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Abstract—We present a quantum annealing-based solution
method for topology optimization (TO). In particular, we consider
TO in a more general setting, i.e., applied to structures of
continuum domains where designs are represented as distributed
functions, referred to as continuum TO problems. According to
the problem’s properties and structure, we formulate appropriate
sub-problems that can be solved on an annealing-based quantum
computer. The methodology established can effectively tackle
continuum TO problems formulated as mixed-integer nonlinear
programs. To maintain the resulting sub-problems small enough
to be solved on quantum computers currently accessible with
small numbers of quits and limited connectivity, we further de-
velop a splitting approach that splits the problem into two parts:
the first part can be efficiently solved on classical computers, and
the second part with a reduced number of variables is solved on a
quantum computer. By such, a practical continuum TO problem
of varying scales can be handled on the D-Wave quantum
annealer. More specifically, we concern the minimum compliance,
a canonical TO problem that seeks an optimal distribution of
materials to minimize the compliance with desired material
usage. The superior performance of the developed methodology is
assessed and compared with the state-of-the-art heuristic classical
methods, in terms of both solution quality and computational
efficiency. The present work hence provides a promising new
avenue of applying quantum computing to practical designs of
topology for various applications.

Index Terms—Mixed-integer nonlinear program; Quadratic
unconstrained binary optimization; Quantum annealing; Topol-
ogy optimization

I. INTRODUCTION

Topology optimization (TO) is a computational design
method that aims to find optimal distribution of material to
improve part performance under governing physical equilib-
rium equations [1]. It originates in structural mechanics [2] and
has been applied to structures of continuum domains where
designs are represented as distributed functions and to discrete
truss structures where designs are of finite dimensions and
represented via discrete parameters. In this paper, we focus
on design problems of distributed parameter systems a.k.a.
continuum problems. Continuum TO has received growing
attention in a variety of fields, including multi-scale structures
[3], fluid mechanics [4]-[7], electromagnetics [8], [9], pho-
tonics [10], [11], quantum devices [12], and coupled multi-
physics problems [13]-[16]. Topologically optimized designs
often exhibit complex free-form shapes, and additive manu-
facturing can produce parts of complex shapes. The recent
wide adoption of additive manufacturing technologies have
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led to further development of TO for a host of applications
[17], including imposing additive manufacturability constraints
during the optimization process [18], [19].

As TO has been expanded from structural mechanics to
general multiphysics, it is accompanied by quickly growing
complexity and vast searching space, resulting in grand com-
putational challenges [12], [17], [20]. Quantum computing
(QC) is emerging as a new computing paradigm that could
be superior to classical computing for a variety of problems,
optimization being among them. In literature, only a few
attempts have been made to apply quantum algorithms for
solving TO problems. Maruo et al. concerned the TO of
electromagnetic devices [21]. For that, a linear optimization
problem was formulated, which can be directly cast into a
quadratic unconstrained binary optimization (QUBO) formu-
lation through the Biot-Savart’s law. The formulated QUBO
problem was then solved through simulated annealing. Their
results have indicated that the proposed QUBO formulation
can significantly reduce the number of iterations required for
the optimization process, compared with the commonly used
classical method, normalized Gaussian network [22]. Thereby,
the overall computational cost can be significantly reduced,
because much fewer forward evaluations of the objective
functions are invoked, which usually dominate the computa-
tional cost. However, the resultant QUBO formulation was
not implemented in quantum annealers. Thus, the additional
overhead due to quantum embedding and the limitations of
quantum hardware currently accessible were not addressed
in the analysis of computational cost. Also, the benefit of
quantum annealing to converge to the optimal or ground
state with larger probability than simulated annealing was
not utilized. The work by Sato et al. reported the TO for
a simple, discrete truss structure with three edges [23]. The
objective functions of all possible configurations composed by
three edges were simultaneously evaluated through quantum
entanglement. The optimal configuration with the minimum
objective function value was determined by applying the
variational quantum algorithms (VQAs) that are suitable for
the noisy intermediate-scale quantum (NISQ) devices. The
VQAs and forward evaluations of the objective function via
finite element analysis (FEA) were integrated together when
implemented on a quantum computer, eliminating the need of
amplitude estimation for the solution of FEA. In those two
works, the proposed quantum algorithms can only be applied
to linear TO problems, where the field variables such as
magnetic flux density and temperature linearly depend on the
design variables. Given that, the TO can be greatly simplified
when the objective function is just a linear [23] or quadratic
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[22] function of the field variables. In addition, the volume
or material usage constraint is not strictly imposed by any
equality or inequality constraint; as a result, one cannot set a
target optimal volume or material usage for the optimization,
which is not common in practical TO applications. Further,
discrete truss structures only represent a small portion of
applications of TO. More generally, TO considers structures
of continuum domains where designs are represented as dis-
tributed functions.

In the present work, we concern how to apply quantum
algorithms to continuum, nonlinear TO, beyond the discrete
truss structures or the linear TO problems tackled in litera-
ture [22], [23]. In addition, the volume constraint is strictly
imposed by an equality or inequality constraint, such that
any target optimal volume can be practically achieved. To
determine the optimal distribution of materials, continuum TO
essentially seeks the numerical solution of a partial differential
equation (PDE)-constrained optimization problem. To solve
it, the solution domain is first discretized with discrete nodes
or elements. The distributed design problem hence involves a
large number of binary (0/1) optimization variables, typically
one variable per discrete node or element. As the field vari-
ables nonlinearly depend on the design variables, it results in
a large-scale, mixed integer nonlinear programming (MINLP)
problem, subject to equality and/or inequality constraints. This
type of problem is intrinsically NP-hard [24], namely unable
to be solved in polynomial time, and hence is challenging to
be handled using classical approaches [25]-[28].

There are two main implementations of quantum computers:
quantum annealers and NISQ processors. Quantum annealers
embrace quantum annealing techniques, and the NISQ pro-
cessors are build with gate-based quantum circuits. Due to
the noisy nature of quantum gates and the high overhead
cost of noise reduction and error mitigation, the quantum
circuit that can be reliably executed on NISQ devices must
be limited to short. Thus, hybrid quantum-classical algorithms
such as VAQs must be developed for solving optimization
on NISQ devices, where only a short parameterized circuit
is executed, and classical optimizers are leveraged to train
the quantum circuit by optimizing the expectation value over
the circuit’s parameters [29]. However, in light of the noise-
induced barren plateau [30]-[32], the training process calls
for an exponentially scaled computational cost [30], and the
classical optimization problems corresponding to the training
of parameters are NP-hard [33]. Therefore, in the present work,
we exploit quantum annealing for solving the TO problem of
our interest. Quantum annealing has been demonstrated for its
advantages and speedups in solving a variety of combinatorial
optimization problems [34]-[38]. For a n-qubit system, it
works in the binary discrete space, with the operator defined as
a Hamiltonian that can correspond to the objective function of
an optimization problem. Quantum annealing can effectively
escape local minima by tunneling through the barriers when
exploring the objective function’s landscape and seeking the
global minimum. Thus, it can efficiently solve large-scale
nonlinear optimization problems over binary discrete spaces.
The final state of the n-qubit system at the end of annealing
could be the ground state of the Hamiltonian, with each

qubit a classical object standing for the solution to the binary
optimization problem.

