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First measurement of A} production down to p;y = 0 in pp and p-Pb collisions at ,/syy = 5.02 TeV
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The production of prompt A baryons has been measured at midrapidity in the transverse momentum interval
0 < pr < 1 GeV/c for the first time, in pp and p—Pb collisions at a center-of-mass energy per nucleon-nucleon
collision \/syy = 5.02 TeV. The measurement was performed in the decay channel A} — pK? by applying new
decay reconstruction techniques using a Kalman-Filter vertexing algorithm and adopting a machine-learning
approach for the candidate selection. The pr-integrated AT production cross sections in both collision systems
were determined and used along with the measured yields in Pb—Pb collisions to compute the pr-integrated
nuclear modification factors R,p, and Ryy of A} baryons, which are compared to model calculations that
consider nuclear modification of the parton distribution functions. The A}/D° baryon-to-meson yield ratio is
reported for pp and p—Pb collisions. Comparisons with models that include modified hadronization processes are
presented, and the implications of the results on the understanding of charm hadronization in hadronic collisions
are discussed. A significant (3.7¢ ) modification of the mean transverse momentum of A" baryons is seen in p—Pb
collisions with respect to pp collisions, while the pr-integrated A}/D° yield ratio was found to be consistent

between the two collision systems within the uncertainties.

DOLI: 10.1103/PhysRevC.107.064901

I. INTRODUCTION

Measurements of heavy-flavor hadron production in
hadronic collisions provide crucial tests for calculations based
on quantum chromodynamics (QCD). Typically, calculations
of pr-differential heavy-flavor hadron production cross sec-
tions in hadronic collisions are factorized into three separate
components: the parton distributions functions (PDFs), which
describe the Bjorken-x distributions of quarks and gluons
within the incoming hadrons; the hard-scattering cross sec-
tion for the partons to produce a charm or beauty quark;
and the fragmentation functions, which characterize the
hadronization of a quark to a given hadron species [1]. As
charm and beauty quarks have masses much larger than the
Aqcp energy scale, the parton-parton hard-scattering cross
sections can be calculated perturbatively [2]. In contrast, the
fragmentation functions cannot be calculated with pertur-
bative QCD (pQCD) methods, and so must be determined
from measurements in e™e™ collisions. They are then applied
in cross section calculations under the assumption that the
relevant hadronization processes are “universal”, i.e., inde-
pendent of the collision system. Hadron-to-hadron production
ratios within the charm sector, such as D}/D° and Af/D°,
are therefore especially effective for probing hadronization
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effects, since in theoretical calculations the PDFs and partonic
interaction cross sections are common to all charm-hadron
species and their effects almost fully cancel in the yield ratios.

Previous measurements of charm-meson production cross
sections in pp collisions at the CERN Large Hadron Col-
lider (LHC) [3-6] show that the D*/D° and D} /D° ratios
are independent of the transverse momentum (p7) within
uncertainties, and are consistent with results from ete~ and
e~ p collisions [7]. The ratios are also described well by
the PYTHIA 8 event generator using the Monash tune [8,9],
which adopts hadronization fractions based on fragmentation
functions from eTe™ collisions. However, the charm baryon-
to-meson ratios A/D°, E%*/D°, Q%/DP and x0-+*+/DO
measured at midrapidity at the LHC [10-17] show significant
deviations from the values measured in eTe~ collisions, and
the Monash tune of PYTHIA significantly underpredicts the
production rates of charm baryons. Further hadronization ef-
fects apart from pure in-vacuum fragmentation must therefore
be considered in order for models to better describe the A7
measurements. These effects include color reconnection be-
yond the leading-color approximation in PYTHIA 8 [18], quark
coalescence effects such as those applied in the Catania model
[19] and in the quark (re)combination model (QCM) [20],
or variations of the statistical hadronization model (SHM)
including feed-down to the ground-state baryon species from
the decays of yet-unmeasured resonant states predicted by
the relativistic quark model (RQM) [21]. However, for the
heavier charm-strange baryon states ES’* and SZ(C) [15,17],
only the Catania model is able to adequately describe the
data. Measurements of beauty-baryon production in pp col-
lisions by the CMS and LHCb Collaborations [22-24] also
indicate similar differences in hadronization mechanisms in
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the beauty sector between hadronic and leptonic collision
systems.

Differences between leptonic and hadronic collision sys-
tems are further highlighted by the measured fragmentation
fractions of ground-state single-charm hadrons, as reported at
midrapidity for pp collisions at center-of-mass energy /s =
5.02 TeV in Ref. [25], where a significant enhancement of AgL
and E>T is seen with respect to eTe” and e p collisions,
along with a corresponding depletion of the relative fraction of
D mesons. However, the determination of these fragmentation
fractions is dependent on model assumptions, as the evalu-
ation of the pr-integrated production cross sections of A}
and ET baryons required an extrapolation in order to cover
regions of phase space that were not possible to study exper-
imentally. This is especially relevant in the low-p; region,
where a significant fraction of the overall production of charm
hadrons occurs and the uncertainties on the factorization and
renormalization scales of pQCD calculations used for the ex-
trapolation become large. Measuring down to low pr is highly
challenging, due to the smaller displacement of the decay
vertex from the interaction vertex, limiting the effectiveness
of topological selections due to the finite detector resolution.
This necessitates the use of alternative reconstruction and
selection techniques to extract a significant signal from the
combinatorial background.

Charm hadrons are also studied in p—Pb collisions at the
LHC in order to examine possible modifications of their pro-
duction due to the presence of a cold nuclear environment.
The nuclear modification factor, R,p,, of D mesons mea-
sured by ALICE in p—Pb collisions at center-of-mass energy
per nucleon-nucleon collision /syy =5.02TeV is consis-
tent with unity for 0 < pr < 36 GeV/c [26], suggesting that
the cold nuclear matter effects that influence charm-hadron
production at midrapidity are moderate. However, measure-
ments of A} baryons in p-Pb collisions [11] indicate a
pr-dependent modification with respect to D mesons, with an
Rypy lower than unity for 1 < pr < 2GeV/c and systemati-
cally above unity for pr > 2 GeV/c. This result is consistent
with an increase in the mean pr of charm baryons in p—Pb col-
lisions with respect to pp collisions. Similar effects have been
observed in differential studies of A} and D° production as
a function of charged-particle multiplicity in pp collisions at
+/s = 13 TeV by ALICE [27], where the py dependence of the
A} /DO ratio was significantly modified in high-multiplicity
collisions with respect to low-multiplicity collisions without
any significant effect on the pr-integrated A /D" ratio. This
can be extended by studying highly peripheral Pb—Pb col-
lisions, where the multiplicity densities of charged particles
coincide with the highest multiplicity classes in pp collisions
at /s = 13TeV. The A} /D" ratios measured by the LHCb
Collaboration in peripheral Pb—Pb collisions at forward ra-
pidity [28] exhibit a significant p;y dependence, albeit with
systematically lower values than those measured in the same
pr region at midrapidity. However, when these are calculated
after integrating in the visible pr region, they do not have
any significant dependence on the number of nucleons partic-
ipating in the collision, (Npay), reaffirming the independence
of the baryon-to-meson ratio on the multiplicity. A modifi-
cation of the pr shape as a function of multiplicity has also

