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Significance

Population geneticists have 
historically modeled adaptation in 
meta-populations to a single 
environmental gradient, which 
evolves monotonic clinal patterns 
in allele frequency at the loci 
under selection. This study shows 
that under complex multivariate 
adaptation, trait clines can evolve 
despite nonmonotonic allele 
frequency patterns across 
environmental gradients. 
These patterns are not discovered 
by genotype–environment 
association methods, which are 
widely used to discover 
adaptation. This result challenges 
widely held conceptual models of 
adaptation via subtle shifts in 
allele frequencies across 
environmental gradients and can 
explain why genes that underlie 
environmental traits do not always 
evolve clines. Additionally, this 
study shows that even when 
inference from genotype–
environment association methods 
is inaccurate, multivariate 
quantitative traits can still be 
accurately estimated from 
genotypes and environments.
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Multivariate climate change presents an urgent need to understand how species adapt to 
complex environments. Population genetic theory predicts that loci under selection will 
form monotonic allele frequency clines with their selective environment, which has led 
to the wide use of genotype–environment associations (GEAs). !is study used a set of 
simulations to elucidate the conditions under which allele frequency clines are more or 
less likely to evolve as multiple quantitative traits adapt to multivariate environments. 
Phenotypic clines evolved with nonmonotonic (i.e., nonclinal) patterns in allele fre-
quencies under conditions that promoted unique combinations of mutations to achieve 
the multivariate optimum in different parts of the landscape. Such conditions resulted 
from interactions among landscape, demography, pleiotropy, and genetic architecture. 
GEA methods failed to accurately infer the genetic basis of adaptation under a range of 
scenarios due to first principles (clinal patterns did not evolve) or statistical issues (clinal 
patterns evolved but were not detected due to overcorrection for structure). Despite 
the limitations of GEAs, this study shows that a back-transformation of multivariate 
ordination can accurately predict individual multivariate traits from genotype and envi-
ronmental data regardless of whether inference from GEAs was accurate. In addition, 
frameworks are introduced that can be used by empiricists to quantify the importance 
of clinal alleles in adaptation. !is research highlights that multivariate trait prediction 
from genotype and environmental data can lead to accurate inference regardless of 
whether the underlying loci display clinal or nonmonotonic patterns.

genome-wide associations | multivariate ordination | local adaptation | pleiotropy | polygenic

Clines have a rich history of study in biology. Clines are a monotonic gradient in a meas-
urable character, genotype, or allele frequency (modi!ed from ref. 1). Starting around the 
1950s, population geneticists became interested in selection in continuous populations 
along environmental gradients (2–4). Population genetic theory developed then for a 
single locus under a gradient of selection predicted that clines in allele frequency will 
evolve (2, 5–8). Even multilocus models of polygenic adaptation across an environmental 
gradient predict that phenotypic clines will evolve by a series of staggered allele frequency 
clines (9–11).

As a result of this theory, ecological geneticists have long searched for clinal patterns 
in allele frequencies, dating back to Drosophila chromosome inversions (12) and many 
studies in allozymes (13). Now, the search for allele frequency clines has extended to the 
genome, to uncover the genetic basis of adaptation to the environment (13–15). Verbal 
arguments have claimed that bene!cial variants with weak phenotypic e"ects will lead 
to “subtle shifts” in allele frequency that correlate with environmental variables (16–18), 
or a subtle cline. Statistical approaches known as “genotype–environment associations” 
[genotype–environment associations (GEAs), sensu 19] have been developed to determine 
if a cline between an allele frequency and an environmental gradient is signi!cant after 
correction for neutral population structure.

GEA methods are based on the concept that adaptive alleles will form clines with a 
selective environment. Since 2010, the most widely used methods (20–25), reviews (11, 
14, 15, 26), methods evaluations (27–32), and high-pro!le applications of GEA methods 
in di"erent taxa (18, 33–37) have been cited over 7,700 times (Google Scholar, July 2022). 
A scienti!c paradigm is a distinct set of concepts, thought patterns, research methods, 
and standards for what constitutes legitimate contributions to a !eld. #e GEA concept 
meets this de!nition, and more speci!cally Kuhn’s “local” paradigm (i.e., a typical example) 
for how to study the genetic basis of adaptation to the environment (38, 39). Although 
other tests such as outlier tests for genetic di"erentiation exist, these tests do not explicitly 
link genetic di"erences to the environment (15).

GEA methods have been largely tested against data simulated under the assumption that 
the !tness of one allele increases along an environmental gradient while the other decreases, 
which evolves allele frequency associations with the climate variable (14, 20, 22–24, 27–30). D
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#is practice may have led to overly optimistic performance of 
GEAs for two reasons. First, what if the evolution of local adaptation 
does not evolve clines in frequency at the selected alleles (the !rst 
principles issue)? Second, even when allelic clines do evolve, GEAs 
may undercorrect or overcorrect for structure, leading to a failure 
to accurately detect the loci under selection (the statistical issue). 
Another statistical issue is whether the accuracy of multivariate 
ordination (to infer multivariate adaptation to multiple environ-
ments) is a"ected by a lack of clinal patterns in the data. If these 
issues prove to be relevant, then reliance on the study of clines will 
hinder detection of the genetic basis of adaptation and translation 
of genomic data to species conservation.

#e goals of this study were to i) understand the conditions 
under which allele frequency clines are more or less likely to evolve 
as quantitative traits adapt to complex environments, ii) study the 
ability of univariate [correlation, latent factor mixed models] and 
multivariate (redundancy analysis) GEA methods to correctly infer 
the genetic basis of adaptation, and iii) show that, even when the 
genetic architecture could not be accurately inferred by GEAs, 
multivariate quantitative traits can be estimated from genotype 
and environmental data through a back-transformation of ordina-
tion space. To achieve these goals, an innovative set of simulations 
were developed that included i) up to two quantitative traits, each 

adapting to a di"erent environmental pattern, ii) genetic architec-
tures ranging from oligogenic (a few loci with large e"ects on the 
trait) to highly polygenic (thousands of loci with small e"ects), iii) 
pleiotropic or nonpleiotropic mutational e"ects, and iv) complex 
landscapes and demographies (Fig. 1). Alleles had additive e"ects 
on the quantitative traits, which were under stabilizing selection 
within populations but the optimum trait value was linearly asso-
ciated with the selective environment. Across all simulations, clines 
evolved between the quantitative trait and its selective environ-
ment, but with varying proportions of quantitative trait nucleotides 
(QTNs) that evolved clines.

