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Multivariate climate change presents an urgent need to understand how species adapt to
complex environments. Population genetic theory predicts that loci under selection will
form monotonic allele frequency clines with their selective environment, which has led
to the wide use of genotype—environment associations (GEAs). This study used a set of
simulations to elucidate the conditions under which allele frequency clines are more or
less likely to evolve as multiple quantitative traits adapt to multivariate environments.
Phenotypic clines evolved with nonmonotonic (i.e., nonclinal) patterns in allele fre-
quencies under conditions that promoted unique combinations of mutations to achieve
the multivariate optimum in different parts of the landscape. Such conditions resulted
from interactions among landscape, demography, pleiotropy, and genetic architecture.
GEA methods failed to accurately infer the genetic basis of adaptation under a range of
scenarios due to first principles (clinal patterns did not evolve) or statistical issues (clinal
patterns evolved but were not detected due to overcorrection for structure). Despite
the limitations of GFEAs, this study shows that a back-transformation of multivariate
ordination can accurately predict individual multivariate traits from genotype and envi-
ronmental data regardless of whether inference from GEAs was accurate. In addition,
frameworks are introduced that can be used by empiricists to quantify the importance
of clinal alleles in adaptation. This research highlights that multivariate trait prediction
from genotype and environmental data can lead to accurate inference regardless of
whether the underlying loci display clinal or nonmonotonic patterns.

genome-wide associations | multivariate ordination | local adaptation | pleiotropy | polygenic

Clines have a rich history of study in biology. Clines are a monotonic gradient in a meas-
urable character, genotype, or allele frequency (modified from ref. 1). Starting around the
1950s, population geneticists became interested in selection in continuous populations
along environmental gradients (2—4). Population genetic theory developed then for a
single locus under a gradient of selection predicted that clines in allele frequency will
evolve (2, 5-8). Even multilocus models of polygenic adaptation across an environmental
gradient predict that phenotypic clines will evolve by a series of staggered allele frequency
clines (9-11).

As a result of this theory, ecological geneticists have long searched for clinal patterns
in allele frequencies, dating back to Drosophila chromosome inversions (12) and many
studies in allozymes (13). Now, the search for allele frequency clines has extended to the
genome, to uncover the genetic basis of adaptation to the environment (13—15). Verbal
arguments have claimed that beneficial variants with weak phenotypic effects will lead
to “subtle shifts” in allele frequency that correlate with environmental variables (16-18),
or a subtle cline. Statistical approaches known as “genotype—environment associations”
[genotype—environment associations (GEAs), sensu 19] have been developed to determine
if a cline between an allele frequency and an environmental gradient is significant after
correction for neutral population structure.

GEA methods are based on the concept that adaptive alleles will form clines with a
selective environment. Since 2010, the most widely used methods (20-25), reviews (11,
14, 15, 26), methods evaluations (27-32), and high-profile applications of GEA methods
in different taxa (18, 33—37) have been cited over 7,700 times (Google Scholar, July 2022).
A scientific paradigm is a distinct set of concepts, thought patterns, research methods,
and standards for what constitutes legitimate contributions to a field. The GEA concept
meets this definition, and more specifically Kuhn’s “local” paradigm (i.e., a typical example)
for how to study the genetic basis of adaptation to the environment (38, 39). Although
other tests such as outlier tests for genetic differentiation exist, these tests do not explicitly
link genetic differences to the environment (15).

GEA methods have been largely tested against data simulated under the assumption that
the fitness of one allele increases along an environmental gradient while the other decreases,
which evolves allele frequency associations with the climate variable (14, 20, 22-24, 27-30).
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Significance

Population geneticists have
historically modeled adaptation in
meta-populations to a single
environmental gradient, which
evolves monotonic clinal patterns
in allele frequency at the loci
under selection. This study shows
that under complex multivariate
adaptation, trait clines can evolve
despite nonmonotonic allele
frequency patterns across
environmental gradients.

These patterns are not discovered
by genotype-environment
association methods, which are
widely used to discover
adaptation. This result challenges
widely held conceptual models of
adaptation via subtle shifts in
allele frequencies across
environmental gradients and can
explain why genes that underlie
environmental traits do not always
evolve clines. Additionally, this
study shows that even when
inference from genotype-
environment association methods
is inaccurate, multivariate
quantitative traits can still be
accurately estimated from
genotypes and environments.
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Fig. 1. Anoverview of the parameter levels for the simulations with two quantitative traits. (A) Three landscapes determined the relationship between patterns
of migration and the selective environment. The color of the point indicates the optimum multivariate trait value at that location on the landscape. The optimum
temperature (Temp) trait followed a latitudinal cline in all landscapes, while the optimum Env2 depended on the landscape. Gray lines indicate pathways of
migration, and their thickness represents the migration rate. (B) Five demographies determined how drift and migration operated across the landscape (examples
shown for stepping stone). (C) Three genic levels determined the number of loci (vertical dashes) and their effect sizes (arrow thickness) on the trait. (D) Five
pleiotropy levels determined the number of traits, pleiotropic effects of mutations, and strength of selection on each trait.

This practice may have led to overly optimistic performance of
GEAs for two reasons. First, what if the evolution of local adaptation
does not evolve clines in frequency at the selected alleles (the first
principles issue)? Second, even when allelic clines do evolve, GEAs
may undercorrect or overcorrect for structure, leading to a failure
to accurately detect the loci under selection (the statistical issue).
Another statistical issue is whether the accuracy of multivariate
ordination (to infer multivariate adaptation to multiple environ-
ments) is affected by a lack of clinal patterns in the data. If these
issues prove to be relevant, then reliance on the study of clines will
hinder detection of the genetic basis of adaptation and translation
of genomic data to species conservation.

