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Two-particle transverse momentum differential correlators, recently measured in Pb-Pb collisions at energies
available at the CERN Large Hadron Collider (LHC), provide an additional tool to gain insights into particle
production mechanisms and infer transport properties, such as the ratio of shear viscosity to entropy density,
of the medium created in Pb-Pb collisions. The longitudinal long-range correlations and the large azimuthal
anisotropy measured at low transverse momenta in small collision systems, namely pp and p-Pb, at LHC energies
resemble manifestations of collective behavior. This suggests that locally equilibrated matter may be produced
in these small collision systems, similar to what is observed in Pb-Pb collisions. In this work, the same two-
particle transverse momentum differential correlators are exploited in pp and p-Pb collisions at /s = 7 TeV and
/Svy = 5.02 TeV, respectively, to seek evidence for viscous effects. Specifically, the strength and shape of the
correlators are studied as a function of the produced particle multiplicity to identify evidence for longitudinal
broadening that might reveal the presence of viscous effects in these smaller systems. The measured correlators
and their evolution from pp and p-Pb to Pb-Pb collisions are additionally compared to predictions from Monte

Carlo event generators, and the potential presence of viscous effects is discussed.
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L. INTRODUCTION

Studies at the Large Hadron Collider (LHC) and the
Relativistic Heavy-lon Collider (RHIC) have shown that
quark-gluon plasma (QGP) matter is produced in relativistic
collisions of large nuclei [1-11], and considerable efforts have
been undertaken to measure some of the key properties of this
phase of matter. One such property, the shear viscosity per
unit entropy density, 1/s, has received much attention from
both the theoretical and experimental communities [12—17].
Measurements of anisotropic flow coefficients as well as
symmetric cumulants, which are correlations between flow
coefficients of different orders, in particular, have been suc-
cessfully exploited to determine the extent to which the QGP
is an almost perfect fluid, and many advances have been
accomplished in improving estimates of the QGP n/s based
on such measurements [18-20].

A new line of investigation was recently undertaken to
extract values of the QGP n/s. This approach is based on mea-
surements of the longitudinal broadening of a specific type
of transverse momentum differential two-particle correlation
function known as G, in the recent literature [21-23]. While
the technique is relatively new and still needs to be fully vetted
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by detailed (3+1)-dimensional hydrodynamical calculations,
a recent measurement of the longitudinal broadening of G,
in central Pb-Pb collisions, by the ALICE Collaboration [24],
is found to yield an n/s range compatible with estimations
based on anisotropic flow [25]. This agreement suggests that
the new approach has merits and potential in furthering the
understanding of the properties of QGP matter produced in
collisions of large nuclei.

In proton-proton (pp) and proton-lead (p-Pb) collisions,
femtoscopy radii, related to the estimated size of the system,
and average transverse momentum, (pr), increase with the
multiplicity of produced particles [26—-30], which implies that
the system lives longer as the multiplicity increases, i. €., as
the system size increases. In turn, this means that radial flow
would have more time to develop. In these terms, for a given
system size, viscous effects, if present, will have a certain time
to manifest themselves by transferring momentum between
neighboring fluid cells. This transfer of momentum will make
the correlation function for that system size acquire, at the
end, a certain longitudinal width which reflects the reach of
the viscous effects. With larger multiplicity, the larger the
system size is and the larger the time the system lives, the
reach of the viscous effects will also be larger, which causes
the longitudinal width of the correlation function to enlarge.
Overall, the correlation function broadens longitudinally with
the system size, the system lifetime, and the system multiplic-
ity. In contrast, as more radial flow builds up with increasing
multiplicity, system size, and lifetime, a narrower width is
expected in the correlator azimuthal dimension. The fact that
viscous effects are, in principle, independent of the charge
and that radial flow has a strong charge dependent component
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[31,32] implies that the charge independent (CI) and charge
dependent (CD) correlators play complementary roles in the
evaluation of the interplay between these effects.

It is thus natural to consider whether the above technique
could also be exploited in the study of small systems, such
as proton-proton (pp) and proton-lead (p-Pb) collisions. Mea-
surements of anisotropic flow coefficients and multi-particle
cumulants indicate that strong collective behavior exists in
high-multiplicity pp and p-Pb collisions [33-35]. Several cal-
culations based on hydrodynamics models [36,37] suggest
that the observed coefficients can in fact be interpreted as
evidence of collective flow in high multiplicity pp and p-Pb
collisions. An important question is whether the apparent col-
lectivity arises from the production of a medium, albeit much
smaller than that produced in Pb-Pb collisions, or is due to
other types of correlation sources.

In this context, it is of interest to examine whether mea-
surements of G, in small collision systems can be exploited
to identify the existence of a droplet sufficiently large and
long lived such that viscous effects can yield a longitudinal
broadening of the correlator. A particularly appealing aspect
of the G, correlator is that it can be studied for charge de-
pendent and charge independent pairs of particles. The charge
independent G, correlator, hereafter denoted Ggl, is by con-
struction sensitive to momentum current correlations. It is thus
expected to exhibit a progressive broadening from small to
large multiplicity collisions if these involve a long lived QGP
matter undergoing both longitudinal and transverse expan-
sion. In this expansion, shear viscous effects can transform
stochastic radial currents and produce a longitudinal broaden-
ing of the correlator. However, the shape and evolution of Ggl
may also be impacted by the presence of hadronic decays and
radial flow and by minijet correlations resulting from parton
shower evolution, string-breaking, and hadronization effects.
Measurements of the charge dependent G, correlator, here-
after noted GSP, can be exploited to specifically study these
contributions. Indeed, GSP and other two-particle differential
correlation functions are found to be particularly sensitive to
the presence of hadronic resonance decays and radial flow,

J

but somewhat less sensitive to shear viscous effects [38,39].
They can thus, in principle, be used to assess these effects and
“calibrate them” out of measurements of G5'.