Results

I conducted replicate forward-time simulations of a metapopulation 
adapting to a heterogeneous spatial environment with SLiM v. 3.6 
(40, 41) to create single-nucleotide polymorphism data for each 
individual. I simulated 225 parameter levels (15 demographies × 
15 genetic architectures) of 10 replicates each, for a total of 2,250 
simulations. #e levels varied in i) the relationship between the 
landscape and the environmental trait optimum (in Stepping Stone 
Clines and Estuary Clines geographic distance corresponded to 
environmental distance; in Stepping Stone Mountain it did not 

A

B

C

D

Fig. 1. An overview of the parameter levels for the simulations with two quantitative traits. (A) Three landscapes determined the relationship between patterns 
of migration and the selective environment. The color of the point indicates the optimum multivariate trait value at that location on the landscape. The optimum 
temperature (Temp) trait followed a latitudinal cline in all landscapes, while the optimum Env2 depended on the landscape. Gray lines indicate pathways of 
migration, and their thickness represents the migration rate. (B) Five demographies determined how drift and migration operated across the landscape (examples 
shown for stepping stone). (C) Three genic levels determined the number of loci (vertical dashes) and their effect sizes (arrow thickness) on the trait. (D) Five 
pleiotropy levels determined the number of traits, pleiotropic effects of mutations, and strength of selection on each trait.
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Fig. 1A), ii) the demography described by migration rates and e"ec-
tive population size (with cases that confounded genetic drift with 
selection and cases that confounded population structure with 
selection, Fig. 1B), iii) the genic level of both traits (with cases 
spanning from oligogenic to highly polygenic, Fig. 1C), and iv) the 
pleiotropic e"ects of mutations on traits (with cases spanning from 
one trait, to two traits with and without pleiotropy, and with dif-
ferent strengths in selection on each trait, Fig. 1D). #us, the sim-
ulations spanned scenarios from those that are commonly simulated 
in the population genetics literature (one oligogenic trait adapting 
to an environmental cline) to previously unexplored scenarios (two 
polygenic traits with pleiotropy).

#e two traits included a “temperature” trait that adapted to a 
latitudinal environment (in all simulations), and an “Env2” trait 
that adapted to a longitudinal environment (only in 2-trait sim-
ulations). #e biological analogy to Env2 depended on the con-
text: it is analogous to elevation in the Stepping Stone Mountain 
landscape (e.g., trees) or salinity in the Estuary Clines landscape 
(e.g., sticklebacks or oysters) (Fig. 1A).

#e simulations reached an equilibrium level of local adaptation 
(SI Appendix, Fig. S1), and the amount of divergence was primarily 
determined by landscape and demography, while the degree of local 
adaptation (LA) was primarily determined by selection strength 
(SI Appendix, Figs. S1–S4 and Tables S1 and S2). Population struc-
ture (measured as PC1 of the genotype matrix) was highly correlated 
with deme temperature in all simulations, but rarely correlated with 
Env2 in the Stepping-Stone-Mountain or Estuary-Clines landscapes 
(SI Appendix, Fig. S5). Oligogenic, moderately polygenic, and highly 
polygenic architectures evolved on average 12, 646, and 3,042 
QTNs, but this was reduced to 8, 58, and 499, respectively, after 
!ltering for minor allele frequency (MAF) (SI Appendix, Fig. S6). 
Additional information about the simulations can be found in 
SI Appendix, Supplemental Results.

Evolutionary Processes That Affect the Proportion of Clinal QTNs. 
Across all simulations, trait clines between each quantitative trait 
and the selective environment evolved (with correlations typically 
between 0.55 and 0.9, x axis in Fig. 2A). Hereafter, “clinal QTNs” 
are those with signi!cant associations between allele frequency and 
an environmental variable after correction for multiple tests. Despite 
high correlations evolving between environmental traits and deme 
environments across all simulations, the percent of clinal QTNs 
ranged from 0 to 100% (y axis in Fig. 2A). #erefore, the simulations 
are useful for understanding how trait clines can evolve with or 
without GEA patterns at the underlying loci.

Interactions among landscape, demography, and genetic 
architecture determine the proportion of QTNs with clinal 
patterns. #e simulations that evolved a large proportion of 
clinal QTNs were simulations with oligogenic architectures and 
no pleiotropy (Fig. 2 A and B). #e proportion of clinal QTNs 
decreased as the genetic architecture became more polygenic 
(Fig. 2B). #ere was an interaction between genic level and pleiotropy, 
as pleiotropy reduced the proportion of clinal QTNs by ~40% in 
oligogenic architectures, but this e"ect became less pronounced as the 
architecture became more polygenic (Fig. 2B, compare bars within 
genic level). In addition, the proportion of clinal QTNs decreased 
as the strength of selection became weaker, but was not substantially 
a"ected by demography (SI Appendix, Fig. S7).

When only the temperature trait was simulated alone, a similar 
proportion of temperature QTNs evolved clines across all land-
scapes (Fig. 2C, compare medians within “one Trait”), which is 
consistent with the relationship between the temperature trait 
optimum and spatial location being the same among the 

landscapes (Fig. 1A). However, when the temperature trait was 
simulated in conjunction with the Env2 trait, a slightly decreased 
proportion of temperature QTNs evolved clines (Fig. 2C, com-
pare medians for one Trait vs. “two Traits” in the same color bar).

#e landscape greatly a"ected the proportion of Env2 QTNs 
that evolved clines. In the Stepping-Stone-Clines landscape, the 
proportion of Env2 QTNs that evolved clines was similar to the 
proportion of temperature QTNs that evolved clines (compare dark 
purple bar in Fig. 2D with Fig. 2C, two traits), which is consistent 
with this landscape being symmetrical with regard to gene &ow in 
both environments. However, the proportion of Env2 QTNs with 
clines decreased in the Stepping-Stone-Mountain scenario and was 
greatly reduced in the Estuary-Clines scenario (Fig. 2D).

