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Investigation of K+K− interactions via femtoscopy in Pb-Pb collisions
at

√
sNN = 2.76 TeV at the CERN Large Hadron Collider
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Femtoscopic correlations of nonidentical charged kaons (K+K−) are studied in Pb-Pb collisions at a center-of-
mass energy per nucleon-nucleon collision

√
sNN = 2.76 TeV by ALICE at the CERN Large Hadron Collider.

One-dimensional K+K− correlation functions are analyzed in three centrality classes and eight intervals of
particle-pair transverse momentum. The Lednický and Luboshitz interaction model used in the K+K− analysis
includes the final-state Coulomb interactions between kaons and the final-state interaction through a0(980)
and f0(980) resonances. The mass of f0(980) and coupling were extracted from the fit to K+K− correlation
functions using the femtoscopic technique. The measured mass and width of the f0(980) resonance are consistent
with other published measurements. The height of the φ(1020) meson peak present in the K+K− correlation
function rapidly decreases with increasing source radius, qualitatively in agreement with an inverse volume
dependence. A phenomenological fit to this trend suggests that the φ(1020) meson yield is dominated by particles
produced directly from the hadronization of the system. The small fraction subsequently produced by final-state
interactions could not be precisely quantified with data presented in this paper and will be assessed in future
work.
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I. INTRODUCTION

Femtoscopy is a tool for measuring the space-time geome-
try of the particle emission region in high-energy collisions
of protons and ions [1,2]. It is based on the measurement
of two-particle momentum correlation functions (CF) which
are determined by final-state interactions (FSI) between the
emitted particles and effects of quantum statistics in the case
of identical species [1,3,4]. The technique was traditionally
used to determine the size of the emission region and its
dependence on the particle-pair transverse momentum and
transverse mass, and on the event multiplicity [5,6]. Recently,
there has been a great interest in studying the interaction of
particles using femtoscopy methods along with a parametriza-
tion of the size of the particle emitting source [7–16] to
analyze the measured correlation functions. There has also
been interest in the femtoscopic correlations of pairs of non-
identical kaons involving a neutral kaon K0

S K
± [17–19]. An

important complement to these studies is the measurement
of the K+K− correlations. The existing results in this area
are rather scarce [5,20,21]. This is due to the complexity of
the measurements and the subsequent complicated analysis.
In comparison to identical kaons, the interaction between K+
and K− in the final state is much more complex. It includes
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the Coulomb interaction and the strong interaction through
the near-threshold f0(980) (I = 0 isospin state) and a0(980)
(I = 1 isospin state) resonances, and the strong p-wave FSI
through the φ(1020) meson.

The properties of the scalar mesons a0(980) and f0(980),
discovered in the mid-1960s and in the beginning of the
1970s, respectively [22–26], are still subject of research. The
idea of the nature of these mesons as a quark-antiquark pair
[27] is supplemented by a state in the form of a KK molecule
[28] and even a tetraquark state [29]. Recently, in Ref. [19],
it has been shown that the study of the magnitude of the
correlation strength (λ) in K0

S K
0
S and K0

S K
± pairs allows one

to conclude that the observed difference in measured λ is
compatible with the a0(980) resonance being a tetraquark
state. However, it should be noted that, according to the results
of the latest ALICE work on f0(980) in pp collisions at

√
s =

5.02 TeV [30], the model descriptions assuming a tetraquark
(uuss), KK molecule, and ss disagree with the experimental
measurement.

The first measurement of K+K− correlations was car-
ried out for Pb-Pb collisions at the CERN Super Proton
Synchrotron (SPS) [5]. It was shown that the theoretical
K+K− correlation functions calculated by using a finite-
size Coulomb wave function with the radius extracted from
identical kaon correlations were noticeably greater than the
measured ones. However, by taking into account the contribu-
tion due to strong interactions, a reasonably good description
of the data was obtained at small relative momenta.

Preliminary results from the analysis of unlike-sign kaon
femtoscopic correlations in Au-Au collisions at

√
sNN =

200 GeV were reported by the STAR Collaboration [20,21].

2469-9985/2023/107(5)/054904(16) 054904-1 ©2023 CERN, for the ALICE Collaboration

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.107.054904&domain=pdf&date_stamp=2023-05-03
https://doi.org/10.1103/PhysRevC.107.054904
https://creativecommons.org/licenses/by/4.0/


S. ACHARYA et al. PHYSICAL REVIEW C 107, 054904 (2023)

The experimental one-dimensional K+K− correlation func-
tion in terms of the invariant momentum difference was
compared with the theoretical prediction based on the
Lednický–Luboshitz approach [1]. The measured K+K− CF
could be described by the theoretical calculations using a
Gaussian function to model the source with the size param-
eters extracted from the fit of the correlation function of
identical charged kaons. To account for additional physical
effects not included in the theoretical function, the calculated
correlation function CFtheor was scaled according to CF =
(CFtheor − 1)λ − 1, where the correlation strength parameter
λ was obtained from the fit to the like-sign kaon correla-
tion function. The STAR study showed that the model could
qualitatively reproduce the general structure of the measured
K+K− correlation function both at low relative momenta
q < 200MeV/c, where correlations are determined by the
interplay of the Coulomb and s-wave strong interactions, and
in the φ(1020) resonance region.

In this work, K+K− femtoscopic correlations are studied
in Pb-Pb collisions at a center-of-mass energy per nucleon-
nucleon collision

√
sNN = 2.76 TeV at the CERN Large

Hadron Collider (LHC) by the ALICE Collaboration [31].
The physics goals of the present study are as follows: (1) ex-
traction of the f0(980) mass and coupling parameters based on
the fit to the K+K− correlation function using the Lednický-
Luboshitz model [1] and on the assumption that the source
radii of K+K− pairs are the same as those of K±K± [6];
(2) test of the a0(980) mass and coupling parameters used
in the K0

S K
± femtoscopy study [17,18]; (3) investigation of

how the height of the φ(1020) peak in the CF changes with
the source radius in order to shed light on the nature of the
production of the φ(1020) meson in heavy-ion collisions.