Prior measurements of two-particle azimuthal correlations
in the p-Pb system [40] compared the strengths of azimuthal
modulations in collisions producing the largest and lowest
charged particle multiplicities. They found evidence of sizable
flowlike azimuthal correlation structures in high-multiplicity
p-Pb collisions but did not study their pseudorapidity de-
pendence in detail. It is thus the primary goal of this work
to extend those correlation studies and measure the evolu-
tion of GSP and GS" as a function of the produced charged
particle multiplicity in both pp and p-Pb collisions. Then,
this will allow seeking evidence for longitudinal broaden-
ing of GS' signaling viscous effects that should happen
if relatively long lived QGP matter is produced in these
collisions.

This work is organized as follows. Section II defines
the two-particle correlator G, and presents the measurement
methodology, while Sec. III describes the experimental details
and corrections applied to the data. Section IV presents the
techniques used to determine statistical and systematic un-
certainties on the measured correlation function amplitudes
and their characteristics, reported in Sec. V. The method used
to characterize the shape of the correlation functions and
its evolution with multiplicity is presented in Sec. VI. Mea-
surements of the evolution of the longitudinal and azimuthal
widths of the correlators are compared to model calculations
in Sec. VII. A discussion of the results and models is presented
in Sec. VIII followed by a summary of the conclusions of this
work in Sec. IX.

II. ANALYSIS METHODOLOGY

The G, correlator is designed to be proportional to the
magnitude of momentum currents, the transferring of momen-
tum fluctuations, and their correlations, from which viscous
effects can be inferred [21,22]. It is defined as

Go(n1, @1, M2, @2) =
(pT.1)(P1.2)

where p|(p;) and p, (P, p2) represent single-particle and pair
densities computed as
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imuthal angle, and transverse momentum of particles i = 1, 2,
composing pairs. Transverse momentum averages (pr ;) are
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Integrals are computed in the measurement acceptance €2.
Measurements of G,(n1, ¢1, N2, ¢2) are averaged across the
longitudinal and azimuthal acceptances in which the mea-
surement is performed to obtain G,(An, Agp), where An =
n — n2 and Ag = ¢; — @y, with a procedure similar to that
used for the two-particle number correlator R, and the two-
particle transverse momentum correlator P, [32], as well as
for measurements of G, in Pb-Pb collisions [24].
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In order to account for distinct efficiency losses associ-
ated with positively (4) and negatively (—) charged particles,
G, correlators are first measured for pairs of (++), (——),
(—+), and (+—) charged hadrons. These measurements
are combined to yield like-sign (LS) and unlike-sign (US)
pairs correlators GIZ“S = %(G;’+ + G;7)and Ggs = %(G;" +
G, ™). In turn, these are further combined to obtain the charge
dependent and the charge independent correlators defined as
GSP = 1(GYS — G55) and GS' = 1(GYS + G53), respectively
[32].

The GSP and G§! correlators are measured in pp and p-Pb
collisions using event classes based on the average charged
particle multiplicity detected at forward pseudorapidities. The
multiplicity evolution of the shape and strength of these corre-
lators is then extracted and analyzed as described in Sec. VL.

III. DATASETS AND EXPERIMENTAL SETUP

The results presented in this article are based on 6.4 x
107 selected minimum bias (MB) pp collisions at center-of-
mass energy /s =7 TeV and 5.4 x 107 selected MB p-Pb
collisions at center-of-mass energy per nucleon-nucleon colli-
sion ,/syy = 5.02 TeV collected during the 2010 and 2013
LHC runs, respectively, with the ALICE detector. Detailed
descriptions of the ALICE subsystems and their respective
performance are given in Refs. [41,42].

The MB trigger was configured to provide a high efficiency
for hadronic events. It required coincident signals in the VOA
and VOC scintillator arrays [43], covering the pseudorapid-
ity ranges 2.8 < n < 5.1 and —3.7 < n < —1.7, respectively.
Calibrated SPD and VO signal amplitudes were used to es-
timate the charged particle multiplicity production in these
pseudorapidity ranges. The resulting multiplicity distribution
was used to establish nine multiplicity classes corresponding
to 0-5% (highest multiplicity), 5-10%, 10-20%, 20-30%,
30-40%, 40-50%, 50-60%, 60-70%, and 70-80% (lowest
multiplicity) of the inelastic cross section. The correlators GS'
and GSP are extracted independently in each of these multi-
plicity classes and the evolution of their widths is reported as
a function of the average number of charged particles [N,y ]
measured in the fiducial acceptance of the measurement.

The collision vertex position of each event, called primary
vertex (PV), is determined from the charged particle tracks
reconstructed in the Inner Tracking System (ITS) and the
Time Projection Chamber (TPC). Only events with a recon-
structed PV position within 7 cm from the nominal interaction
point along the beam direction were included in the analysis.
Background events from beam interactions with residual gas
in the beam pipe are removed using the timing information in
the V0. Pileup events having multiple interaction vertices are
discarded based on information from the Silicon Pixel Detec-
tor (SPD) constituting the two inner layers of the ITS. Extra
activity in slow response detectors (e. g., TPC) relative to that
in fast detectors (e. g., VOA and VOC scintillators) resulting
largely from out-of-bunch pileup events, is additionally used
to discard these events.