The goals of this study were to i) understand the conditions
under which allele frequency clines are more or less likely to evolve
as quantitative traits adapt to complex environments, i) study the
ability of univariate [correlation, latent factor mixed models] and
multivariate (redundancy analysis) GEA methods to correctly infer
the genetic basis of adaptation, and iii) show that, even when the
genetic architecture could not be accurately inferred by GEAs,
multivariate quantitative traits can be estimated from genotype
and environmental data through a back-transformation of ordina-
tion space. To achieve these goals, an innovative set of simulations
were developed that included i) up to two quantitative traits, each
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adapting to a different environmental pattern, ii) genetic architec-
tures ranging from oligogenic (a few loci with large effects on the
trait) to highly polygenic (thousands of loci with small effects), iii)
pleiotropic or nonpleiotropic mutational effects, and iv) complex
landscapes and demographies (Fig. 1). Alleles had additive effects
on the quantitative traits, which were under stabilizing selection
within populations but the optimum trait value was linearly asso-
ciated with the selective environment. Across all simulations, clines
evolved between the quantitative trait and its selective environ-
ment, but with varying proportions of quantitative trait nucleotides

(QTNs) that evolved clines.

Results

I conducted replicate forward-time simulations of a metapopulation
adapting to a heterogeneous spatial environment with SLiM v. 3.6
(40, 41) to create single-nucleotide polymorphism data for each
individual. I simulated 225 parameter levels (15 demographies x
15 genetic architectures) of 10 replicates each, for a total of 2,250
simulations. The levels varied in i) the relationship between the
landscape and the environmental trait optimum (in Stepping Stone
Clines and Estuary Clines geographic distance corresponded to
environmental distance; in Stepping Stone Mountain it did not
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Fig. 1A), ii) the demography described by migration rates and effec-
tive population size (with cases that confounded genetic drift with
selection and cases that confounded population structure with
selection, Fig. 1B), iii) the genic level of both traits (with cases
spanning from oligogenic to highly polygenic, Fig. 1C), and iv) the
pleiotropic effects of mutations on traits (with cases spanning from
one trait, to two traits with and without pleiotropy, and with dif-
ferent strengths in selection on each trait, Fig. 1D). Thus, the sim-
ulations spanned scenarios from those that are commonly simulated
in the population genetics literature (one oligogenic trait adapting
to an environmental cline) to previously unexplored scenarios (two
polygenic traits with pleiotropy).

The two traits included a “temperature” trait that adapted to a
latitudinal environment (in all simulations), and an “Env2” trait
that adapted to a longitudinal environment (only in 2-trait sim-
ulations). The biological analogy to £nv2 depended on the con-
text: it is analogous to elevation in the Stepping Stone Mountain
landscape (e.g., trees) or salinity in the Estuary Clines landscape
(e.g., sticklebacks or oysters) (Fig. 1A).

'The simulations reached an equilibrium level of local adaptation
(SI Appendix, Fig. S1), and the amount of divergence was primarily
determined by landscape and demography, while the degree of local
adaptation (LA) was primarily determined by selection strength
(81 Appendix, Figs. S1-S4 and Tables S1 and S2). Population struc-
ture (measured as PC1 of the genotype matrix) was highly correlated
with deme temperature in all simulations, but rarely correlated with
Env2in the Stepping-Stone-Mountain or Estuary-Clines landscapes
(81 Appendix, Fig. S5). Oligogenic, moderately polygenic, and highly
polygenic architectures evolved on average 12, 646, and 3,042
QTNs, but this was reduced to 8, 58, and 499, respectively, after
filtering for minor allele frequency (MAF) (81 Appendix, Fig. S6).
Additional information about the simulations can be found in
SI Appendix, Supplemental Resulss.

Evolutionary Processes That Affect the Proportion of Clinal QTNs.
Across all simulations, trait clines between each quantitative trait
and the selective environment evolved (with correlations typically
between 0.55 and 0.9, x axis in Fig. 24). Hereafter, “clinal QTNs”
are those with significant associations between allele frequency and
an environmental variable after correction for multiple tests. Despite
high correlations evolving between environmental traits and deme
environments across all simulations, the percent of clinal QTNs
ranged from 0 to 100% (y axis in Fig. 24). Therefore, the simulations
are useful for understanding how trait clines can evolve with or
without GEA patterns at the underlying loci.

Interactions among landscape, demography, and genetic
architecture determine the proportion of QTNs with clinal
patterns. The simulations that evolved a large proportion of
clinal QTNs were simulations with oligogenic architectures and
no pleiotropy (Fig. 2 A and B). The proportion of clinal QTNs
decreased as the genetic architecture became more polygenic
(Fig. 2B). There was an interaction between genic level and pleiotropy,
as pleiotropy reduced the proportion of clinal QTNs by ~40% in
oligogenic architectures, but this effect became less pronounced as the
architecture became more polygenic (Fig. 2B, compare bars within
genic level). In addition, the proportion of clinal QTNs decreased
as the strength of selection became weaker, but was not substantially
affected by demography (S/ Appendix, Fig. S7).

When only the temperature trait was simulated alone, a similar
proportion of temperature QTNs evolved clines across all land-
scapes (Fig. 2C, compare medians within “one Trait”), which is
consistent with the relationship between the temperature trait
optimum and spatial location being the same among the
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landscapes (Fig. 14). However, when the temperature trait was
simulated in conjunction with the £nv2 trait, a slightly decreased
proportion of temperature QTN evolved clines (Fig. 2C, com-
pare medians for one Trait vs. “two Traits” in the same color bar).