The organization of this article is as follows. In Sec. II, the
event and track selection criteria are described. In Sec. III, the
theoretical and experimental details of the correlation func-
tions and the fitting procedure are discussed. The results of
the analysis are shown in Sec. IV, and a summary is provided
in Sec. V.

II. EVENT AND CHARGED-PARTICLE
RECONSTRUCTION AND SELECTION

The analysis presented in this paper used a sample of about
4 × 107 minimum bias Pb-Pb collisions at

√
sNN = 2.76 TeV

collected with the ALICE detector in the LHC run 1 period
(2009–2013). Monte Carlo (MC) simulations were used for
correcting the obtained CFs for track momentum resolution.
In the simulations, particles from Pb-Pb collision events were
generated with the HIJING [32] general-purpose event gener-
ator and were propagated through the ALICE detector using
the GEANT3 [33] transport code. The total number of MC
events used in this analysis was about 4 × 106. Most of the
event and track selection criteria in the current analysis are
the same as in [6].

Events were classified according to their centrality de-
termined using the measured signal amplitudes in the V0
detectors [34–36], which consist of two arrays of scintillator
counters installed on each side of the interaction point and
covering the pseudorapidity intervals 2.8 < η < 5.1 (V0A )

and −3.7 < η < −1.7 (V0C) [36]. Charged particles were
reconstructed and identified with the detectors located within
a solenoidal magnet that provides a uniform field of 0.5 T
along the beam direction. Charged particle tracking was per-
formed using the inner tracking system (ITS) [37] and the
time projection chamber (TPC) [38]. The ITS consists of six
cylindrical layers of silicon detectors, located at radii between
4 and 43 cm. The ITS and TPC cover the pseudorapidity
range |η| < 0.9 for all vertices located within the interaction
diamond [31]. The ITS provides high spatial resolution in
determining the primary (collision) vertex and the distance of
closest approach (DCA) of a track to the primary vertex. The
primary-vertex position along the beam direction (z coordi-
nate in the ALICE reference frame) was required to be within
±10 cm from the center of the ALICE detector to ensure
uniform tracking performance. The TPC is the main part of
the ALICE apparatus and was designed to track and identify
charged particles in the high particle-density environment of
heavy-ion collisions at the LHC. The TPC is a 5 m long
cylindrical gas detector with a volume close to 90 m3 and with
full acceptance in the pseudorapidity range |η| < 0.9. The
particle momenta were determined using tracks reconstructed
with the TPC and constrained to originate from the primary
vertex. In order to reduce the number of secondaries, primary
tracks were selected based on DCA to the primary vertex.
Additional track selections based on the quality of the track
momentum fit and the number of detected space points in
the TPC were used. Each track was required to have at least
80 (out of a maximum of 159) associated space-points in the
TPC. Track pairs sharing more than 5% of TPC clusters were
rejected [6]. Particle identification (PID) was carried out using
both the TPC and the time of flight (TOF) [39] detectors in
the pseudorapidity range |η| < 0.8. The TOF is a cylindrical
detector with a radius of about 3.7 m. The total area of the
active part of the TOF is about 141 m2. The main unit of the
ALICE TOF detector is the multigap resistive plate chamber
(MRPC) strip detector. The usable area of each MRPC is
about 120 × 7.4 cm2. The ALICE TOF array was assembled
from 1593 MRPC strips, subdivided into 18 azimuth sectors.
For TPC PID, a parametrized Bethe-Bloch formula for a
particle with a given charge, mass, and momentum was used
to calculate the expected specific energy loss (dE/dx) in the
detector. The deviation between the measured and expected
dE/dx values was required to be within a certain number of
standard deviations (Nσ,TPC) relative to the dE/dx resolution
of the TPC [40]. A similar Nσ,TOF selection was applied for
particle identification with the TOF. In this case, the expected
time of flight for a particle with a given mass was calcu-
lated from the track length and momentum measured with
the tracking detectors. A detailed description of the particle
identification is given in [41]. The selection criteria which
were used for kaon selection in the TPC and TOF are shown
in Table I.

The purity of kaons is larger than 99% for tracks with
momentum greater than 0.45 GeV/c [6]. To estimate the
charged kaon purity for p < 0.45 GeV/c, the measured
dE/dx distribution was used [42]. First, the measured dE/dx
distributions in track momentum intervals were considered,
and the contributions of electrons, pions, kaons, and protons
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TABLE I. Charged kaon selection criteria.

pT 0.14 < pT < 1.5GeV/c
|η| <0.8
DCAtransverse to primary vertex <2.4 cm
DCAlongitudinal to primary vertex <3.0 cm
Nσ,TPC (for p < 0.4GeV/c) <2
Nσ,TPC (for 0.4 < p < 0.45GeV/c) <1
Nσ,TPC (for p > 0.45GeV/c) <3
Nσ,TOF (for 0.45 < p < 0.8GeV/c) <2
Nσ,TOF (for 0.8 < p < 1.0GeV/c) <1.5
Nσ,TOF (for 1.0 < p < 1.5GeV/c) <1.0
Number of track points in TPC �80
χ2/Nclusters of the track fit �4

were parametrized via Gaussian fits. Next, an estimate of the
purity of kaons for momentum p < 0.45 GeV/c was made
using this parametrization. The estimated single kaon purity
as a function of momentum p is shown in Fig. 1 (left panel)
for different centrality intervals. The obtained values of purity
decrease from semiperipheral (30–50%) to central (0–10%)
collisions. The resulting kaon pair purity as a function of
pair transverse momentum kT = | �pT,1 + �pT,2|/2 for different
centralities is shown in Fig. 1 (right panel). The pair purity
distribution is wider and its values are larger on average than
for the single-kaon purity. The value of the pair purity is
higher than 99% for K+K− pairs in the considered kT in-
terval. The main contamination for K+K− pairs comes from
γ → e+e− conversions. It should be noted that to reduce this
effect, the identification of kaons with the TOF starts when the
charged kaon momentum is larger than 0.45 GeV/c instead
of 0.5 GeV/c as it was in the identical kaon femtoscopy
analysis published in [6]. In addition, a more stringent selec-
tion on Nσ was applied in the momentum interval where the
contamination from e+e− pairs is expected to be large (see
Table I).