been observed in the strangeness sector by the ALICE and
CMS Collaborations [29,30] and is consistent with the effect
of radial flow in hydrodynamic models such as EPOS LHC
[31]. In this picture, particles of larger mass are boosted to
higher transverse momenta due to the presence of a com-
mon velocity field [32]. Furthermore, baryon production may
be enhanced as a result of hadronization by quark recom-
bination [33]. This can be further examined by extending
the measurement of A -baryon production down to pr =0
in both collision systems and determining the mean trans-
verse momentum. In addition, comparisons between p—Pb
and Pb-Pb collisions make it possible to disentangle initial-
and final-state nuclear effects on charm-baryon production in
heavy-ion collisions. The effect of nuclear shadowing [34],
which arises due to a modification of the nuclear PDFs, can
lead to a reduction in the charm-hadron yields at low pr
due to a reduction of parton densities at low Bjorken-x. The
nuclear modification factor R44 of A baryons at midrapidity
in central Pb—Pb collisions at /syy = 5.02TeV has a value
systematically lower than unity for pr < 4GeV/c, where
nuclear shadowing is expected to play a relevant role, and
pr > 6GeV/c [35], as expected from parton energy loss in
the quark-gluon plasma created in the collision, while for
4 < pr < 6GeV/c it is consistent with unity. Measurements
by the CMS Collaboration in the region 10 < py < 20 GeV/c
[13] confirm this suppression at high pr, with an indication
of increased suppression for central (0-30%) compared to
peripheral (30-100%) collisions. Studying the pr-integrated
nuclear modification factors allows us to determine whether
the modification of the production yields observed in specific
pr regions is due to a reduction of the overall A} yield, or
a modification of the momentum spectra in different collision
systems.

In this article, new measurements of A -baryon production
in the pr region 0 < pr < 1 GeV/c in pp and p—Pb collisions
at \/syy = 5.02TeV are reported. With respect to the pre-
viously published Al production cross sections [11,12], the
measurements in both systems are extended down to pr = 0
thanks to new decay reconstruction techniques, which employ
a Kalman-Filter (KF) vertexing algorithm [36] coupled with
machine-learning-based selections [37]. The pr-integrated
A production cross sections and A} /D ratios reported
in Ref. [11] are updated using these results, and the pr-
integrated nuclear modification factor R py is calculated. The
new values are obtained without requiring a model-dependent
extrapolation in the 0 < pr < 1 GeV/c interval. The mea-
surement of the full momentum spectrum also enables the
calculation of the mean pr of A} baryons in pp and p-Pb
collisions. The integrated production cross section in pp col-
lisions is used along with the measured A yields in Pb-Pb
collisions [35] in order to derive the pr-integrated nuclear
modification factor R44. The paper is organized as follows.
Section II describes the ALICE apparatus and the analysed
data samples. Section III details the analysis methods that
were used. Sections IV and V outline the corrections that are
applied to calculate the AT production cross sections, and the
sources of systematic uncertainty. The results are presented in
Sec. VI and compared with model calculations. Finally, a brief
summary is given in Sec. VIL.

064901-2



FIRST MEASUREMENT OF A} ...

PHYSICAL REVIEW C 107, 064901 (2023)

II. EXPERIMENTAL SETUP AND DATA SAMPLES

The ALICE detector system and its performance are de-
scribed in detail in Refs. [38,39]. The reconstruction of
charm baryons from their hadronic decay products at midra-
pidity primarily relies on the Inner Tracking System (ITS)
[40], the Time Projection Chamber (TPC) [41], and the
time-of-flight detector (TOF) [42] for tracking, primary and
decay vertex reconstruction, and charged-particle identifica-
tion (PID). These detectors are located inside a solenoidal
magnet of field strength 0.5 T. In addition, the VO scintil-
lator arrays [43] are used for triggering collision events and
for determining the luminosity when used in conjunction
with the TO detector [44], and the Zero-Degree Calorime-
ter (ZDC) is employed for offline event rejection in p—Pb
collisions [39].

The analysis was performed at midrapidity on data from
pp and p—Pb collisions at ,/syy = 5.02 TeV collected with a
minimum-bias (MB) trigger during Run 2 of the LHC. For
pp collisions, the results are quoted for |y| < 0.5, whereas for
p-Pb collisions the rapidity in the nucleon—nucleon center-
of-mass system (y.ms) is shifted due to the asymmetry of
the colliding beams, corresponding to a rapidity range of
—0.04 < yems < 0.96.

The MB trigger requires a pair of coincident signals in
the two VO scintillator arrays. Further offline selections were
applied to suppress the background originating from beam-gas
collisions and other machine-related background sources [45].
In order to maintain uniform ITS acceptance in pseudorapid-
ity, only events with a reconstructed vertex position within
10 cm along the beam axis from the nominal interaction point
were analyzed. The primary vertex position was identified
using tracks reconstructed in the TPC and ITS detectors.
Events with multiple interaction vertices due to pileup from
several collisions were removed using an algorithm based on
tracks reconstructed with the TPC and ITS detectors [39].
Using these selection criteria, the sample of pp collisions
comprised approximately one billion events, corresponding
to an integrated luminosity of Ly = 19.54+0.4nb~"! [46],
while in p—Pb collisions approximately 6 x 10® events were
selected, corresponding to L;, = 287 + 11 ub~1 [47].

III. ANALYSIS METHODS

In this analysis, A" baryons were reconstructed via the
decay channel A — pKS and respective charge conjugates,
with branching ratio BR = (1.59 + 0.08)%, followed by the
subsequent decay K — 7t ~, BR = (69.2 £ 0.05)% [48].
The contributions from both A and A were taken into
account in the measurements; for brevity, both are referred
to collectively as “A}” in this article. Charged-particle tracks
and particle-decay vertices were reconstructed in the central
barrel using the ITS and the TPC. The particle trajectories
in the vicinity of the primary vertex, and the decay vertices,
were reconstructed with the KFParticle package [36], which
allows a direct estimate of their parameters and the associated
uncertainties. The K¢ candidate was reconstructed by pairing
opposite-sign charged tracks forming a neutral decay vertex
displaced from the primary vertex. This candidate was then

paired with a proton-candidate track, originating from the
primary vertex, to form a A} candidate.

