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Femtoscopic correlations with the particle pair combinations K0
SK

0
S and K0

SK
± are studied in pp collisions 

at 
√
s = 5.02 and 13 TeV by the ALICE experiment. At both energies, boson source parameters are 

extracted for both pair combinations, by fitting models based on Gaussian size distributions of the 
sources, to the measured two-particle correlation functions. The interaction model used for the K0

SK
0
S

analysis includes quantum statistics and strong final-state interactions through the f0(980) and a0(980)
resonances. The model used for the K0

SK
± analysis includes only the final-state interaction through the 

a0 resonance. Source parameters extracted in the present work are compared with published values from 
pp collisions at 

√
s = 7 TeV and the different pair combinations are found to be consistent. From the 

observation that the strength of the K0
SK

0
S correlations is significantly greater than the strength of the 

K0
SK

± correlations, the new results are compatible with the a0 resonance being a tetraquark state of the 
form (q1, q2, s, s), where q1 and q2 are u or d quarks.

© 2022 European Organization for Nuclear Research, ALICE. Published by Elsevier B.V. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Identical boson femtoscopy, especially identical charged π±π±
femtoscopy, has been used extensively over the years to study ex-
perimentally the space-time geometry of the collision region in 
high-energy proton and heavy-ion collisions [1]. More recently, 
identical-kaon femtoscopy studies have been reported for a vari-
ety of colliding systems, energies and kaon pairs: K0

SK
0
S pairs in 

Au–Au collisions at 
√
sNN = 0.2 TeV by the STAR collaboration [2], 

K0
SK

0
S and K±K± pairs in pp collisions at 

√
s = 7 TeV and Pb–Pb 

collisions at 
√
sNN = 2.76 TeV by the ALICE collaboration [3–5]. 

Identical-kaon femtoscopy gives information about the collision re-
gion that is complementary to that obtained in identical-pion fem-
toscopy in that it probes the hotter region where strange quarks 
are produced and extends the momentum range over which the 
femtoscopy analysis can be applied. Also, the kaon analyses are 
expected to offer a cleaner signal compared to pions, as they are 
less affected by resonance decays.

Non-identical kaon femtoscopy with K0
SK

± pairs was first mea-
sured by ALICE in pp collisions at 

√
s = 7 TeV and Pb–Pb collisions 

at 
√
sNN = 2.76 TeV [6,7]. Although the space-time geometry of 

the kaon source can be extracted with these pairs, the main em-
phasis of non-identical kaon femtoscopy is to obtain information 
about the strong final-state interaction (FSI) between the kaons. 
For the identical kaon cases the interactions are, for K±K±: quan-
tum statistics, Coulomb interaction, and for K0

SK
0
S: quantum statis-

� E-mail address: alice -publications @cern .ch.

tics, FSI through f0(980) and a0(980) threshold resonances [2]. 
For the K0

SK
± , the only FSI is through the a0 resonance. Note that 

“threshold resonances”, like the a0 and f0, are resonances where 
the sum of the masses of the decay particles is very close in value 
to the mass of the resonance. A non-resonant FSI in the K0

SK
0
S pair 

is expected to be small compared with the resonant f0 and a0 FSI 
and can be neglected to first order [2,8]. The only pair-wise inter-
action expected for a K0

SK
± pair at freeze out from the collision 

system is a FSI through the a0 resonance. This is because there 
is no quantum statistics enhancement for non-identical kaons, no 
Coulomb effect since one of the kaons is neutral, and no strong 
FSI through the f0 resonance since the kaon pair is in an isospin-
1 state, as is the a0, whereas the f0 is isospin-0 and thus isospin 
would not be conserved.

Another feature of the K0
SK

± FSI through the a0 resonance is 
that since the a0 has zero strangeness, and the K0

S is composed of 
a linear combination of the K0 and K0, only the K0K+ pair from 
K0
SK

+ and the K0K− pair from K0
SK

− can form a0 resonances in 
order to conserve zero strangeness. This feature allows the K0 and 
K0 sources to be studied separately. However, it was concluded in 
the previous ALICE K0

SK
± publications that there is no significant 

difference in the source parameters between K0
SK

+ and K0
SK

− [6,7].
Lastly, the K0

SK
± FSI allows the properties of the a0 resonance 

itself to be studied. This is interesting in its own right since many 
works exist in the literature discussing the possibility that the a0
could be a 4-quark state, i.e. a tetraquark. It was first suggested in 
1977 that experimentally-observed low-lying mesons, such as the 
a0, are part of a SU(3) tetraquark nonet using a quark model [9]. 
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A later follow-up calculation was published reinforcing this work 
using lattice QCD calculations [10]. Since then, there have been a 
number of QCD studies of these mesons that fall in the categories 
of QCD-inspired models, for example Refs. [11–14], and lattice 
QCD calculations, for example Refs. [15–17]. An interesting result 
that was found from the previous measurements in comparing the 
strengths, i.e. λ-parameters, of the K0

SK
0
S and K0

SK
± correlations 

with each other was that the strength of the K0
SK

0
S correlations 

is significantly larger than the strength of the K0
SK

± correlations 
measured in 

√
s = 7 TeV pp collisions. It was suggested that this 

could be an indication that the a0 is a tetraquark state [6,7].
In light of the interesting results from the 

√
s = 7 TeV pp mea-

surements, the main motivations to extend the measurements to √
s = 5.02 and 13 TeV pp collisions are the following:

– In these new measurements, we investigate the collision-
energy dependence of the λ difference between K0

SK
0
S and 

K0
SK

± . A lack of a dependence on the center-of-mass energy 
would be consistent with the tetraquark interpretation of the 
a0(980).