The currently accessible quantum computers that are de-
signed to implement quantum annealing are the D-Wave
systems [39]. To embed problems on the D-Wave quantum
annealer, they need to be formulated in the form of QUBO.
However, the optimization problem corresponding to the TO of
our interest cannot be directly cast into QUBO formulations.
Therefore, we first decompose the original problem into a
sequence of mixed integer linear programs (MILPs) via the
generalized Benders’ decomposition (GBD). Next, in each
MILP the continuous variables are represented by a series
of auxiliary binary variables, such that each MILP can be
mapped onto a binary optimization problem and then through
the penalty method transformed into the QUBO formulation.
Finally, from the solution of quantum annealing, we obtain
the solution of each MILP, and in turn the ultimate optimal
material layout after the sequence of MILPs are completely
solved. If sufficient, fully connected quantum qubits are avail-
able [40], quantum advantages in computational efficiency
can be straightforwardly obtained and demonstrated, owing
to the efficiency of quantum annealing for solving QUBO.
However, currently accessible quantum hardware only offers
a small number of qubits with sparse connectivity. To solve
practical TO problems in current and near-term quantum
annealing devices, we further develop a splitting approach,
by which a reduced problem that needs to be solved on
a quantum annealer is separated from other sub-problems
that can be efficiently handled by classical computers. The
resultant, greatly reduced QUBO problem is then implemented
on a D-Wave Advantage quantum processing unit (QPU). Both
the solution quality and computational cost (including the cost
for embedding the problem onto the quantum computer, the
time of quantum annealing, and the number of optimization
iterations) are analyzed and assessed systematically in a series
of problems of variable sizes.

II. PRELIMINARY
A. A Continuum Topology Optimization Problem

Continuum TO optimizes the material layout p(x) within
a continuum design domain 2. A continuum TO problem is
usually constrained by a set of partial differential equations
(PDEs) subject to boundary conditions (BCs) which describe
the physical laws governing the design, as well as the target
material usage or volume of material layout. In general, the
problem can be stated as:

/ Flu(p(x))]d2
Q

Jo p(x)dQ2
s.t. Go(p(x)) = QIQW —Vr=
L(u(p(x)))+b=0 Vx € Q
u(p(x)) = ur(x) vxeT'p
n- Vu(p(x)) = hr(x) vxel'y
Gj(u(p(x), p(x)) =0, j=1,...m
Hi(u(p(x)),p(x)) <0, k=1,...,n "



where u denotes the field variable defined in the design
domain 2; p is the design variable; £ denotes some differential
operator; b is the source term; and I' = 0f) represents the
boundary of the design domain with I' , denoting the boundary
where Dirichlet BC is imposed and I'y the boundary where
Neumann BC is enforced. In Eq. (1), Go(p) = 0 serves to
constrain the volume of optimal material layout to the target
value Vp. The following three lines after Go(p) = 0 outline
the governing PDE and BCs. G,(u(p),p) = 0 includes all
equality constraints in addition to the volume constraint; and
Hi.(u(p), p) <0 comprises all inequality constraints imposed
to the optimization problem. In practice, these constraints
are usually related to certain manufacture limitations and/or
material property requirements. For simplicity, we neglect
them in the following discussion. However, they can be easily
included in the proposed approach, following the way how we
deal with the constraint Go(p) = 0. The objective function F’
is convex with respect to the design variable p, and hence, if
the differential operator L is positive definite, the optimization
problem defined in Eq. (1) is convex. In case that the TO
of interest leads to a non-convex optimization problem, a
sequential approximation program can always be employed
such that a series of local, convex problems are solved to
update the design variable locally in a sequence [41].

To solve the continuum TO problem as in Eq. (1), the design
domain §2 is usually discretized, and the design and field
variables are represented in discrete settings. For example, ()
can be discretized with a uniform mesh, and FEA is used
for the numerical discretization of the governing PDEs and
BCs. Taking the minimum compliance as an example, the
discretized TO problem can be expressed as:

min fTu
u,p
st. K(pju=f~
"2 s (2
pi_y.
i1 P

ueR™ pe{0,1}"

where f is a known external load exerted on the material; the
material is subject to linear elasticity; the superscript T denotes
transpose; u is the discretized displacement field defined on
the nodes of the mesh; and p; is the discretized design variable
defined on each mesh element ¢. In Eq. (2),

K(p) =Ko+ Y _ piKi(E,v), 3)
=1

where K; € R™«*"« ¢ =1,2,...n, is the predefined element
stiffness matrix; F is the Young’s modulus; v is the Poisson
ratio; and K is a symmetric positive definite matrix:

Ko=e) K, @
=1

with € a small number, e.g. ¢ = 1077, such that it would

not affect the resulting optimal material layout and the values

estimated for the field variable on the solid elements with

pi = 1. The equality constraint > ;*; z—z = Vr in Eq. (2)
P

is referred to as the volume constraint that drives the resulting
material layout toward the target volume or material usage.
The inclusion of K in K ensures that for any p, K(p) is a
symmetric positive definite matrix.

The challenge for solving the optimization problem defined
in Eq. (2) lies in the fact that while u € R™* is a contin-
uous variable, p € {0,1}"» is a binary variable, and the
filed variable u nonlinearly depends on the design variable
p, resulting in a MINLP problem. To tackle the challenge,
existing classical approaches in TO fall into either of the two
categories.

In the first category, the most widely used method is the
Solid Isotropic Material with Penalization (SIMP) method
[25]. Its strategy is to relax the binary variable into a con-
tinuous variable such that the MINLP problem can be con-
verted into a continuous optimization problem. Specifically,
the SIMP method approximates the binary design variable
with a high-order polynomial function of a continuous variable
that smooths out the discontinuity of the binary variable [25].
Hence, the density p; continuously varies from O to 1 for each
element. From the design perspective, such an interpolated rep-
resentation (with “gray” density) does not allow easy imposi-
tion of design-dependent loading. To recover the desired binary
(black/white) representation of material layout in the optimal
design, additional numerical treatment is required [42], which
is not always mathematically justifiable. Also, the relaxation
from binary to continuous breaks the convexity of the original
problem (2) and makes the optimization hard to converge [42].
Further, the resultant continuous optimization problem is not
suitable for quantum annealing to solve. Therefore, we do not
follow the SIMP method herein, but use its solution as the
baseline for comparison with the proposed quantum annealing
solution, as discussed in Section IV-C.