To ensure good quality of the tracks used to reconstruct
the A} candidates, further selection criteria were applied in
addition to the event selections mentioned above. In order
to maintain a uniform detector acceptance, the tracks of the
charged particles involved in the decay chain were required to
be within the pseudorapidity interval |n| < 0.8. The number
of clusters in the TPC used for the energy loss determination
was required to be larger than 50, to enhance the precision
of the mean specific energy loss (dE/dx). Furthermore, for
the track reconstruction, the minimum required number of
crossed rows in the TPC was 70 out of a possible 159. Primary
proton candidates were required to have a minimum of four
(out of a maximum of six) hits in the ITS.

Several selection criteria on the PID and decay topology
were applied to initially filter AT signal candidates. The
PID selections were based on the difference between the
measured and expected detector signals for a given particle
species hypothesis, in units of the detector resolution (ndet).
For the pion-candidate tracks from the Kg decay and the
proton-candidate track, a selection on the measured dE /dx in
the TPC of [nIP€| <3 from the respective particle hypothe-
sis was applied. If a measurement in the TOF detector was
available, a further TOF PID selection of |n§OF | <3 (5) was
applied on the particle flight time in p—Pb (pp) collisions.
The transverse momentum of the proton was required to be
larger than 150 MeV/c. The deviation of the measured in-
variant mass from the world-average value [48] was required
to be within 20 MeV/c? for the KJ. The A} candidates
were also required to have a Xt%)po /NDF < 50, where NDF
is the number of degrees of freedom of the topological fit.
The Xt%)po /NDF characterises whether the momentum vector
of the Al candidate points back to the reconstructed pri-
mary vertex, and is calculated by the KFParticle algorithm
[36]. A requirement on the distance between the primary and
secondary vertices (/) normalized by its uncertainty (A/) of
1/Al <30 was imposed on the Al candidate to filter out
decay vertices from longer-living particles. Finally, the esti-
mated proper time ct of the K¢ decay and its decay length
in the transverse plane were required to be smaller than
50 cm.

After applying the selections described above, the sepa-
ration between signal and background was optimized using
a boosted decision tree (BDT) algorithm. The BDT imple-
mentation provided by the XGBoost library was used [37,49].
With the machine learning approach, multiple selection crite-
ria are combined into a single response variable representing
the probability of a candidate being a true A" baryon. After
the application of a trained BDT model to the full data sample,
a selection in the BDT response was applied to reduce the
large combinatorial background.

Separate BDT models were trained for each collision sys-
tem with a sample of signal and background candidates in
the interval 0 < pr < 1 GeV/c. The signal candidates were
obtained from simulated events using the PYTHIA 8.243 [§]
Monte Carlo (MC) generator with the Monash tune [9]. The
transport of simulated particles within the detector was per-
formed with the GEANT3 package [50], and included a detailed
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FIG. 1. Distributions of the BDT output probabilities for A — pK? signal (red) and background (blue) candidates for 0 < pr < 1 GeV/c.
The left plot shows the model output for pp collisions, and the right plot for p—Pb collisions. The shaded regions represent the output of the
training sample, and the markers are the results after applying the model on the test sample.

description of the LHC beam conditions and detector geome-
try and alignment, as well as the time evolution of the detector
configurations during the data taking. For p—Pb collisions, an
underlying p—Pb event generated with the HIJING 1.36 gener-
ator [51] was added on top of the PYTHIA 8 event to simulate
events with more than one nucleon-nucleon collision. Each
PYTHIA 8§ event was required to contain a charm-anticharm
quark pair with at least one of them hadronizing into a A}
baryon. Its decay channel was then selected to be the hadronic
decay into a proton and a K. Only prompt A signal candi-
dates, namely those produced directly in the hadronization of
a charm quark or in the strong decay of a directly produced
excited charm-hadron state, were selected for the training.
Those that were produced in the decay of a particle containing
a beauty quark (feed-down) were not used since they have a
different decay vertex topology. The background sample was
selected from a fraction of real data using the same filtering se-
lections described above, with the additional requirement that
the invariant mass of the A} candidate was within the inter-
vals 1.98 < M <2.23 GeV/c? or 2.34 < M < 2.58 GeV/c?
to ensure that the signal region was excluded.

The training variables related to the proton decay track
were the nIPC and the track impact parameter with respect
to the primary vertex. The training variables describing the
topology of the KS were i) the ct, ii) the decay length in
the transverse plane, and iii) the //Al, as defined above.
The training variables related to the A itself were i) the
Xt%po/NDF’ ii) the //Al, and iii) the pointing angle, which
is defined as the angle between the momentum vector of
a particle and the line connecting its production and decay
vertices. Figure 1 shows the BDT output probability distri-
bution from the trained model for pp and p—Pb collisions in
0 < pr < 1 GeV/c, testing the hypothesis that the candidate
belongs to the signal class. The normalized distributions are
shown separately for the signal (red) and background (blue)
classes, for the training sample (displayed as shaded bars) and
the test sample (circles), which is a subset of the input data that
was not used for training. The training and test distributions do
not deviate significantly, demonstrating that the model is not
overtrained. This was further verified using the area under the

receiver operating characteristic curves [52] from the trained
models, where for both collision systems a compatible value
was found between the training and testing samples. In addi-
tion, while the models for the two collision systems peak at
different probability values, the overall shape of the BDT out-
put behaves similarly for pp and p—Pb collisions. The proton
PID variable and the A} Xt%)po /NDF were found to have the
highest importance ranking in the model, estimated using the
SHAP package [53], in both collision systems. In addition,
the ct of the K contributed significantly to the signal and
background separation. Despite the limited separation of the
two classes, the selection on the BDT output strongly reduces
the background contribution while maintaining a high signal
efficiency. The BDT probability threshold for a candidate to
be selected was optimized to maximise the expected statistical
significance. This was calculated using i) an estimated value
for the signal in the 0 < pr < 1 GeV/c region based on a
Lévy-Tsallis fit to the pr-differential A} production cross
sections at higher p7 [11,12], multiplied by the reconstruction
and selection efficiencies for each BDT selection threshold,
and ii) an estimate of the background within the signal region
obtained by interpolating a fit to the invariant mass side-
bands using a fraction of the data. The resulting BDT output
thresholds were 0.20 for pp collisions, and 0.37 for p-Pb
collisions.