Charged particle tracks are reconstructed using the ITS
and TPC detectors and required to have transverse momenta
and pseudorapidities within the ranges 0.2 < pr < 2.0 GeV/c

and |n| < 0.8, respectively. Good track quality is assured by
retaining only tracks with more than 70 reconstructed TPC
space points, out of a maximum of 159, for the analysis. A
criterion on the maximum distance of closest approach (DCA)
to the reconstructed PV of less than 2 cm in the longitudinal
dimension and a py dependent maximum DCA in the trans-
verse direction, ranging from 0.20 cm at pr = 0.2 GeV/c
down to 0.036 cm at pr =2 GeV/c for pp collisions and
from 0.22 cm at pr = 0.2 GeV/c down to 0.031 cm at py =
2 GeV/c for p-Pb collisions, is applied to minimize contam-
ination by secondary tracks. Moreover, electrons (positrons),
which originate mainly from photon conversions into ete™
pairs, are suppressed by removing tracks with a specific
energy loss in the TPC gas, dE /dx, within three standard
deviations, 3044y, of the expected value for electrons and
more than 50,4 4, away from the 7 and K expectation values.

Corrections for single track losses due to detector nonuni-
formity are based on a weighting technique [44]. Weights
are calculated separately for positive and negative tracks as
a function of n, ¢, and pr and averaged across the measured
ranges of multiplicity and primary vertex position. Weights
are used to flatten the track yield in both pseudorapidity and
in azimuth for the symmetric collision system, pp, whereas
only azimuthal flattening is used for p-Pb collisions.

Corrections for tracking inefficiencies are obtained from
Monte Carlo simulations with different event generators and
particle transport through the detector performed with GEANT3
[45] including a detailed description of the detector conditions
during the 2010 and 2013 data taking periods. Simulations
with the PYTHIA 6 event generator [46] (Perugia 2011 tune
[47]) are used to determine the track reconstruction efficiency
for the data sample of pp collisions. For the p-Pb system, the
DPMIJET event generator [48] is used. The pr and  dependence
of the single-particle detection efficiency is computed based
on the ratio of the number of reconstructed tracks from the
simulation (known as detector level), corrected for the nonuni-
formity of the detector (weights), to the number of generated
particles (known as generator level) as a function of those
two variables. Reconstructed tracks from the data sample are
corrected for detector nonuniformity and for tracking inef-
ficiencies for extracting the described corrected correlators.
The number of fully corrected measured charged tracks is
averaged over the number of events to extract the quoted [Ny ]
per multiplicity class.

IV. STATISTICAL AND SYSTEMATIC UNCERTAINTIES

The statistical uncertainties on the strengths of the G,
correlators are extracted with the subsampling method using
ten subsamples for both systems, pp and p-Pb, whereas sys-
tematic uncertainties are assessed by repeating the analysis
with different event and track selection criteria. The signif-
icance of the deviations with respect to the default analysis
conditions is assessed according to a statistical test [49]. The
total systematic uncertainties are computed as quadratic sums
of the significant systematic deviations. The contributions to
the uncertainty due to the event selection and the kinematic
acceptance are estimated by narrowing to 3 cm and expanding
to 10 cm the selected range for the distance of the PV to the
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FIG. 1. Two-particle transverse momentum correlations GgD (top) and Ggl (bottom) for the largest (left), medium (center), and lowest
(right) charged particle multiplicity classes in pp collisions at /s = 7 TeV. The correlator values are not shown in the intervals |An| < 0.1
and |Ag| < 0.09, which are affected by track merging effects (see text for details).

nominal interaction point along the beam direction. Possible
biases associated with contamination by secondary particles
are estimated by using track selection criteria that only require
information from the TPC and relaxing the accepted DCA
range. The possible biases in the determination of the track
parameters for tracks crossing the TPC in the azimuthal re-
gions close to the sector boundaries is estimated by excluding
tracks that lie within those sections from the analysis. This
additional selection criterion eliminates distortions possibly
encountered near sector boundaries but produces a nominal
25% reduction of the azimuthal acceptance. Track losses are,
however, compensated for by the robust nature of the G,
correlator definition as a ratio of two-particle density to the
product of single-particle densities. The overall accuracy of
the analysis procedure is additionally estimated by means of a
MC closure test. Deviations from perfect closure are conser-
vatively added to systematic uncertainties when significant.
The same criteria are followed to extract the statistical and
systematic uncertainties on [Ng].

As in the study of G, in Pb-Pb collisions reported in
Ref. [24], measurements of the G, longitudinal and azimuthal
projections in pp and p-Pb collisions feature an overall am-
plitude uncertainty. This uncertainty includes correlated (i.
e., common to all bins) and uncorrelated bin-by-bin contri-
butions. The correlated contribution is the average deviation
along all bins while the uncorrelated contribution is what re-
mains after subtracting such average from the actual deviation
on a per bin basis. The largest contribution to the correlated
systematic uncertainties arises from the variation of the track
selection criteria with an average value in the different multi-
plicity classes of 10% (4%) for both the longitudinal and the
azimuthal projections of the GSP (GS!) correlator in the pp

system, and about 12% (1.5%) for both the longitudinal and
the azimuthal projections in p-Pb collisions, while the other
checks have negligible contributions. The largest systematic
contribution to the uncorrelated uncertainty also stems from
track selection criteria tests with average values of 6% (1.5%)
for both the longitudinal and the azimuthal projections of the
GgD (Ggl) correlator in the pp system, and less than 9% (1%)
in the p-Pb system. Total average uncorrelated systematic
uncertainties values are approximately the same for the az-
imuthal and longitudinal projections except for the azimuthal
projections of the GSP correlator in the p-Pb system, which
reach 12% due to the impact of the TPC sector boundaries.