The landscape greatly affected the proportion of Env2 QTN
that evolved clines. In the Stepping-Stone-Clines landscape, the
proportion of Env2 QTNs that evolved clines was similar to the
proportion of temperature QTNs that evolved clines (compare dark
purple bar in Fig. 2D with Fig. 2C, two traits), which is consistent
with this landscape being symmetrical with regard to gene flow in
both environments. However, the proportion of Env2 QTNs with
clines decreased in the Stepping-Stone-Mountain scenario and was
greatly reduced in the Estuary-Clines scenario (Fig. 2D).

Trait clines evolved with nonclinal patterns in the underlying
allele frequencies under conditions that promoted unique
combinations of mutations to evolve to the multivariate
optimum in different parts of the landscape. Consider an example
from the Estuary demography with a pleiotropic and moderately
polygenic architecture: Phenotypic clines evolved in both traits,
but with more variance for the £nv2 trait that experienced higher
gene flow (Fig. 3 A and B). Many temperature QTN exhibited
nonmonotonic relationships between allele frequency and deme
temperature (Fig. 3C), while most £nv2 QTNs showed no apparent
pattern (Fig. 3D). These patterns were caused by unique sets of
alleles that evolved in response to the unique multivariate optima
at each inner estuary site (Fig. 3 £and F); a phenomenon that was
exacerbated by lack of gene flow between the inner estuary sites. The
same phenomenon was observed in the Stepping-Stone-Mountain
simulations, except in this case unique genetic architectures evolved
to the same multivariate optimum in the upper corners or lower
corners of the landscape (e.g., convergent evolution for the trait),
because of lack of gene flow between these locations (42).

As architectures became more polygenic, a larger number of
genetic routes were available to achieve the same trait value (e.g.,
high genotypic redundancy, sensu 43). This led to more unique
sets of alleles evolving to the multivariate optima in each deme,
and hence fewer allele frequency clines. Genotypic redundancy,
however, was not a prerequisite for lack of clines at QTNs. Under
oligogenic architectures with low genotypic redundancy, pleiot-
ropy led to fewer clines at QT Ns (Fig. 2B) because a pleiotropic
mutation in a single patch could bring that deme closer to the
multivariate optimum in that patch: Pleiotropy promoted unique
combinations of mutations to evolve to the multivariate optimum
in different demes, which reduced GEA patterns.

Note that due to the arbitrary choice of simulation parameters,
the proportion of simulations that evolved clines does not reflect
the frequency that clines are expected to evolve in nature. The sim-
ulations are only useful for understanding the conditions that trait
clines evolve with or without GEA patterns at the underlying QTNs.

To What Extent Do GEAs Accurately Infer the Genetic Basis of
Adaptation? Fach simulation was analyzed with GEA methods
commonly used to identify clinal alleles as outliers beyond that
expected by neutrality: Kendall's T rank correlation between
genotype and environment (no structure correction), latent factor
mixed model [LFMM, univariate, includes structure correction (20,
21, 25)] and redundancy analysis [RDA, multivariate ordination,
with and without structure correction (29, 31, 32, 44)].

While structure correction greatly reduced false discovery rates
for the univariate models, the multivariate RDA showed high false
discovery rates with and without structure correction (Fig. 44 and
SI Appendix, Fig. S8). Power to detect QTNs was generally less
than 60% across all approaches, and power was reduced by ~30 to
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50% after structure correction for the temperature model (Fig. 4B).
This occurred because structure correction caused power to decline
as the correlation between structure and environment increased
(especially ata correlation > 0.25, Fig. 4Cand ST Appendix, Fig. S9),
and temperature was highly correlated with structure across all
simulations (87 Appendix, Fig. S5). Thus, in traits that evolved the
highest proportion of clinal QTNs, GEA outlier approaches could
have the least accurate inference due to structure correction.

Frameworks to Determine How Important Clinal QTNs Are in
Adaptation. The observation of nonclinal patterns in QTN raise
questions about the importance of clinal QTNs in adaptation.
Here I introduce three different frameworks that could be applied
to empirical data to quantitatively answer this question.

40f12 https://doi.org/10.1073/pnas.2220313120

The first framework quantifies the proportion of candidate
loci from a genome-wide association study (GWAS) or quanti-
tative-trait locus (QTL) mapping study that shows clinal rela-
tionships with an environmental variable (pgyas)- A requirement
for this framework is that the trait chosen for the GWAS shows
a clinal relationship with the environmental variable. In the sim-
ulations, the accuracy of this framework depended on the under-
lying genetic architecture (SI Appendix, Fig. $10). When the
underlying genetic architecture was highly polygenic, pcwas
scaled directly with the known proportion of QTNs that were
clinal. As the architecture became more oligogenic, Pawas
became an underestimate of the proportion of QTNs that were
clinal due to a lower ratio of true positives to false positives in
the candidate hits.
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The second framework quantifies the proportion of additive
genetic variance (V) in the environmental trait explained by clinal
QTNs (py,). This framework could be applied to empirical data
by approximating the V, of 7 clinal alleles using their allele frequen-
cies (p;) and effect size estimates (o) from a GWAS with the envi-
ronmental trait as o, p,(1-p), then dividing the sum by an
estimate of V) in the trait using standard quantitative genetic
methods (45). In the simulations, py, could be as low as 1% or as
high at 100%. With the simulations, I additionally evaluated
whether the proportion of V, explained by nonclinal QTNs was

PNAS 2023 Vol.120 No.12 2220313120

different from a null expectation based on the proportion of QTNs
that were nonclinal. For the temperature trait that evolved a lot of
clinal QT'Ns, nonclinal QTN contributed less to V, than expected,
while for the £nv2 trait in the Estuary-Clines landscapes the con-
tribution of nonclinal QTNs was higher than 70% and similar to
the null (87 Appendix, Fig. S11).