– The previous paper compared results for λ that were ob-
tained and published seven years apart, i.e. K0

SK
0
S in PLB from 

2012 [3] and K0
SK

± in PLB from 2019 [6], and that were ana-
lyzed in different ways. The K0

SK
0
S analysis from the 2012 paper 

was done in several multiplicity ranges which had to be aver-
aged in order to compare with the minimum-bias 2019 K0

SK
±

result. However, in the present paper the new K0
SK

0
S and K0

SK
±

analyses were done at the same time and using the same kine-
matic ranges. By carrying out simultaneous measurements of 
K0
SK

0
S and K0

SK
± this results in a better comparison with each 

other.
– In this new analysis a detailed calculation of the effect of long-

lived resonances on the λ parameter is presented to better 
establish that this contamination is not responsible for the λ
difference.

2. Description of experiment and data selection

Data taken by the ALICE experiment [18] in the LHC Run 2 
period (2015–2018) were employed in the present analysis. This 
analysis used both 

√
s = 5.02 TeV and 13 TeV reconstructed min-

imum bias triggered pp collisions, giving about 0.5 × 109 and 
1.5 × 109 events, respectively. Monte Carlo (MC) simulations were 
used for determining selection values, momentum resolution and 
purity studies, and for the baseline underlying the signal for the 
case of the K0

SK
0
S analyses. In the MC calculations, particles from 

pp collision events simulated by the general-purpose generator 
PYTHIA8 [19] with the Monash 2013 tune [20] were transported 
through a GEANT3 [21] model of the ALICE detector. The total 
numbers of MC events used in the 

√
s = 5.02 and 13 TeV anal-

yses were about 0.7 × 109 and 1.2 × 109, respectively.
The V0 detectors, which consist of two arrays of scintillators lo-

cated along the beamline and covering the full azimuth [22,23]
were used for triggering and event selection. Charged particles 
were reconstructed and identified with the central barrel detectors 
located within a solenoid magnet with a field strength of magni-
tude B = 0.5 T. Charged particle tracking was performed using the 
Time Projection Chamber (TPC) [24] and the Inner Tracking System 
(ITS) [18]. The momentum determination for K± was made using 
only the TPC. The ITS allowed for high spatial resolution in deter-
mining the primary collision vertex, which was used to constrain 
the TPC tracks. An average momentum resolution of less than 10 
MeV/c was typically obtained for the charged tracks of interest 
in this analysis [25]. The primary vertex was obtained from the 
ITS, the position being constrained along the beam direction to be 

Table 1
Single-particle selection criteria.
Neutral kaon selection Value

Daughter pT > 0.15 GeV/c
Daughter |η| < 0.8
Daughter DCA (3D) to primary vertex > 0.4 cm
Daughter TPC Nσ < 3
Daughter TOF Nσ (for p > 0.8 GeV/c) < 3

|η| < 0.8
DCA (3D) π+ to π− < 0.3 cm
DCA (3D) of K0

S to primary vertex < 0.3 cm
Decay length (3D, lab frame) < 30 cm
Decay radius (2D, lab frame) > 0.2 cm
Cosine of pointing angle > 0.99
Invariant mass 0.485 <m < 0.510 GeV/c2

Charged kaon selection Value

pT 0.15 < pT < 1.2 GeV/c
|η| < 0.8
Transverse DCA to primary vertex < 2.4 cm
Longitudinal DCA to primary vertex < 3.0 cm
NT O F

σ with valid TOF signal and p > 0.5 GeV/c < 2
NT PC

σ if no TOF signal for all pT < 2
Kalman fit χ2/Nclus ≤ 4

within ±10 cm of the center of the ALICE detector. In addition 
to the standard track quality selections [25], the selections based 
on the quality of track fitting and the number of detected tracking 
points in the TPC were used to ensure that only well-reconstructed 
tracks were taken into account in the analysis [24–26].

Particle Identification (PID) for reconstructed tracks was car-
ried out using both the TPC and the Time-Of-Flight (TOF) detectors 
in the pseudorapidity range |η| < 0.8 [26,27]. For the PID signal 
from both detectors, a value (Nσ ) was assigned to each track de-
noting the number of standard deviations between the measured 
track information and expected values, assuming a mass hypoth-
esis, divided by the detector resolution [5,25–27]. For TPC PID, a 
parametrized Bethe-Bloch formula was used to calculate the spe-
cific energy loss 〈dE/dx〉 in the detector expected for a particle 
with a given charge, mass and momentum. For PID with TOF, the 
particle mass was used to calculate the expected time-of-flight as 
a function of track length and momentum.

Other event selection criteria were also applied. The event must 
have one accepted possible K0

SK
0
S or K0

SK
± pair. Pile-up events were 

rejected using the standard ALICE pile-up rejection method [26]. 
Pile-up effects were also investigated by performing the analysis 
using only low-luminosity data-taking periods. No significant dif-
ference was found in the extracted R and λ parameters compared 
with the higher count-rate runs used.