After applying the BDT selections, the raw A yields in
the pr interval 0 < pr < 1 GeV/c were obtained by fitting
the invariant-mass distributions of the candidates as shown in
Fig. 2. The left (right) panel shows the invariant-mass distri-
bution for pp (p—Pb) collisions along with the fit functions.
The signal peak was modelled with a Gaussian function and
the background was described with a third-order polynomial.
The width of the Gaussian distribution was fixed to the value
obtained from MC simulations in order to improve the stabil-
ity of the fit, while the mean was left as a free parameter. To
better visualize the line shape of the signal, the invariant mass
distributions after subtracting the background fit functions are
shown in the lower panels of Fig. 2. The statistical significance
of the extracted signal has a value of 3.8 (3.5) for pp (p—Pb)
collisions.
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FIG. 2. Invariant mass distributions of A — pK? candidates in 0 < pr < 1 GeV/c, in pp (left) and p-Pb (right) collisions at /syy =
5.02 TeV. The red dashed curves represent the background fits, and the blue curves the total fits. The lower panels show the distributions after

subtracting the background estimated with the fit.

IV. CORRECTIONS

The pr-differential production cross section of prompt A}
baryons per unit rapidity in the interval |y| < 0.5 for pp
collisions and —0.96 < y.ms < 0.04 for p—Pb collisions was
calculated from the raw yields as

A
dza _ l fprompt(pT) X Nr{a\\§/+AC (pT)
dedy 2 AylabApT x (Acc x S)prompt(pT) x BR x ﬁnt '

ey

where NQ@*“ is the raw yield, foompe is the fraction of
prompt Al in the measured raw yield, BR is the branch-
ing ratio, and %, is the integrated luminosity. The factor 2
accounts for the presence of both particles and antiparticles
in the raw yields, and Ay, Apr accounts for the widths
of the rapidity and transverse momentum intervals. For the
interval 0 < pr < 1 GeV/c, the measurement of A} is per-
formed for Ay, = 1.6, under the assumption that the cross
section per unit rapidity of AT baryons does not significantly
change between |yj,| < 0.5 and |ypp| < 0.8. This has been
verified using PYTHIA 8 [8] and FONLL [2,54] simulations. The
factor (Acc X &)prompt 18 the product of the geometrical accep-
tance (Acc) and the reconstruction and selection efficiency
(¢) for prompt A} candidates in the A — pK{ channel.
The (Acc X €)prompt corrections were obtained from MC sim-
ulations with the same configuration as those used for the
BDT training described above. For both collision systems, the
efficiency correction factor was observed to be constant within
the interval 0 < pr < 1 GeV/c when computed in narrower
pr intervals. The (Acc X &)prompt factor is almost constant as
a function of rapidity for |y,p| < 0.5, and falls steeply to zero
for |yjp| > 0.5.

The fraction of the raw A7 yield originating from beauty-
hadron decays in the selected candidate sample was obtained

following the strategy defined in Ref. [11] using: i) the
beauty-meson production cross section from FONLL calcu-
lations, which is used as a basis for the py shape for all
beauty-hadron species [54,55]; ii) the relative abundances of
different beauty-hadron species from LHCb measurements in
pp collisions [23]; iii) their decay kinematics from PYTHIA
8; and iv) the selection and reconstruction efficiency of Aj
from beauty-hadron decays, which was estimated from MC
simulations. The MC samples were generated with a similar
configuration as the training samples described in Sec. III, but
instead of a charm-anticharm pair, they included a beauty-
antibeauty quark pair in each simulated event, with at least
one Al among the decay products of the resulting beauty
hadrons. The efficiency is similar between prompt and feed-
down candidates, as there are no tight selections applied on the
decay topology of the A baryon. The possible modification
of beauty-hadron production in p—Pb collisions was included
in the feed-down calculation by scaling the beauty-quark pro-
duction by a nuclear modification factor Rfd-4ovn As for
previous ALICE measurements of charm hadrons [11,56],
the central value was chosen such that the R,pp, of prompt
and feed-down A are equal. The values of (Acc x & )prompt>
(Acc X €)feed-down» and fprompe for 0 < pr <1 GeV/c are
listed in Table I for both collision systems.

TABLE 1. Correction factors (Acc X &)prompt» (ACC X €)fecd-downs
and foromp: in the interval 0 < pr < 1 GeV/c within the measured
rapidity regions.

pp p-Pb

(6.30 £0.03)% (4.77 £0.02)%
(6.15£0.03)% (4.71 £0.02)%
(98.2192)% (98.199)%

(Ace X &)prompt
(ACC X E)feed-down

f prompt
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TABLE II. Systematic uncertainties on the A production cross
section for pp and p—Pb collisions in the pr interval 0 < pr < 1
GeV/c.

pp p-Pb
Raw yield extraction 8% 9%
Selection efficiency 9% 9%
Tracking efficiency 4% 6%
Monte Carlo pr shape negl. 1%
Feed-down subtraction 0% 2%
Luminosity 2.1% 3.7%
Branching ratio 5%

V. SYSTEMATIC UNCERTAINTIES

The contributions to the systematic uncertainty on the A}
production cross section in 0 < pr < 1 GeV/c are summa-
rized in Table II.

The systematic uncertainty on the raw yield extraction was
evaluated by repeating the fit to the invariant mass distri-
butions while varying: i) the function used to describe the
background, ii) the minimum and maximum of the mass
ranges (sidebands) considered for the background fit, iii) the
width of the mass peak by £10% compared to the value
obtained from MC, and iv) the width of the mass intervals in
the invariant mass distribution. In order to test the sensitivity
to the line-shape of the signal, a bin-counting method was
used, in which the signal yield was obtained by integrating the
invariant-mass distribution after subtracting the background
estimated from the fit. The systematic uncertainty was taken
as the rms of the resulting raw-yield distribution, which cor-
responds to 8% (9%) for the analysis in pp (p—Pb) collisions.

The systematic uncertainty on the selection efficiency
arises due to possible differences between the real detec-
tor resolutions and alignment, and their description in the
simulation. This uncertainty was assessed by comparing the
production cross sections obtained using different selection
criteria. In particular, the selections on the BDT outputs were
varied in a range corresponding to a modification of about
30% in the efficiency for both pp and p—Pb collisions. The
systematic uncertainty was assigned by adding in quadrature
the rms and shift in the mean of the resulting production cross
section distribution with respect to the value obtained with
the default selections. For both pp and p—Pb collisions, this
resulted in an uncertainty of 9%.

