the
smaller temperature of the system at that time. AA collisions with
smaller impact parameters are expected to produce larger systems
with a longer isentropic stage in which late particle production
dominates. The longitudinal and azimuthal widths of BFs are thus
expected to progressively decrease from peripheral to central col-
lisions as the fraction of late particle production increases. BFs
could also provide a precise probe of balancing particle produc-
tion [32-35], the hadrochemistry of particle production [34,36], as
well as the collision dynamics [37,38]. Recent studies also indicate
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that the BF dependence on pair separation in azimuth is sensitive
to the diffusivity of light quarks, a measure of the diffusion and
scattering of quarks within the QGP, which has thus far received
only limited attention [36,39]. Finally, BFs also provide a tool to
calibrate measurements of the Chiral Magnetic Effect [40,41] and
net charge/baryon fluctuations deemed essential for the determi-
nation of QGP susceptibilities [42,43].

Few measurements of BFs of identified hadrons have been
reported to date. At RHIC, these include BF measurements of
charged hadrons, pion pairs, kaon pairs, as well as proton/antipro-
ton pairs [25-27], whereas at the LHC, only charged hadron BFs
have been reported [28,29]. Of these, only the results published
by ALICE were fully corrected for detector acceptance and particle
losses (efficiency). Integrals of measured BFs have not been con-
sidered and no cross-species BFs have been published. Theoretical
analyses of measured BFs have consequently focused mainly on the
interpretation of the narrowing with collision centrality of charged
hadron BFs. The full potential of BFs as a probe of the evolution
dynamics and chemistry of the QGP has thus so far been un-
derexploited. In this paper, general balance functions of identified
charged hadron species (7, K, p) are reported for the first time.
These general BFs are corrected for efficiency and non uniform ac-
ceptance effects and it becomes possible to study the effects of
two-stage quark production, light quark diffusivity, and relative
balancing fractions using BFs of nine distinct identified pairs of
charged hadron species.

The BF of a species of interest, oz, and an associated species, 8,
was originally defined in terms of conditional densities [31] but it
is convenient to compute BFs in terms of normalized cumulants
R> according to
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where p%(Po) = dN/dPa and p3” (Ba. pp) = dNpair/dpedpp are
single- and particle-pair densities of species & and g measured at
momenta p, and pg, respectively, while labels + and — stand for
positive and negative charges. Normalized cumulants R, are ro-
bust observables, i.e., independent to first order of measurement
efficiencies. They are sensitive to the strength of correlation be-
tween species o and B. Their properties were described in several
publications [44-47]. The combination of Ry correlation functions,
normalized by single particle densities, as per Eq. (1), is strictly
equivalent to the balance function introduced in Ref. [31,32] and
measures the correlation between positive and negative particles
of species o and B constrained by charge conservation. Integrals
of inclusive charge balance functions, I;_(Q) = fQ B*T—dAn, are
expected to lie within the range 0 < I;‘(Q) <1 for limited ac-
ceptances 2. However, they converge to unity for full acceptance
coverage. Furthermore, fractions I‘;’S (R2)/13(R2) are determined by
the hadrochemistry of the QGP and transport properties of the
medium. In the full acceptance coverage limit, the denominator of
this fraction must satisfy 1§ () =), Igf‘(sz) — 1 [43].

In this paper, the identified particle BFs of nine pairs of charged
hadrons (*, K* and p/p) ® (7*, K*, and p/p) are reported as
joint functions of the relative rapidity (Ay) and azimuthal angle
(Ag) and studied as a function of collision centrality. Measure-
ments of Rg”S (Pa, Pp) are carried out in terms of the rapidity and
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azimuthal angle yu, @o, ¥, and @g for fixed pr ranges, and av-
eraged across the pair acceptance to yield correlation functions
R‘;ﬁ(Ay, A@p) with Ay =ys — yp and A¢ = ¢4 — ¢p following
the procedure used in Ref. [44]. The densities of associated parti-
cles, pf, used in Eq. (1), are integrated from pr-dependent den-
sities reported in prior ALICE measurements [22] to match the pr
ranges used in measurements of the normalized cumulants Ry. The
correlators Rgﬂ and densities ,0{3 are corrected for pr-dependent

particle losses and non uniform acceptance. Densities ,of were
additionally corrected for minor contamination effects as per the
procedure described in [22]. The measured BFs thus feature ab-
solute normalization which enables meaningful determination of
their integrals and collision centrality dependence.