2.1. Kaon selection

The methods used to select and identify individual K0
S and K±

particles are the same as those used for the ALICE K0
SK

0
S [3] and 

K±K± [4] analyses in pp collisions at 
√
s = 7 TeV, and are de-

scribed in the following sections.

2.1.1. K0
S reconstruction

Using an invariant mass technique, the neutral K0
S vertices and 

parameters are reconstructed and calculated from pairs of detected 
π+ π− tracks. Single-particle selection criteria for the K0

S and the 
pions, for example particle momentum (p), transverse momentum 
(pT ), and pseudorapidity (η), are shown in Table 1.
Most of the topological selection criteria (π+ π− distance-of-
closest-approach (DCA), π -vertex DCA, K0

S DCA, and decay length) 
were chosen to optimize purity and statistical significance. If two 
reconstructed K0

S particles share a daughter track, both are re-
moved from the analysis. The selection criteria in this analysis are 

2
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Fig. 1. Example K0
SK

0
S correlation functions along with the resulting distributions from PYTHIA8 simulations in pp collisions at

√
s = 5.02 (left) and 13 TeV (right).

comparable to or stricter than those in other K0
S analyses; strict 

selection criteria are favored to increase the sample purity.
A candidate K0

S vertex with a reconstructed invariant mass 
within 0.485 < m(π+π−) < 0.510 GeV/c2 is identified as a K0

S . In 
this range, the single-K0

S purity is measured to be 98 ± 1% for the 
kT interval of 0.5 < kT < 0.7 GeV/c, where kT = |−→pT1 + −→pT2|/2, and 
where −→pT1 and −→pT2 are the transverse momenta of the particles in 
the pair. The purity here is defined as Signal/(Signal + Background) 
and is calculated by fitting a fourth-order polynomial to the back-
ground in the combined invariant mass intervals 0.4–0.45 GeV/c2
and 0.55–0.6 GeV/c2 and using the bin contents of the invariant 
mass histogram as the “Signal + Background”. No selection on pT
is employed in this analysis for K0

S . Having a pair purity less than 
unity will be reflected in the lowering of the λ parameter, which 
can later be corrected for purity, however the K0

S purity is very 
close to unity for this analysis.

2.1.2. K± identification
As mentioned above, charged kaons are selected using the TPC 

and TOF detectors with the same methods as employed in Refs. [4,
5]. The quality of the track is determined by the χ2/Nclus value 
for the Kalman fit to the reconstructed position of the TPC clusters 
(Nclus is the number of clusters attached to the track). The track is 
rejected if the value is larger than 4.0. The selection criteria used 
for the charged kaon selection in the TPC and TOF are shown in 
Table 1. In the table, NT PC

σ and NT O F
σ are the numbers of standard 

deviations the TPC energy-loss and TOF signal are away from their 
predicted values divided by detector resolution, respectively.

The average charged kaon purity is found using PYTHIA8 MC 
simulations to be 91 ± 1% in the kT range used in this analysis, i.e. 
0.5 < kT < 0.7 GeV/c. This is in agreement with the charged kaon 
purity found by the ALICE collaboration in Ref. [5].

2.2. Two-track selection

Experimental two-track effects, such as the merging of two real 
tracks into one reconstructed track and the splitting of one real 
track into two reconstructed tracks, is a challenge for femtoscopic 
studies. These effects are observed for tracks with small average 
separation in the TPC. For each pair of like-sign tracks, which could 
be pions from two K0

S decays, or the pion from a K0
S decay and 

the same-charged K± track, the distance between the tracks was 
calculated at up to nine positions throughout the TPC (every 20 
cm along the radial direction from 85 cm to 245 cm) and then 
averaged. When comparing the distribution of the average separa-
tion of track pairs from single events with the distribution from 
pairs constructed of tracks from different events (mixed events), 
a splitting enhancement is seen in the same-events for average 
separations approaching zero. For the distribution of mixed-event 
tracks, the primary vertex position for each track was subtracted 
from each track point to mock them up as coming from the same 

event. To minimize this splitting effect, this analysis demanded 
that the tracks must have an average TPC separation of at least 
13 cm.

3. Two-particle correlation function

This analysis studies the momentum correlations of K0
SK

0
S and 

K0
SK

± pairs using the two-particle correlation function, defined as 
C(k∗) = A(k∗)/B(k∗), where A(k∗) is the measured distribution of 
real pairs from the same event and B(k∗) is the reference distribu-
tion of pairs from mixed events. The quantity k∗ is the momentum 
of one of the particles in the pair rest frame, and for the general 
case of two particles with unequal mass, m1 and m2, is given by

k∗ =
√

w2 −m2
1m

2
2

2w +m2
1 +m2

2

(1)

where,

w ≡ (q2inv +m2
1 +m2

2)/2. (2)

The square of the invariant momentum difference q2inv = | 	p1 −
	p2|2−|E1− E2|2 is most conveniently evaluated with the momenta 
and energies of the two particles measured in the lab frame. Note 
that m1 = m2 gives k∗ = qinv/2. The denominator B(k∗) is formed 
by mixing particles from each event with particles from ten other 
events in the same z-vertex bin (2 cm width) and of similar event 
multiplicity. A k∗ bin size of 20 MeV/c was used in all cases.