III. ANALYSIS TECHNIQUE

Two-particle momentum correlations are defined as
C(�q) = A(�q)/B(�q), where A(�q) is the measured distribution
of same-event pair momentum difference �q = �p1 − �p2, �p1
and �p2 are the momentum of the first and second particle in
the pair, and B(�q) is the reference distribution of pairs from
mixed events. The mixed-event pair distribution was obtained
by mixing particles from events with similar centrality and
vertex positions along the beam direction. The correlation
function is measured as a function of q =

√
|�q|2 − q20 , where

q0 = E1 − E2 is determined by the energies E1, E2 of the
correlating particles. The correlation function is normalized
to unity such that C(q) → 1 in the absence of a correlation
signal.

A. Theoretical description of K+K− correlation function

This analysis studies femtoscopic correlations of parti-
cles produced in Pb-Pb collisions using the two-particle
correlation function. The measured K+K− CF was fitted
with a theoretical correlation function calculated within the
Lednický-Lyuboshitz approach [1,43–45]. The K+ and K−
particles were assumed to be correlated in the final state due
to the Coulomb interaction, to strong interactions through the
near-threshold resonances a0(980) and f0(980), and to the p-
wave strong interaction through the φ(1020) meson resonance
[45].

In the calculations, the correlations are conveniently ex-
pressed as a function of the single particle momentum in the
pair rest frame (PRF), k∗ = |�k∗|. Note that, in the case of pairs
of particles with equal masses, k∗ is related to the momentum
difference q as k∗ = q/2. For particle production occurring
at a small enough phase-space density, the correlations of
two particles emitted with small k∗ are dominated by the
effects of their mutual final-state interaction and, if particles
under consideration are identical, by quantum statistics. These
correlations depend on the PRF temporal (t∗) and spatial
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FIG. 1. Left: Single-kaon purity as a function of particle momentum p for 0–10%, 10–30%, and 30–50% centrality intervals. Points are
shifted along the x axis for clarity. Right: K+K− pair purity as a function of pair transverse momentum kT . Systematic uncertainties are shown
by bars. Statistical uncertainties are smaller than the size of the markers.

054904-3



S. ACHARYA et al. PHYSICAL REVIEW C 107, 054904 (2023)

(�r∗) separation of the particle emission points. Usually, one
can neglect the temporal separation and in such equal-time
approximation [1,46] these effects are described by properly
symmetrized wave function �. Assuming sufficiently smooth
behavior of single-particle spectra in a narrow correlation re-
gion of small k∗ (smoothness assumption) [47], one can write
the K+K− correlation function at a given �k∗ and the total pair
three-momentum P = | �P| as

CFSI(�k∗, �P) =
∫

d�r∗ ∑
α′

Sα′
P (�r∗, �k∗)

∣∣�α′α
−�k∗ (�r∗)

∣∣2, (1)

where the sum is done over the two intermediate channels
α = K+K− and β = K0K

0
, denoted by the index α′. It is

implied that particles are produced in a complex process with
equilibrated spin and isospin projections. The separation dis-
tribution (source function) Sα′

P (�r∗, �k∗) is then independent of
these projections so that its channel index α′ can be omitted.
Assuming possible position-momentum correlations at parti-
cle freeze-out, the source function can be parametrized as [45]

SP( �r∗, �k∗)=exp

(
− r∗2

4R2
+ b �r∗ �k∗

)
/[8π3/2R3 exp(b2k∗2R2)],

(2)

where R is the Gaussian source radius, and b is a �r∗- �k∗
correlation parameter. Typically, b ≈ 0.25 [45], the �r∗- �k∗ cor-
relation in the low k∗ region (k∗ < 1/R) can be neglected, and
Eq. (2) reduces to the usual spherically symmetric Gaussian
parametrization.

Outside the range of the strong interaction potential and at
a sufficiently small k∗, one may account only for the s-wave
strong interaction and write [44,46]

�αα

−�k∗ (�r∗) = N (η)

[
e−i�k∗�r∗

F (−iη, 1, iξ ) + f αα
c (k∗)

G̃(ρ, η)

r∗

]
,

(3)

�
βα

−�k∗ (�r∗) = N (η) f βα
c (k∗)

√
μβ

μα

eik
∗
β r

∗

r∗ , (4)

where N (η) = eiδc (η)
√
Ac(η), η = (k∗a)−1, a is the two-

particle Bohr radius including the sign of the interaction
(for K+K− a = −109.6 fm), ρ = k∗r∗, μα = mK+/2, k∗ =
k∗
α , and μβ = mK0/2, k∗

β are the respective reduced masses,
and K+ and K0 momenta in PRF, δc = arg�(1 + iη) is the
Coulomb s-wave phase shift, Ac(η) = 2πη[e2πη − 1]−1 is the
Coulomb penetration (Gamow) factor, F is the confluent hy-
pergeometric function, and G̃ is a combination of the regular
and singular s-wave Coulomb functions [48]. The s-wave
scattering amplitudes f α′α

c due to the short-range interaction
renormalized by the long-range Coulomb forces are the ele-
ments of a 2 × 2 matrix [44,46,49]

f̂c = (K̂−1 − ik̂c)
−1. (5)

Here, K̂ is a symmetric matrix and k̂c is a diagonal matrix in
the channel representation kαα

c = Ac(η)k∗ − 2ih(η)/a, kββ
c =

k∗
2 with k∗

2 being the kaon momentum in PRF of the inelastic
channel, where the function h(η) is expressed through the
digamma function ψ as h(η) = [ψ (iη) − ψ (−iη) + ln η2]/2.