Trait clines evolved with nonclinal patterns in the underlying 
allele frequencies under conditions that promoted unique 
combinations of mutations to evolve to the multivariate 
optimum in different parts of the landscape. Consider an example 
from the Estuary demography with a pleiotropic and moderately 
polygenic architecture: Phenotypic clines evolved in both traits, 
but with more variance for the Env2 trait that experienced higher 
gene &ow (Fig. 3 A and B). Many temperature QTNs exhibited 
nonmonotonic relationships between allele frequency and deme 
temperature (Fig. 3C), while most Env2 QTNs showed no apparent 
pattern (Fig. 3D). #ese patterns were caused by unique sets of 
alleles that evolved in response to the unique multivariate optima 
at each inner estuary site (Fig. 3 E and F); a phenomenon that was 
exacerbated by lack of gene &ow between the inner estuary sites. #e 
same phenomenon was observed in the Stepping-Stone-Mountain 
simulations, except in this case unique genetic architectures evolved 
to the same multivariate optimum in the upper corners or lower 
corners of the landscape (e.g., convergent evolution for the trait), 
because of lack of gene &ow between these locations (42).

As architectures became more polygenic, a larger number of 
genetic routes were available to achieve the same trait value (e.g., 
high genotypic redundancy, sensu 43). #is led to more unique 
sets of alleles evolving to the multivariate optima in each deme, 
and hence fewer allele frequency clines. Genotypic redundancy, 
however, was not a prerequisite for lack of clines at QTNs. Under 
oligogenic architectures with low genotypic redundancy, pleiot-
ropy led to fewer clines at QTNs (Fig. 2B) because a pleiotropic 
mutation in a single patch could bring that deme closer to the 
multivariate optimum in that patch: Pleiotropy promoted unique 
combinations of mutations to evolve to the multivariate optimum 
in di"erent demes, which reduced GEA patterns.

Note that due to the arbitrary choice of simulation parameters, 
the proportion of simulations that evolved clines does not re&ect 
the frequency that clines are expected to evolve in nature. #e sim-
ulations are only useful for understanding the conditions that trait 
clines evolve with or without GEA patterns at the underlying QTNs.

To What Extent Do GEAs Accurately Infer the Genetic Basis of 
Adaptation? Each simulation was analyzed with GEA methods 
commonly used to identify clinal alleles as outliers beyond that 
expected by neutrality: Kendall’s τ rank correlation between 
genotype and environment (no structure correction), latent factor 
mixed model [LFMM, univariate, includes structure correction (20, 
21, 25)] and redundancy analysis [RDA, multivariate ordination, 
with and without structure correction (29, 31, 32, 44)].

While structure correction greatly reduced false discovery rates 
for the univariate models, the multivariate RDA showed high false 
discovery rates with and without structure correction (Fig. 4A and 
SI Appendix, Fig. S8). Power to detect QTNs was generally less 
than 60% across all approaches, and power was reduced by ~30 to D
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50% after structure correction for the temperature model (Fig. 4B). 
#is occurred because structure correction caused power to decline 
as the correlation between structure and environment increased 
(especially at a correlation > 0.25, Fig. 4C and SI Appendix, Fig. S9), 
and temperature was highly correlated with structure across all 
simulations (SI Appendix, Fig. S5). #us, in traits that evolved the 
highest proportion of clinal QTNs, GEA outlier approaches could 
have the least accurate inference due to structure correction.

Frameworks to Determine How Important Clinal QTNs Are in 
Adaptation. #e observation of nonclinal patterns in QTNs raise 
questions about the importance of clinal QTNs in adaptation. 
Here I introduce three di"erent frameworks that could be applied 
to empirical data to quantitatively answer this question.

#e !rst framework quanti!es the proportion of candidate 
loci from a genome-wide association study (GWAS) or quanti-
tative-trait locus (QTL) mapping study that shows clinal rela-
tionships with an environmental variable ( ̂pGWAS ). A requirement 
for this framework is that the trait chosen for the GWAS shows 
a clinal relationship with the environmental variable. In the sim-
ulations, the accuracy of this framework depended on the under-
lying genetic architecture (SI Appendix, Fig. S10). When the 
underlying genetic architecture was highly polygenic, p̂GWAS 
scaled directly with the known proportion of QTNs that were 
clinal. As the architecture became more oligogenic, p̂GWAS 
became an underestimate of the proportion of QTNs that were 
clinal due to a lower ratio of true positives to false positives in 
the candidate hits.
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Fig. 2. Effect of different parameter levels on the proportion of quantitative trait nucleotide (QTN) loci that evolved significant clines. (A) Scatterplot of the 
proportion of causal QTN loci that have significant allele frequency clines as a function of the degree of the evolved cline in the trait under selection. (B) The 
effect of genic level and pleiotropy level, averaged over both traits. (C) The proportion of temperature QTNs that evolved significant clines with the temperature 
environment, split out by landscape (color) or by whether the trait was simulated alone or in combination with a second trait (Number of traits). (D) The effect 
of the landscape on the proportion of Env2 QTNs that evolved significant clines with the Env2 environment (which was only simulated in combination with the 
temperature trait). Abbreviations: SS-Clines: stepping stone landscape with clines in both environments; SS-Mtn: stepping stone landscape with clines in temperature 
environment but mountain range for Env2; Est-Clines: estuary landscape with clines in both environments. See Fig. 1 for landscapes.
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#e second framework quanti!es the proportion of additive 
genetic variance (VA) in the environmental trait explained by clinal 
QTNs ( ̂pVA ). #is framework could be applied to empirical data 
by approximating the VA of i clinal alleles using their allele frequen-
cies (pi) and e"ect size estimates (αi) from a GWAS with the envi-
ronmental trait as Σαi

2pi(1−pi), then dividing the sum by an 
estimate of VA in the trait using standard quantitative genetic 
methods (45). In the simulations, p̂VA could be as low as 1% or as 
high at 100%. With the simulations, I additionally evaluated 
whether the proportion of VA explained by nonclinal QTNs was 

di"erent from a null expectation based on the proportion of QTNs 
that were nonclinal. For the temperature trait that evolved a lot of 
clinal QTNs, nonclinal QTNs contributed less to VA than expected, 
while for the Env2 trait in the Estuary-Clines landscapes the con-
tribution of nonclinal QTNs was higher than 70% and similar to 
the null (SI Appendix, Fig. S11).