As mentioned earlier, correlation functions are calculated for 
minimum bias events and a kT range from 0.5–0.7 GeV/c. This 
closely reproduces the conditions for the kaon femtoscopy mea-
surements with K0

SK
0
S and K0

SK
± pairs published by ALICE for pp 

collisions at 
√
s = 7 TeV with which the present results will be 

compared [3,6]. The kT range used encompasses the peak in the 
kT distributions at each collision energy. Also, the pseudorapidity 
density of charged particles at midrapidity, dNch/dη, is found to 
be small in pp collisions and has a weak dependence on 

√
s, mea-

sured to be 5.91 ±0.45, 6.01+0.20
−0.12, and 7.60 ±0.50 for 

√
s = 5.02, 7 

and 13 TeV, respectively, where the uncertainties are the statistical 
and systematic uncertainties added in quadrature [28–30].

Fig. 1 shows an example of raw experimental K0
SK

0
S correlation 

functions along with the resulting distributions from PYTHIA8 sim-
ulations normalized in the k∗ region 0.6–0.8 GeV/c for 

√
s = 5.02

and 13 TeV. Note that the PYTHIA8 calculations do not contain FSI 
or femtoscopic correlations. Fig. 2 shows an example of raw ex-
perimental K0

SK
± correlation functions plotted with baseline fits 

for various functions (see below) for 
√
s = 5.02 and 13 TeV. The 

raw correlation functions from the data are enhanced for k∗ < 0.1
GeV/c due to quantum statistics and the FSI of the f0 and a0 and 
slightly suppressed in the region 0.1 < k∗ < 0.4 GeV/c due to the 
FSI for K0

SK
0
S . For K

0
SK

± the FSI of the a0 produces similar but 

3
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Fig. 2. Example K0
SK

± correlation functions plotted with fits of Eqs. (3), (4) and (5) in pp collisions at
√
s = 5.02 (left) and 13 TeV (right).

Fig. 3. Example K0
SK

± correlation functions along with the resulting distributions from PYTHIA8 simulations in pp collisions at
√
s = 5.02 (left) and 13 TeV (right).

smaller enhancements and suppressions in the same general k∗
regions. For k∗ > 0.4 GeV/c a non-flat baseline is observed in both 
cases. PYTHIA8 fairly describes the non-flat baseline of the experi-
mental correlation functions for K0

SK
0
S , and is thus used to take out 

the effect of the non-flat baseline by dividing the raw experimen-
tal correlation functions by the PYTHIA8 correlation functions in 
those cases. This is a similar method as was used for the 

√
s = 7

TeV pp K0
SK

0
S measurements [3].

Unlike the case for K0
SK

0
S , which has a relatively large signal 

compared with the baseline, for the K0
SK

± correlation functions 
PYTHIA8 is not sensitive enough to model the baseline sufficiently 
well with respect to the significantly smaller enhancement and 
suppression produced by the FSI of the a0 alone. Examples of this 
are shown in Fig. 3, which compares the raw 

√
s = 5.02 and 13 

TeV pp correlation functions from data with those from PYTHIA8. 
For these correlation functions, quadratic, exponential and Gaus-
sian functions are used to model the baseline, as was done in 
Ref. [6] for the measurement in pp collisions at 

√
s = 7 TeV, of 

the forms

Cquadratic(k
∗) = a(1 − bk∗ + ck∗2) (3)

Cexponential(k
∗) = a(1 + b exp(−ck∗)) (4)

CGaussian(k
∗) = a(1+ b exp(−ck∗2)) (5)

where a, b and c are parameters that are fitted to the experimen-
tal C(k∗) simultaneously with the FSI model (see Section 4). As 
shown in Fig. 2, the quadratic, Gaussian and exponential functions 
all describe the data well in the k∗ range of ∼0.3–0.6 GeV/c.

4. Fitting the correlation functions to extract the source 
parameters

4.1. K0
SK

0
S

The K0
SK

0
S correlation functions were fitted with the Lednický 

parameterization [2] which incorporates quantum statistics with 

strong FSI. FSI arise in the K0
SK

0
S channels due to the near-threshold 

resonances, a0(980) and f0(980). This parameterization is based 
on the model by R. Lednický and V.L. Lyuboshitz [31,32].

The general form of the fit function is:

CLednicky(k
∗) = 1+ λe−4k∗2R2

+ λα

[∣∣∣∣ f (k∗)
R

∣∣∣∣
2

+ 4R f (k∗)√
π R

F1(2k
∗R)

− 2I f (k∗)
R

F2(2k
∗R) + 	C

]
(6)

where

F1(z) =
z∫

0

dx
ex

2−z2

z
; F2(z) = 1− e−z2

z
. (7)

The scattering amplitude is

f (k∗) = f0(k∗) + f1(k∗)
2

(8)

where

f I(k
∗) = γI

m2
I − s − i(γIk∗ + γ ′

I k
′
I)

, (9)

f (k∗) is the s-wave K0K0 scattering amplitude whose contributions 
are the isoscalar f0 and isovector a0 resonances; α is set to 0.5 
assuming symmetry in K0 and K0 production; R is the radius pa-
rameter; and λ is the correlation strength. In Eq. (9), I = 0 or 1 
for the f0 or a0, mI is the mass of the resonance, and γI and γ ′

I
are the couplings of the resonances to their decay channels. Also, 
s = 4(m2

K + k∗2) and k′
I denotes the momentum in the second de-

cay channel. The K0K0 s-wave scattering amplitude depends on the 
f0 and a0 resonance mass and decay couplings, which have been 

4
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Fig. 4. Example fits of Eq. (6) to the ratio of the data to PYTHIA8 correlation functions for K0
SK

0
S in pp collisions at √s = 5.02 TeV (left) and 13 TeV (right). Statistical 

uncertainties are shown as error bars and systematic uncertainties are shown as boxes.