The second category of methods separate the binary and
continuous variables into different sub-problems, by iteratively
determining one of them with the other fixed in a sub-problem.
The representative methods include the Discrete Variable
Topology Optimization via Canonical Relaxation Algorithm
(DVTOCRA) [26], the Topology Optimization of Binary
Structures (TOBS) method [27], and the GBD method [28].
The DVTOCRA method employs a sequential linear/quadratic
approximation to separate the binary and continuous variables
into different sub-problems [26]. The sub-problem associated
with the binary variable is a constrained, quadratic integer
programming problem. Due to its NP-hardness, the canonical
relaxation algorithm is applied, by which new continuous vari-
ables are introduced to replace the binary variable through an
approximation function (different from that used in the SIMP
method), and the binary optimization programming problem is
transformed into a convex, continuous optimization problem in
terms of the newly introduced continuous variables. Similarly
to the SIMP method, the resultant continuous optimization
problems are not suitable for quantum annealing to solve.
The TOBS method utilizes sequential linear programming to
separate the binary and continuous variables into different
sub-problems [27]. The resultant sub-problem involving the
binary variable is a linear integer programming problem. With
the uniform mesh discretization and the exclusion of non-



volumetric constraints (i.e., G; = 0 and H < 0 in Eq. (1)),
the corresponding integer programming problem is not NP-
hard. Hence, the TOBS method does not serve as an ideal
candidate for investigating the potential advantages of quantum
annealing in TO.

The GBD method follows a different route. It decomposes
the original problem into a sequence of MILPs. In contrast
to the other methods that have no guarantee of convergence,
the GBD method provides a deterministic optimality criterion
to warrant convergence within a finite number of iterations
[24]. It is also anticipated to converge faster than the SIMP
or TOBS method, because the GBD formulation permits to
use all the material layouts generated from previous iterations
in each new iteration, while other methods like the SIMP or
TOBS can only take into account the material layout yield
from the last iteration. The GBD method was first introduced
to TO by Mufioz et al. [28] for solving discrete TO problems.
In the present paper, we extend it to address a continuum
TO problem, as discussed in Section II-B. In the sub-problem
related to the binary design variable after decomposition,
additional constraints (associated with the PDEs), other than
the volumetric constraint, are introduced and can bring NP-
hardness to the optimization problem. Such a sub-problem
is well suited to be accelerated by quantum annealing, and
hence we focus on the GBD method in the present paper to
investigate and demonstrate how QC, particularly via quantum
annealing, can be leveraged for solving a continuum, nonlinear
TO problem as stated in Eq. (2).

B. Generalized Benders’ Decomposition

The field variable u and the design variable p are sepa-
rated into different sub-problems via decomposition and are
iteratively updated until reaching the convergence.

At the k-th iteration, we have a sequence of feasible integer
solutions p’ that satisfy the volume constraint with any desired
volume V, i.e., Z?:pl pf = V for Vj, and have non-singular
stiffness matrices K(p?), where j loops over all previous
iterations until the current iteration k. We first form the sub-
problem with respect to u, i.e., the so-called primal problem,
which is given by:

min fTu
st. K(pFju=f (%)
ueR"™

This primal problem can be easily solved for u” by using a
linear system solver, as:

ut =K (p")f . (6)

The primal problem is a restriction to the original problem
(2), and any fTu/ serves as an upper bound to the problem
(2). We denote the lowest upper bound as U such that U =
min; (fTu’),j =1,... k.

Next, we derive the sub-problem with respect to p, referred
to as the master problem. To proceed, we first use a Lagrange
multiplier A to move the equality constraint to the objective

function in problem (2), such that the resulting problem is only
subject to the constraints involving the binary variables, as:
min  fTu+ ATK(p)u

u,p
p

Pi _ v (7)
Np

S.t.
i=1
ueR"™ pe{0,1}"

The Lagrange multiplier A satisfies:
ATK(p) = —fT . ®)

Then, we introduce an auxiliary variable n and replace the
objective function in Eq. (7) with an inequality constraint, as:

min 7
pu,n

st. fTu+ATK(p)u<n
Np p
Sy
im1 P

uecR"™ pe{0,1}"
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Applying the first-order Taylor expansion at (u*, p*) and due
to the convexity of fTu+ ATK(p)u, the inequality constraint
in Eq. (9) can be relaxed as:

Tp
fruf + 3T () K (o - pf) < fTu<n  (10)
i=1
By doing so, the problem (9) can be relaxed with multiple
cuts as:

min 7
PN
st. fTu/ + Z (N)TKw (p; — pl) <
i=1
j=1,...,k (D
Pi _
im1 P
pe{0,1}"

Eq. (11) is the derived master problem for the original TO
problem (2). The term (A7)"K;u’/ denotes the so-called sen-
sitivity in TO. Note that A/ = —u/, due to the symmetry
of K, and hence the sensitivity is just —(u’/)"K;u’. The
optimal solution of Eq. (11) is denoted as p**' and added
into the sequence of p’. The optimum of Eq. (11), denoted
as 77’“, serves as the lower bound of the problem (2). The
iterations continue until the upper and lower bounds meet such
that (U — n¥)/U < &, where € is a predefined tolerance for
convergence.

Since the continuum TO is essentially a PDE-constrained
optimization problem (as in (1)), the solution quality also
depends on the accuracy of the numerical approximation of
the differential operator (e.g., gradient) in the PDE, which
becomes especially challenging at the interface between solid
(p; = 1) and void (p; = 0) elements. The FEA with uniform
meshing can lead to the so-called “checkerboard” artifact, as
illustrated in Fig. 1. To remedy for that, filtering is required



(a) Material layout with (b) Material layout after filter-
“checkerboard” artifact ing

Fig. 1: The effect of filtering on eliminating the checkerboard
artifact. The two sub-figures report the resulting optimal
material layouts with the same problem setup, using the
same optimization procedure, and corresponding to the same
region of the solution domain. (a) The optimal material layout
yield without filtering exhibits a checkerboard pattern. (b)
After applying filtering, the checkerboard artifact is effectively
eliminated.

for the sensitivity, following the literature [27], [43], as:

ZleN; hzr,luJKluJ i1
’ P =
~j ZlENZ h:,l ’
Wl = Ko (12)
ZleN; AN A j
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where h], = max(0,r — ||x; — x;||2). Therefore, the master

problem with filtering is rewritten as:

min 7
P
. e .
s.t. fTu — Z{Dﬁ-(p —-p)y<n
i=1
j=1,...,k (13)
Np p
2 _y
im1 e
p e {0,1}"

As the iterations proceed, the number of inequality con-
straints (j = 1,...,k) included in the master problem (13)
increases. However, those inequality constraints are not inde-
pendent, and we do not need to include them all when solving
the master problem. To accelerate the solution process, we
further introduce the Pareto optimal cuts [28], as defined by:

Pk) = {j|fTu? <fTuhVj=1,...

k} (14)

which is based on the Pareto dominance relationship and
selects only the previous cuts with the objective function
values no greater than that of the new cut generated in the
current iteration. Such selection of optimal cuts has been
numerically proven to improve the rate of convergence to the
optimal solution [28]. Thus, the master problem further with

the Pareto optimal cuts can be written as:

min 7
P
sit. fTu/ — Zfﬁf(pl — pZ) <n, VjePk)
i=1 15
np )
by
im1 e
p e {0,1}"

If |P(k)| = 1, the master problem in Eq. (15) can be simplified
as:
Zw o)
Sy
im1 e

p e {0,1}"
k1

with n* = fTwd — 377, @l (pf ' = pl).

In summary, for any given volume constraint V' and the
initial feasible integer solution p', the iterative procedure
based on the GBD method to solve the TO problem (2) is
outlined in Algorithm 1.

mln fTu/ — jePk)

(16)

Algorithm 1 ToGBDSUB(V, p')

Input: Volume fraction V, initial material layout p!
Output: Optimal material layout p*
Utility: Find an optimal material layout with a given volume
fraction V and initial material layout p'
1: for k=1,... do
2:  Initialize the upper bound U as U = 40
3. Employ the linear system solver to obtain u® =
K~'(p")f
if fTu* < U then
U+ fTu*
p* — pk
end if
Generate the Pareto optimal cuts P (k) according to (14)

® N

9: if |P(k)| =1 then

10: Solve the master problem (16) for the minimizer 7*
and pk+1

11:  else

12: Solve the master problem (15) for the minimizer n*
and pFt!

13:  end if

14 if (U —n*)/U < ¢ then

15: break

16:  end if

17: end for

Return: p*

In the following, we explain how to obtain p' to initiate the
above iterative procedure, which is a feasible binary solution

satisfying the volume constraint Y%, Pi — v and has a non-
P



singular stiffness matrix K(p'). First, we consider solving the

problem:

oo 17)
Pi (
s.t. =V
p e {0,1}"

where u’ = K=1(p")f; p" can be any material layout that
gives a non-singular stiffness matrix K(p°), e.g. with all
P=1i=1,..., n,. The problem (17) is formed by apply-
ing the first-order Taylor expansion to the problem (2) at (u’,
p%) and with filtering. Hence, it can be regarded as the linear
approximation of the original problem. To ensure sufficient
accuracy for this approximation, th% volume constraint im-
posed cannot be too far from y_.*; £-. However, our ultimate
goal is to satisfy the target Volume ‘ﬂ/T, and the value of Vr
can generally be far from 1, e.g., Vr = 0.5. Thus, we adopt
an asymptotic process, namely letting the volume constraint
gradually approach the target value V7. In particular, we define
a sequence of different volume values V,,, = 1 — mAV with
m = 1,2,...,M and AV = (1 — Vp)/M. Limiting AV
sufficiently small, we follow an iterative procedure: in the
iteration step m, solve the problem (17) with p° and letting
V =1V,,, and denote its solution as pl; invoke Algorithm 1
with the input of p! to find the optimal solution with respect
to the volume constraint V' = V/,, and let this optimal solution
be the new p® for the next iteration step m + 1; and when
m = 1, p® = 1. The proposed procedure is summarized in
Algorithm 2.

Algorithm 2 ToOGBD(Vp, AV)

Input: Target volume fraction Vp, incremental change of
volume AV, number of iterations M = (1 — Vp)/AV
Output: Optimal material layout p*

1: Initialize the design variables as p° = 1

2. form=1,---M do

3:  Employ the linear system solver to obtain u’ =
K~ !(p")f

4. Solve the problem (17) to obtain p!

5. p* < ToGBDSUB(V,,, p')

6:  Prepare for the next iteration with p® + p*

7: end for

Return: p*

III. QUANTUM ALGORITHM

A. From Topology Optimization to QUBO

As discussed above, the original MINLP problem, as in Eq.
(2), is relaxed into a series of MILP problems, as in Eq. (15). In
this section, we establish the conversion of MILP into QUBO,
such that the master problem (15) can be solved on quantum
annealers.

First, a slack variable o is introduced into each cut in the
problem (15) to transform inequality constraints into equality
constraints, as:

min 7
P,
st. fTul — Zw Y+ad =n, VjePk)
Pi_y
iz e
pe{0,1}"
od >0, VjeP(k)
(18)

Next, the continuous variables 7 and oJ are replaced with
a series of binary variables. To do so, the upper and lower
bounds for 1 and o need to be specified first. Note the facts
that 7 is the lower bound of the problem (2), and the GBD has
generated an upper bound U for (2). Thus, U can be regarded
as the upper bound for 7. Further, due to the positive definite
property of the differential operator £, the compliance defined
as fTu must be non-negative. The term, fTu/ — Y 1", @/ (p; —
p?l), is the linear approximation of the original problem (2) at
(u’, p7), which is close to fTu/ when p satisfies the volume
constraint. Hence, fTu/ — Zl L W (pl —p! ) > 0 holds, from
which we obtain: ) = fTu/ =Y 7%, @) (pi—pl)+a? > o’ > 0.
Thus, the lower bounds for both 7 and o can be set zero. From
ad < n < U, we can set the upper bound for o7 as U as well.
Given their upper and lower bounds specified, the continuous
variables 17 and o/ can be approximated by a series of binary
variables, as:

ec {0,1}™*  al € {0,1}"i ",

The accuracy of this approximation is controlled by n, and
nas. Their values can be chosen according to the desired
accuracy and/or the number of accessible qubits in quantum
annealers. Thus, we obtain a binary programming problem as:

min  7/(e)

p,e,al

s.t. fTu/ — Zw )+ &l (al)
=ii(e), Vj€P(k) (19)

IS
i1 e
p€{0,1}" .