As already mentioned, the shape of the BFs vs. Ay and Ag is
sensitive to the timescales at which particles are produced dur-
ing the system evolution. Early emission occurs at large effective
collisional energy /s and is thus expected to yield broad BFs in
Ay and A¢, whereas late emission, at collisional energy com-
mensurate with the system temperature, is expected to produce
much narrower near side peak correlations vs. Ay and Ag [31].
Additionally, the integral of the BFs shall also provide increased
sensitivity to the hadrochemistry of the collisions. Indeed whereas
contributions to single-particle spectra from hadronic resonance
decays must be inferred from models, integrals of the BFs are
directly sensitive to the magnitude of (hadronic) feeddown con-
tributions. For instance, by comparing the integrals of 77 7~ and
mEKF BFs, sensitivity to the relative strengths of processes that
lead to such correlated pairs of particles is acquired. It becomes
possible to better probe the role of hadronic resonance decay con-
tributions and increased sensitivity to the hadrochemistry of the
QGP and its susceptibilities is gained [36].

The BFs presented are based on 1 x 107 minimum bias (MB)
Pb-Pb collisions at ./s\y = 2.76 TeV collected in 2010 by the
ALICE collaboration. Descriptions of the ALICE detector and its per-
formance have been reported elsewhere [48,49]. The minimum
bias trigger required a combination of hits in the VO detectors
and layers of the SPD detector. The VO detectors, which cover the
full azimuth and the pseudorapidity ranges —3.7 < n < —1.7 and
2.8 < n < 5.1, also provided a measurement of the charged par-
ticle multiplicity used to classify collisions into centrality classes
corresponding to 0-5% (most central) to 80-90% (most peripheral)
of the Pb-Pb hadronic cross section [50]. Some centrality classes
have been combined to optimize the statistical accuracy of the
BFs reported. Particle momenta were determined based on Kalman
fits of charged particle tracks reconstructed in the Time Projection
Chamber (TPC). The particle identification (PID) of charged hadrons
was performed based on specific energy loss (dE/dx) measured in
the TPC and particle velocities measured in the Time-of-Flight de-
tector (TOF). Track quality criteria based on the number of space
points, the distance of closest approach to the collision primary
vertex, and the x2 of the Kalman fits were used to restrict the
measurements to primary particles produced by the Pb-Pb colli-
sions and suppress contamination from tracks resulting from weak
decays and interactions of particles with the apparatus. Addition-
ally, PID selection criteria based on deviations of dE/dx and TOF
from their respective expectation values, at a given momentum,
and for each species of interest, were used to optimize the species
purity. These and other selection criteria are reported in detail be-
low in the context of a discussion of systematic uncertainties. The
analysis focused on the low pt range, commonly known as the
“bulk” physics regime. Slightly different pt ranges were used for
each species to optimize yields and species purity. Charged pi-
ons and kaons were selected in the range 0.2 < pr < 2.0 GeV/c,
whereas (anti-)protons are within 0.5 < pr < 2.5 GeV/c. The se-
lected rapidity range, largely determined by the TOF coverage, was
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Fig. 1. Balance functions B*#(Ay, Ag) of pairs af = (left), KK (center), and pp (right) measured in semicentral Pb-Pb collisions at /SNy = 2.76 TeV.

set to |y | <0.8 and |yp| < 0.6 for measurements of B*” and BPP,
respectively, and set to |y| < 0.7 for all other BFs reported.