Table 2
The f0 and a0 masses and coupling parameters used in the 
present analysis, all in GeV.
m f0 γ f0K K̄ γ f0ππ ma0 γa0K K̄ γa0πη

0.967 0.34 0.089 1.003 0.8365 0.4580

measured [33]. The parameter set used in the present analysis is 
shown in Table 2. The quantity 	C is a correction for small source 
sizes found in pp collisions [2], and is given by:

	C = 1√
π R3

[
| f0(k∗)|2( 3

γ0
+ 1

γ1
) + | f1(k∗)|2( 1

γ0
+ 3

γ1
)

]
.

(10)

Fig. 4 shows example fits of Eq. (6) to the ratio of the data to 
PYTHIA8 correlation functions for K0

SK
0
S measured in pp collisions 

at 
√
s = 5.02 TeV and 13 TeV. Statistical uncertainties are shown 

as error bars, and systematic uncertainties are shown as boxes. The 
statistical uncertainties from PYTHIA8 were propagated to those on 
the data points. The fits of Eq. (6) to the correlation function ra-
tios provide a good description of the data, typically giving χ2/ndf 
values close to unity. The χ2/ndf values of the fits to the K0

SK
0
S

correlation functions are 1.3 and 2.5, respectively, for the left and 
the right figures. The large χ2/ndf value for the fit shown in the 
right figure mostly reflects a combination of the small statistical 
uncertainties in the data and the deviation of the fit in the region 
k∗ > 0.5 GeV/c.

4.2. K0
SK

±

The K0
SK

± correlation functions were fitted with the expression:

C(k∗) = CLednicky2(k
∗)Cbaseline(k

∗) (11)

where CLednicky2(k∗) is a modified version of Eq. (6), and
Cbaseline(k∗) is Eq. (3), Eq. (4) or Eq. (5).

The modified form of the Lednický FSI fit function used is:

CLednicky2(k
∗) = 1+

(
λα

2

)[∣∣∣∣ f (k∗)
R

∣∣∣∣
2

+ 4R f (k∗)√
π R

F1(2k
∗R)

− 2I f (k∗)
R

F2(2k
∗R) + 	C ′

]
. (12)

The scattering amplitude is:

f (k∗) = γa0→K K

m2
a0 − s − i(γa0→K Kk

∗ + γa0→πηkπη)
. (13)

Note that the form of the FSI term in Eq. (12) differs from the 
form of the FSI term for K0

SK
0
S correlations, Eq. (6), by a factor of 

1/2 due to the non-identical particles in K0
SK

± correlations and 
thus the absence of the requirement to symmetrize the wavefunc-
tion. The K0K− or K0K+ s-wave scattering amplitude depends only 
on the a0 resonance mass and decay couplings. The ones used in 
this analysis are shown in Table 2. The correction due to small 
source sizes, 	C ′ , now becomes:

	C ′ = 2√
π R3

| f (k∗)|2
γa0→K K

. (14)

The fitting strategy is to make a 5-parameter fit of Eq. (11) to 
the K0

SK
± experimental correlation functions to extract R , λ, a, b

and c for each baseline functional form.
Fig. 5 shows examples of correlation functions divided by the 

Gaussian baseline function, Eq. (5), with fits of Eq. (11) for K0
SK

± , 
i.e. summed over K0

SK
+ and K0

SK
− . The a0 FSI parameterization 

coupled with the Gaussian baseline assumption is seen to give a 
good representation of the signal region of the data, i.e. reproduc-
ing the enhancement in the k∗ region 0.0–0.1 GeV/c and the small 
dip in the region 0.1–0.3 GeV/c. The average χ2/ndf for these fits 
to the correlation functions are 1.04 for the left figure and 1.13 for 
the right figure. Fits to the data with similarly good χ2/ndf values 
are also found using the exponential and quadratic baselines.

4.3. Systematic uncertainties

Table 3 shows the total systematic uncertainties of the ex-
tracted R and λ parameters from the K0

SK
0
S and K0

SK
± analyses. The 

total systematic uncertainty is generally higher than the statistical 
one. The total systematic uncertainty is taken as the square-root of 
the quadratic sum of the systematic uncertainty from the fit and 
the selection criteria.

The fit systematic uncertainty is the combined systematic un-
certainty due to the various baseline assumptions and varying the 
k∗ fit range. For K0

SK
0
S , it is calculated from the standard deviation 

of the extracted source parameters from six k∗ fit ranges: 0.0–0.3, 
0.0–0.4, 0.0–0.5, 0.0–0.6, 0.0–0.7 and 0.0–0.8 GeV/c. For K0

SK
± it is 

calculated from the standard deviation of using the three baseline 
functions in four k∗ fit ranges: 0.0–0.3, 0.0–0.4, 0.0–0.5 and 0.0–0.6 
GeV/c. The fit values shown in Table 3 are the average values over 
these k∗ ranges.