By such, the constraints can be readily moved into the
objective function through the penalty method to obtain the



following QUBO formulation:

> AW - (_Z wz-f») + () - ﬁ(e)]

JEP (k)
np 2
+B(S 2 _v)
i1 P

Tp
W7 =Tl +> @l pl
i=1

(20)
where

As such, we have cast the MILP problem (15) into QUBO.
Finally, we determine the penalty factors. Theoretically, the
penalty factors in (20) should be gradually increased until
the optimal solution converges. However, due to the limited
machine precision of currently accessible quantum computers
(e.g. up to 1076 [44]), the penalty factors cannot be arbitrarily
large in practice. On the other hand, the penalty factors scaled
with U, the upper bound of 7, can effectively direct the
quantum annealer to find a solution near the optimal. From our
numerical experiments, setting the penalty factors equal to the
upper bound U leads to a satisfactory performance, as a trade-
off between the machine precision attainable in the hardware
used and the magnitude of the penalty factors required for
accuracy, i.e., Al = U, B = U. It is worth to mention
that any inexact solution for the problem (15), smaller than
the exact solution due to the violation of the constraints, will
not lead to an abnormal termination of the GBD iterations
in Algorithm 1, but just result in more iteration steps before
reaching the convergence such that (U — n*)/U < &.

B. A Splitting Approach for Problem Reduction

Solving the QUBO problem in (20) requires nf}ubit
np+ 1y + D iep(r) Mas + [P(K)[ 41 logical qubits to embed
the problem, which can be a large number. Furthermore,
the quadratic terms [W7 — (3202, w!p;) + a7 — 7j]* and
>y S—; — V)? require all-to-all connections, since each
evolves all binary variables simultaneously. However, due to
the limited connectivity of qubits on the currently available
quantum computers [45], all-to-all connections would require
much more physical qubits than logical qubits to embed the
QUBO problem, making the hardware accessibility even more
challenging. Consequently, a practical TO problem formulated
as (20) cannot be handled by the current or near-term quantum
computers.

To resolve this issue, we further develop a splitting approach
in this section. We note that a binary programming problem
like (16) or (17) can be efficiently solved by a classical
optimizer, as discussed below. In fact, by taking the continuous
relaxation of the design variable as p (0 < p; < 1, @ =
1,...,np), the binary programming problem like (16) or (17)
can be relaxed into a (continuous) linear programming. If
we consider the volume constraint >, p; = n,V as a cut
onto the n,-dimensional cube of the relaxed design variable

p, where n,V is an integer, the feasible set for the linear
programming can be represented by a polyhedron P as:

P = {plv"'vpnp sz_np OSﬁZSI,VZ},

where each element of p must be binary, i.e., p; = 0 or 1
Vi, at each vertex. Thus, the linear programming’s optimal
solution, i.e., a vertex of the polyhedron P [46], must also
be the optimal solution of the original binary programming
problem. Therefore, the problem (16) or (17) can be exactly
solved with the complexity of O(n,) and hence be handled
efficiently on classical computers. In contrast, although the
problem (19) is also a binary programming problem, the
additional |P (k)| constraints or cuts, other than the volume
constraint, make it generally impossible to find the feasible
set of the relaxed linear programming as a polyhedron with
vertices taking binary values, and hence it still suffers from
the NP-hardness.

By leveraging this observation, we propose the following
procedure to split the problem (15) into two parts. The first
part consists of several sub-problems like (16), which will be
solved on classical computers. The second part is a problem
similar to (15) but with greatly reduced variables, which will
be solved on a quantum computer. By taking only one of the
|P (k)| inequality constraints as well as the volume constraint
in (15), we can form |P (k)| sub-problems like (16) as:

i_
m;n fTu E @ (pi — pl),

S
im1 e
p e {0,1}" .

The solution of (21) is denoted as p’. Note that when |P (k)| >
1, the material layouts obtained in different iterations (e.g.,
j1,j2 € P(k)) are only different in finite numbers of nodes,
i.e., most elements of the design variables can be the same.
We denote the index set of those elements as Z such that

np}7 le,jg € P(k) . (22)

And the complement set of Z is denoted as Z€ = {1,...,n,}\
7, which contains the index of elements that have dlffgrent
Values for the design variable in different iterations, i.e., ﬁl’ b
P2, Vi € I¢, 31, jo € P(k).

Thus, a reduced problem of (15) can be formed as:

Vi e P(k)

21
=V

pr=p VieIcC{l,...,

min 7
P
st R = " @l(pi—pl) <n, VjePk)
i€ZC
(23)
Z Pi —v_ Z pz
ieze ' iez P
pefo, 1317,
where o _
R=fTw/ = > @l (5] - pl) . (24)

i€l



Compared with the original problem (15), while the number
of constraints is identical, the number of design variables has
been reduced, from n, to |ZC|. Although it is difficult to
estimate the exact value of |Z¢| in advance, we anticipate
|Z¢| < n, as discussed above and also demonstrated by the
numerical experiments in Section I'V-B.

By introducing slack variables o/ and approximating the
continuous variables 7 and o as series of binary variables, as
described in Section III-A, the reduced master problem (23)
can be transformed into a binary programming problem as:

,in n(e)
st R =Y wl(pi—p]) +d (a))
i€ZC
o n(e), jePk) 25)
> ey
jeze P

pe {01} e e {01}
al € {0,1}"i "

where

i=1
1 Nad
J(ad) — _ , j
a (a)-U(l 2%],)(1]04-2121&”
v=r-Y 2
icear

And further through the penalty method, it can be written into
the QUBO formulation as:

2
i(e)+ Y. AR - <Z @Pz‘) + a;(ay) —77(9)1
JEP(K) ie1¢
2
+B Ly
jeze "t

(26)
As |IC| < n,, the QUBO problem in (26) can now be handled
by the current or near-term quantum computers with a small
number of qubits and limited connectivity.

The proposed splitting approach is summarized in Algo-
rithm 3.

IV. NUMERICAL RESULTS

A. Solving a Toy Problem for Validation

To validate that the method discussed in Section III-A
permits a quantum computer to effectively solve the MILP
problem like (15), we consider the following mixed-integer

Algorithm 3 TOGBDSUBSPLITTING(V, p')

Input: Volume fraction V, initial material layout p'
Output: Optimal material layout p*
Utility: Find an optimal material layout with a given volume
fraction V and initial material layout p*
1: for k=1,... do
2:  Initialize the upper bound U as U = +o0
3. Employ the linear solver to obtain u® = K=1(p*)f
4 if fTu® < U then
5: U+ fTu*
6
7
8

p* — pk
end if
Generate the Pareto optimal cuts P (k) according to (14)

9. if [P(k)| =1 then
10: Solve the master problem (16) for the minimizer n*

and p**t! on a classical computer

11:  else

12: Solve the sub-problem (21) for the minimizer p’ for
each element in P(k) on a classical computer

13: Generate the index sets Z and Z€ according to (22)

14: Solve the reduced QUBO problem (26) for the min-
imizer n* and p**! on a quantum annealer

15:  end if

16: if (U —n*)/U < ¢ then

17: break

18:  end if

19: end for

Return: p*

programming problem with linear inequality and equality
constraints:

mint v w+t+ (u—2)>

s.t. v+2w+t+u<3
vtw+t>1 (27)
v+w=1

v,w,t € {0,1},ueR.