The tracking efficiency uncertainty was determined by
varying the track quality selection criteria and comparing the
matching efficiency between the TPC and ITS in data and MC,
as described in Ref. [11]. The uncertainties on the individual
tracks were propagated to the A} candidates according to
the decay kinematics, resulting in an uncertainty of 3% (6%)
in pp (p—Pb) collisions. A further contribution was added to
account for the imperfect description of the material budget
of the detector in the MC simulations, which especially af-
fects the absorption of protons and thus the reconstruction
efficiency. This was determined by comparing the corrected
yields of charged pions, kaons, and protons using a standard
MC production and one with the material budget increased

by 10%, which corresponds to a 20 modification based on
the estimated systematic uncertainty on the ALICE material
budget [57]. The resulting uncertainty on the Al yield is
2% in the interval 0 < pr < 1 GeV/c, leading to an overall
tracking efficiency uncertainty of 4% in pp collisions and 6%
in p—Pb collisions.

The possible systematic uncertainty due to the dependence
of the efficiencies on the generated pr distribution of A7
in the simulation was studied (“Monte Carlo py shape” in
Table II). It was verified that the acceptance and the recon-
struction efficiency do not significantly vary within the 0 <
pr < 1 GeV/c interval. Following the same procedure as in
Ref. [11], the efficiencies were evaluated after reweighting the
pr shape of the PYTHIA 8 simulations to match the pr spec-
trum of D mesons from FONLL pQCD calculations [54,55], as
no FONLL calculations exist for charm baryons. An uncertainty
was assigned based on the difference between the nominal and
reweighted efficiencies. No significant variation was observed
in pp collisions, while a 1% variation was observed and as-
signed as systematic uncertainty in p—Pb collisions.

The systematic uncertainty on the feed-down subtraction
was evaluated by considering the theoretical uncertainties of
the beauty-meson production cross section in FONLL [54,55],
and the variation of the beauty fragmentation function de-
scribing the hadronization f(b — Ag) within its uncertainties
as measured in Ref. [23]. For p—Pb collisions a further consid-
eration is made, varying the ratio of the feed-down and prompt
A} nuclear modification factors Rigs-4o"" /Ri;;mpt within the
range 0.9-3.0. The upper bound of this range accounts for
recent measurements by LHCb of the nuclear modification
of A(b) baryons [58], where the nuclear modification factor at
backward rapidity was found to be consistent with unity. The
overall envelope from the variations was considered as the
total uncertainty, resulting in *92% in pp collisions and *$3%
in p—Pb collisions. '

The production cross section has an additional global
normalization uncertainty due to the integrated luminosity de-
termination. The luminosity uncertainty was determined from
van der Meer scans of pp and p-Pb collisions at /syy =
5.02 TeV, and has a value of 2.1% for the pp data sample [46]
and 3.7% for p—Pb collisions [47].

The 5% branching ratio uncertainty for the decay channel
A} — pK)(— prtw™)is calculated as the quadratic sum of
the branching ratio uncertainties for A7 — pK¢ and K —
7t~ [48]. This uncertainty is considered as fully correlated
between pr intervals and collision systems.

VI. RESULTS

The pr-differential A production cross sections were cal-
culated according to Eq. (1) and are shown in Fig. 3, where
blue markers are used for pp collisions and black markers
for p—Pb collisions. In each collision system, the new result
in 0 < pr <1 GeV/c is shown as an open marker, and the
filled markers represent the previous measurements for pr >
1GeV/c from Refs. [11,12]. The A} production cross sec-
tions are compared with next-to-leading-order (NLO) pQCD
calculations obtained with the POWHEG framework [59],
matched with PYTHIAG [61] to generate the parton shower
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FIG. 3. The pr-differential A} production cross sections in pp
and p-Pb collisions at /syy = 5.02TeV [12], including the new
measurements in 0 < pr < 1 GeV/c as open markers. The lower
panels show the ratios of the measurements to POWHEG+PYTHIAG,
with EPPS16 nPDF calculations included for p-Pb collisions
[9,59,60].

and fragmentation, and the CT14NLO parton distribution
functions [62]. For p-Pb collisions, the nuclear modifica-
tion of the parton distribution functions is modelled with
the EPPS16 nuclear PDF (nPDF) parametrization [60]. The
nominal factorization and renormalization scales, g and ug,
were taken to be equal to the transverse mass of the quark,
po = v/m> + p3., and the charm-quark mass was set to m, =
1.5 GeV/c?. The theoretical uncertainties were estimated by
varying these scales in the range 0.5p, < urr < 2.0y, with
the constraint 0.5 < ur/ur < 2.0, as described in Ref. [54].
For the p—Pb case, the uncertainties on the parton distribu-

tion functions and EPPS16 nPDF are not included in the
calculation as they are considerably smaller than the scale
uncertainties. In both collision systems the measured pr-
differential production cross section values are significantly
underestimated by the POWHEG predictions. In particular, in
the interval 0 < pr < 1 GeV/c the model underestimates the
measurements by a factor of about 10, similar to what was
observed up to pr = 3GeV/c in Ref. [11].

The measured differential production cross sections in 0 <
pr < 1 GeV/c are reported in Table III and compared with the
values from Ref. [11], where the 0 < pr < 1 GeV/c region
was determined from an extrapolation. For both pp and p—Pb
collisions, the measured values are lower than the extrapo-
lated ones and have smaller overall uncertainties, but remain
within 1o when considering the combined measurement and
extrapolation uncertainties. The previously computed extrap-
olated production cross section in pp collisions was based
on PYTHIA 8 predictions with specific tunes implementing
color-reconnection mechanisms beyond the leading-color ap-
proximation, and the extrapolation uncertainty was assigned
by taking the envelope of the different tunes. In p—Pb col-
lisions, the extrapolation was performed by multiplying the
extrapolated regions of the production cross section in pp
collisions by i) the Pb mass number, ii) a correction factor
to account for the different rapidity intervals covered in pp
and p—Pb collisions, and iii) a factor based on an assumption
on the nuclear modification factor R,p,. The central value was
calculated using R,p, = 0.5 and the extrapolation uncertainty
was estimated by varying this hypothesis in the range 0.35 <
Rppb < 0.8 [11]

The production cross section measurement in the inter-
val 0 < pr < 1 GeV/c allows the pr-integrated production
cross section to be calculated without the need for a model-
dependent extrapolation, which in the previous publication
[11] accounted for about 30% (20%) of the total Al
production cross section in pp (p—Pb) collisions. The rapidity-
differential production cross sections for 0 < pr < 1 GeV/c
were summed with the values measured for the region 1 <
pr < 12(24)GeV/c for pp (p—Pb) collisions in Ref. [11] to
obtain the integrated cross section. No extrapolation towards
higher pr is performed in either system, as the contribution
to the pr-integrated production cross section is negligible
(<0.1%) for the reported level of precision. The systematic
uncertainties due to the raw-yield extraction were propa-
gated as uncorrelated between pr intervals, and all other
sources were considered as fully correlated. The resulting
pr-integrated prompt A" production cross sections in the two
collision systems are reported in Table IV, and compared with