TABLE II. a0(980) and f0(980) square masses (in GeV2/c4) and
coupling parameters (in GeV).

Model m2
f0

m2
a0

γ f0→K+K− γ f0→ππ γa0→K+K− γa0→πη

Martin [51] 0.9565 0.9487 0.792 0.199 0.333 0.222
Antonelli [52] 0.9467 0.9698 2.763 0.5283 0.4038 0.3711
Achasov1 [53] 0.9920 0.9841 1.305 0.2684 0.5555 0.4401
Achasov2 [54] 0.9920 1.0060 1.305 0.2684 0.8365 0.4580

The elements of the K̂−1 matrix in the channel flavor
representation α = K+K−, β = K0K

0
are expressed through

elements K−1
I of the diagonal matrix K̂−1 in the representation

of the channel isospin I = 0, 1 as [44]

(K̂−1)αα = (K̂−1)ββ = 1
2

(
K−1
0 + K−1

1

)
, (6)

(K̂−1)βα = (K̂−1)αβ = − 1
2

(
K−1
0 − K−1

1

)
. (7)

The latter are assumed to be dominated by the isoscalar
f0(980) and isovector a0(980) resonances, so

K0(k
∗) = γ f0→KK

m2
f0

− s − iγ f0→ππkππ

, (8)

K1(k
∗) = γa0→KK

m2
a0 − s − iγa0→πηkπη

, (9)

where s = 4(m2
K + k∗2), ma0 and mf0 are the masses of the

a0(980) and f0(980) resonances, respectively (see Table II),
γ f0→KK , γ f0→ππ and γa0→KK , γa0→πη are the respective cou-
plings, and kπη, kππ are the decay pion momenta in the
respective channels.

To take into account the deviation of the spherical waves
from the true scattered waves in the inner region of the short-
range potential, a correction �CKK should be applied (see
Eq. (153) in [46])

�CKK = −2πSP(0, k
∗)Ac(η)

[∣∣ f αα
c

∣∣2dαα
0

+ ∣∣ f βα
c

∣∣2dββ

0 + 2R
(
f αα
c f βα∗

c

)
dβα

0

]
, (10)

where dα′α
0 = 2Rd(K̂−1)α

′α/dk∗2.
An additional contribution to the K+K− correlation func-

tion due to the p-wave strong interaction through the φ(1020)
meson resonance was also taken into consideration. The
usual femtoscopic correlation formalism of Eq. (1) using the
smoothness assumption at small k∗ should be modified at the
φ → K+K− decay momentum k0 = 127MeV/c to account
for substantial �r − �k correlations quantified by the parameter
b ≈ 0.25 in Eq. (2). As a result, the φ(1020) contribution
to the correlation function is exponentially suppressed by
the normalization factor in Eq. (2) and, neglecting a small
Coulomb correction, becomes [45]

CFSI
φ =SP(0, k

∗)
6π

k∗

[
R

[
d f αα

φ

dk∗

]
+

∑
α′

2I

[
k∗
α′ f α′α∗

φ

d f α′α
φ

dk∗

]]
,

(11)
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FIG. 2. The K+K− experimental correlation functions corrected for nonflat baselines according to Eq. (14) as a function of pair relative
momentum q. The CFs are presented in three centrality classes (rows): 0–10%, 10–30%, and 30–50% and three pair transverse momentum
kT bins (columns): (0.3–0.4), (0.5–0.6), and (0.8–1.0) GeV/c. Statistical (bars) and systematic (boxes) uncertainties are shown. The red line
shows the fit of the CF with the Lednický-Lyuboshitz parametrization [Eq. (13)] using free parameters (mass and couplings) for f0(980) and
Achasov [54] parameters for a0(980) in the 0 < q < 0.5GeV/c range. The dashed-dotted lines correspond to the baseline from Eq. (14).

where f α′α
φ = ±[(�α′/k∗

α′ )(�α/k∗)]1/2mφ/(m2
φ − s − imφ�),

� = ∑
α′ �α′ + �′ is the total φ(1020) width, �′ = 0.168� is

the partial width of the φ(1020) decays to the channels other
than the KK ones, and �α′ ∼ k∗3

α′ . The sign ± corresponds to
α′ = α and β, respectively. The expression for f α′α

φ follows

from Eqs. (5)–(7) with the substitution K̂−1 → k̂LK̂−1k̂L in
Eqs. (6) and (7) due to nonzero orbital angular momentum
L = 1. Here, k̂ is a diagonal matrix in the channel flavor rep-
resentation, kαα = k∗, kββ = k∗

2 ; in the channel isospin rep-
resentation, k00 = k11 = (kαα + kββ )/2, k01 = k10 = (kαα −
kββ )/2. The matrix k̂K̂−1k̂ is diagonal in the channel isospin
representation (k̂−1K̂ k̂−1)00 = γφ→KK/[m2

φ − s − imφ�′] and
(k̂−1K̂ k̂−1)11 → 0. Equation (11) has the same structure as
the s-wave correction in the inner region [43] and can thus
be substituted by Eq. (10) multiplied by the p-wave factor
2L + 1 = 3. By neglecting the difference between the K+K−

and K0K0 channel momenta, the φ(1020) contribution can be
rewritten as

CFSI
φ

.= 12πSP(0, k∗)| f αα|2
(μα�α/k∗)

.= 6πSP(0, k∗)(� − �′)

μαk0
∣∣(k20 − k∗2)/μα − i�

∣∣2 .