The selection systematic uncertainty is the systematic uncer-
tainty related to the various selection criteria applied in the data 
analysis. To determine this, single particle selection criteria were 
varied by ∼ ±10%, and the value chosen for the minimum sep-
aration distance of like charge-sign tracks was varied by ∼ 20%. 
The uncertainties in the purity corrections to the λ parameters, 
mentioned earlier, are also included in the selection systematic 
uncertainty. Taking the upper-limit values of the variations to be 
conservative, this led to additional uncertainties of 4% for R and 
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Fig. 5. Example fits using Eq. (11) to the ratio of the data in pp collisions at √s = 5.02 TeV (left) and 13 TeV (right) to Eq. (5). Statistical uncertainties are shown as error 
bars and systematic uncertainties are shown as boxes.

Table 3
Fit results for average R and λ along with statistical and systematic uncertainties. The λ parameters are corrected for particle-pair purity.

R or λ kaon pair pp energy 
(TeV)

Fit value Statistical 
uncert. (±)

Fit systematic 
uncert. (±)

Selection systematic 
uncert. (±)

Total systematic 
uncert. (±)

Total quadratic 
uncert. (±)

R (fm) 5.02 0.926 0.045 0.031 0.037 0.048 0.066
K0
SK

0
S

λ 5.02 0.876 0.159 0.067 0.070 0.097 0.186
K0
SK

0
S

R (fm) 5.02 0.865 0.025 0.088 0.037 0.095 0.098
K0
SK

±

λ 5.02 0.353 0.031 0.039 0.029 0.049 0.058
K0
SK

±

R (fm) 13 1.039 0.032 0.072 0.042 0.083 0.089
K0
SK

0
S

λ 13 0.748 0.073 0.121 0.059 0.134 0.153
K0
SK

0
S

R (fm) 13 0.974 0.020 0.131 0.042 0.138 0.139
K0
SK

±

λ 13 0.325 0.020 0.044 0.028 0.052 0.055
K0
SK

±

8% for λ. As seen in Table 3, the fit systematic uncertainty tends 
to be comparable to or larger than the selection systematic un-
certainty, reflecting the scale of uncertainties in determining the 
non-femtoscopic baseline in pp collisions. The “total quadratic un-
certainty” is the square-root of the quadratic sum of the “statistical 
uncertainty” column and the “total systematic uncertainty” col-
umn.

4.4. Momentum resolution

Finite track momentum resolution can smear the relative mo-
mentum correlation functions used in this analysis. This effect was 
taken into account using PYTHIA8+GEANT MC simulations. Two 
PYTHIA8 correlation functions are built using the generator-level 
momentum (k∗

ideal) and the measured detector-level momentum 
(k∗

meas). Because PYTHIA8 does not incorporate final-state interac-
tions, weights are calculated using a 9th-order polynomial fit in 
k∗ to an experimental correlation function and used when filling 
the same-event distributions. These weights are calculated using 
k∗
ideal. Then, the ratio of the “ideal” correlation function to the 

“measured” one for each k∗ bin is multiplied by the data corre-
lation functions before the fit procedure. It is found that, due to 
the large k∗ bin size of 20 MeV/c which is used in the analysis 
of pp collisions, the correction has a small effect on the lowest k∗
bin with the largest statistical error bars, and a negligible effect 
on the remaining bins. Thus, the momentum resolution correction 
was found to have a < 2% effect on the extracted fit parame-
ters.

5. Results and discussion

The extracted source parameters for K0
SK

0
S and K0

SK
± , where 

K0
SK

+ and K0
SK

− have been summed over, are shown in Table 3
and in Fig. 6. The λ parameters are corrected for particle-pair pu-
rity. Fig. 6 shows comparisons of the present results for R and λ
in pp collisions at 

√
s = 5.02 and 13 TeV with published two-kaon 

femtoscopic results measured in pp collisions at 
√
s = 7 TeV [6].

For the R parameters, two observations can clearly be made: 1) 
there is no significant dependence on 

√
s, i.e. all extracted values 

are ∼ 1 fm, and 2) the values extracted from K0
SK

0
S and K0

SK
± for 

a given 
√
s agree within uncertainties, as would be expected. It is 

expected that R from K0
SK

0
S and K0

SK
± would agree with each other 

if a) the K0
S and K± are produced in the same source geometry, and 

b) Eqs. (6) and (7) properly describe the pair interactions. Point a) 
is expected to be true due to isospin invariance of the strong in-
teraction that produces the kaons in the pp collision, and point b) 
is supported by the overall good fits that Eqs. (6) and (7) are seen 
to give to the experimental correlation functions. The R parameter 
is essentially independent of 

√
s. While R in general depends on 

pseudorapidity density also in pp collisions [28–30], the increase 
expected from the slow logarithmic rise of pseudorapidity density 
with 

√
s is well within our experimental uncertainties.

The extracted λ parameters in Fig. 6 suggest that: 1) the values 
do not depend significantly on 

√
s, 2) the values for K0

SK
0
S are in 

the usual range seen in femtoscopy experiments of λ ∼ 0.7–0.8, 
whereas 3) the values for K0

SK
± are significantly smaller being 

λ ∼ 0.3–0.4, consistent with the 7 TeV results. Fig. 7 shows the 
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Fig. 6. R (left) and λ (right) parameters extracted in the present analysis from Table 3 compared with published K0
SK

0
S and K0

SK
± results from ALICE 7 TeV pp collisions [6]

averaged over event multiplicity and evaluated at 〈kT〉 = 0.6 GeV/c. Statistical uncertainties are shown as error bars and the systematic uncertainties are shown as boxes.