TABLE III. The A production cross sections at 0 < pr < 1 GeV/c in pp collisions for [y| < 0.5 and p—Pb collisions for —0.96 < yems <
0.04, at \/syy = 5.02 TeV. The left values are the new measurements from this article, and the right ones are the previously extrapolated values

from Ref. [11].

d*o /dprdy (0 < pr < 1GeV/c)

Measured

Extrapolated [11]

pp (ub (GeV/e)™)
p-Pb (mb (GeV/c)™")

47.9 4 10.4 (stat.) £ 6.1 (syst.) = 1.0 (lumi.)
7.7 4+ 1.9 (stat.) & 1.1 (syst.) £ 0.3 (lumi.)

68.57119 (extr.)

8.515:% (extr.)
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TABLE IV. The pr-integrated production cross sections for prompt A baryons in pp collisions for |y| < 0.5 and p—Pb collisions for
—0.96 < yems < 0.04, at . /syy = 5.02 TeV. The first two rows correspond to the measured values over the full p; range, and the last two rows

to the previously extrapolated results from Ref. [11].

do 7 /dy

pp, measured (ub)

p-Pb, measured (mb)

pp, extrapolated (ub) [11]
p-Pb, extrapolated (mb) [11]

208 £ 15 (stat.) = 15 (syst.) £ 4 (lumi.)
36.9 £ 3.3 (stat.) = 4.5 (syst.) & 1.4 (lumi.)
230 £ 16 (stat.) &= 20 (syst.) £ 5 (lumi.)f?o (extr.)
36.2 £ 2.5 (stat.) & 4.5 (syst.) £ 1.3 (lumi.) ™53 (extr.)

the values published in Ref. [11] based on the py extrapolation
described above.

The new measurement in the 0 < pr < 1 GeV/c interval
in pp collisions results in a reduction of the pr-integrated
A production cross section by about 10% with respect to
the previous published results, but the two values remain
compatible in terms of the combined statistical and system-
atic uncertainties. In p-Pb collisions the pr-integrated A}
production cross section is also compatible with the previous
measurement [11].

In order to compare the spectral shapes in the two different
collision systems at the same energy, the nuclear modification
factor Rppp, which is the ratio between the A} production
cross sections in p—Pb and pp collisions, scaled by the nuclear
mass number A = 208 and corrected to account for the shift
in rapidity between pp and p—Pb collisions using FONLL [54],
is calculated. The systematic uncertainties on the branching
ratio and beauty feed-down are considered as fully correlated
between the two collision systems, and all other systematic
uncertainties as uncorrelated. This is shown as a function of
pr in Fig. 4. The Ryp, in 0 < pr < 1 GeV/c is consistent
with unity within the uncertainties, and is also consistent

o] [ T T T ‘ T T T ‘ T T T ‘ T T T ‘ T T T T T T T ]
S 2.0F ALICE, p-Pb, {5y = 5.02 TeV 3
o F -096<y <0.04 ]
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0.6 —e— A}, PRC 104 (2021) 054905 —|
04 ] —6— A, This paper ]
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0.2¢ — - POWLANG 3
r — QCM ]

0 11| l 11| 11| ‘ 11| ‘ 11 1 ‘ 11| l |

2 4 6 8 10 12

P, (GeV/c)

FIG. 4. Nuclear modification factor R p, of prompt A baryons
in p—Pb collisions at ,/syy = 5.02TeV as a function of pr, com-
pared with model calculations [59,60,63,64].

with the decreasing trend towards low pr within 0 < pr <
6 GeV/c that was previously observed in Ref. [11]. The re-
sults are compared with the POWHEG+PYTHIA6 [59,60] and
POWLANG [63] models, as well as the QCM model [64].
In the QCM model, the charm quark is combined with a
co-moving light antiquark or with two co-moving quarks to
form a charm meson or baryon. For light-flavor (v, d, and
s) quarks, the momentum distribution is obtained by fitting
the data of hadronic pr spectra using the quark coalescence
formulas of QCM and parametrizing the hadron and quark
spectra with a Lévy-Tsallis function, as explained in Ref. [65].
A free parameter, Rl(;/)M, characterizes the relative production
of single-charm baryons to single-charm mesons. This value
is set to 0.425, which is tuned to reproduce the Aj /D0 ratio
measured by ALICE in pp collisions at /s = 7 TeV [10]. The
relative abundances of the different charm-baryon species are
determined by thermal weights from the statistical hadroniza-
tion approach [66]. The POWHEG+HPYTHIA6 pQCD event
generator, which is coupled with the EPPS16 nPDF set for
p-Pb collisions, predicts a central R,p, value that is below
unity for all py and constant for pr > 4 GeV//c, but consistent
with unity within the uncertainties. It should be noted that
the uncertainties on this calculation come solely from the
EPPS16 nPDF parametrization, as the uncertainties related
to the pQCD scales in the POWHEG+PYTHIAG calculation
cancel out in the ratio between p—Pb and pp collisions. While
the model is in fair agreement with the measurements for
pr < 3GeV/c, it does not describe the increase above unity
in the region 4 < pr < 8 GeV/c. Similarly, the POWLANG
calculations are peaked in the region 2 < pr < 4GeV/c, but
are at tension with the data for pr > 4 GeV/c. In the case of
POWLANG, the R,p, is the result of the transport of charm
quarks through an expanding quark-gluon plasma, which is
assumed to be formed in p—Pb collisions and affects the pr
distributions of charm hadrons. However, the calculated value
is identical for all charm-hadron species as it does not consider
any modifications of the relative hadron abundances due to
quark coalescence. The QCM model, which does not include
any nPDF or cold nuclear matter effects, gives the closest
description of the measurement over the full measured pr
range.

The pr-integrated R,p, of prompt AT baryons was
calculated from the pr-integrated production cross sec-
tions measured in p—Pb and pp collisions, and is reported in
Table V. The value is consistent with the atomic mass number
scaling of the AT production cross section in pp collisions
(i.e., Rypp = 1), within 1.1o of the combined statistical and
systematic uncertainties. The pr-integrated production cross
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TABLE V. The pr-integrated nuclear modification factors R,py,
and R4s of prompt A} baryons in p—Pb and Pb-Pb collisions at
A/Svny = 5.02 TeV. The Pb-Pb results are derived from the integrated
yields published in Ref. [35]. The percentile ranges in the first col-
umn represent the centrality ranges considered for Pb—Pb collisions.