This problem contains one continuous and three binary vari-
ables and one equality and two inequality constrains. Its unique
optimal solution is known to be: u =2, v =1, w =t =0.

According to the proposed methodology, we first transform
this problem into a binary programming problem, and then
rewrite it in the formulation of QUBO. By noting that 0 <
u < 3, we can introduce a binary approximation u for the
continuous variable w as:

. 1 < 3
u(e):3<1—27u>eo+zyei.

Next, we introduce two slack variables o' and o2 to convert
the two inequality constraints into equality constraints. By
noting that 0 < o! < 3,0 < o? < 2, and a? € Z since
the second inequality constraint only contains integers, we can



obtain their binary representations &' and &2, respectively, and
thereby rewrite the MILP as a binary programming problem:

_min v4+w+t+ (U —2)?
e,a',a®,v,w,t
s.t. vH+2wtt+u+al =3
—v—w—t+a*=-1
v,w,t € {0,1}

ec {0,1}"*!
al € {0,1}"2 1 a% € {0,1}2,

where
n,1

) o
al(al) =3 (1 -3 ) ab+ > %a%

i=1

a?(a?) =ag +a? .

Finally, through the penalty method, it can be written into the
QUBO as:

vtwHt+ -2 +Av+2w+t+u—3+a

2
L , ] (29)
+A[-v—w—t+1+a*] +Av+w-1]",

where the penalty factor is set as A = 4 in this problem.
The problem (29) was directly submitted to the D-Wave
Advantage QPU. The annealing time was set with 20us, and
the sampling was repeated for 1000 times. The final state
reached at the end of each annealing was recorded, and the
state with the lowest energy among all 1000 samplings was
regarded as the ground state of the Hamiltonian defined in (29)
and hence the solution to the binary programming problem
(28). The continuous variables u and o' as well as the integer
variable o of the original problem (27) were then recovered
from their binary approximations. The final results for the
values of different variables are summarized in Table 1. To
confirm that the results have converged with respect to the
parameter settings in the binary approximations, we compare
two different groups of values for n, and n,:. The results
agree with the theoretical solution to the original problem (27),
and hence the accuracy of the obtained QC-based solution is
validated. An additional note about the continuous variables
is made as follows: if we treat the original problem (27)
as a continuous optimization problem and solve it for the
continuous variables, with all the binary variables fixed to the
solution obtained from solving (29), the accuracy can be even
better than recovering them from their binary approximations.

B. Solving the Minimal Compliance Problem

In this subsection, we concern a canonical TO problem,
the minimum compliance, as formulated in (2). The problem
setup follows that in [25]. More specifically, we consider a
rectangular material domain with the external loading of a
unit point force F' exerted at the top left corner, as illustrated
in Figure 2. The solution domain, or the design space, is
discretized by a uniform quadrilateral mesh with different
resolutions. In Eq. (3), the Young’s modulus is &£ = 1.0, and
the Poisson ratio is v = 0.3. The target volume fraction is

1

Vr = 0.5, and the incremental change of volume is AV = 51

The convergence criterion tolerance required in Algorithm 3
is £ =5 x 10™%. All values are in reduced units.

F

. gox

Fig. 2: Schematic of the problem setup for the minimum
compliance. The yellow region denotes the design domain
discretized by a uniform quadrilateral mesh with the resolution
of 60 x 20, where L = 60, H = 20, and the external load is
a unit point force, F = (0,—1), exerted at the top leftmost
node.

To solve this TO problem, we followed the proposed
methodology, consisting of the GBD, conversion of the MILP
into QUBO, and the splitting approach. More specifically,
Algorithm 2 was executed, but with TOGBDSUB in Line 5
replaced by TOGBDSUBSPLITTING defined in Algorithm 3
to integrate the proposed splitting approach. While the binary
programming problems (16), (17) and (21) were solved by
invoking the classical MILP solver Gurobi [47], the binary pro-
gramming problem (25) was solved on the quantum annealer
provided by D-Wave. From the validation test in Section IV-A
and considering the accuracy of the current quantum devices
and the required number of qubits, the parameters for the
binary approximations were set as: n, = n,; = 10 in (25).
Once the solution of the design variable p’“rl is determined,
the problem (15) can be treated as a continuous optimization
problem, from which we can solve for the continuous variable
n* required by Algorithm 3. Alternatively, n* can be recovered
from its binary approximation. We chose the former approach
herein for its slightly better accuracy.

To implement the problem (25) on the quantum annealer
provided by D-Wave, we examined two different ways. In
the first way, we directly embedded the QUBO problem (26)
formulated from (25) in the QPU, which is named as “GBD-
Splitting-Direct”. In the second way, we solved the problem
(25) by taking advantage of the hybrid solver provided by D-
Wave, particularly the constrained quadratic model (CQM),
which is hence referred to as “GBD-Splitting-COM”. We
compare the results in terms of solution quality and wall time,
as summarized in Table II, where the discretization resolution
is chosen as 60 x 20; the parameter for filtering, as described
in Eq. (12), is set as » = 2; T denotes the total wall time
spent for executing Algorithm 2 to find the optimal material
layout; fTu denotes the objective function’s value obtained
corresponding to the optimal material layout; and N denotes
the total number of binary programming problems invoked by
Algorithm 2 and 3. Details about each implementation and our
main findings are provided as below.
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TABLE I: The results for solving the toy problem (27).

w t e %1 a2

v
1

010 0 0

(M, ny1) u
(5,5) 1.96875
(10, 10) 2.00098

1

0|0 0 0

TABLE II: Comparison between different implementations for the reduced binary master problem (25) on the quantum annealer
provided by D-Wave, where T' denotes the total wall time spent for executing Algorithm 2.