#e third framework quanti!es the proportion of the total local 
adaptation that is explained by clinal alleles ( ̂pLA ), and is the most 
comprehensive but also requires the most empirical data. #e heat-
maps in Fig. 2 suggest that nonclinal QTNs contribute to adaptation 

A B

C D

E F

Fig. 3. Evolution of phenotypic clines with nonclinal patterns in allele frequencies from an Estuary-clines simulation. (A and B) The evolved individual trait value 
(i.e., the sum of QTN effect sizes) as a function of deme environment for (A) temperature and (B) Env2. (C and D) Frequency of the derived allele at each QTN vs. 
deme environment for (C) temperature and (D) Env2. Lines types and colors indicate the strength of the absolute value of the correlation between the derived 
allele frequency (p) and the environment (|Cor(p, env)|). (E and F) Genotype heatmaps for individuals (in rows) at QTNs (in columns) sampled at all (E) low values 
of Env2 or (F) high values of Env2 sites. Individuals ordered from those sampled in the north (high temperatures) to the south (low temperatures). The blocks 
of derived alleles in E shows how specific mutations arose within each inner estuary site that brought the deme closer to the multivariate optimum. Parameter 
levels: Estuary clines landscape, moderately polygenic, two traits with pleiotropy and equal selection strength, N central cline, m constant, seed 1231214. All 
QTNs with minor allele frequency > 0.01 in the metapopulation sample are plotted in C–F.
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in speci!c demes, so it is possible that clinal QTNs with broadscale 
geographic patterns are su'cient to explain local adaptation in the 
metapopulation. In this framework, total local adaptation is quanti-
!ed from a reciprocal transplant experiment as the mean di"erence 
in !tness between sympatry and allopatry (46), and the results of this 
experiment are used to quantify the functional relationship between 
phenotype and !tness at each site. #e local adaptation explained by 
clinal alleles is quanti!ed by i) calculating a breeding value for each 
individual from the clinal alleles in the genome and the allele e"ect 
sizes from a GWAS, ii) approximating the di"erence in that breeding 
value’s !tness between sympatry and allopatry using the functional 
relationship between phenotype and !tness at each site, and iii) aver-
aging that value across all individuals and dividing by the experimen-
tal total local adaptation (△SA). In the simulations, p̂LA was generally 

between 50 and 100% without structure correction (due to the 
higher amount of local adaptation in the Temperature trait that had 
more clinal QTNs than the Env2 trait), but could drop below 30% 
after structure correction (due to overcorrection in the Temperature 
trait, which was more correlated with structure) (SI Appendix, 
Fig. S12). #e e"ects of structure correction were nuanced and could 
sometimes result in an increase in the proportion of local adaptation 
explained by clinal QTNs because of increased power to detect Env2 
QTNs (SI Appendix, Figs. S12 and S13).

A Framework to Translate between Multivariate Ordination and 
Quantitative Genetics. RDA had high false-positive rates and low 
power regardless of whether structure was included in the model, 
indicating that it was not appropriate for the detection of QTNs. 
#is raised the question of what multivariate ordination accurately 
infers about local adaptation. Interestingly, however, without 
structure correction individuals visually mapped onto RDA space 
according to their multivariate traits (e.g., Fig.  5A). Current 
interpretations of RDA loadings are limited to “population/
genotype X is correlated with environment A,” and ordinations have 
been criticized for lack of interpretability (47). Below, a framework 
is introduced that back-transforms an individual’s multivariate 
RDA score into an estimate of the quantitative trait value for that 
individual. #is back-transformation is an extension of RDA for 
predicting environmental traits from landscape genomic data (only 
genotypes and environments) and is biologically interpretable as a 
standardized trait value. #e accuracy of the back-transformation 
scales with the degree that the phenotype evolves to be correlated 
with the environmental variable and is una"ected by the false-
positive rate of RDA as an outlier method for detecting single 
nucleotide polymorphisms.

Back-transformation for standardized trait value. #e RDA-
predicted environmental trait value of individual i in environment 
j, v̂ij , is back-transformed from their score in multivariate space as

 
[1]v̂ij =

k=c
∑

k=1

Fik"krjk ,

where ̂vij is the RDA-predicted unstandardized environmental trait 
value, k is the canonical axis, c is the number of canonical axes 
included in the calculation, Fik is the “site score” of individual i on 
canonical axis k, λk is the eigenvalue of axis k, and rjk is the correlation 
between environment j and axis k (notation following ref. 48 pp. 579 
to 593, see SI Appendix, Fig. S14 for conceptual visualization). #e 
unstandardized ̂vij was then converted to a standardized z-score for 
the RDA-predicted trait value. #e prediction was calculated from 
an RDA based on 20,000 loci randomly chosen from the genome. 
Accuracy of the prediction was calculated as Kendall’s correlation 
between v̂ij and the ground-truth trait value zij (of individual i in 
quantitative trait j that adapted to environment j).
Accuracy of back-transformation without structure correction. 
For the basic RDA model without structure correction, across all 
simulations there was a positive correlation between the RDA-
predicted environmental trait for each individual (predicted from 
its scores in RDA space, Eq. 1) and the ground-truth evolved 
value (Fig. 5C). Accuracy was not a"ected by the genic level of 
the architecture (Fig. 5C and SI Appendix, Fig. S15). Surprisingly, 
the prediction was accurate even when unique combinations of 
QTNs resulted in similar trait values (SI  Appendix, Fig.  S16). 
#e accuracy of the RDA-predicted trait value was determined 
primarily by the degree that the trait evolved to be correlated 
with the environment (SI Appendix, Fig. S17) and secondarily 
by the demography (SI Appendix, Table S3). Note, however, that 
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Fig. 4. Performance of different methods across all simulations. (A) False 
discovery Rate (FDR) measures the proportion of significant hits that are false 
positives. (B) True-positive rate (TPR) measures the proportion of QTN loci 
that are true positives. Note that the temperature environment was highly 
correlated with structure across all demographies, and TPR decreased more 
for this trait after structure correction. (C) Relationship between the true-
positive rate of LFMM and the degree to which population structure was 
correlated with the environment. Population structure was approximated as 
the first latent factor U1 from LFMM. Abbreviations: Cor(p, env): Correlation 
between derived allele frequency p and the environment; LFMM: latent factor 
mixed models; (p)RDA: (partial) redundancy analysis.
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the proportion variance explained by each RDA axis did not 
necessarily re&ect how “important” that axis was. For example, 
due to the higher gene &ow for the Env2 trait in Fig. 5A, the !rst 
RDA axis (on which temperature loaded) explained almost all 
the variation, even though temperature and Env2 were weighted 
equally in the !tness calculation.