V. RESULTS

The GSP and GS' correlators measured in pp collisions
at /s =7TeV and p-Pb collisions at ./syy =5.02 TeV
are shown in Figs. 1 and 2, respectively, for three selected
multiplicity classes, as functions of the pair separation in
pseudorapidity An and azimuth Ag. The GSP and G5! corre-
lators exhibit common features in both pp and p-Pb collisions.
Such features include a prominent peak centered at An = 0,
Ag = 0, hereafter referred to as the near-side peak, and a
relatively flat plateau shaped distribution surrounding Ag¢ =
m, known as the away side, and extending across the An
acceptance of the measurement. The near-side peak of both
GSD and Ggl exhibits a monotonically decreasing amplitude
from the lowest to the highest multiplicity classes, in both
collision systems, while the peak shapes are approximately
independent of the collision multiplicity. It is also observed
that the away-side amplitude of the GSP correlator measured
in pp collisions decreases somewhat faster than that of the
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FIG. 2. Two-particle transverse momentum correlations GgD (top) and Ggl (bottom) for the largest (left), medium (center), and lowest
(right) charged particle multiplicity classes in p-Pb collisions at ,/syy = 5.02 TeV. The correlator values are not shown in the intervals
|An| < 0.1 and |Agp| < 0.09, which are affected by track merging effects (see text for details).

near-side peak, whereas the shape of the away side of the GgI
correlators exhibits only modest variations with multiplicity.

Additionally, the Ggl correlators measured in p-Pb colli-
sions feature a modest azimuthal modulation approximately
uniform in magnitude across the An range of the mea-
surement. The modulation is expected from prior ALICE
azimuthal correlation measurements [40] but is observed in
greater detail in Fig. 2. Remarkably, also the near-side peak of
the CD correlator in p-Pb collisions does not appear to narrow
significantly with increasing multiplicity in contrast with the
behavior observed in the pp system.

Further examination of the evolution of the correlators as
a function of the produced particle multiplicity is done by
studying their longitudinal and azimuthal projections. The
longitudinal projections, shown in the left panels of Figs. 3
and 4 for the pp and p-Pb systems, respectively, display
the average of the G, correlators as a function of An for
the near-side azimuthal interval |A¢| < /2 whereas the az-
imuthal projections (right panels) are obtained by averaging
the correlators over the full An range of the measure-
ments. The ranges |An| < 0.1 and |A¢| < 0.09 are subject
to track merging effects difficult to properly correct for and
are thus omitted in the projection plots. The longitudinal
projections of the CI correlators (bottom panels) obtained
in both pp and p-Pb collisions feature broad Gaussian-like
peaks versus An whose magnitude decreases with increas-
ing multiplicity. The azimuthal CI projections, by contrast,
feature a modulation yielding two maxima: the first, cen-
tered at Ag = 0, corresponds to the near-side peak of the
correlation functions displayed in Figs. 1 and 2, whereas the
second maximum reflects the broad away-side peak of these
functions.

The projections of the CD correlators, presented in Figs. 3
and 4 (top panels), feature a somewhat more complex de-
pendence on An and Ag than those of the CI correlators.
In particular, in contrast to the Gaussian-like peaks seen in
the CI projections, the CD longitudinal projections exhibit
small and narrow dips atop the peak, which is broader than
that of the CI projections. The dip is most prominent in the
azimuthal projections of the GSP correlator and largest in the
70-80% multiplicity class of pp collisions. The width and
depth of the dip are manifestly functions of the multiplicity
of the collisions and thus appear to feature a system size
dependence.

This system size dependence is qualitatively understood
as arising, in part, from femtoscopic (HBT) correlations. The
CD correlators are computed as the difference between US
and LS correlators. The G%S correlators, much like the femto-
scopic (number) correlation functions measured as a function
of the invariant momentum difference of particle pairs, are
sensitive to the presence of bosonic interference, and it is well
established that the widths of these correlation functions are
inversely proportional to the size of the measured system [50].
It is thus expected that G%S, measured as function of An or
Ag, should also exhibit such a dependence on the system size.
This dependence is seen as dips because the LS correlators are
subtracted from the US correlators. Additionally, note that the
effect is smaller in p-Pb collisions, most likely because of the
larger size of the systems formed in these collisions.

VI. SHAPE EVOLUTION WITH MULTIPLICITY

The multiplicity evolution of the shape and strength of the
GgD and Ggl correlators measured in pp and p-Pb collisions
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FIG. 3. Longitudinal (left) and azimuthal (right) projections of the two-particle transverse momentum correlations G5 (top) and G5!
(bottom) for selected charged particle multiplicity classes in pp collisions at 4/s = 7 TeV. The correlator values are not shown in the intervals
|An| < 0.1 and |Ag| < 0.09, which are affected by track merging effects (see text for details). Vertical bars (mostly smaller than the marker
size) and shaded bands represent statistical and uncorrelated systematic uncertainties, respectively. Correlated systematic uncertainties are

represented as small boxes at the sides of the panels.

is analyzed using a multicomponent model already utilized in
Pb-Pb collisions [24] and defined as

6
F(An, Ap) =B+ Zan X cos (n Ag)
n=2

- _An |7an
©Ap

+A X _Yan e

2wp T (y%,,)
~lgzae

A
Yap avind

X —_—
2wA§0 F(V%w)

where B and a,, are intended to describe the long-range mean
correlation strength and the possible azimuthal anisotropies,
while the bidimensional generalized Gaussian, defined by the
parameters A, way, ®aps YAy, and ya,, is intended to model
the near-side peak.