Track reconstruction efficiencies and PID purity were studied
with Monte Carlo simulations of Pb-Pb collisions produced with
the HIJING generator [51] and propagated through a model of the
ALICE detector with GEANT3 [52]. Selected track quality and PID
criteria yield purities of 97%, 95%, and 94% for w*, K*, and p/p,
respectively, thereby minimizing species contamination and its im-
pact on correlation functions. Corrections for track losses were
carried out using a weighting technique [46]. Weights are calcu-
lated independently for positive and negative tracks of each species
considered, for each centrality range, both magnetic field polari-
ties used in the measurements, versus y, ¢, pr, as well as the
longitudinal position of the primary vertex (PV) of each event,
Zytx. Various selection criteria were applied to minimize residual
instrumental effects while optimizing particle yields. The PV is
required to be in the range |zyxx| < 6 c¢cm of the nominal inter-
action point. Tracks are required to have a minimum of 70 recon-
structed TPC space points (hits), out of a maximum of 159, and
a track fit with x?2 value per degree of freedom smaller than 2.0
to ensure good track quality. Contamination of BFs by secondary
particles (i.e., weak decays or particles scattered within the detec-
tor) is suppressed by requiring distances of closest approach (DCA)
to PV chosen as DCA; < 2.0 cm in the longitudinal direction and
DCAyy < 0.04,0.04,2.0 cm in the transverse plane for 7=, p/p,
and K*, respectively. Contamination by ete~ pairs from photon
conversion is suppressed by removing tracks closer than 1ogg/dx
to the TPC Bethe-Bloch median, at a given momentum, for elec-
trons.

Systematic uncertainties on the amplitudes of B*# and their
integrals were calculated as quadratic sums of systematic uncer-
tainties of the correlation function Rg’ﬂ and the systematic uncer-
tainties on the published single particle densities [22] used in the
computation of the BFs. Uncertainties on Rg”’g were assessed based
on variations of conditions and selection parameters employed in
the analysis. A statistical test [53] was used to identify potential bi-
ases introduced by those variations and determine their statistical
significance. Systematic uncertainties, corresponding to a relative
deviation at the maximum of B*# associated with operation with
two solenoidal magnetic field polarities, are smaller than 4%. Po-
tential biases associated with track selection criteria are up to 3%,
whereas the presence of misidentified and secondary particles con-
tribute up to 4%, while kinematic dependencies of the detection
efficiency are estimated to be 1%. Systematic uncertainties on the
single particle densities [22] are species and collision centrality de-
pendent and typically range from 5 to 10%.

In order to obtain BF for all nine combinations of & , and
p/DP species pairs, Rgﬂ(Ay, Ag) correlators were first measured,
in each centrality class, for all 36 o8 permutations of positive and

:E' K:E

negative m, K, and p. These correlators were then combined ac-
cording to Eq. (1) and multiplied by the single particle densities ,of
in the |y| < 0.5 rapidity range [22]. Fig. 1 shows the B*#(Ay, Ag)
of mm, KK, and pp pairs in semicentral collisions for illustrative
purposes. The nine measured BFs exhibit common features, in-
cluding prominent near-side peaks centered at (Ay, Ag) = (0,0)
and relatively flat and featureless away-sides. The flat away-side
arises from the fact that positive and negative particles of a given
species feature essentially equal azimuthal anisotropy relative to
the collision symmetry plane. It is also an indicator of the fast
radial flow profile of the emitting sources, which manifests as
strong focusing on the near-side peak [37], although the various
species pairs demonstrate different centrality-dependent near-side
peak shapes, widths, and magnitudes that indicate that they are
subject to different charge balancing pair production and trans-
port mechanisms, as well as final state effects. For instance, B™7"
exhibits a deep and narrow dip at (Ay, Ap) = (0, 0), within the
near-side correlation peak, resulting in part from the Hanbury
Brown-Twiss (HBT) effect, with a depth and width that vary with
the source size and thus the centrality [32]. BXK exhibits much
weaker HBT effects, whereas BPP also features a narrow dip cen-
tered at (Ay, Ag) = (0,0) within a somewhat elongated near-side
peak that may reflect the annihilation of pp pairs. Pairs of protons
and antiprotons emitted at small relative An and Ag (as well as
small relative pt) are more likely to interact, and thus annihilate,
than pairs produced at large separation, thereby leading to a de-
pletion of pairs near Ay =0 and Agp =0.