Back-transformation for standardized allele effect size. #e 
RDA trait-prediction was accurate even when unique architectures 
resulted in the same trait value (e.g., SI Appendix, Fig. S16), when 
geographic location was not correlated with trait values (as in 
SS-Mtn), and when the QTNs were not outliers in RDA space. 
#is could occur if the underlying QTN mutations mapped onto 
RDA space according to their e"ect size, and traits were a sum of 
e"ects of the QTN alleles within each individual genome (Fig. 5D 
for temperature, SI Appendix, Fig. S18 for Env2). To quantify 
how accurately QTNs loaded onto RDA axes based on their 
multivariate e"ect size, I used a back-transformation framework 
analogous to Eq. 1, but for allele e"ect sizes. #e RDA-predicted 
relative e"ect size of locus l on quantitative trait j is

 
[2]ûij =

k=c
∑

k=1

Ulk"krjk ,

where k is the canonical axis, c is the total number of canonical 
axes (two in all simulations), Ulk is the normalized eigenvector 
(“species score”) for locus l on canonical axis k, λk is the eigenvalue 
of axis k, and rjk is the correlation between environment j and 

axis k (SI  Appendix, Fig.  S14B). #e unstandardized ûij  was 
then converted to a standardized z-score for the RDA-predicted 
mutation e"ect size, and accuracy was calculated as Kendall's 
correlation coe'cient between the prediction and the evolved 
additive e"ect on the derived allele at that locus on the quantitative 
trait (ground truth).

#e accuracy of Eq. 2 was not a"ected by pleiotropic e"ects of 
single alleles, but accuracy decreased as the genic level increased, 
due to decreasing allelic e"ect sizes (Fig. 5F). #is led to an inter-
esting paradox, because the accuracy of Eq. 1 was not a"ected by 
genic level (Fig. 5C). #e apparent paradox resulted from a balance 
between two sources of uncertainty in the trait prediction: i) esti-
mation error in the e"ect size of QTN within the RDA (higher 
error in polygenic traits with small e"ects and lower error in oli-
gogenic with large e"ects) and ii) sampling error that arose from 
selecting a subset of markers from the simulation to calculate the 
trait prediction (lower error in polygenic with many loci and 
higher error in oligogenic with few loci) (SI Appendix, Supplemental 
Results: Accuracy of RDA Trait and Mutation Predictions).

Accuracy of back-transformation with structure correction. 
Structure correction jumbled the mapping of individuals and 
mutations in multivariate space (compare Fig. 5B with Fig. 5C for 
traits, Fig. 5E to Fig. 5D for temperature QTNs, and SI Appendix, 
Fig. S18 A and B for Env2 QTNs). #e jumbling primarily occurred 
along the temperature-loaded RDA axis, which was more correlated 
with structure. As a result, the pRDA model with structure correction 
typically had decreased performance for the multivariate trait prediction 

Fig. 5. Evaluation of redundancy analysis (RDA) model with genotype as a function of the environment. (A) RDA plots with individuals colored according to 
their evolved multivariate trait value without a correction for structure or (B) in a pRDA with a structure correction. (C) Across both traits, accuracy of the RDA-
predicted individual trait value from Eq. 1 based on that individual's score in RDA space. Accuracy was measured as the correlation between the evolved trait 
value and the RDA prediction. (D) RDA plots with single-nucleotide polymorphisms (SNPs) colored according to their effect on the temperature trait without a 
correction for structure or (E) in a pRDA with a structure correction. QTNs are colored according to their effect size on the trait and the point size corresponds 
to the proportion of additive genetic variance (VA). RDA outliers are outlined in black diamonds. (F) Accuracy of the RDA-predicted mutation effect size from 
Eq. 2 based on that QTN's score in RDA space. Accuracy was measured as the correlation between the evolved effect size and the RDA prediction. Parameter 
levels for A–E: Estuary clines landscape, moderately polygenic, two traits with pleiotropy and equal selection strength, N central cline, m constant, seed 1231214.
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Eq. 1 and mutation e"ect size prediction Eq. 2 (SI Appendix, Figs. S18 
C and D and S19).

An accurate prediction of a quantitative trait for an individual 
from landscape genetic data for a locally adapted species could 
have potentially useful applications, particularly for traits such as 
temperature tolerance that can be hard to measure in a standard-
ized way (49). #is raised the question of how few markers would 
be necessary to make an accurate prediction of the trait value. 
Across a wide range of scenarios, accuracy of the RDA trait- 
prediction was similar for 5,000 (~15 to 20% of the simulated 
genome) randomly sampled loci from the genome as it was for 
20,000 loci (~60 to 70% of simulated genome), although error 
was higher in the oligogenic case due to smaller chance of the 
region of the genome a"ected by selection being included 
(SI Appendix, Fig. S20).

A Complex Multivariate Case. To explore whether the results were 
valid in a more complex context, I created a non-Wright–Fisher 
multivariate range expansion simulation with six moderately 
polygenic environmental traits, each with spatially heterogeneous 
trait optima given by a Bioclim environment in western Canada 
(Fig. 6A, simulations extended from 50). #e selective Bioclim 

environments were weakly correlated (SI  Appendix, Fig.  S21). 
#e simulations allowed for pleiotropic e"ects on any number of 
traits, with complex correlation patterns evolving among the allele 
e"ects on traits (SI Appendix, Fig. S22). #e parameters resulted 
in population expansion from three refugia (after burn-in) with 
allele sur!ng and secondary contact (Movie S1), which gave rise to 
complex patterns of admixture and population structure (Fig. 6C 
and SI Appendix, Figs. S23 and S24). All six traits evolved local 
adaptation, as evidenced by high correlations (>0.9) between trait 
values and environments. #e QTNs evolved a mix of clinal and 
nonmonotonic patterns in allele frequencies across environmental 
gradients, with 0 to 11% of QTNs showing signi!cant clines 
(Fig. 6B).