A nuclear modification factor

0.85 & 0.09 (stat.) = 0.11 (syst.)
0.68 £ 0.10 (stat.) & 0.10 (syst.) T340 (extr.)
0.86 & 0.13 (stat.) £ 0.13 (syst.) 7009 (extr.)

p-Pb
Pb-Pb (0-10%)
Pb—Pb (30-50%)

section in pp collisions from Table IV is also used to compute
the R4s of prompt A} baryons from the pr-integrated cor-
rected yields in central (0—10%) and semicentral (30-50%)
Pb—Pb collisions at ,/syy = 5.02TeV reported in Ref. [35].
These values are also reported in Table V. The extrapolation
uncertainties on the Pb—Pb nuclear modification factors arise
due to the extrapolation of the Pb—Pb A} -baryon yields down
to pr = 0, which was performed by estimating the A;/D°
ratio in 0 < pr < 1 GeV/c with model calculations [32,67—
69] and multiplying it by the measured D°-meson yield [70].
The uncertainty was determined from the variation of the
resulting A" yield with different model calculations.

Figure 5 shows the pr-integrated nuclear modification fac-
tors for A baryons in p—Pb and Pb—Pb collisions, compared
with those measured for D° mesons in Ref. [70]. The pr-
integrated Rqs of AT is 1.80 below unity in 0-10% central
collisions, indicating a suppression of the A -baryon yield
in Pb—Pb collisions with respect to the binary-scaled pp ref-
erence due to shadowing and possible modifications in the

s F I ]
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:_<_§ <L nCTEQ15,,, 90% CL
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e T ) .
P :
g 0.8_— + l N —
0.6F I -
0.4 -
02 -
0_ | | ]

p-Pb, 0-100%
-096<y__<0.04
cms

Pb—Pb, 30-50%
lyl<0.5

Pb—Pb, 0-10%
ly] <0.5

FIG. 5. The pr-integrated nuclear modification factors of prompt
A7 baryons and D° mesons measured in p-Pb and Pb-Pb colli-
sions at /syy = 5.02 TeV [35,70]. Statistical (bars) and systematic
and extrapolation (brackets) uncertainties are shown. The measure-
ments are compared with calculations from the theoretical models
nCTEQ15 [71-73] and EPPS16 [60] that include only initial-state
effects. The uncertainty bands on the models represent the 90%
confidence level.

hadronization mechanism. In the 30-50% centrality interval,
the pr-integrated A Ra4 is compatible with unity within the
uncertainties. The pr-integrated A7 Rppy is closer to unity
than the Rs4 in central Pb—Pb collisions, as expected from
the smaller shadowing effects in p—Pb compared to Pb—Pb
collisions, where the nucleons of both the projectile and the
target nuclei are involved. In all three collision systems, the
nuclear modification factors for A and D are consistent with
one another, indicating that there is no significant enhance-
ment of the overall production of charm baryons compared
to charm mesons in heavy-ion collisions. The integrated Rsx
and R,py, are also compared with perturbative QCD calcula-
tions including only initial-state effects modeled using two
different sets of nuclear PDFs, namely a Bayesian-reweighted
version [71,72] of nCTEQI15 [73] and EPPS16 [60]. The cal-
culations with EPPS16 do not include the dependence of the
shadowing on the impact parameter of the Pb—Pb collision,
and therefore they are identical in the central and semicentral
event classes. The predictions with nCTEQ15 are obtained
by applying a Bayesian reweighting of the nuclear PDFs,
which is constrained by measurements of heavy-flavor hadron
production in p—Pb collisions at the LHC [71], and are labeled
as nCTEQI15,yyr in Fig. 5. The uncertainty bands for both
calculations represent the 90% confidence level regions. In the
reweighted nCTEQ15 case they are determined by consider-
ing three different factorization scales in addition to the PDF
uncertainties. The measured R44 and Rpp, values are within
the upper edge of the nCTEQ15 uncertainty band. These data
provide an important input for testing the assumptions of
nPDFs in theoretical calculations.

The A}/D° baryon-to-meson yield ratio is used to fur-
ther examine differences in the charm-quark hadronization
into baryons and mesons that may arise due to the differing
numbers of constituent quarks. The results in pp and p—Pb
collisions are shown in the left panel of Fig. 6. The pr-
differential D° production cross sectionin 0 < pr < 1 GeV/c
was taken from Ref. [3] for pp collisions and from Ref. [26]
for p—Pb collisions. In the calculation of the baryon-to-meson
ratio, the uncertainties related to the tracking efficiency, lumi-
nosity, and beauty feed-down were treated as fully correlated
between the two species, and all other uncertainty contribu-
tions were considered to be uncorrelated. The A}/D° yield
ratio in 0 < pr < 1 GeV/c in both pp and p—Pb collisions
indicates a decreasing trend with respect to the intermediate
pr region, albeit with large uncertainties. Within uncertain-
ties, the A} /DP ratios are consistent between pp and p-Pb
collisions. The distribution has a maximum in the region
1 <pr <3 @B<pr<5) GeV/c in pp (p-Pb) collisions.
The shift of the peak towards higher py in p—Pb collisions
could be attributed to a contribution of collective effects, e.g.,
radial flow. Similar collective effects have been observed for
light- and heavy-flavor hadrons in p—Pb collisions at the LHC
[75=77]. Such a contribution would be consistent with previ-
ous observations for the light-flavor A/KY baryon-to-meson
ratio [29]. The results are also compared with the QCM model
[20,74] which describes the magnitude of the AF /D° ratio
well for 0 < pr < 12GeV/c in both collision systems, as
well as predicting a shift of the peak towards higher pr, result-
ing from a hardening of the A spectrum in p—Pb collisions.
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The modification of the A[-baryon production spectrum
in p—Pb collisions is confirmed by computing the mean trans-
verse momentum, (pr). This was calculated in each collision
system following the same prescription as in Ref. [56], with
the central value derived from a power-law fit to the pr spec-
trum. The resulting values are summarized in Table VI and
compared with the values obtained for D° mesons in Ref. [26].
The (pr) value for A baryons is significantly higher in p—
Pb collisions than in pp collisions, by 3.70 considering the
combined statistical and systematic uncertainties. This is in
contrast with the results for D° mesons, for which the (pr) is
seen to be fully consistent between the two collision systems.