(12)

Here, the usage of the nonrelativistic Breit-Wigner expression
in the last equality is motivated by the narrow φ(1020) width
allowing one to neglect the momentum dependence of �α .

The total correlation function is determined as a sum of
the s-wave term described in Eqs. (1)–(10) and the p-wave
term FSI described by Eq. (11) and the direct φ(1020) meson

production

C(p1, p2) = 1 + λ
(
CFSI
a0, f0 (p1, p2) +Cφ (p1, p2)

)
,

Cφ (p1, p2) = adirectC
direct
φ (p1, p2) + aFSIC

FSI
φ (p1, p2), (13)

where Cdirect
φ can be described by a nonrelativistic Breit-

Wigner function [50], CFSI
φ is calculated from Eq. (11),

and adirect and aFSI are coefficients that determine the ra-
tio of φ(1020) mesons produced directly and due to FSI,
respectively. Within the experimental accuracy, CFSI

φ can be
described by a nonrelativistic Breit-Wigner function. There-
fore, this function was used to fit Cφ (where Cφ is the
nonrelativistic Breit-Wigner function) instead of the two
separate terms adirectCdirect

φ and aFSICFSI
φ . The ratio of the

contributions of φ(1020) meson production from the direct
mechanism adirect and from the coalescence mechanism aFSI
is discussed in Sec. IVB.

B. The K+K− correlation function and fitting procedure

The correlation functions were measured in eight pair
transverse momentum kT intervals: (0.2–0.3), (0.3–0.4), (0.4–
0.5), (0.5–0.6), (0.6–0.7), (0.7–0.8), (0.8–1.0), and (1.0–1.3)
GeV/c and three centrality classes: 0–10%, 10–30%, 30–
50%. As an example, the K+K− correlation functions for
three of these eight kT bins in different centrality classes are
shown in Fig. 2. The measured correlation functions were nor-
malized to unity in the region of 0.35 < q < 0.5GeV/c and
corrected for momentum resolution as described in Sec. III C.
In this figure, one can see the main features of the K+K−
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femtoscopic correlation function: Coulomb attraction at very
small q (q < 0.05GeV/c) resulting in C(q) > 1, suppression
(C(q) < 1) due to strong final-state interactions via the for-
mation of the near-threshold resonances a0(980) and f0(980)
in 0.05 < q < 0.2GeV/c, and the narrow φ(1020) resonance
peak at q around 0.25 GeV/c.

The measured correlation function was corrected for the
nonflat baseline D before the fit. The baseline is fitted in
a wide q range (0.35 < q < 1.0GeV/c) using a first-order
polynomial function

D(q) = κ (1 + aq), (14)

where κ is a normalization factor, and a is a free parameter
of the fit. The observed nonflat baseline effect is almost neg-
ligible for the most central collisions and at low kT , while it
becomes significant at low multiplicities and high transverse
momenta. The nonflat baseline could be associated with the
manifestation of minijets in peripheral collisions. A similar
effect was observed for K±K± in Pb-Pb collisions at

√
sNN =

2.76 TeV [6]. The changing trend of the slope in different
kT intervals could be reproduced qualitatively by HIJING
simulations but the magnitude of the slope in the simulation
was different than the one in the data in all considered kT
intervals. Therefore, the MC was not used to estimate the
nonflat baseline effect in this analysis.

The fit of the calculated correlation function to the mea-
sured distributions allows one to constrain the masses and
coupling parameters of the a0(980) and f0(980) resonances.
The a0(980) parameters were fixed using the Achasov model
[54] in the K0

SK
± femtoscopic correlation analysis of Pb-

Pb collisions at
√
sNN = 2.76 TeV and of pp collisions at√

s = 7 TeV [17,18]. Therefore, only the parameters of the
f0(980) resonance were studied in this work. Three possible
sets of values of f0(980) parameters proposed by theoretical
models (Marin [51], Antonelli [52], and Achasov [53,54], see
Table II) were considered. The source radii for K+K− pairs
obtained by using all these theoretical models are inconsistent
with the source radii parameters obtained in the identical
sign K±K± analysis [6], while there are no physical reasons
for this difference. Thus, in this study the parameters of the
f0(980) resonance have been estimated by treating them as
free parameters in the fits and constraining the source radii
of K+K− pairs to be consistent with those obtained from the
analysis of identical sign K±K± correlations. The parameter
λ for K+K− does not necessarily have to be equal to the
parameter λ for K±K±. In the case of identical charged kaon
correlations, the λ parameter decreases with increasing kT ,
which can be attributed to a non-Gaussian shape of the source
[6]. Instead, the K+K− correlation function is determined
by the contribution of the Coulomb and strong FSI, which
are not very sensitive to a possible non-Gaussian shape of
the source. The fits of the K+K− experimental correlation
function for three different kT and centrality intervals with the
Lednický-Lyuboshitz parametrization using free parameters
(mass and couplings) for f0(980) and Achasov [54] param-
eters for a0(980) are shown in Fig. 2. Systematic uncertainties
of CF were estimated using correlation functions obtained
with different magnetic field orientations in the detector. As
seen from Fig. 2, the f0(980) FSI parametrization obtained

TABLE III. Summary of relative systematic uncertainties on R
and λ parameters. The symbol ‘-’ means that the contribution from
the given source is negligible. The ranges reported for each specific
source and for the total uncertainty reflect the fact that the uncertainty
values depend on centrality and kT intervals. Only systematic uncer-
tainties whose statistical significance level exceeds 68% according to
the Barlow criterion were considered.