The main focus of this paper is specifically on measuring
the evolution of the azimuthal and longitudinal widths of the
prominent near-side peak of the GSP and GS' correlators,
which is quantified in terms of width parameters o, and o,
computed according to

\/wZAn(A¢)F(3/VA?7(A<ﬂ))
Oan(ap) =
L1/ yanag)

&)

6)

Bidimensional fits to the measured GSP and G§' correlators
were carried out with the least-squares method, considering
only the statistical uncertainties. The central region around

|An] =0 and |Ag| = 0 was excluded from the fit to avoid
biases associated with track merging. The excluded region
was enlarged, when appropriate, to cover the narrow dip found
in the CD correlation functions. The differences between data
points and fit functions were examined in detail and found
to be negligible relative to the amplitude of the correlation
functions except in some areas of the near-side peak tails and
close to the excluded patch around An, Ap = (0, 0), thereby
yielding a full fit x2/dof in the range 2 to 9. Fits were repeated
using systematic uncertainties of the correlation functions to
examine the possibility of biases. Widths obtained with these
larger uncertainties were within the systematic uncertainties
of the nominal values, reported for fits performed with sta-
tistical uncertainties, and the x?/dof values dropped below
unity.

Systematic uncertainties on the extracted widths were as-
sessed using the procedure described in Sec. IV. The largest
contributor to these uncertainties is the track selection criteria
with values of 4% (2%) and 2% (2%) for the longitudinal and
azimuthal widths, respectively, of the GSP (GS') correlator
in the pp system, and 4% (2%) for both widths in the p-Pb
system. Total systematic uncertainties on the widths amount
to 5% (2%) and 3% (2%) for the longitudinal and azimuthal
widths, respectively, of the GSP (GS!) correlator in the pp
system, and 5% (3%) and 4% (2%) in the p-Pb system.

Figure 5 shows the evolution of the longitudinal and
azimuthal widths o of the GSP (top panels) and GS' (bot-
tom panels) correlators as a function of the average charged
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particle multiplicity [Ne]. The GSP and GS' correlators
widths measured in Pb-Pb collisions at /syy = 2.76 TeV
by the ALICE Collaboration [24] are also displayed. First
focusing on the evolution of the azimuthal and longitudinal
widths of the GgD correlator with charged particle multiplicity
shown in the top panels of Fig. 5, it is observed that this cor-
relator exhibits a strong azimuthal narrowing with increasing
[Nch] in both pp and p-Pb collisions and a somewhat weaker
narrowing trend in the longitudinal direction. A qualitatively
similar narrowing, first reported in Ref. [24], is also observed
in Pb-Pb interactions across a broad range of collision mul-
tiplicities in both the longitudinal and azimuthal directions.
Overall, both the longitudinal and azimuthal widths of the
near-side peak in the GSP correlator show a smooth narrowing
trend with increasing multiplicity across the three different
collision systems here considered.

Shifting the focus to the bottom panels of Fig. 5, it is read-
ily noticed that the GS! correlator features different evolutions
with [N, ] in the azimuthal and the longitudinal directions.
A strong narrowing with increasing [N.,] is observed for the
azimuthal width, o, in pp and p-Pb collisions, as well as
in Pb-Pb collisions [24]. The magnitude and the evolution
with [Ng,] of the azimuthal widths measured in pp and p-
Pb collisions are consistent between each other. In contrast,
the width measured in the lowest Pb-Pb multiplicity class
(most peripheral collisions), exceeds the widths observed
at similar multiplicity in p-Pb collisions by ~8% thereby
indicating a difference between the correlations established
in p-Pb and Pb-Pb collisions with similar charged particle
multiplicity.

The [N.] evolution of the longitudinal width of the Ggl
correlator is different for the three collision systems and con-
trasts markedly from the trend measured for the azimuthal
width 0. In pp collisions, the width exhibits a trend con-
sistent with a very modest narrowing with increasing [Np]
whereas, in p-Pb collisions, the data suggests a weak increase
with [Nc]. It is also found that at equal values of [Ng]
the longitudinal widths measured in p-Pb are also somewhat
larger than those observed in pp collisions even though they

are compatible within uncertainties. The increasing trend seen
in p-Pb is difficult to precisely assess given the size of the
systematic uncertainties relative to the very modest increase
of the width. It is rather clear, nonetheless, that it does not
match the rapid and large increase observed in Pb-Pb colli-
sions. Indeed, at [N] =~ 50, the longitudinal width observed
in Pb-Pb exceeds that measured in p-Pb collisions by ~13%.
The slope of the increasing trend of o4, in Pb-Pb collisions far
exceeds that seen in p-Pb. By extrapolating the trend observed
in Pb-Pb to small [N ], the obtained oA, values match those
measured in pp collisions but it is rather clear that the broad-
ening observed in Pb-Pb collisions stands in stark contrast
to the evolution observed in the smaller systems. Overall,
the current measurements indicate that, while the azimuthal
widths of the CD and CI correlators in pp and p-Pb collisions
show a trend with multiplicity compatible with that found
in the larger Pb-Pb system, the evolution of the longitudinal
width of the GS! correlator is rather different in small and large
systems.

It is of interest to contrast the results of the bidimensional
fit procedure used in this work with those obtained with the
zero yield at minimum (ZYAM) method [51] widely used
in the analysis of azimuthal correlation functions. The diffi-
culty with ZYAM is that if the peaks are wide in Ay, the
gap between the near-side and away-side peaks gets “filled
up” in the projection. In particular, if the ZYAM method is
indiscriminately applied to correlation functions with a strong
dependence on the longitudinal particle pair separation, An,
significant biases may occur in the evaluation of the ampli-
tudes and widths of such correlations and their dependence on
the global event observables.