The right panel of Fig. 6 shows the AF/D° yield ratio
in pp collisions as a function of pr compared with model
calculations in which different hadronization processes are
implemented. The Monash tune of PYTHIA 8§ [9], which im-
plements fragmentation processes tuned on charm-hadron
production measurements in e*e™ collisions, predicts an in-
tegrated value of about 0.1 for the Aj /D0 ratio, with a mild
pr dependence. This significantly underpredicts the data, as
already seen in Refs. [11,12], with a difference of approxi-
mately a factor 8 between the data and model in the interval
0 < pr < 1 GeV/c. Model calculations including processes
that enhance baryon production, like PYTHIA 8 including
color reconnection beyond the leading-color approximation

[18], SHM+RQM [21], QCM [74], and Catania [19] are
also shown. Hadronization in PYTHIA 8 is built on the Lund
string fragmentation model [78], where quarks and gluons
connected by color strings fragment into hadrons, and color
reconnection allows for partons created in the collision to
interact via color strings. The tune with color-reconnection
topologies beyond the leading-color approximation includes
so-called “junctions” that fragment into baryons and lead
to increased baryon production with respect to the Monash
tune. The statistical hadronization model includes additional
excited charm-baryon states that have not yet been observed
but are predicted by the relativistic quark model [79]. These
additional states decay strongly to A} baryons, thereby
contributing to the prompt AT spectrum. The SHM+RQM
predictions include a source of uncertainty related to the
branching ratios of the excited baryon states into A final
states, which is estimated by varying the branching ratios
between 50% and 100%. The Catania model assumes that a
color-deconfined state of matter is formed in pp collisions,
and hadronization can occur via quark coalescence in addi-
tion to fragmentation. Coalescence is implemented through
the Wigner formalism, where a blast-wave model is used
to determine the pr spectrum of light quarks, and FONLL
pQCD calculations are used for heavy quarks. Hadronization
via coalescence is predicted to dominate at low pr, while

TABLE VI. Mean transverse momentum values for D mesons [26] and A" baryons in pp and p-Pb collisions at \/syy = 5.02 TeV.

(pr) (GeV/c)

pp p-Pb
D° 2.06 £ 0.03 (stat.) £ 0.03 (syst.) 2.07 £ 0.02 (stat.) £ 0.04 (syst.)
A 1.86 £ 0.06 (stat.) £ 0.03 (syst.) 2.29 £ 0.06 (stat.) £ 0.06 (syst.)
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TABLE VIL. The pr-integrated A /D° yield ratios in pp and

p-Pb collisions at ,/syy = 5.02 TeV.

AY/D°
pp 0.47 + 0.04 (stat.) £ 0.04 (syst.)
p-Pb 0.42 £ 0.04 (stat.) £ 0.06 (syst.)

fragmentation dominates at high pr. All of these models
qualitatively reproduce the data. The QCM model predicts a
maximum in the region 1 < pr < 3GeV/c, while the other
models tend to predict a continuous increase of the A/D°
yield ratio towards low pr, reaching a value of about 0.6
at pr = 0. This trend might highlight some tension with the
data in the interval 0 < pr < 1 GeV/c, since the data hint to
a decrease of the A/D° yield ratio, though a more precise
measurement is needed to reach a firm conclusion.

The pr-integrated AF/D° yield ratios in pp and p-Pb
collisions are presented in Table VII. These are consistent
with each other within 1o of the combined statistical and
systematic uncertainties, indicating no modification of the
overall hadronization fractions between pp and p—Pb colli-
sions despite the modification of the (pr). A similar effect
was observed for Al baryons measured as a function of
charged-particle multiplicity in pp collisions at /s = 13 TeV
[27], where the pr-integrated A /DV ratio was found to be
independent of multiplicity despite a significant alteration of
the pr-dependent spectrum. This could indicate a common
mechanism that alters the pr distribution of charm baryons
for p—Pb and high-multiplicity pp collisions while leaving the
integrated relative abundance of baryons and mesons consis-
tent with lower-multiplicity pp collisions.

VII. SUMMARY

The first measurements of the production of prompt A}
baryons in the transverse momentum interval 0 < pr < 1
GeV/cin pp (ly| < 0.5) and in p—Pb (—0.96 < y.ms < 0.04)
collisions at . /syy = 5.02 TeV with the ALICE detector at the
LHC are reported, removing the model dependence affecting
the previous results for the pr-integrated A} yields [11]. The
analysis was performed using the decay channel AT — pKS.
The A production cross section in the interval 0 < pr < 1
GeV/c was measured to be larger than predictions given by
pQCD-based calculations in both pp and p—Pb collisions. The
uncertainties on the two measurements are smaller than the
theoretical uncertainties on the previously extrapolated values
[11]. The pr-differential R,p, was measured in 0 < pr < 1
GeV/c and found to be consistent with unity within the un-
certainties, and also with a decreasing trend towards low pr
in 0 < pr < 6 GeV/c. However, the current precision of the
measurement is not enough to draw firm conclusions on the
role of cold nuclear matter effects and on the possible presence
of collective effects, like the radial flow, which are observed in
heavy-ion collisions. In addition, the pr-integrated R,p, and
Ra4 of prompt AT baryons were obtained and compared with
those of D” mesons at the same center-of-mass energy, show-
ing compatibility between the nuclear modification factors of

the two charm hadron species. The results are consistent with
calculations that consider nuclear modification of the PDFs.

The A}/D° yield ratio in 0 < pr < 1 GeV/c in both pp
and p-Pb collisions indicates a decreasing trend with respect
to the intermediate pr region, albeit with large uncertain-
ties. The PYTHIA 8 event generator with the Monash tune,
which incorporates fragmentation parameters from e*e™ col-
lisions, significantly underestimates the AF/D° yield ratio.
The data are qualitatively reproduced by models that predict
an enhancement of baryon production by various mecha-
nisms, including color reconnection beyond the leading-color
approximation, feed-down from unobserved resonant charm-
baryon states, or quark coalescence (recombination). The
quark (re)combination model also describes the shift of the
peak in the A} /D ratio between pp and p-Pb collisions. The
hardening of the py spectrum of A} baryons is confirmed by
calculating the (pr), resulting in a 3.70 modification between
pp and p-Pb collisions. The measurement of the A baryon
in the interval 0 < py < 1 GeV/c in pp and p—Pb collisions
and the pr-integrated results are crucial for providing further
insight into charm-quark hadronization in pp and p—Pb colli-
sions, and for the investigation of cold nuclear matter effects
in p—Pb collisions. More precise measurements are expected
to be performed during Runs 3 and 4 of the LHC thanks to the
upgraded ALICE detector [80].
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