Sources of systematic uncertainty R (%) λ (%)

Single particle selection 0–10 0–12
Purity – 0–0.5
Baseline fit range 0–4 0–3
Momentum resolution 3–9 4–25
Total (quad. sum) 3–14 4–28

in this analysis gives an excellent description of the data in
the interval 0 < q < 0.35GeV/c, where its contribution is
relevant. The corresponding χ2/ndf are in the range from 1
to 2.

C. Finite momentum resolution

Finite track momentum resolution causes the reconstructed
relative momentum qrec of a pair to differ from the true value
qtrue. This is accounted for through the use of the response
matrix M(qtrue, qrec) generated with HIJING simulations of
Pb-Pb collisions at

√
sNN = 2.76 TeV. To account for this

effect, the theoretical CF can be smeared through the response
matrix according to [55]

C(qrec) =
∑

qtrue
C(qtrue )M(qtrue, qrec)∑
qtrue

M(qtrue, qrec)
. (15)

This smearing was applied directly in the fit of the measured
CF to the theoretical one. The momentum resolution effect
was included in the theoretical CF used to fit the data. In
general, the momentum resolution reduces the height of the
correlation function peak and makes it wider.

D. Systematic uncertainties

Possible sources and estimated values of systematic un-
certainties of the source radius R and correlation strength λ

parameters are presented in this section. Systematic uncertain-
ties of the mass and coupling parameter of the f0(980) meson
are also discussed. The total systematic uncertainty

�sys =
√∑

i

(
�i

sys

)2
(16)

was taken as the square-root of the quadratic sum of all
systematic contributions �i

sys = |y0 − yivar| from the fit and
the selection criteria (Table III). Here, y0 refers to the value
obtained with the default criteria (central value), yivar is a value
with some variation i of particle selections and fit criteria. The
Barlow factor [56] was also considered to estimate a statistical
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FIG. 3. R (left panel) and λ (right panel) parameters as a function of pair transverse momentum kT extracted in K+K− analysis with free
parameters (mass and couplings) for f0(980) and Achasov [54] parameters for a0(980). The parameters are compared to those obtained for
identical charged kaons [6]. Statistical (bars) and systematic (boxes) uncertainties are shown.

significance level of each deviation as

B =
∣∣y0 − yivar

∣∣√
σ 2
0 + σ 2

var − 2ρσ0σvar

, (17)

where σ0 indicates the statistical uncertainty of the central
value, σvar is the statistical uncertainty of yivar, ρ characterizes
correlation between y0 and yivar. The variation i is included in
the systematic uncertainty evaluation if B is larger than unity.

The effect of the track selections was investigated by vary-
ing the criteria shown in Table I. The DCA and PID selection
values were varied by ±10%. These variations resulted up to a
10–12% contribution to the systematic uncertainties for the R
and λ parameters (see Table III). The residual contamination
from other particle species in the K+K− pair signal was found
to have a minimal effect on the extracted parameters because
of the high purity (see Fig. 1) of selected kaons, which was
better than 99% for a pair of kaons.

The systematic effect due to the choice of the baseline fit
range was estimated by varying the q interval in which the
fit is performed. The standard fit range of the baseline was
0.35 < q < 1.0GeV/c, and the upper limit of q was changed
to 0.7 and 1.3 GeV/c. The estimated uncertainty depends
on the centrality and the kT interval, and its maximum and
minimum values are reported in Table III.

Changing the range of the fit slightly changes the fem-
toscopic parameters extracted from the correlation function.
However, after correcting the correlation function for the non-
flat baseline, the influence of the fit range variation was found
to be negligible.

The effect of finite momentum resolution on femtoscopic
radii and λ parameters and the related systematic uncertainty
were studied by modifying the width of momentum resolution
distribution in the response matrix described in Sec. III C.
The width of the qtrue vs qrec distribution determined by
M(qtrue, qrec) was varied maximally (±10%) to account for its
influence on the CF without distorting its shape.

The resulting systematic uncertainties are reported in Ta-
ble III. The systematic uncertainties of the γ f0→KK and γ f0→ππ

couplings are determined by their possible maximal deviation
from the default values providing the best CF fit under condi-
tion of having close radii for K+K− to those obtained for pairs
of identical kaons, and a constraint on the γ f0→KK/γ f0→ππ

ratio to be in accordance with the predictions of the models
[51–54].

IV. RESULTS AND DISCUSSION

A. Source size and correlation strength

In the CF fit, the R parameters for K+K− correlations
were constrained to be compatible with the corresponding
parameters for the same sign K±K± pairs within statistical
uncertainties since there are no physical reasons for them to be
different as was discussed above. Figure 3 shows the obtained
radii R (left panel) and correlation strengths λ (right panel)
as a function of kT for the 0–10%, 10–30%, and 30–50%
centrality intervals. The parameters extracted from K+K−
correlations are compared to those obtained for K±K± pairs.

The R parameters from K+K− correlations shown in Fig. 3
(left panel) are by construction consistent with those from
identical kaon pairs, due to the constraint applied in the fit.
This constraint was implemented by minimizing χ2/N that
was calculated for each R value according to

χ2
R/N =

N∑
i=1

[Ri(K±K±) − Ri(K+K−)]2

σ 2
i

, (18)

where i in Ri runs over eight kT values for each central-
ity bin (N = 8) and σi =

√
σ 2
K±K± + σ 2

K+K− is the statistical
uncertainty of the difference between the extracted radius
parameters for K+K− and K±K± correlations. The obtained
χ2
R/N values are 1.5 for 0–10%, 0.5 for 10–30%, and 1.1 for

30–50% centralities.
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The correlation strength parameters for K+K− pairs tend
to be slightly larger than those for K±K± for kT > 0.7GeV/c.
In particular, for K+K− pairs the λ parameter does not show
the decreasing trend with increasing kT that was found for
identical charge K±K± correlations. This difference could be
due to the fact that the decreasing trend in the identical sign
result is due to a non-Gaussian shape of the source and to the
fact that the K+K− pairs are less sensitive to it. The values of
λ are about 0.7, i.e., lower than the ideal value of unity. This
can be due to the contribution of kaons from K∗ decays and
from other long-lived resonances distorting the spatial kaon
source distribution with respect to an ideal Gaussian, which is
assumed in the fit function [6].