Resolution Np r

GBD-Splitting-Direct

GBD-Splitting-CQM

T (s)

fTu

N T (s) fTu N

60 x 20 1200 | 2 | 234.12

186.3727

80 | 111.97 | 178.9243 | 74

In GBD-Splitting-Direct, each sampling is set with 20us
annealing time, and the sampling is repeated for 1000 times.
The final states reached at the end of annealing were recorded,
and the state with the lowest energy among 1000 samplings
was regarded as the ground state of the Hamiltonian defined in
(26) and hence the solution to the binary programming prob-
lem (25). From our statistics, totally 80 binary programming
problems were invoked, 11 among which are the problem
(26) and were solved by the quantum annealer. For each,
we carefully examined the number of the resultant reduced
variables (—Z—), the number of physical qubits required for
embedding the problem (26), and the solution time spent on
the QPU, as summarized in Table III, where the 11 problems
are organized according to their sequence of being solved.
With the discretization resolution of 60 x 20, the number of
design variables is n, = 1200. From the value of |Z¢| reported
in Table III, we can see that the splitting approach proposed
in Section III-B has greatly reduced the size of the problem
to be solved on a quantum computer. Note that the total
logical qubits needed to represent the problem (26) should also
include those required to represent the binary approximations
of n and o/. Thus, the number of logical qubits required in
total is: nj = |Z€] + n, + 1 + |P(k)| + > jeP(k) Mai- BY
reducing |Z¢, n; can be reduced accordingly. If the physical
qubits have all-to-all connections, the number of physical
qubits required would be consistent with n;. However, due
to the sparse connectivity provided by the current quantum
annealing machines, the number of physical qubits required for
embedding the problem, denoted as n¢, is in fact much larger
than ng [48], as reported in Table III. Also, with the increase
of ng, ng can grow very fast [48], although fluctuating due to
inhomogeneous connections between qubits. As a result, most
of the time spent on the QPU is dominated by the embedding
overhead, as indicated by the values of Tgugo in Table III,
noting that the total annealing time for 1000 repetitions of sam-
pling is only 20 ms. The current D-Wave Advantage system
permits access to no more than 5000 qubits. To constrain ng
not beyond 5000, |Z¢| has to be no more than a few hundreds.
Thus, even with the splitting approach, the number of design
variables in the original problem must be limited to moderate,
which makes solving the minimum compliance problem with
finer discretization resolutions challenging.

To tackle this challenge, we pursued the second way of
implementation, i.e., GBD-Splitting-COM, where the problem
(25) was submitted, and the CQM, provided by D-Wave, was
called for embedding and solving the problem. All default

setups were used when employing the CQM hybrid solver in
all the numerical tests. As indicated by the wall time 7' in
Table II, the implementation through CQM greatly saved the
entire solving time. The reason for that is the CQM can further
reduce the size of the problem embedded on the QPU and
in turn save the time spent for embedding, knowing the fact
that embedding dominates the time consumed on the quantum
devices. In addition, the implementation through CQM results
in fewer binary programming problems invoked and a lower
value for the objective function. Recalling the discussion about
the inexact solution in Section III-B that any inexact solution
to the problem (15) can potentially increase the number of
GBD iterations, fewer binary programming problem invoked
suggest that the solution found by the CQM is closer to the
exact solution. Possible reasons for that include: the CQM
further reduces the problem embedded on the QPU and makes
the resultant optimization problem easier to be accurately
solved; in GBD-Splitting-Direct, the values chosen for the
penalty factors may not be optimal, and the probability of
recovering the global optimal solution is highly dependent on
the embedding and annealing schedule.

Based on the above comparison and findings, when we
scaled up the minimum compliance problem with increasing
numbers of design variables (with finer discretization reso-
lutions), we employed the implementation of GBD-Splitting-
COM, owing to its better performance in terms of the solution
quality, wall time, and capacity to embed larger problems.
In particular, we considered two different shapes of material
domains: L : H = 3 : 1and L : H = 2 : 1, and the
discretization resolution varies from 120 x 40 to 480 x 240,
leading to the number of design variables (n,) varying from
4800 to 115200. The results about the obtained minimum
values of the objective function, the associated computing
time, and the corresponding optimal material layouts are
presented in Table IV and Figure 3 and 4. To verify the QC-
based solutions and to assess the benefits of QC for TO, we
further compare with the state-of-the-art classical solvers, as
discussed in the next subsection.

C. Comparison with Classical Solvers

The classical solvers considered include the SIMP method
[25], the TOBS method [27], and the DVTOPCRA method
[26]. For the SIMP method, we followed the implementation
in [25] with the penalty factor p = 3 and the maximum number
of iterations set as 1000. We consider the sensitivity filter
controlled by a radius size as in (12) along with Heaviside
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TABLE III: Statistics about the 11 QUBO problems (26) solved in the implementation of GBD-Splitting-Direct, where Tqugo
denotes the time spent for embedding and annealing on the QPU.

IZ%] 16 20 34 22 23 27 23 14 32 18 33

ng 49 53 67 55 56 60 56 47 65 51 66

ng 198 | 234 512 260 559 498 432 172 423 212 616
Touso (s) | 620 | 7.11 | 16.63 | 857 | 29.05 | 21.01 | 32.71 | 420 | 13.23 | 10.52 | 33.99

projection [49]. The convergence criterion is controlled by
the change of design variables as max; |Ap;| < 0.01. For
the TOBS method, the setup was the same as provided in
[27], except that the MILP solver was changed to Gurobi
[47] with default setups to permit a fair comparison with our
proposed solution strategy, where Gurobi is used for solving
the binary programming problems (16), (17) and (21). For the
DVTOCRA method, the implementation exactly followed [50]
for the minimum compliance problem.

The results obtained by GBD-Splitting-COM and by the
three classical methods are compared in Table IV and Figure 3
and 4, for different shapes of material domains with different
discretization resolutions. In Table IV, T denotes the total
wall time spent by each method to find the optimal material
layout, including solving all sub-optimization-problems and
FEM analysis in (6); fTu denotes the objective function’s
value obtained corresponding to the optimal material layout.
For all the three classical methods, N denotes the num-
ber of iterations; in each iteration, one FEM analysis (6)
is performed, and one sub-optimization-problem is solved.
In GBD-Splitting-COM, N represents the total number of
binary programming problems invoked by Algorithm 2 and
3; one FEM analysis (6) is performed prior to invoking each
binary programming problem, as stipulated by Algorithm 2.
Therefore, comparing the values of NV is essentially comparing
among all methods how many times the FEM analysis is
conducted, which dominates the computational cost in large-
scale TO problems.