The third framework quantifies the proportion of the total local
adaptation that is explained by clinal alleles (p; ), and is the most
comprehensive but also requires the most empirical data. The heat-
maps in Fig. 2 suggest that nonclinal QTNs contribute to adaptation
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the first latent factor U7 from LFMM. Abbreviations: Cor(p, env): Correlation
between derived allele frequency p and the environment; LFMM: latent factor
mixed models; (p)RDA: (partial) redundancy analysis.

in specific demes, so it is possible that clinal QTNs with broadscale
geographic patterns are sufficient to explain local adaptation in the
metapopulation. In this framework, total local adaptation is quanti-
fied from a reciprocal transplant experiment as the mean difference
in fitness between sympatry and allopatry (46), and the results of this
experiment are used to quantify the functional relationship between
phenotype and fitness at each site. The local adaptation explained by
clinal alleles is quantified by i) calculating a breeding value for each
individual from the clinal alleles in the genome and the allele effect
sizes from a GWAS, ii) approximating the difference in that breeding
value’s fitness between sympatry and allopatry using the functional
relationship between phenotype and fitness at each site, and iii) aver-

aging that value across all individuals and dividing by the experimen-
tal total local adaptation (/\gy). In the simulations, p; 5 was generally
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between 50 and 100% without structure correction (due to the
higher amount of local adaptation in the Zémperature trait that had
more clinal QT Ns than the Env2 trait), but could drop below 30%
after structure correction (due to overcorrection in the Temperature
trait, which was more correlated with structure) (SI Appendix,
Fig. S12). The effects of structure correction were nuanced and could
sometimes result in an increase in the proportion of local adaptation
explained by clinal QT Ns because of increased power to detect £nv.2
QTN (SI Appendix, Figs. S12 and S13).

A Framework to Translate between Multivariate Ordination and
Quantitative Genetics. RDA had high false-positive rates and low
power regardless of whether structure was included in the model,
indicating that it was not appropriate for the detection of QTNGs.
This raised the question of what multivariate ordination accurately
infers about local adaptation. Interestingly, however, without
structure correction individuals visually mapped onto RDA space
according to their multivariate traits (e.g., Fig. 54). Current
interpretations of RDA loadings are limited to “population/
genotype X is correlated with environment A,” and ordinations have
been criticized for lack of interpretability (47). Below, a framework
is introduced that back-transforms an individual’s multivariate
RDA score into an estimate of the quantitative trait value for that
individual. This back-transformation is an extension of RDA for
predicting environmental traits from landscape genomic data (only
genotypes and environments) and is biologically interpretable as a
standardized trait value. The accuracy of the back-transformation
scales with the degree that the phenotype evolves to be correlated
with the environmental variable and is unaffected by the false-
positive rate of RDA as an outlier method for detecting single
nucleotide polymorphisms.

Back-transformation for standardized trait value. The RDA-
predicted environmental trait value of individual 7 in environment
5 i is back-transformed from their score in multivariate space as

k=c
b= D Fyhyra, (1]
k=1

where ; is the RDA-predicted unstandardized environmental trait
value, 4 is the canonical axis, ¢ is the number of canonical axes
included in the calculation, F), is the “site score” of individual 7 on
canonical axis £, 4, is the eigenvalue of axis £, and 7, is the correlation
between environment j and axis 4 (notation following ref. 48 pp. 579
to 593, see SI Appendix, Fig. S14 for conceptual visualization). The
unstandardized 7;; was then converted to a standardized z-score for
the RDA-predicted trait value. The prediction was calculated from
an RDA based on 20,000 loci randomly chosen from the genome.
Accuracy of the prediction was calculated as Kendall’s correlation
between 7 v;; and the ground-truth trait value z; (of individual 7 in
quantltamve trait j that adapted to environment ])

Accuracy of back-transformation without structure correction.
For the basic RDA model without structure correction, across all
simulations there was a positive correlation between the RDA-
predicted environmental trait for each individual (predicted from
its scores in RDA space, Eq. 1) and the ground-truth evolved
value (Fig. 5C). Accuracy was not affected by the genic level of
the architecture (Fig. 5C and S/ Appendix, Fig. S15). Surprisingly,
the prediction was accurate even when unique combinations of
QTNs resulted in similar trait values (S Appendix, Fig. S16).
The accuracy of the RDA-predicted trait value was determined
primarily by the degree that the trait evolved to be correlated
with the environment (87 Appendix, Fig. S17) and secondarily
by the demography (S7 Appendix, Table S3). Note, however, that
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Fig. 5. Evaluation of redundancy analysis (RDA) model with genotype as a function of the environment. (A) RDA plots with individuals colored according to
their evolved multivariate trait value without a correction for structure or (B) in a pRDA with a structure correction. (C) Across both traits, accuracy of the RDA-
predicted individual trait value from Eq. 1 based on that individual's score in RDA space. Accuracy was measured as the correlation between the evolved trait
value and the RDA prediction. (D) RDA plots with single-nucleotide polymorphisms (SNPs) colored according to their effect on the temperature trait without a
correction for structure or (E) in a pRDA with a structure correction. QTNs are colored according to their effect size on the trait and the point size corresponds
to the proportion of additive genetic variance (V,). RDA outliers are outlined in black diamonds. (F) Accuracy of the RDA-predicted mutation effect size from
Eq. 2 based on that QTN's score in RDA space. Accuracy was measured as the correlation between the evolved effect size and the RDA prediction. Parameter
levels for A-E: Estuary clines landscape, moderately polygenic, two traits with pleiotropy and equal selection strength, N central cline, m constant, seed 1231214.

the proportion variance explained by each RDA axis did not
necessarily reflect how “important” that axis was. For example,
due to the higher gene flow for the Env2 trait in Fig. 54, the first
RDA axis (on which temperature loaded) explained almost all
the variation, even though temperature and Env2 were weighted
equally in the fitness calculation.