Mass and coupling parameters for the f0(980) meson were
extracted in this analysis using Eq. (8) with the constraint
on the K+K− radii to be close to the corresponding K±K±
radii as was explained above. The resulting mass and cou-
pling parameters with statistical and systematic uncertainties
are mf0 = 967 ± 3 ± 7MeV/c2, γ f0→KK = 0.34 ± 0.07 ±
0.10GeV, γ f0→ππ = 0.089 ± 0.018 ± 0.026GeV. The ob-
tained f0(980) mass is consistent within uncertainties with its
PDG value (mf0 = 990 ± 20MeV/c2) [57]. The ratio of kaon
to pion couplings is equal to γ f0→KK/γ f0→ππ = 3.82 ± 1.07
and is consistent with those shown in Table II, which are
in the range from 4 to 5 for all models. The full width of
the f0(980) meson estimated in this work is � f0 = 43.81 ±
8.76 ± 6.90MeV/c2 and is also consistent with the PDG
value (� f0 = 10−100MeV/c2).

B. The φ(1020) meson peak height versus radius

Figure 2 shows that the height of the peak related to
φ(1020) meson decays depends on both kT and centrality.
Since it is also known that the source radius changes with kT
and centrality, it is interesting to investigate how the height of
the peak changes with the radius. The height of the φ(1020)
meson peak can be measured from the correlation function
minus unity at a relative momentum q that corresponds to the
φ(1020) meson mass as

Cφ = C
(
q =

√
m2

φ − 4m2
K = 2k0

) − 1. (19)

TheCφ value as a function of the K+K− radius is presented in
Fig. 4. It should be noted that it was corrected for both the λ

parameter magnitude and the momentum resolution. It can be
assumed that the mechanism of the φ(1020) meson produc-
tion consists of at least two processes. The first is the direct
production of φ(1020) mesons at the time of hadronization
of the system. The second is the regeneration via the K+K−
FSI in the subsequent hadronic phase leading to resonance
formation [45].

To estimate the contribution from directly produced
φ(1020) mesons [adirect in Eq. (13)], the following reasoning
can be applied. The correlation function is defined as a ratio of
the signal to the background. According to statistical models
of hadron production [58], the φ(1020) meson yield (signal) is
proportional to the volume of the φ(1020) meson production
region. The combinatorial background is proportional to the
square of the multiplicity, which in its turn is proportional

3 3.5 4 4.5 5 5.5 6
 (fm)R

1−10

1

)
R( φ

C φDirect 
φDirect and FSI 

−K+       K
10% − 0
30% −10
50% −30

 = 2.76 TeVNNsPb −ALICE Pb

FIG. 4. Height of φ(1020) meson peak (Cφ) as a function of
source radius R, for three centrality classes. Statistical uncertainties
are shown by bars. Systematic uncertainties are smaller than the size
of the markers. Blue solid line corresponds to the fit of CF with
Cdirect

φ = const/R3. Red dashed line corresponds to the fit with the
second line in Eq. (13).

to the source volume. Therefore, the height of the φ(1020)
meson peak in the K+K− correlation function is expected to
rapidly decrease with increasing R in qualitative accordance
with an inverse volume dependence, i.e., as 1/R3. Based on
these arguments, it is possible to fit the height of the φ(1020)
meson peak in the K+K− correlation function with Cdirect

φ =
const/R3 as shown in Fig. 4. This fit function describes the
data very well, indicating that the FSI contribution [aFSI in
Eq. (13)] to the production of φ(1020) mesons is quite small.

The influence of FSI can be estimated from simple model
considerations. The interaction of kaons in the final state de-
pends on the separation of their production points, which is
affected by collective flow and resonance decays leading to
the �r-�k correlation characterized by the parameter b [45]. The
K+K− FSI contribution could be approximately described by
Eq. (11) and Eq. (4) in [45]

CFSI
φ = const × exp

(−b2k20R
2
)

R3
. (20)

Assuming that the direct production of φ(1020) mesons is
described by the inverse volume dependence 1/R3 while the
FSI production is described by Eq. (20), the K+K− corre-
lation function can be fit with the second line in Eq. (13).
The parameter b is fixed to the value about 0.25 obtained
from the blast-wave model estimation [45]. The results of
the calculation are presented in Fig. 4. The height of the
φ(1020) meson peak in the K+K− correlation function is fit
with Cdirect

φ = const/R3 (blue curve in Fig. 4). The constant
is equal to 15.08 ± 0.44. The value of χ2/ndf = 13.45/23 =
0.58. The results of the fit of the data to the second line in
Eq. (13) are also shown in Fig. 4. The red curve corresponds to
the fit with parameters of the fit adirect = 0.75 ± 0.16, aFSI =
0.25 ± 0.16, and χ2/ndf = 11.07/21 = 0.53. The resulting
fraction of directly produced φ(1020) mesons adirectCdirect

φ /Cφ

varies from 0.7 to 0.8 with increasing R and is within the
range expected from the integrated hydrokinetic model [59].
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Consequently, the possible fraction of φ(1020) mesons pro-
duced in FSI decreases from 0.3 to 0.2 with increasing R.