The evolution with collision centrality of B*#, for all nine com-
binations «, 8 = 7, K, p, is examined by considering their projec-
tions onto the Ay and Ag axes in Figs. 2 and 3, respectively.
The shape and amplitude of B™™ projections onto Ay exhibit the
strongest centrality dependence, whereas those of B™K, B7P, k¥
and BP7 display significantly smaller dependence on centrality.
Uncertainties on the rest of the Ay projections do not make it
possible to claim any centrality dependence albeit some hints are
visible in the cases of BXK and BPP. The evolution with collision
centrality of the measured BFs is further characterized in terms
of their longitudinal and azimuthal standard deviation (o) widths,
noted oy and oay, respectively, as well as their integral, Igﬁ, as
shown in Fig. 4. In the longitudinal direction, the widths oy of all
species pairs, except those of KK and pp pairs, exhibit a significant
narrowing from peripheral to central collisions. In contrast, BXK is
essentially independent in both shape and width o4y with chang-
ing collision centrality, whereas the width oAy, of BPP features
little centrality dependence even though this balance function ex-
hibits some shape dependence on centrality.

Differences in the evolution of the longitudinal o of pions and
kaons BFs were already observed in Au-Au collisions at RHIC [26]
and were then interpreted as resulting in part from strong radial
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£, K*, and p/p with

centrality. For Ay and A¢ widths, K, prr, and pK have the same values with 7K, rp, and Kp, respectively. For the longitudinal widths, the relative azimuthal angle range
for all the species pairs is the full azimuth range |A¢| < . For the azimuthal widths, the relative rapidity range used for all species pairs is |Ay| < 1.2, with the exception

of |[Ay| <1.4 for mr and |Ay| < 1.0 for pp. Vertical bars represent statistical uncertainties while systematic uncertainties are displayed as dash line bands.

flow profiles and two-stage emission [31,32]. The independence of
the width oy of the BXK relative to the narrowing BFs of all
other pairs observed in this work suggests two-stage quark pro-
duction might also be at play at the TeV collision scale. Indeed,
pions might be predominantly formed from the light u, u, d, and d
quarks most abundantly produced in the second quark production
stage, whereas kaon production would largely result from ss pairs
predominantly created during the early stages of collisions [31,32].

Several distinct models have had success in describing the yield
of produced hadrons, and more specifically baryons. Such mod-
els invoke a range of production mechanisms including parton
fragmentation, effective mostly at high-prt, as well as parton co-
alescence and recombination, playing a predominant role at low
and intermediate pt [54-56]. Statistical thermal models and pro-
duction models involving color transparency [57] and baryon junc-
tions [58] have also had a good measure of success. Single particle
spectra of baryons thus do not provide sufficiently discriminating
constraints to fully identify baryon production mechanisms. The
added information provided by cross-species BFs shall thus con-
tribute by adding new constraints for models of particle production
and transport. In particular, given that neutrons, protons, and their
excited states are composed of light u and d quarks, believed to be
copiously produced in late stage emission (within the context of
the two-stage quark production model), it is conceivable that these
baryons are predominantly produced by coalescence (recombina-
tion) of light quarks in the late stage of the collisions. However,
baryons (B) and antibaryons (B) have a relatively large mass and
carry a conserved baryonic charge. The question then arises as to
whether BB correlated pairs might originate before the formation
of thermalized QGP, during the early stages of AA collisions. Late
BB production is expected to be characterized by narrow longitu-
dinal BFs while early stage emissions would produce pairs with
a much wider Ay range [31,32]. It is clear from Fig. 2 that BPP
must extend beyond the acceptance of the measurement reported
in this paper. This suggests that pp pairs have rather wide balance
functions that might result from early BB pair separation. Detailed
models of BB production and transport that account for (strong)
decays from resonant states are required, evidently, to firmly es-
tablish this conclusion.