#e RDA-predicted trait value (estimated from Eq. 1 using the 
!rst three redundancy axes) was 60 to 80% accurate, and accuracy 
was not a"ected by the addition of three nuisance Bioclim varia-
bles in the RDA model (Fig. 6D and SI Appendix, Fig. S21). 
Although the trait value of an individual could not always be 
determined visually from its mapping in an RDA biplot 
(SI Appendix, Fig. S25), the prediction was accurate across envi-
ronmental variables, regardless of the degree they were correlated 
with geography or population structure (SI Appendix, Fig. S26). 

A B C

D

Fig. 6. A complex multivariate case with range expansion and multiple refugia. (A) The six selective landscapes from Bioclim in western Canada; background 
colors correspond to the optimum trait value on each landscape and point colors correspond to the evolved trait value at that location. (B) Allele frequency 
patterns at the derived allele of QTNs for each landscape. (C) Evolved population structure on the landscape with individuals colored according to assignment to 
ancestral clusters. Intermediate colors represent admixture. (D) Accuracy of the redundancy analysis (RDA) predicted standardized trait value from Eq. 1 compared 
among i) the base model, ii) the base model plus the addition of three nuisance Bioclim variables, a pRDA with structure either corrected by iii) geography or 
iv) principal components, and v) a polygenic score based on genotype–environment associate (GEA) outliers calculated with latent factor mixed models. For the 
polygenic score, the number of GEA outliers and the false discovery rate (FDR) are shown within the bar for each environment.D
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Correction for structure only decreased accuracy for the traits that 
were correlated with the !rst two principal components of popu-
lation structure, or both latitude and longitude, with little e"ect 
on the accuracy for other traits (Fig. 6D and SI Appendix, 
Fig. S26). #e RDA-predicted trait value Eq. 1 was as accurate or 
more accurate than a polygenic score based on GEA outliers from 
univariate latent factor mixed models (Fig. 6D). Indeed, for mean 
annual temperature, a polygenic score could not be predicted 
because there were no outliers (Fig. 6D).

Applications of redundancy analysis in the Literature. Current 
applications of RDA in the literature fall into two categories i) use 
as an outlier method to detect the genetic basis of environmental 
adaptation (which this study shows has high false-positive rates), 
and ii) as a visualization tool to understand how populations/
genotypes are correlated with environments (which this study 
shows can be an accurate approximation for an quantitative 
trait). I surveyed the literature for peer-reviewed papers that cited 
(32) and were published since 2021. Of the 10 studies that met 
those criteria, 90% of them used RDA to detect outliers, while 
40% used RDA to visualize how populations are correlated with 
environments (SI  Appendix, Table  S4). #us, the proportion of 
studies that currently use RDA for outlier detection, which this 
study shows is plagued by false positives, is roughly twice as high 
as those that use it for understanding population-level adaptation. 
Additionally, 40% of the studies included a structure correction 
in the RDA, which this research shows can a"ect the accuracy of 
inference (SI Appendix, Table S4).

Discussion

Population genetic models of adaptation to a heterogeneous envi-
ronment that assume selection acts directly on the locus predict 
that frequency clines will evolve at alleles under selection (2, 5–8). 
Much of the existing literature on polygenic adaptation has 
focused on whether subtle allele frequency changes along envi-
ronmental gradients result in detectable clines, which is a concept 
that falls under the GEA paradigm (16, 51). Given this body of 
literature, the evolution of adaptive trait clines with nonmono-
tonic patterns in the underlying allele frequencies initially seems 
like a paradox. #e paradox arises through a quantitative genetic 
model of selection, under conditions that promote unique com-
binations of mutations to evolve to the multivariate optimum in 
di"erent parts of the landscape.

By adding spatial complexity, this research demonstrates how 
genotypic redundancy [i.e., multiple possible genotypes that lead 
to a similar phenotype; (43)] can interact with pleiotropy and 
reduced gene &ow (42) to evolve to nonmonotonic patterns 
between allele frequencies at quantitative-trait nucleotides and 
each environmental variable. In this case, trait adaptation pro-
ceeds via unique allelic combinations in di"erent demes, which 
can lead to unexpected patterns at the underlying alleles (51, 52). 
#ese unique allelic combinations are analogous to modular 
genetic architectures, which have been predicted to evolve in 
complex environments (47, 53–55).

Such complex possibilities were verbally predicted by Barton in 
1979 (8), but have not been elucidated until now. #is research also 
demonstrates, however, that genotypic redundancy is not required 
to evolve nonlinearities. Oligogenic architectures with low redun-
dancy evolved nonclinal patterns when pleiotropic e"ects allowed 
unique combinations of mutations to achieve a spatially varying 
multivariate optimum. Although this study focused on environmen-
tal gradients across space, similarly unexpected patterns could evolve 
in response to environmental change through time.

Recent reviews have concluded that polygenic architectures are 
common in environmental adaptation (11, 56) and that pleiotropy 
is common in adaptive divergence (57), indicating that the para-
dox could be common. #e simulations raise interesting questions 
that could be tested empirically, such as i) what kind of patterns 
between allele frequency and environment evolve at hits for 
adapted traits in genome-wide association studies?; ii) what pro-
portion of additive genetic variance is explained by clinal alleles?; 
iii) what proportion of total local adaptation can be explained by 
clinal alleles?; and iv) how well does multivariate trait prediction 
from landscape genomic data predict empirically measured mul-
tivariate traits? #is research also raises questions about the extent 
to which local adaptation is nonparallel on di"erent kinds of land-
scapes (e.g., stepping stone vs. estuary), which can now be quan-
ti!ed by estimating evolutionary constraint (58).

In addition, this research can explain why clines in allele fre-
quencies at genes that underlie environmental traits do not always 
evolve. For example, using quantitative trait loci underlying traits 
that had clines with environmental gradients, Mahoney et al. dis-
covered some sets of loci that showed nonclinal patterns of increas-
ing and decreasing allele frequencies across an environmental 
gradient as predicted by this study (59). More empirical studies 
applying the frameworks proposed here are needed to determine 
the importance of clinal alleles in adaptation. If such nonmono-
tonic patterns are common in nature, these results raise questions 
about the utility of current GEA methods for accurately inferring 
the genetic architecture of adaptation to complex environments. 
#e challenges with GEAs are not only the question of whether 
allele frequency clines have evolved in the system, but also how 
to know in any particular system the extent to which inference is 
plagued by false positives and false negatives, and how to correct 
for structure.