As an illustration, the right panel of Fig. 6 shows the
azimuthal projections of the G5! correlator for three selected
multiplicity classes, after applying the ZYAM procedure to
remove “uncorrelated backgrounds,” i. e., by uniformly sub-
tracting a constant value corresponding to the minimum yield
value, hereafter called ZYAM base level. The widths extracted
based on these projections are approximately the same for the
different multiplicity classes considered, thereby leading to
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the conclusion that the width of these correlation functions
is independent of the multiplicity class. In the left panel of
Fig. 6, the near-side longitudinal projections of the GS' cor-
relator are shown after subtraction of the ZYAM base level.
Parts of the longitudinal projections lie significantly below
zero, with values that depend on the multiplicity class. The
notion of zero yield at minimum is thus rather poorly defined
in this context given that the minimum of the longitudinal cor-
relations (within the measurement acceptance) significantly
deviates from the ZYAM base level and is a monotonic func-
tion of the multiplicity class. The application of the ZYAM
method consequently does not enable a simultaneous consis-
tent extraction of the azimuthal and longitudinal widths of the
GS! correlators measured in this work.

By contrast, the fit method used in this work parametrizes
the correlation functions with a bidimensional generalized
Gaussian model, Eq. (5), with independent parameters along
the An and Ag directions, thereby enabling a more accurate
description of the shape of the GS' correlator and its de-
pendence on the multiplicity [N.,]. For illustrative purposes,
Fig. 7 compares several projections of the two-dimensional
fit functions (red lines) and the data (solid diamonds) for the
CI correlators in the 0-5% and 70-80% multiplicity classes
of pp collisions. Projections onto An (left panels) are shown
for selected ranges of Ag pair separation, and, conversely,
projections onto A¢ (right panels) are displayed for selected
ranges of An pair separation. The cyan lines represent the
baseline B plus the anisotropic modulations given by the

coefficients a, in the fit function, extended to the whole az-
imuthal range in the case of the azimuthal projections, in
which the thicker line section represents the azimuthal portion
considered for the bidimensional fit. The two-dimensional fits
provide good descriptions of most of the azimuthal slices,
shown in the left panels, (i. e., irrespective of the multiplicity
class and Ag range) as well as good match on most of the
longitudinal slices, shown in the right panels. Deviations of
the model from data are observed at large longitudinal relative
separation, visible for slices at large An, and in the prox-
imity of An, Ag = (0, 0). The two-dimensional generalized
Gaussian model used in this work thus provides a reliable,
robust, and self-consistent description of the Ggl correlator
measurements. The azimuthal and longitudinal widths ex-
tracted from this model thus do not suffer from the biased
and inconsistent behavior obtained with the ZYAM method.
The right panels of Fig. 7, displaying the A¢ projections of
GS', provide a simple explanation of the bias encountered
with the basic ZYAM method. The shape and strength of the
away side, /2 < Ag < 37 /2, are essentially independent of
the An range considered whereas the near side, |Agp| < /2,
is strongly dependent on An. The ZYAM values of these
Ag projections therefore depend on An and the multiplicity
classes. This thus results in inconsistent extractions of the
longitudinal and azimuthal widths of the correlator if the basic
ZYAM method is used. Such issues are clearly avoided with
the two-dimensional generalized Gaussian fit method utilized
in this work.
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FIG. 8. Evolution with the average charged particle multiplicity of the longitudinal (left) and azimuthal (right) widths of the two-particle
transverse momentum correlations GSP (top row) and GS! (bottom row) in pp, p-Pb, and Pb-Pb collisions at /s = 7 TeV, \/syy = 5.02 TeV,
and ,/syy = 2.76 TeV, respectively, compared to models. Statistical and systematic uncertainties of the data points are shown as vertical bars
(mostly smaller than the marker size) and filled boxes, respectively, while the thickness of the shaded bands represents statistical uncertainties
of the models. The data points and the results of HJING simulations for Pb-Pb collisions are taken from Ref. [24].

VII. COMPARISON WITH RESULTS
FROM EVENT GENERATORS

A number of event generators have had great successes
in quantitatively reproducing the many features and proper-
ties of particle production in pp, p-Pb, and Pb-Pb collisions
[52-58]. It is thus legitimate to consider whether such
production models can also match the magnitude and the
evolution with [Ng,] of the near-side peak widths reported
in Fig. 5. Comparisons of calculations of the two-particle
number correlator Ry(An, Ag) and the two-particle trans-
verse momentum correlator P,(An, Ag) performed with the
AMPT, EPOS, and URQMD models [59] with data reported by
the ALICE Collaboration [32] show these three event gen-
erators are considerably challenged by the measurements. In
particular, since these models do not fully implement charge
and baryon number conservation, they cannot reproduce the
salient features of the measured RSP and PSP correlators,
while they qualitatively reproduce some but not all facets of
the measured RS and P§! correlation functions.

The discussion in this section is limited to four well estab-
lished models: PYTHIA 6 [46] (Perugia default tune [47]) and
PYTHIA 8 [60] (Monash tune, with color reconnection [61])
for comparison with pp data, DPMJET [48] for comparison
with p-Pb data, and HUING [62] for comparison with both
p-Pb and Pb-Pb data. PYTHIA and DPMJET are known to well
reproduce measurements of differential cross section in pp
collisions and, although HUING does not include a modeling of
the collective behavior observed in Pb-Pb, it is here used as a

baseline reference for the discussion of trends as a function of
multiplicity in that system. Simulated data sets produced with
these four event generators are analyzed, at generator level,
with identical event and charged particle selection criteria and
multiplicity classes as the data. This allows one to obtain the
GSP(An, Agp) and GS'(An, Ag) correlation functions, which
are then fitted with Eq. (5). The width parameters obtained
from the fits to the simulated correlators are compared to the
measured ones in Fig. 8. The data from Pb-Pb collisions and
the results of simulations with HIJING are taken from Ref. [24].