Back-transformation for standardized allele effect size. The
RDA trait-prediction was accurate even when unique architectures
resulted in the same trait value (e.g., ST Appendix, Fig. S16), when
geographic location was not correlated with trait values (as in
8§-Min), and when the QTNs were not outliers in RDA space.
This could occur if the underlying QTN mutations mapped onto
RDA space according to their effect size, and traits were a sum of
effects of the QTN alleles within each individual genome (Fig. 5D
for temperature, SI Appendix, Fig. S18 for Env2). To quantify
how accurately QTNs loaded onto RDA axes based on their
multivariate effect size, I used a back-transformation framework
analogous to Eq. 1, but for allele effect sizes. The RDA-predicted
relative effect size of locus / on quantitative trait j is

k=c
;= ; UnArrips (2]
=1

where £ is the canonical axis, ¢ is the total number of canonical
axes (two in all simulations), Uy, is the normalized eigenvector
(“species score”) for locus / on canonical axis 4, 4, is the eigenvalue
of axis 4, and 7, is the correlation between environment j and
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A~

axis k (S Appendix, Fig. S14B). The unstandardized %; was
then converted to a standardized z-score for the RDA—prec{icted
mutation effect size, and accuracy was calculated as Kendall's
correlation coeflicient between the prediction and the evolved
additive effect on the derived allele at that locus on the quantitative
trait (ground trutch).

The accuracy of Eq. 2 was not affected by pleiotropic effects of
single alleles, but accuracy decreased as the genic level increased,
due to decreasing allelic effect sizes (Fig. 5F). This led to an inter-
esting paradox, because the accuracy of Eq. 1 was not affected by
genic level (Fig. 5C). The apparent paradox resulted from a balance
between two sources of uncertainty in the trait prediction: i) esti-
mation error in the effect size of QTN within the RDA (higher
error in polygenic traits with small effects and lower error in oli-
gogenic with large effects) and ii) sampling error that arose from
selecting a subset of markers from the simulation to calculate the
trait prediction (lower error in polygenic with many loci and
higher error in oligogenic with few loci) (S Appendix, Supplemental
Results: Accuracy of RDA Trait and Mutation Predictions).

Accuracy of back-transformation with structure correction.
Structure correction jumbled the mapping of individuals and
mutations in multivariate space (compare Fig. 5B with Fig. 5C for
traits, Fig. 5E to Fig. 5D for temperature QTNs, and S7 Appendix,
Fig. S18 A and B for Env2 QTNis). The jumbling primarily occurred
along the temperature-loaded RDA axis, which was more correlated
with structure. As a result, the pRDA model with structure correction
typically had decreased performance for the multivariate trait prediction
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Eq. 1 and mutation effect size prediction Eq. 2 (S Appendix, Figs. S18
Cand D and S19).

An accurate prediction of a quantitative trait for an individual
from landscape genetic data for a locally adapted species could
have potentially useful applications, particularly for traits such as
temperature tolerance that can be hard to measure in a standard-
ized way (49). This raised the question of how few markers would
be necessary to make an accurate prediction of the trait value.
Across a wide range of scenarios, accuracy of the RDA trait-
prediction was similar for 5,000 (~15 to 20% of the simulated
genome) randomly sampled loci from the genome as it was for
20,000 loci (-60 to 70% of simulated genome), although error
was higher in the oligogenic case due to smaller chance of the
region of the genome affected by selection being included

(81 Appendix, Fig. S20).

A Complex Multivariate Case. To explore whether the results were
valid in a more complex context, I created a non-Wright—Fisher
multivariate range expansion simulation with six moderately
polygenic environmental traits, each with spatially heterogeneous
trait optima given by a Bioclim environment in western Canada
(Fig. 64, simulations extended from 50). The selective Bioclim

environments were weakly correlated (SI Appendix, Fig. S21).
The simulations allowed for pleiotropic effects on any number of
traits, with complex correlation patterns evolving among the allele
effects on traits (S Appendix, Fig. S22). The parameters resulted
in population expansion from three refugia (after burn-in) with
allele surfing and secondary contact (Movie S1), which gave rise to
complex patterns of admixture and population structure (Fig. 6C
and SI Appendix, Figs. $23 and §24). All six traits evolved local
adaptation, as evidenced by high correlations (>0.9) between trait
values and environments. The QTN evolved a mix of clinal and
nonmonotonic patterns in allele frequencies across environmental
gradients, with 0 to 11% of QTNs showing significant clines
(Fig. 6B).