Table 4
List of mesons from the Review of Particle Physics [34] with masses < 1500 MeV/c2 that 
have decay channels into kaons with significant branching ratios.
Name Mass (MeV/c2) � (MeV/c2) Kaon decays �c/� (fm)

K∗(892) 891.67 51.4 Kπ (100%) 3.839
φ(1020) 1019.46 4.249 K+K− (49.2%), K0

LK
0
S (34%) 46.4

K1(1270) 1253 ∼ 100 Kρ (42%) 1.973
K∗
0(1430) 1425 270 Kπ (∼ 100%) 0.731

K∗
2(1430) 1427.3 100 Kπ (50%), KX (12%) 1.973

Fig. 7. Differences in λ parameters extracted in the present analysis from Table 3
compared with published identical and non-identical kaon results from ALICE 7 TeV 
pp collisions averaged over event multiplicity and evaluated at 〈kT 〉 = 0.6 GeV/c. 
Total uncertainties are shown. The weighted average of the differences is shown as 
a solid red line and the weighted uncertainty, ±σ , shown as red dashed lines.

difference between purity-corrected λ parameters extracted with 
K0
SK

0
S and K0

SK
± versus 

√
s. The propagated total uncertainty is in-

dicated on these points. Also shown is the weighted average of 
these points, weighted by their total uncertainties. It is assumed 
that the total uncertainties of the K0

SK
0
S and K0

SK
± measurements 

are uncorrelated. This is considered a reasonable assumption given 
the differences in the kaon pairs and the equations used to extract 
the source parameters. The weighted average of the differences is 
calculated to be 0.419 ± 0.091, which is 4.6σ from zero.

There are three main technical factors that, while having a 
small effect on the R parameter, can significantly affect the value 
of the λ parameter: 1) the experimental kaon reconstruction pu-
rity, 2) the degree to which a Gaussian distribution describes the 
kaon source, and 3) the presence of kaons originating from the de-
cay of long-lived resonances diluting the direct-kaon sample [6]. 
The effect of factor 1) is already corrected for by having divided 
the extracted λ values by the products of the single-kaon puri-
ties given in Section 2.1. As seen in Figs. 4 and 5, the Lednický 
equation, which uses a Gaussian source, fits the experimental cor-
relation functions well, an observation that is supported by the 
good χ2/ndf values given above, minimizing the effect of 2). The 
effects from factor 3) are discussed in the following section.

5.1. Effect of presence of long-lived resonances

Table 4 gives a list of mesons from the Review of Particle 
Physics [34] with masses < 1500 MeV/c2 that have decay channels 
into kaons with significant branching ratios. The two lowest-lying 
mesons, the K∗(892) and the φ(1020), are the most abundantly 
produced and have the narrowest widths, and so are expected to 
have the greatest effect on the values of the extracted kaon source 
parameters, which reflect both the kaons produced from the de-
cays of resonances as well as the kaons produced directly from the 
pp collision. Since the mean decay lengths of the K∗ and φ are 
about 4 fm and 50 fm, respectively (see Table 4), these decays re-
sult in effective sources of kaons which are much larger than the 
expected size of the direct kaon source in pp collisions of about 1
fm. Thus, the effect of these should be mostly to reduce the ex-
tracted λ parameter. This is due to the correlation function for the 
smaller-sized direct source being wider in k∗ and so dominating 
the extracted R [35]. Thus, the kaons from these resonances only 
make an overall suppression of the correlation function.

The dilution effect on the λ parameter due to the K∗(892) and 
φ(1020) decays can be estimated from K∗0/K and φ/K ratio mea-
surements from ALICE [36–39]. Table 5 shows the measurements of 
these quantities relevant to the present estimate. As shown in the 
table, the measured ratios for both K∗0/K and φ/K are independent 
of the collision energy and independent of the decay-kaon charge 
state within the measurement uncertainties. For the present calcu-
lation, the ratios from Refs. [38,39] are used since they are taken 
with an average pT close to the average kT of 0.6 GeV/c used in 
this analysis. Whereas the φ only has one charge state for each 
of its decay channels, as seen in Table 4, and is its own anti-
particle, the K∗ has four charge states, and three unique sets of 
decay charge-state channels, as shown in Table 6, which is taken 
into account in the present calculation. Using the numbers in Ta-
bles 4, 5, and 6, the direct-kaon purity for K+ , K− and K0

S , defined 
as P (K+), P (K−) and P (K0

S), respectively, where P (K+) = P (K−) 
≡ P (K±), are calculated to be P (K±) = 0.726, and P (K0

S) = 0.757.
In the calculations, it has been assumed that the ratios K∗0/K±

= K∗±/K± and K∗0/K0
S = K∗±/K0

S . The “diluted” λ parameters can 
then be estimated for K0

SK
0
S as P (K0

S)P (K
0
S) = 0.57 ± 0.02 and for 
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Table 5
ALICE measurements of K∗(892)/K and φ(1020)/K ratios. The uncertainties given are the statistical and system-
atic uncertainties combined in quadrature.
Ref. Collision K∗(892)/K φ(1020)/K Average pT (GeV/c) Trigger

[36] 2.76 TeV pp K∗0/K− 0.31± 0.04 φ/K− 0.11± 0.01 ∼ 1 inelastic
[37] 7 TeV pp K∗0/K− 0.35± 0.04 φ/K− 0.11± 0.02 ∼ 1 inelastic
[38] 13 TeV pp K∗0/K0

S 0.34± 0.01 φ/K0
S 0.11± 0.01 0.6 low multiplicity

[39] 5.02 TeV pp K∗0/K± 0.29± 0.02 φ/K± 0.08± 0.02 ∼ 0.6 inelastic

Table 6
Decay modes of the charge states of the K∗(892). Note that the K0 is 
made up of 50% K0

S and 50% K0
L .