Fig. 4 shows that the o, widths of the nine BFs exhibit nar-
rowing trends from peripheral to central collisions. The widths
oy feature a wide spread of values at a given collision central-
ity, with those of KK pairs being the largest and those of wK
the smallest. The widths also exhibit similar reductions with in-
creasing collision centrality. These observations are in agreement
with azimuthal BFs already reported from observations at RHIC for
unidentified charged particle and identified 7w7r, KK pairs [25,26],
as well as unidentified charged particle BFs in collisions at the
LHC [28,29]. This narrowing can be qualitatively understood as

resulting from the larger estimated transverse expansion velocity
present in more central AA collisions [59]. It competes with an op-
posing trend associated with light quark diffusivity, expected to
broaden and smear out the long range tails of the Agp BFs for
systems featuring increasingly large lifespans [39]. Given the ra-
dial boost profile and contributions from resonance decays can be
largely calibrated based on the shape of single particle pt spec-
tra, the BF projections presented in Fig. 2, 3 and the evolution
of their widths oay and oay, shown in Fig. 4, then provide the
first comprehensive set of azimuthal BFs to estimate the diffusivity
of light quarks at the LHC [36,39]. The above discussion neglects
possible contributions from the fragmentation of jets but these
are anticipated to be small in the pt range of this measurement.
Quantitative estimates of such contributions would need to be ac-
counted for in theoretical modeling of balance functions reported
in this work for the purpose of determining the diffusivity of light
quarks.

Contributions of ¢ — K+ + K~ decays to BXK were studied us-
ing simulated events from the HIJING generator [51]. The ampli-
tude of the near-side peak of BXK is reduced by about 30% when
contributions from ¢-meson decays are explicitly excluded, while
the correlator Ay and A¢ widths increase by about 7-8%. Effects
associated with radial flow, not present in HIJING, could reduce
this broadening effect and possibly induce a narrowing of the Ay
width of BXK in more central collisions. However, no such narrow-
ing is observed thereby signaling a more intricate production and
transport evolution with competing contributions from ¢ produced
at hadronization of the QGP and by coalescence of kaons within a
hadron phase.

The evolution with the collision centrality of the integrals I‘gﬂ
of the nine species-pairs B*#(Ay, A@) shown in the right panel
of Fig. 4 is also of considerable interest. By definition, a balance
function B*#(Ay, A, Apr) measures the “likelihood” of finding
a charge balancing particle of a type B, e.g., m™, with a pair
separation Ay, A, Apt away from a reference particle of type
«, eg., . But charge balancing can be accomplished, on av-
erage, by distinct species, e.g., p, KT, and more rarely produced
heavier particles, in additions to w+. The integral, Igﬁ(47r), of
B*P(Ay, Ap, Apr) over the full phase space is thus proportional
to the average fraction (and probability in the full phase space
limit) of balancing partners of species S8. Indeed, neglecting con-
tributions from species other than pions, kaons, and protons, one
expects the sum, I%(47) = 197 (47) + 19X(47) + 137 (47) to con-
verge to unity, I§(4m) ~ 1, in the full acceptance limit [43]. In-
tegrals I‘gﬁ(47r) thus amount to probabilities Igﬂ(4n)/1‘§‘(4n) of
having charge balancing of a species o by a species of type 8 and
are indicators of the hadronization chemistry of the QGP, that is,
what fraction of species « are accompanied (balanced), on aver-
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age, by a species B [43]. However, when measured in a limited
acceptance, integrals I‘;’ﬂ (2 < 4m) cannot, strictly speaking, be
considered charge balancing probabilities. They nonetheless pro-
vide useful indicators of the hadrochemistry as well as the flavor
and baryon number transport in AA collisions. As such, integrals
I‘;ﬂ shown in Fig. 4 as a function of collision centrality are surpris-
ing on two accounts. First, they show that the balance fractions
are all, but one, approximately independent of collision central-
ity. The notable exception is the w7 integral which increases by
about 20% from peripheral to central collisions. Second, close ex-
amination of these pairing fractions shows they are rather dif-
ferent than inclusive probabilities of observing m, K, and p/p in
Pb-Pb collisions. For instance, I§" is not larger than I§X by the
7 /K~ 6.7 ratio of inclusive single particle yields and Igp is larger