The RDA-predicted trait value (estimated from Eq. 1 using the
first three redundancy axes) was 60 to 80% accurate, and accuracy
was not affected by the addition of three nuisance Bioclim varia-
bles in the RDA model (Fig. 6D and SI Appendix, Fig. S21).
Although the trait value of an individual could not always be
determined visually from its mapping in an RDA biplot
(SI Appendix, Fig. S25), the prediction was accurate across envi-
ronmental variables, regardless of the degree they were correlated
with geography or population structure (S Appendix, Fig. S26).
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ancestral clusters. Intermediate colors represent admixture. (D) Accuracy of the redundancy analysis (RDA) predicted standardized trait value from Eq. 1 compared
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Correction for structure only decreased accuracy for the traits that
were correlated with the first two principal components of popu-
lation structure, or both latitude and longitude, with little effect
on the accuracy for other traits (Fig. 6D and SI Appendix,
Fig. $26). The RDA-predicted trait value Eq. 1 was as accurate or
more accurate than a polygenic score based on GEA outliers from
univariate latent factor mixed models (Fig. 6D). Indeed, for mean
annual temperature, a polygenic score could not be predicted
because there were no outliers (Fig. 6D).

Applications of redundancy analysis in the Literature. Current
applications of RDA in the literature fall into two categories i) use
as an outlier method to detect the genetic basis of environmental
adaptation (which this study shows has high false-positive rates),
and ii) as a visualization tool to understand how populations/
genotypes are correlated with environments (which this study
shows can be an accurate approximation for an quantitative
trait). I surveyed the literature for peer-reviewed papers that cited
(32) and were published since 2021. Of the 10 studies that met
those criteria, 90% of them used RDA to detect oudliers, while
40% used RDA to visualize how populations are correlated with
environments (S/ Appendix, Table S4). Thus, the proportion of
studies that currently use RDA for outlier detection, which this
study shows is plagued by false positives, is roughly twice as high
as those that use it for understanding population-level adaptation.
Additionally, 40% of the studies included a structure correction
in the RDA, which this research shows can affect the accuracy of
inference (SI Appendix, Table S4).

Discussion

Population genetic models of adaptation to a heterogeneous envi-
ronment that assume selection acts directly on the locus predict
that frequency clines will evolve at alleles under selection (2, 5-8).
Much of the existing literature on polygenic adaptation has
focused on whether subtle allele frequency changes along envi-
ronmental gradients result in detectable clines, which is a concept
that falls under the GEA paradigm (16, 51). Given this body of
literature, the evolution of adaptive trait clines with nonmono-
tonic patterns in the underlying allele frequencies initially seems
like a paradox. The paradox arises through a quantitative genetic
model of selection, under conditions that promote unique com-
binations of mutations to evolve to the multivariate optimum in
different parts of the landscape.

By adding spatial complexity, this research demonstrates how
genotypic redundancy [i.e., multiple possible genotypes that lead
to a similar phenotype; (43)] can interact with pleiotropy and
reduced gene flow (42) to evolve to nonmonotonic patterns
between allele frequencies at quantitative-trait nucleotides and
each environmental variable. In this case, trait adaptation pro-
ceeds via unique allelic combinations in different demes, which
can lead to unexpected patterns at the underlying alleles (51, 52).
These unique allelic combinations are analogous to modular
genetic architectures, which have been predicted to evolve in
complex environments (47, 53-55).

Such complex possibilities were verbally predicted by Barton in
1979 (8), but have not been elucidated until now. This research also
demonstrates, however, that genotypic redundancy is not required
to evolve nonlinearities. Oligogenic architectures with low redun-
dancy evolved nonclinal patterns when pleiotropic effects allowed
unique combinations of mutations to achieve a spatially varying
multivariate optimum. Although this study focused on environmen-
tal gradients across space, similarly unexpected patterns could evolve
in response to environmental change through time.

PNAS 2023 Vol.120 No.12 2220313120

Recent reviews have concluded that polygenic architectures are
common in environmental adaptation (11, 56) and that pleiotropy
is common in adaptive divergence (57), indicating that the para-
dox could be common. The simulations raise interesting questions
that could be tested empirically, such as i) what kind of patterns
between allele frequency and environment evolve at hits for
adapted traits in genome-wide association studies?; ii) what pro-
portion of additive genetic variance is explained by clinal alleles?;
iii) what proportion of total local adaptation can be explained by
clinal alleles?; and iv) how well does multivariate trait prediction
from landscape genomic data predict empirically measured mul-
tivariate traits? This research also raises questions about the extent
to which local adaptation is nonparallel on different kinds of land-
scapes (e.g., stepping stone vs. estuary), which can now be quan-
tified by estimating evolutionary constraint (58).

In addition, this research can explain why clines in allele fre-
quencies at genes that underlie environmental traits do not always
evolve. For example, using quantitative trait loci underlying traits
that had clines with environmental gradients, Mahoney et al. dis-
covered some sets of loci that showed nonclinal patterns of increas-
ing and decreasing allele frequencies across an environmental
gradient as predicted by this study (59). More empirical studies
applying the frameworks proposed here are needed to determine
the importance of clinal alleles in adaptation. If such nonmono-
tonic patterns are common in nature, these results raise questions
about the utility of current GEA methods for accurately inferring
the genetic architecture of adaptation to complex environments.
The challenges with GEAs are not only the question of whether
allele frequency clines have evolved in the system, but also how
to know in any particular system the extent to which inference is
plagued by false positives and false negatives, and how to correct
for structure.

With regard to the question of whether the utility of GEA
methods should be reassessed, it depends on the study question.
If the study question seeks to accurately infer the genetic basis of
adaptation to the environment, GEA methods will be limited
primarily by first principles (the number of quantitative-trait
nucleotides that evolve clines) and secondarily by statistical issues
associated with correction for population structure (either riddled
with false positives without structure correction, or decreased
power with structure correction if structure correlates with the
selective environment). This latter “catch-22” raises the possibility
that GEA methods will only accurately infer QTNs within a lim-
ited parameter space.