K∗(892) charge state Decay channels Comment

K∗+ K+π0, K0π+ each channel 50%
K∗− K−π0, K0π− each channel 50%
K∗0, K̄∗0 K+π− , K−π+ , K0π0 each channel 33.3%

K0
SK

± as P (K0
S)P (K

±) = 0.55 ± 0.02. The effect of these long-lived 
resonances is seen to be of the same magnitude, within the un-
certainties, for K0

SK
0
S and K0

SK
± . The estimate is ∼1–2σ lower than 

the purity-corrected λ values measured with K0
SK

0
S , however it is 

∼3–4σ larger than the values measured in K0
SK

± . Thus, the dilu-
tion effects on λ by the K∗(892) and φ(1020) cannot explain the 
small values for λ measured in pp collisions in K0

SK
± femtoscopy.

5.2. Physics explanations for differences of λ parameters

Since the technical factors discussed above affecting the ex-
tracted λ values should affect the values from K0

SK
0
S and K0

SK
± in 

the same way, their difference can be ascribed to a physics ef-
fect. It is important to first compare the λ parameters extracted in 
the present work to those measured in other published KK fem-
toscopic studies. In Pb–Pb collisions, λ is measured to be ∼0.7 for 
K0
SK

0
S , K

±K± and K0
SK

± [7], similar to what is measured for K0
SK

0
S

presented here, and close to the estimate made for the resonance 
dilution effect. For K±K± femtoscopy in pp and pPb collisions, λ
is measured to be in the range 0.4–0.5, which is smaller than 
for K0

SK
0
S presented here [40]. Note that one expects K±K± to be 

somewhat smaller than K0
SK

0
S on the basis of the resonance dilu-

tion effect, since for K±K± the λ is estimated to be P (K±)P (K±) = 
0.53 as compared with P (K0

S)P (K
0
S) = 0.57 estimated for K0

SK
0
S . As 

to why the λ parameters in K±K± in pp and p–Pb collisions are 
smaller than in Pb–Pb collisions, Ref. [40] suggests that this could 
be due to the kaon source being more Gaussian in Pb–Pb collisions.

As discussed in Ref. [6], a physics effect that could cause the 
difference in λ values is related to the possibility that the a0 reso-
nance, that is solely responsible for the FSI in the K0

SK
± pair, is 

a tetraquark state of the form (q1, q2, s, s) instead of a diquark 
state of the form (q1, q2), where q1 and q2 are u or d quarks. The 
strength of the FSI through a tetraquark a0 could be decreased by 
the small source size of the kaon source, i.e. R ∼ 1 fm as mea-
sured in this analysis, since s − s annihilation would be enhanced 
due to the close creation proximity. For a FSI through a diquark a0, 
with the form (q1, q2), the small source geometry should not re-
duce its strength. For the K0

SK
0
S case, λ would not be affected much 

by a tetraquark a0 since the enhancement in the correlation func-
tion near k∗ ∼ 0 is dominated by the effect of quantum statistics. 
Note that for the large kaon source measured in Pb–Pb collisions 
to have R ∼ 6 fm, the situation would be reversed. The large av-
erage separation between the kaons would favor the formation of 
a tetraquark a0 and suppress the formation of a diquark a0, and 
a larger λ ∼ 0.6 is indeed measured in that case, as already men-
tioned above. Thus, we can conclude that, as was the case with 
the published 

√
s = 7 TeV result, the present results in pp colli-

sions at 
√
s = 5.02 and 13 TeV are compatible with the a0 being a 

tetraquark state.

6. Summary

In summary, femtoscopic correlations with the particle pair 
combinations K0

SK
0
S and K0

SK
± are studied in pp collisions at 

√
s =

5.02 and 13 TeV for the first time by the ALICE experiment at the 
LHC. By fitting models that assume a Gaussian size distribution of 
the kaon source to the experimental two-particle correlation func-
tions, kaon source parameters are extracted. The model used for 
the K0

SK
0
S case includes quantum statistics and strong final-state 

interactions through the f0 and a0 resonances. The model used 
for the K0

SK
± case involves only the final-state interaction through 

the a0 resonance. In both cases, the models gave a good fit to the 
experimental correlation functions. Source parameters extracted in 
the present work are compared with published values from ALICE 
measured in pp collisions at 

√
s = 7 TeV and found to be consis-

tent, i.e. there is no significant dependence of either R or λ on the 
collision energy. The new results are compatible with the a0 res-
onance being a tetraquark state due to the λ parameter for K0

SK
±

being significantly smaller than for K0
SK

0
S .
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L. Kreis 109, M. Krivda 112,65, F. Krizek 97, K. Krizkova Gajdosova 37, M. Kroesen 106, M. Krüger 69, 
D.M. Krupova 37, E. Kryshen 100, M. Krzewicki 39, V. Kučera 34, C. Kuhn 139, P.G. Kuijer 92, T. Kumaoka 135, 
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