With regard to the question of whether the utility of GEA 
methods should be reassessed, it depends on the study question. 
If the study question seeks to accurately infer the genetic basis of 
adaptation to the environment, GEA methods will be limited 
primarily by !rst principles (the number of quantitative-trait 
nucleotides that evolve clines) and secondarily by statistical issues 
associated with correction for population structure (either riddled 
with false positives without structure correction, or decreased 
power with structure correction if structure correlates with the 
selective environment). #is latter “catch-22” raises the possibility 
that GEA methods will only accurately infer QTNs within a lim-
ited parameter space.

On the other hand, if the study question seeks to predict some-
thing about local adaptation in the population, in some systems 
a few true-positive clinal QTNs that explain broad-scale geo-
graphic patterns of adaptation may be su'cient for the prediction. 
Various methods for genomic forecasting and genomic o"set have 
been proposed to meet the challenges of biodiversity management 
under climate change, but many of them incorporate GEA meth-
ods (60–62). Such gene-targeted conservation approaches have 
been criticized because of the di'culty in knowing whether the 
genomic basis of adaptation has been accurately inferred (63–65). 
Results from this study suggest that GEA results may be su'cient 
to forecast broad-scale biogeographic patterns in some systems 
but not others.

Despite the limitations of GEA methods, this study highlights 
how multivariate trait prediction can be accurate without knowl-
edge of the genetic architecture. Interestingly, the RDA trait pre-
diction (Eq. 1) was accurate even when two individuals had 
di"erent genetic architectures that gave the same trait value, when 
QTNs were not outliers in RDA space, when geographic location 
was not correlated with trait values, and for environmental D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.o

rg
 b

y 
N

O
R

TH
EA

ST
ER

N
 U

N
IV

 L
IB

 o
n 

M
ar

ch
 1

4,
 2

02
3 

fr
om

 IP
 a

dd
re

ss
 1

55
.3

3.
31

.1
32

.

http://www.pnas.org/lookup/doi/10.1073/pnas.2220313120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2220313120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2220313120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2220313120#supplementary-materials


10 of 12   https://doi.org/10.1073/pnas.2220313120 pnas.org

variables that were not correlated with population structure. #is 
occurred because prior to ordination in the RDA, each locus is 
used in a multiple regression model with the environmental var-
iables to produce !tted values for that locus across individuals. 
#us, there is &exibility with the RDA to capture the way envi-
ronmental variables may in&uence the patterns at one locus in a 
di"erent way than at another locus, which may not correlate with 
the relationship between the environment and population struc-
ture (Supplemental Tutorial). Additionally, the multivariate trait 
prediction was more accurate without a correction for structure 
in the RDA, because structure correction jumbled the multivariate 
mapping of loci and individuals along the environment(s) that 
were more correlated with structure.

#e results herein highlight that using ordination or other 
genomic prediction methods to predict multivariate trait values at 
the level of the individual could prove more fruitful across a wide 
range of scenarios than identifying GEA outliers. #ese prediction 
methods require that linked loci are included in the data (66). 
Whether such trait predictions from genomic and environmental 
data will be accurate with dominance, epistatic interactions, trait 
plasticity, and/or with nonlinear relationships between the trait 
optimum and environmental variable remains an important direc-
tion for future research. An important next step for empirical 
research will be to validate the RDA trait prediction by comparing 
it with ground-truth trait values obtained through experimental 
measures of traits in common garden environments. Biodiversity 
management in the face of rapid, multivariate climate change in 
the world’s terrestrial and marine systems remains an urgent soci-
etal need (67, 68). If multivariate trait predictions meet an accept-
able level of performance through this validation process (reviewed 
in ref. 69), these predictions could prove useful for genomic fore-
casting, as well as choosing individuals for restoration or assisted 
gene &ow e"orts.

Materials and Methods
Landscapes and Demographies. All simulations consisted of 100 demes 
arranged on a 10 × 10 landscape grid (Fig. 1A). The 15 levels of landscape-de-
mography were broadly divided into three landscape categories (Fig. 1A): i) a 
stepping stone landscape with latitudinal and longitudinal selective clines 
(Stepping-Stone Clines, the most commonly simulated scenario in testing meth-
ods) (14, 20, 22–24, 27–30), ii) a stepping stone landscape with one latitudinal 
cline and one nonlinear longitudinal mountain range (Stepping-Stone Mountain, 
which left the potential for unique architectures to arise to the same selective 
pressure at different geographic locations), and iii) an estuary landscape with 
a latitudinal and longitudinal selective clines (Estuary Clines, which simulated 
repeated independent bouts of adaptation analogous to oysters or sticklebacks 
that repeatedly colonize and adapt to isolated freshwater environments connected 
by gene flow in the marine environment). For simplicity, I refer to the latitudinal 
environment as Temperature and the longitudinal environment as Env2.

In summary, Stepping-Stone Mountain had a different environmental pattern 
than Stepping-Stone Clines but the same demography, while Estuary Clines had 
the same environmental pattern as Stepping-Stone Clines but different demog-
raphy (Fig. 1A). The demographic parameters were chosen such that different 
landscapes achieved similar levels of neutral genetic differentiation and local 
adaptation. Within each of the three landscapes, five demographies were sim-
ulated that described the migration rates and effective population sizes on the 
landscape (Fig. 1B and SI Appendix, Supplemental Methods and Figs. S27 and 
S28 and Tables S5 and S6).

See SI Appendix, Supplemental Methods for a description of the multivariate 
continuous space simulations with six traits.