In the case of the charge dependent correlator GgD shown
in the top panels of Fig. 8, the measured magnitude and
multiplicity dependence of the longitudinal width of the near-
side peak, o , are described within uncertainties by both
PYTHIA 6 and PYTHIA 8 simulations. The two PYTHIA tunes
also qualitatively reproduce the observed narrowing trend of
the azimuthal width of GSP as a function of [Ny,] even though
they overestimate the magnitude of o4,. By contrast, although
DPMIJET and HUING qualitatively reproduce the magnitudes of
the longitudinal and azimuthal widths of the GSP correlator,
they have rather limited success in describing the evolution
with multiplicity of the azimuthal widths observed in p-Pb
and Pb-Pb collisions.

In the bottom panels of Fig 8, the measured evolution
of the G2 correlator widths, a and 0 , with multiplicity
is compared to model pred1ct10ns PYTHIA 8 describes well
the measured azimuthal widths o4, for large multiplicities,
but it underestimates them for low multiplicity pp colli-
sions ([NVen] < 10). Instead PYTHIA 6 grossly overestimates the
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width and misses the observed trend as a function of [Ng].
Neither of the two PYTHIA versions successfully reproduces
the [Nz,] evolution of ag’, although PYTHIA 6 quantitatively
matches the width observed in the highest pp multiplic-
ity class. Similarly, predictions by both DPMJET and HIJING
clearly overestimate the longitudinal and azimuthal widths
measured in p-Pb collisions. Although HIJING manages to ap-
proximately match the longitudinal width observed at lowest
multiplicity in Pb-Pb collisions, it systematically underpre-
dicts the o, values measured in higher Pb-Pb multiplicity
classes and thus fails to match the broadening trend of ag’
vs. [Neh]. Overall, the models considered for the comparison
match the evolution of the longitudinal and azimuthal widths
of GSP the closest while doing rather poorly for the evolution
of the widths of GS". This suggests that their ability to describe
charge conserving processes is decent but that, globally, some
new features are needed to properly match the evolution of the
widths of GS™.

VIII. DISCUSSION

The inspection of the evolution of the G5 and GS' cor-
relators with the multiplicity of charged particles produced
in the collision suggests that two or more competing mech-
anisms may be at play in pp, p-Pb, and Pb-Pb collisions:
while the near side peak of GSP shows narrowing trends
with increasing [Nq,] in these systems, Ggl exhibits mixed
trends in the longitudinal dimension, a strong broadening in
Pb-Pb, minor broadening in p-Pb, and modest narrowing in pp
collisions.

A narrowing of the near-side peak of two-particle cor-
relators has been observed for RgD and P2CD differential
correlators of low-pr particles measured in Pb-Pb collisions at
J/Svnv = 2.76 TeV [32], for balance functions of charged par-
ticles and identified hadrons in pp, p-Pb, and Pb-Pb collisions
at7,5.02, and 2.76 TeV, respectively [31,63,64], as well as in
Au-Au collisions at RHIC energies [65-67]. Measurements
in large collision systems show that the average transverse
momentum of produced particles, (pr), rises monotonically
with increasing multiplicity in Au-Au and Pb-Pb collisions
and saturates in most central collisions. Similarly, blast-wave
model fits of pr spectra measured as a function of increasing
collision centrality in these systems indicate that the radial
flow velocity increases with increasing multiplicity of pro-
duced particles [68,69]. Moreover, theoretical studies of the
evolution of the narrowing of charge balance functions, B,
in Au-Au collisions based on the blast-wave model are found
to require strong radial flow to match the progressive narrow-
ing of the near-side peak of these correlation functions [70].
Similar narrowing effects and large radial flow are also seen
in hydrodynamics calculations [71].

Given that G, shares the same correlation kernel as the R»,
P>, and B, correlators, the progressive narrowing of its near-
side peak with increasing values of [N,] in Pb-Pb collisions
can be interpreted as resulting from the increasing radial flow
velocity. An increase of (pr) with increasing multiplicity is
also observed in pp and p-Pb collisions [26]. However, it is
still an open question whether this increase results from the
production of a radially flowing medium also in these small

collision systems. In any case, it is expected that an increase
in (pr) should also produce a kinematic focusing of correlated
particles, resulting in a narrowing of the correlation peaks. A
modest narrowing of the RSP and PSP correlation functions
has already been reported in p-Pb collisions [32] and is, with
this work, also established for the azimuthal widths of GgD
and GS! correlators observed in the pp and p-Pb systems. It is
then plausible to postulate that the azimuthal narrowing of the
correlators results from collective radial flow in these smaller
systems.

The details of the evolution of the widths o, and o,
with [N, ] are consequently of particular interest. As already
suggested, both these widths exhibit a monotonic narrowing
with increasing [Ng] in all three systems studied. However,
their evolution is not continuous between systems. Indeed, at
equal particle production [N], the width of these correlators
in p-Pb collisions is similar, within uncertainties, to that ob-
served in pp collisions. Additionally, although measurements
in p-Pb and Pb-Pb collisions have a limited overlap in [Ng],
the oga widths measured in Pb-Pb are approximately 8%
larger than those observed in p-Pb. These differences can
qualitatively be interpreted as resulting from the size of the
systems considered. The lowest multiplicity measurement of
G, in Pb-Pb collisions shown in Fig. 5 corresponds to the
70-80% collision centrality class. In this range, the aver-
age number of nucleons participating in the Pb-Pb collision
amounts to approximately 15 [72] and should far exceed the
number of participants involved in a typical p-Pb collision.
Although estimates of the number of participant nucleons
in p-Pb collisions are less precise than in the Pb-Pb case,
it can be reasonably expected that at a given value of [N¢]
p-Pb collisions involve on average more participants than pp
collisions. At a given value of [N], p-Pb collisions (Pb-Pb
collisions) are thus expected to consist of a lower number
of contributors from hard scatterings than those produced
in pp (p-Pb) collisions. It is then reasonable to expect that
these correlators in different collision systems have slightly
different widths at equal [N.;] value. In any case, comprehen-
sive models of particle production in small and large systems
should account for these small differences, and the evolution
of the azimuthal width of GSP thus constitutes a stringent test
of such models.