Figure 4 shows that the resulting fits with Eq. (13) and
with simple ∼1/R3 are very close to each other. As a result
of the present study, it can be concluded that the fraction
of φ(1020) meson produced in FSI is difficult to distinguish
from the directly produced φ(1020) mesons, at least within
the statistical precision of the data sample considered in this
analysis.

V. SUMMARY

In this article, the results of femtoscopic studies of non-
identical charged kaon correlations in Pb-Pb collisions at√
sNN = 2.76 TeV measured with the ALICE detector at

the LHC are presented. The K+K− femtoscopic radii were
constrained to the corresponding parameters extracted from
the analysis of identical charged kaon correlations in Pb-Pb
collisions at the same collision energy. The a0(980) reso-
nance mass and coupling parameters used in this work were
fixed based on the K0

S K
± femtoscopy study. The parameters

of the f0(980) meson proposed by the Martin, Antonelli,
and Achasov models did not provide a good description of
the K+K− correlation parameters if the K+K− source radii
were required to be close to the corresponding K±K± ones.
Therefore, the K+K− correlation function was fitted using
the f0(980) mass and couplings as free parameters. The ex-
tracted f0(980) width 43.81 ± 8.76 ± 6.90MeV/c2 and mass
967 ± 3 ± 7MeV/c2 were found to be consistent with the
existing PDG world-average values. The obtained values
of the f0(980) meson coupling parameters are γ f0→KK =
0.34 ± 0.068 ± 0.101GeV and γ f0→ππ = 0.089 ± 0.0178 ±
0.026GeV. The parameters of a resonance [ f0(980) here]
were obtained from femtoscopic measurements. It was also
shown that the height of the φ(1020) meson peak in theK+K−
correlation function rapidly decreases with increasing R as
1/R3 where R is the radius of the particle emitting source. A
phenomenological fit to this trend suggests that the φ(1020)
meson yield is dominated by particles produced directly from
the hadronization of the system. The small fraction subse-
quently produced by FSI could not be precisely quantified
with the data sample investigated in this analysis and will
be assessed in future work. It is difficult to estimate the rel-
ative contributions of φ(1020) mesons from FSI and those
produced directly in collisions within the statistical precision
of the existing data sample. The fraction of φ(1020) mesons
produced in FSI could be estimated using the experimental
data sample collected with the ALICE detector in the LHC
Run 2 period, which is larger than the Run 1 sample used in
the presented work, and is a subject of future research.
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S. Perrin ,128 Y. Pestov,140 V. Petráček ,35 V. Petrov ,140 M. Petrovici ,45 R. P. Pezzi ,103,65 S. Piano ,56 M. Pikna ,12

P. Pillot ,103 O. Pinazza ,50,32 L. Pinsky,114 C. Pinto ,95 S. Pisano ,48 M. Płoskoń ,74 M. Planinic,89 F. Pliquett,63
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87Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

88Ohio State University, Columbus, Ohio, USA
89Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia

90Physics Department, Panjab University, Chandigarh, India
91Physics Department, University of Jammu, Jammu, India

92Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2),
Hiroshima University, Hiroshima, Japan

93Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
94Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

95Physik Department, Technische Universität München, Munich, Germany
96Politecnico di Bari and Sezione INFN, Bari, Italy

97Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
98Saga University, Saga, Japan

054904-15



S. ACHARYA et al. PHYSICAL REVIEW C 107, 054904 (2023)

99Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
100School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

101Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
102Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria

103SUBATECH, IMT Atlantique, Nantes Université, CNRS-IN2P3, Nantes, France
104Sungkyunkwan University, Suwon City, Republic of Korea

105Suranaree University of Technology, Nakhon Ratchasima, Thailand
106Technical University of Košice, Košice, Slovak Republic

107The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
108The University of Texas at Austin, Austin, Texas, USA
109Universidad Autónoma de Sinaloa, Culiacán, Mexico
110Universidade de São Paulo (USP), São Paulo, Brazil

111Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
112Universidade Federal do ABC, Santo Andre, Brazil
113University of Cape Town, Cape Town, South Africa

114University of Houston, Houston, Texas, USA
115University of Jyväskylä, Jyväskylä, Finland

116University of Kansas, Lawrence, Kansas, USA
117University of Liverpool, Liverpool, United Kingdom

118University of Science and Technology of China, Hefei, China
119University of South-Eastern Norway, Kongsberg, Norway

120University of Tennessee, Knoxville, Tennessee, USA
121University of the Witwatersrand, Johannesburg, South Africa

122University of Tokyo, Tokyo, Japan
123University of Tsukuba, Tsukuba, Japan

124University Politehnica of Bucharest, Bucharest, Romania
125Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France

126Université de Lyon, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Lyon, France
127Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France

128Université Paris-Saclay Centre d’Etudes de Saclay (CEA), IRFU, Départment de Physique Nucléaire (DPhN), Saclay, France
129Università degli Studi di Foggia, Foggia, Italy

130Università del Piemonte Orientale, Vercelli, Italy
131Università di Brescia, Brescia, Italy

132Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
133Warsaw University of Technology, Warsaw, Poland
134Wayne State University, Detroit, Michigan, USA

135Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
136Wigner Research Centre for Physics, Budapest, Hungary

137Yale University, New Haven, Connecticut, USA
138Yonsei University, Seoul, Republic of Korea

139Zentrum für Technologie und Transfer (ZTT), Worms, Germany
140Affiliated with an institute covered by a cooperation agreement with CERN

141Affiliated with an international laboratory covered by a cooperation agreement with CERN

†Also at: Max-Planck-Institut für Physik, Munich, Germany.
‡Also at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy.
§Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy.
‖Deceased.
¶Also at: An institution covered by a cooperation agreement with CERN.
#Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India.
**Also at: Institute of Theoretical Physics, University of Wroclaw, Poland.

054904-16