Genetic Map. The Wright–Fisher simulations were based on a previously pub-
lished quantitative genetic model and a genetic map (50). The genome con-
sisted of 20 linkage groups each with 50,000 sites. The scaled recombination 
rate (Nmetapop r = 0.01) gave a resolution of 0.001 cM between proximate bases 

and a total length of 50 cM for each linkage group. This resolution mimicked a 
single-nucleotide polymorphism chip, in which loci were collected across a large 
genetic map (50). The population-scaled neutral mutation rate was (Nmetapop μ = 
0.001). QTNs could evolve on the first 10 linkage groups, while on the second 
10 linkage groups, only neutral loci could evolve.
Genetic Architecture and Stabilizing Selection.
Mutation. Quantitative trait nucleotides contributed additively to the optimal 
phenotype for each individual without dominance. Three genic levels were simu-
lated: oligogenic (few loci of large effect on the trait), moderately polygenic (doz-
ens to hundreds of loci with intermediate effects), and highly polygenic (hundreds 
of loci with small effects Fig. 1C and SI Appendix, Table S7). For QTN mutations 
under one trait or two traits without pleiotropy, the univariate effect size of a QTN 
mutation was drawn from a normal distribution with a mean of 0 and SD σQTN 
(SI Appendix, Table S7). For QTN mutations under two traits with pleiotropy, the 
bivariate effect size was drawn from a multivariate normal distribution with a SD 
of σQTN for both traits and no covariance, which gave flexibility for mutations to 
evolve with effects on one or both traits. Thus, the distribution of effect sizes and 
linkage relationships among QTNs was allowed to evolve.
Pleiotropy. Within each genic category were five levels of pleiotropy and selec-
tion: i) one temperature trait (which adapted to the latitudinal cline), ii) two traits 
without pleiotropy and equal strengths of selection on both traits, iii) two traits 
without pleiotropy and with weaker selection on the temperature trait, iv) two 
traits with pleiotropy (QTNs could evolve effects on one or both traits) and equal 
strengths of selection on both traits, and v) two traits with pleiotropy and with 
weaker selection on the latitudinal temperature trait (Fig. 1D and SI Appendix, 
Table S8).
Selection. The trait was subject to spatially heterogeneous stabilizing selection 
with the optimum for each location in space given by the environment. For each 
individual in each generation, the fitness was determined by a Gaussian function 
given the difference between the individual’s phenotype and the optimum at that 
location. For two traits, the fitness for individual i at location {x,y} was

 

[3]!ixy=1−
exp

(

−
1

2

(

Xi−Θxy

)T
!
−1
(

Xi−Θxy

)

)

√

(2")k|!|

,

where Xi is a vector of phenotypic values for individual i in deme xy and Θxy is a 
vector of phenotypic optimums for that deme (optimums shown in Fig. 1A). Σ is 
the symmetric variance-covariance matrix representing the strength of selection 
on each trait within a deme. For two traits, Σ is a 2 × 2 matrix with the strength of 
selection on the diagonals (Fig. 1D and SI Appendix, Table S8) and zero covariance. 
For one trait, this equation reduces to the normal distribution.

For information on burnin, adding neutral loci with tree sequencing, filtering, 
and sampling, see SI Appendix, Supplemental Methods.

Quantifying the Degree of Local Adaptation, Divergence, and Structure. 
For each replicate, the degree of local adaptation was measured as i) the difference 
between population fitness in sympatry and allopatry following (46) and ii) the 
correlation between the phenotype and environmental cline for each trait. Overall 
divergence (genetic differentiation) was calculated as Weir and Cockerham’s FST 
(70) in OutFLANK (71). Population structure was estimated with a principal com-
ponent analysis on the genotype matrix.

Quantifying Trait and Allelic Clines. The degree of a trait cline was measured 
as Kendall’s τ rank correlation coefficient between individual trait values and 
deme environment. The degree of an allele frequency cline was measured as 
Kendall’s τ rank correlation coefficient (72, 73) between deme allele frequency 
and deme environment, with significance being determined after Bonferroni 
correction based on the number of single nucleotide polymorphisms in the data. 
QTNs that were significant by this criteria were deemed clinal QTNs. The proportion 
of clinal QTNs excluded minor alleles with frequency < 0.01.

GEA Performance. Latent-factor mixed models assess the linear relationship 
between genotype and environment while controlling for structure as latent 
factors. Latent factor mixed models was implemented using the function lfmm2 
in the R package LEA v.4.0.3 (20, 21, 25). Redundancy analysis (RDA) and the 
partial RDA (pRDA) including a structure correction (conditional on the first two 
PC axes) were implemented using the ‘rda’ function in the R package vegan D
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(74). See SI Appendix, Supplemental Methods for details of implementation and 
correction for false discovery rate.

The performance of the association metrics was summarized as i) false discov-
ery rate (FDR, proportion of outliers that are neutral, lower is better), ii) true-pos-
itive rate (TPR, proportion of QTNs that are significant outliers, higher is better), 
and iii) the area under the precision-recall curve (higher is better) (69). In order 
to provide the most optimistic estimate of a method’s performance, the perfor-
mance statistics were calculated by only including truly neutral loci unaffected 
by selection on linkage groups 11 to 20 and the QTNs.
Importance of Clinal QTNs to Local Adaptation.
First framework. A linear model was used to conduct the genome-wide associa-
tion study with individual trait value as the response variable and genotype, PC1, 
and PC2 as explanatory variables. The proportion of genome-wide association hits 
that also showed clines with the environmental variable was compared with the 
known number of clinal QTNs.
Second framework. The proportion of additive genetic variance (VA) for each QTN 
was calculated as the additive genetic variance for the focal QTN standardized 
by the total additive genetic variance following (50). The proportion of additive 
genetic variance (VA) explained by clinal QTNs was compared with a null expec-
tation equal to the proportion of QTNs that were clinal.
Third framework. The proportion of local explained was estimated for different 
subsets of QTNs: i) QTNs with minor allele frequency > 0.01, ii) clinal QTNs, 
and iii) clinal QTNs inferred from latent factor mixed models that include 

a structure correction. For ii) and iii), a GEA model was performed for each 
environment, and then outlier QTNs were combined into a focal QTN set that 
was used for the local adaptation prediction. For each focal subset of QTNs, the 
counts of the derived allele were multiplied by the QTN effect size, summed 
to get a phenotype, and that phenotype was used in an in silico reciprocal 
transplant using the known phenotype-fitness function to estimate the degree 
of local adaptation. This estimate was then divided by the total degree of local 
adaptation (using all QTNs including those below the minor allele frequency 
threshold) to get an estimate of the proportion of local adaptation explained 
by that focal subset.

Data, Materials, and Software Availability. A Supplemental Tutorial that 
shows how to implement Eq. 1 in R and demonstrates other properties of redun-
dancy analysis is published on the MarineOmics page at https://marineomics.
github.io/RDAtraitPredictionTutorial.html (75). The code used to produce all the 
simulations and results is archived at https://doi.org/10.5281/zenodo.7622893 
(76). Simulation output files are archived at https://www.bco-dmo.org/data-
set/889769 (77).
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