The three systems exhibit a rather different evolution of
the longitudinal width agl with increasing [N.,]. Whereas
o, increases from 0.59 to a maximum value of 0.73 (24%)
with increasing [N, ] in Pb-Pb collisions, it decreases by about
5% in pp while rising by approximately the same amount in
p-Pb collisions. A broadening of the longitudinal width of
the near-side peak in the GS! correlator was also observed in
Au-Au collisions at RHIC [73] and was predicted to occur as a
result of viscous forces in collision systems producing a long
lived QGP phase [21]. In this context, the medium formed in
the collision is modeled as a fluid in quasiequilibrium. Fluid
cells are accelerated by local pressure gradients and do not, ab
initio, have equal transverse velocities. Viscous interactions
between cells are then expected to slow down fast moving
cells and accelerate cells with smaller transverse velocity. The
resulting momentum transfers are then expected to induce
“long range” longitudinal correlations between cells and the
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particles they emit, thereby producing broadened two-particle
correlation functions relative to systems that do not undergo
viscous forces.

The Pb-Pb system clearly manifests the behavior expected
from a long lived viscous fluid: the average transverse mo-
mentum monotonically increases with increasing multiplicity
of produced particles, the width GACS monotonically decreases,

whereas the width O’EI increases with increasing multiplicity
and is consistent with a fluid characterized by a small value of
n/s [24,25].

The behavior and nature of the pp and p-Pb systems are
much less clear. While both collisions systems exhibit the ng)
narrowing expected from a fluid undergoing radial flow and
anisotropic particle emission in the transverse plane, the width
o, decreases with increasing multiplicity in pp collisions
while exhibiting a very modest increase in p-Pb collisions.
No conclusion can therefore be drawn on the possible es-
tablishment of a collective behavior in pp collisions, while
the results from p-Pb collisions provide only a suggestive
indication, limited by the magnitude of systematic uncertain-
ties, for the presence of viscous effects. The interpretation
of trends observed in these two collision systems is further
complicated by the presence of competing effects resulting
from radial flow. The longitudinal widths UEWD in pp and p-Pb
collisions exhibit a narrowing trend with increasing [N.] that
should be matched, in the absence of viscous effects, by a
similar behavior for agi. Such small narrowing effect may
then compete with and partly mask the viscous broadening
that would otherwise occur in such small systems. It should
also be considered that possible viscous forces would need
time to propagate correlations in the longitudinal direction.
Thus, the longitudinal broadening of G, shall depend both on
the magnitude of the shear viscosity (per unit entropy) and
the lifetime of the fluid. If the fluidlike system produced is
too small or too short lived, there may not be enough time for
viscous forces to equalize the transverse velocity differences
between cells and, even though a fluid-like system may be
produced in pp or p-Pb collisions, it may not live long enough
to yield a significant broadening of the Ggl correlator. Com-
peting effects associated with kinematic focusing may then
hinder observations of viscous broadening.

Alternatively, it is also possible that a quasiequilibrated
fluid description does not hold for the system produced in
pp and p-Pb collisions. Appealing to more traditional mod-
els to interpret the data is then needed. However, as already
noted, while PYTHIA 6 manages to qualitatively reproduce the
narrowing of the CD correlator, it poorly describes the mea-
surements for the CI correlator. Similarly, PYTHIA 8 (Monash
tune, with color reconnection) qualitatively reproduces the
azimuthal widths but introduces too much narrowing in the
longitudinal dimension of the CI correlator.

IX. CONCLUSIONS

The two-particle transverse momentum differential cor-
relators GS! and GSP were measured in pp collisions at
Js=7TeV and in p-Pb collisions at ./syy = 5.02 TeV
as a function of the charged hadron multiplicity measured
in the selected acceptance, [N.,]. Both correlators feature

prominent near-side peaks. The amplitude of these peaks
decreases monotonically with increasing charged hadron mul-
tiplicity, Ny, in both collision systems, but their widths exhibit
mixed behaviors.

The near-side peak of the GS! and GSP correlators exhibits
strong azimuthal narrowing trends with increasing N, in pp
and p-Pb collisions, that qualitatively match the width evolu-
tion with collision centrality formerly observed in the Pb-Pb
system. The GSD near-side peak also features a longitudinal
narrowing albeit weaker than that observed in the azimuthal
direction. The narrowing trends observed in pp collisions
are qualitatively reproduced by PYTHIA, even with PYTHIA
6 Perugia tune, thereby indicating that the evolution of the
two correlators is well accounted for by this model, i. e.,
without the need to invoke a collective behavior. However,
the multiplicity dependence measured in p-Pb collisions is not
described by DPMJET.

The longitudinal width, ogl, of the GS' correlator in pp
and p-Pb collisions is not varying with multiplicity, within
uncertainties, at variance with the case of Pb-Pb collisions.
The lack of a clear dependence on multiplicity of the widths in
pp and p-Pb collisions provides no evidence of an increase of
ag] within uncertainties. It is possible that, if fluidlike systems
are produced in p-Pb collisions, they are too short lived for
viscous forces to have a sizable impact on the width of the
correlator. Further studies of the p-Pb system are thus required
to fully elucidate its behavior.
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