On the other hand, if the study question seeks to predict some-
thing about local adaptation in the population, in some systems
a few true-positive clinal QTNs that explain broad-scale geo-
graphic patterns of adaptation may be sufficient for the prediction.
Various methods for genomic forecasting and genomic offset have
been proposed to meet the challenges of biodiversity management
under climate change, but many of them incorporate GEA meth-
ods (60-62). Such gene-targeted conservation approaches have
been criticized because of the difficulty in knowing whether the
genomic basis of adaptation has been accurately inferred (63-65).
Results from this study suggest that GEA results may be sufficient
to forecast broad-scale biogeographic patterns in some systems
but not others.

Despite the limitations of GEA methods, this study highlights
how multivariate trait prediction can be accurate without knowl-
edge of the genetic architecture. Interestingly, the RDA trait pre-
diction (Eq. 1) was accurate even when two individuals had
different genetic architectures that gave the same trait value, when
QTNs were not outliers in RDA space, when geographic location
was not correlated with trait values, and for environmental

https://doi.org/10.1073/pnas.2220313120 9 of 12


http://www.pnas.org/lookup/doi/10.1073/pnas.2220313120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2220313120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2220313120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2220313120#supplementary-materials

Downloaded from https://www pnas.org by NORTHEASTERN UNIV LIB on March 14,2023 from IP address 155.33.31.132.

variables that were not correlated with population structure. This
occurred because prior to ordination in the RDA, each locus is
used in a multiple regression model with the environmental var-
iables to produce fitted values for that locus across individuals.
Thus, there is flexibility with the RDA to capture the way envi-
ronmental variables may influence the patterns at one locus in a
different way than at another locus, which may not correlate with
the relationship between the environment and population struc-
ture (Supplemental Tutorial). Additionally, the multivariate trait
prediction was more accurate without a correction for structure
in the RDA, because structure correction jumbled the multivariate
mapping of loci and individuals along the environment(s) that
were more correlated with structure.

The results herein highlight that using ordination or other
genomic prediction methods to predict multivariate trait values at
the level of the individual could prove more fruitful across a wide
range of scenarios than identifying GEA outliers. These prediction
methods require that linked loci are included in the data (66).
Whether such trait predictions from genomic and environmental
data will be accurate with dominance, epistatic interactions, trait
plasticity, and/or with nonlinear relationships between the trait
optimum and environmental variable remains an important direc-
tion for future research. An important next step for empirical
research will be to validate the RDA trait prediction by comparing
it with ground-truth trait values obtained through experimental
measures of traits in common garden environments. Biodiversity
management in the face of rapid, multivariate climate change in
the world’s terrestrial and marine systems remains an urgent soci-
etal need (67, 68). If multivariate trait predictions meet an accept-
able level of performance through this validation process (reviewed
in ref. 69), these predictions could prove useful for genomic fore-
casting, as well as choosing individuals for restoration or assisted
gene flow efforts.

Materials and Methods

Landscapes and Demographies. All simulations consisted of 100 demes
arranged on a 10 x 10 landscape grid (Fig. 14). The 15 levels of landscape-de-
mography were broadly divided into three landscape categories (Fig. 14): i) a
stepping stone landscape with latitudinal and longitudinal selective clines
(Stepping-Stone Clines, the most commonly simulated scenario in testing meth-
ods) (14, 20, 22-24,27-30), ii)) a stepping stone landscape with one latitudinal
cline and one nonlinear longitudinal mountain range (Stepping-Stone Mountain,
which left the potential for unique architectures to arise to the same selective
pressure at different geographic locations), and iii) an estuary landscape with
a latitudinal and longitudinal selective clines (Estuary Clines, which simulated
repeated independent bouts of adaptation analogous to oysters or sticklebacks
that repeatedly colonize and adapt to isolated freshwater environments connected
by gene flow in the marine environment). For simplicity, | refer to the latitudinal
environment as Temperature and the longitudinal environment as £nv2.

In summary, Stepping-Stone Mountain had a different environmental pattern
than Stepping-Stone Clines but the same demography, while Estuary Clines had
the same environmental pattern as Stepping-Stone Clines but different demog-
raphy (Fig. 14). The demographic parameters were chosen such that different
landscapes achieved similar levels of neutral genetic differentiation and local
adaptation. Within each of the three landscapes, five demographies were sim-
ulated that described the migration rates and effective population sizes on the
landscape (Fig. 1B and S/ Appendix, Supplemental Methods and Figs. S27 and
528 and Tables S5 and S6).

See Sl Appendix, Supplemental Methods for a description of the multivariate
continuous space simulations with six traits.

Genetic Map. The Wright-Fisher simulations were based on a previously pub-
lished quantitative genetic model and a genetic map (50). The genome con-
sisted of 20 linkage groups each with 50,000 sites. The scaled recombination
rate (N r=0.01) gave a resolution of 0.001 cM between proximate bases

metapop
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and a total length of 50 cM for each linkage group. This resolution mimicked a
single-nucleotide polymorphism chip, in which loci were collected across a large
genetic map (50). The population-scaled neutral mutation rate was (Nyeipop 1t =
0.001). QTNs could evolve on the first 10 linkage groups, while on the second
10 linkage groups, only neutral loci could evolve.

Genetic Architecture and Stabilizing Selection.

Mutation. Quantitative trait nucleotides contributed additively to the optimal
phenotype for each individual without dominance. Three genic levels were simu-
lated: oligogenic (few loci of large effect on the trait), moderately polygenic(doz-
ens to hundreds of loci with intermediate effects), and highly polygenic(hundreds
of loci with small effects Fig. 1C and SI Appendix, Table S7). For QTN mutations
under one trait or two traits without pleiotropy, the univariate effect size of a QTN
mutation was drawn from a normal distribution with a mean of 0 and SD 6oy,
(51 Appendix, Table S7). For QTN mutations under two traits with pleiotropy, the
bivariate effect size was drawn from a multivariate normal distribution with a SD
of &y for both traits and no covariance, which gave flexibility for mutations to
evolve with effects on one or both traits. Thus, the distribution of effect sizes and
linkage relationships among QTNs was allowed to evolve.