By comparison, the proposed solution strategy exhibits the
following advantages. First, it turns out requiring the least
number of iterations to reach convergence in almost all the
test cases. This can be related to the multi-cuts generated by
the GBD iterations and the guarantee of finite iterations by
the convexity of the problem. Whereas, the other classical
methods solve non-convex sub-problems and in turn have
no guarantee for convergence within finite iterations. As the
discretization resolution increases, the SIMP method with
Heaviside projection cannot meet the convergence criterion
within the set maximum number of iterations, and the other
two methods, TOBS and DVTOPCRA, tend to require more
iterations to reach convergence, as shown in Table IV. Second,
the minimum values of the objective function found by GBD-
Splitting-COM are generally lower than those by the other
methods, especially SIMP and DVTOPCRA. Lastly, in terms
of the wall time, GBD-Splitting-COM exhibits only a slow
growth in computing time and hence a good scaling perfor-
mance, in contrast to the other three methods. Thus, for solving
larger-scale problems, e.g., with the discretization resolutions
of 480 x 160 and 480 x 240, GBD-Splitting-COM is more
efficient than the SIMP-Heaviside and DVTOPCRA methods

and comparable with the TOBS method. Several factors can
contribute to that. First of all, the splitting approach proposed
in Section III-B restricts the growth of the size of the problem
to be embedded and solved on a quantum computer and in turn
inhibits the growth of time required for embedding. Next, as
the discretization resolution increases, the FEM analysis can
be more expensive and in turn dominate the computational
cost. As a result, the fewer FEM analysis conducted, the
less computing time required. Thus, for higher discretization
resolutions, e.g., 480 x 160 and 480 x 240, GBD-Splitting-
COM is more efficient, as it calls for the least numbers of
iterations and hence the least times of FEM analysis. Finally,
comparing with the TOBS method, the problem (16) contains
less constraints than the MILP problem invoked in the TOBS
method and in turn costs less solution time in each iteration.
The resultant optimal material layouts obtained by different
methods are shown and compared in Figure 3 and 4, where
two different shapes of the design space with the finest
discretization resolution are presented. Unlike the nonconver-
gent SIMP designs with gray regions as shown in Figure
3(b) and 4(b), the GBD-Splitting-COM designs have sharp
contrast with clear 0/1 in density. We hence demonstrate
the advantage of GBD-Splitting-CQOM in generating optimal
material layouts with clear boundaries, compared against the
designs by the method like SIMP that relaxes the binary
design variable into a continuous variable. In addition, when
compared with the designs yield from the TOBS method, the
designs optimized by GBD-Splitting-COM also exhibit better
minimal length control. Furthermore, the layouts generated by
the DVTOPCRA method display crooked internal structures,
which can be unfavorable with respect to yield strength.

V. CONCLUSION AND DISCUSSION

We have established a quantum annealing-based solution
method for solving continuum, nonlinear TO problems. Its key
ingredients include the GBD, conversion of MILP into QUBO,
a splitting approach, as well as the implementation on the
quantum computer through the hybrid solver, CQM, provided
by D-Wave. Through solving a canonical TO problem, the
minimum compliance, we have assessed its accuracy and effi-
ciency. By comparing with the state-of-the-art classical meth-
ods commonly used in the field of TO, we have demonstrated
the advantages of our proposed QC-based methodology, with
respect to both solution quality and computational efficiency.
Considering the run-time penalty for embedding due to the
hardware limitations of current quantum annealing machines
[48] and given their future improvements in both the number
of qubits and the long-range couplers between qubits, the
advantage of the proposed QC-based solution method in terms
of computing time can be remarkable. We have also shown its
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TABLE IV: Comparison between different methods for solving the minimum compliance problem.

GBD-Splitting-CQM SIMP-Heaviside TOBS DVTOPCRA
T (s) fTu N T (s) fTu N T (s) fTu N T (s) fTu N
134.18 | 183.6182 | 74 19.84 188.1759 | 433 6.42 187.4646 | 103 7.24 188.1150 | 139
61.51 75.1399 | 77 37.58 77.3887 450 7.80 76.0099 83 11.03 76.7379 133
123.34 | 183.4272 | 73 132.44 188.8870 | 530 31.82 185.7086 | 116 | 39.82 191.8400 | 180
88.21 782722 | 89 | 255.84 78.8675 665 39.00 77.2155 81 51.50 79.6199 145
193.90 | 185.1250 | 89 | 1861.68 | 190.7774 | 1000 | 198.14 | 185.1229 | 134 | 259.85 | 191.6287 | 241
261.34 | 79.3158 | 90 | 2929.59 | 81.1982 1000 | 259.45 | 79.1765 95 | 52230 | 81.8421 329

Resolution np

120 x 40 4800
120 x 60 7200
240 x 80 19200
240 x 120 | 28800
480 x 160 | 76800
480 x 240 | 115200

00| OO| | B[] =

(a) GBD-Splitting-CQM (b) SIMP-Heaviside

(c) TOBS (d) DVTOPCRA

Fig. 3: The resultant optimal material layouts obtained by different methods, with the design space of (L = 60, H = 30) and
the discretization resolution of 480 x 240.

D=1V W Y2\

(a) GBD-Splitting-CQM (b) SIMP-Heaviside
(c) TOBS (d) DVTOPCRA

Fig. 4: The resultant optimal material layouts obtained by different methods, with the design space of (L = 60, H = 20) and
the discretization resolution of 480 x 160.



computational efficiency for TO in the sense that the number
of FEA runs has been reduced significantly when compared
with the classical SIMP method. Future work would exploit
this computational efficiency advantages for larger-scale TO
problems where FEA cost dominates the optimization run.

This work also presents a new application paradigm for
QC and expands the application horizon of QC to include
TO, enabling more efficient designs of topology for broad
applications.

With increasing complexity, the continuum TO problems
can become more challenging. For example, involving the
constraints like G; and Hy, in (1) introduces non-volumetric
constraints; non-uniform meshes necessitated by discretizing
complicated design spaces can lead to non-identical coeffi-
cients in the volume constraint associated in the problem (15).
The GBD has provided a general enough framework to handle
those complexity. Moreover, with non-identical coefficients
in the volume constraint, the resultant binary programming
problem (16) can be NP-hard and cannot be efficiently
solved on classical computers. Whereas, the proposed quantum
annealing-based solution method, as for the problem (23),
provides a promising approach for solving NP-hard binary
programming problems. In addition, due to the similarities
between the problem (16) and the sub-problems generated by
the TOBS method [27], the proposed solution strategy can
also be extended to the TOBS method for dealing with the TO
problems subject to complex constraints [51]. In light of these
perspectives, introducing QC, particularly quantum annealing,
to TO may lead to broad and significant impacts.

The splitting approach developed in the present work has
been shown effective for greatly reducing the size of the
problem to be embedded in quantum computers, while keeping
the solution quality for the optimal material layout. Other ap-
proaches, e.g., the multilevel hybrid framework introduced for
generic combinatorial optimization [52] and the hierarchical
mesh refinement approach [53], can be explored in the future
and integrated into the GBD framework to further reduce the
cost for solving the problems like (15) on quantum computers.
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