than IgK also in contrast to observed K/p ~ 3 yield ratios [22].
Hadron species charge balancing pairing fractions are thus indeed
very different than the relative probabilities of single hadrons, and
as such, provide new and useful information to further probe the
hadronization of the QGP. This difference arises because the set
of processes P, that lead to a specific balancing pair «p (e.g.,
P, :— a* + BF 4+ X) is, by construction, far smaller than the set
of processes P; leading to a given particle species « or 8 (e.g.,
P1:— aT + X or Py :— BT +Y). It is remarkable, nonetheless,
that the pairing fractions I‘;’S exhibit essentially no collision cen-
trality dependence while single particle yield ratios are known to
exhibit a weak dependence on collision centrality [9,60]. Note that
the observed rise of If™ in more central collisions may artificially
result from increased kinematic focusing of pions with centrality in
the pt and Ay acceptance of this measurement. The higher veloc-
ity flow fields encountered in more central Pb-Pb collisions could
indeed shift and focus the yield of associated pions. Why such a
shift is not as important for other charge balancing pairs remains
to be elucidated with a comprehensive model accounting for the
flow velocity profile and appropriate sets of charge conserving pro-
cesses yielding balancing charges in the final state of collisions.
Recent deployments of hydrodynamic models feature the former
but lack the latter [61-63]. Further theoretical work is thus re-
quired to interpret the observed collision centrality dependence of
the pairing probabilities displayed in Fig. 4. As such calculations
become available, the data reported in this work, and specifically
the integral I‘;ﬁ shown in Fig. 4, shall provide increased sensitivity
to the hadrochemistry of the QGP and its susceptibilities.

In summary, this paper presents the first measurements of the
collision centrality evolution of same and cross-species balance
functions of identified 7+, K* and p/p at the LHC. Measured
as functions of particle pair separation in rapidity (Ay) and az-
imuth (Ag), the BFs exhibit prominent near-side peaks centered at
(Ay, Ap) = (0,0) which feature different shapes, amplitudes, and
widths, and varied dependencies on collision centrality. The BFs of
species-pairs measured in this work feature narrowing A¢ widths
in more central collisions, owing to the strong radial flow field
present in central Pb-Pb collisions. Theoretical studies beyond the
scope of this work shall use this data to put upper limits on the
diffusivity coefficients of light quarks. In the longitudinal direction,
the o widths of BFs of all species pairs decrease with centrality
except for those of KK and pp pairs. The shape and width of KK
BFs are independent of collision centrality, while the pp BFs peak
shapes depend only minimally on centrality. The observed central-
ity independence of the KK and narrowing o of other species in
the longitudinal direction are qualitatively consistent with effects
associated with radial flow and the two-stage quark production
scenario, which posits that quark production occurs predominantly
in early and late stages separated by a period of isentropic expan-
sion. Integrals Igﬁ constitute an important finding of this study as

they indicate that pairing fractions I‘;ﬂ are nearly independent of
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collision centrality, and provide a valuable quantitative characteri-
zation of the hadronization of the QGP.
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