Pleiotropy. Within each genic category were five levels of pleiotropy and selec-
tion: i) one temperature trait (which adapted to the latitudinal cline), ii) two traits
without pleiotropy and equal strengths of selection on both traits, iii) two traits
without pleiotropy and with weaker selection on the temperature trait, iv) two
traits with pleiotropy (QTNs could evolve effects on one or both traits) and equal
strengths of selection on both traits, and v) two traits with pleiotropy and with
weaker selection on the latitudinal temperature trait (Fig. 10 and SI Appendix,
Table S8).

Selection. The trait was subject to spatially heterogeneous stabilizing selection
with the optimum for each location in space given by the environment. For each
individual in each generation, the fitness was determined by a Gaussian function
given the difference between the individual's phenotype and the optimum at that
location. For two traits, the fitness for individual 7 at location {x,y} was

1 exp(—%(X,—@Xy)TE‘1(X,—@Xy))
., = |—

ixy
V@) |z

where X is a vector of phenotypic values forindividual i in deme xy and @, is a
vector of phenotypic optimums for that deme (optimums shown in Fig. 14). Zis
the symmetric variance-covariance matrix representing the strength of selection
on each trait within a deme. For two traits, X isa 2 x 2 matrix with the strength of
selection on the diagonals (Fig. 1D and S/ Appendix, Table S8) and zero covariance.
For one trait, this equation reduces to the normal distribution.

Forinformation on burnin, adding neutral loci with tree sequencing, filtering,
and sampling, see SI Appendix, Supplemental Methods.

. [3]

Quantifying the Degree of Local Adaptation, Divergence, and Structure.
For each replicate, the degree of local adaptation was measured as i) the difference
between population fitness in sympatry and allopatry following (46) and ii) the
correlation between the phenotype and environmental cline for each trait. Overall
divergence (genetic differentiation) was calculated as Weir and Cockerham'’s Fr
(70)in OutFLANK (71). Population structure was estimated with a principal com-
ponent analysis on the genotype matrix.

Quantifying Trait and Allelic Clines. The degree of a trait cline was measured
as Kendall's T rank correlation coefficient between individual trait values and
deme environment. The degree of an allele frequency cline was measured as
Kendall's T rank correlation coefficient (72, 73) between deme allele frequency
and deme environment, with significance being determined after Bonferroni
correction based on the number of single nucleotide polymorphisms in the data.
QTNs that were significant by this criteria were deemed clinal QTNs. The proportion
of clinal QTNs excluded minor alleles with frequency < 0.07.

GEA Performance. Latent-factor mixed models assess the linear relationship
between genotype and environment while controlling for structure as latent
factors. Latent factor mixed models was implemented using the function Ifmm2
in the R package LEA v.4.0.3 (20, 21, 25). Redundancy analysis (RDA) and the
partial RDA (pRDA) including a structure correction (conditional on the first two
PC axes) were implemented using the 'rda’ function in the R package vegan
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(74). See SI Appendix, Supplemental Methods for details of implementation and
correction for false discovery rate.

The performance of the association metrics was summarized as i) false discov-
ery rate (FDR, proportion of outliers that are neutral, lower is better), ii) true-pos-
itive rate (TPR, proportion of QTNs that are significant outliers, higher is better),
and iii) the area under the precision-recall curve (higher is better) (69). In order
to provide the most optimistic estimate of a method's performance, the perfor-
mance statistics were calculated by only including truly neutral loci unaffected
by selection on linkage groups 11 to 20 and the QTNs.

Importance of Clinal QTNs to Local Adaptation.

First framework. A linear model was used to conduct the genome-wide associa-
tion study with individual trait value as the response variable and genotype, PC1,
and PC2 as explanatory variables. The proportion of genome-wide association hits
that also showed clines with the environmental variable was compared with the
known number of clinal QTNs.

Second framework. The proportion of additive genetic variance (V) for each QTN
was calculated as the additive genetic variance for the focal QTN standardized
by the total additive genetic variance following (50). The proportion of additive
genetic variance (V) explained by clinal QTNs was compared with a null expec-
tation equal to the proportion of QTNs that were clinal.

Third framework. The proportion of local explained was estimated for different
subsets of QTNs: i) QTNs with minor allele frequency > 0.01, ii) clinal QTNS,
and iii) clinal QTNs inferred from latent factor mixed models that include
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a structure correction. For ii) and iii), a GEA model was performed for each
environment, and then outlier QTNs were combined into a focal QTN set that
was used for the local adaptation prediction. For each focal subset of QTNs, the
counts of the derived allele were multiplied by the QTN effect size, summed
to get a phenotype, and that phenotype was used in an in silico reciprocal
transplant using the known phenotype-fitness function to estimate the degree
of local adaptation. This estimate was then divided by the total degree of local
adaptation (using all QTNs including those below the minor allele frequency
threshold) to get an estimate of the proportion of local adaptation explained
by that focal subset.

Data, Materials, and Software Availability. A Supplemental Tutorial that
shows how to implement Eq. 1 in R and demonstrates other properties of redun-
dancy analysis is published on the MarineOmics page at https://marineomics.
github.io/RDAtraitPredictionTutorial.html (75). The code used to produce all the
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5et/889769 (77).
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