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4Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

(Received 23 October 2022; accepted 30 November 2022; published 14 December 2022)

Finite temperature effects in the Standard Model tend to restore the electroweak symmetry in the early
universe, but new fields coupled to the Higgs field may as well reverse this tendency, leading to the
so-called electroweak symmetry nonrestoration (EW SNR) scenario. Previous works on EW SNR often
assume that the reversal is due to the thermal fluctuations of new fields with negative quartic couplings to
the Higgs, and they tend to find that a large number of new fields are required. We observe that EW SNR
can be minimally realized if the field(s) coupled to the Higgs field develop(s) a stable condensate. We show
that one complex scalar field with a sufficiently large global-charge asymmetry can develop a condensate as
an outcome of thermalization and keep the electroweak symmetry broken up to temperatures well above the
electroweak scale. In addition to providing a minimal benchmark model, our work hints on a class of
models involving scalar condensates that yield electroweak symmetry nonrestoration in the early universe.
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I. INTRODUCTION

It is an empirical fact that we live at present in a vacuum
that breaks the electroweak (EW) symmetry. At high
temperatures, the Higgs field acquires positive thermal
mass squared contributions from the fermions and gauge
bosons coupled to it. This thermal mass tends to confine the
Higgs field at the origin, leading to the standard theoretical
expectation that the EW symmetry is restored in the early
universe. The latter scenario is true within the Standard
Model (SM) and assumed in most beyond the Standard
Model explorations in the literature. However, thus far there
has been no evidence for a period of restored EW symmetry
in the early universe and current observational limits
permit a wide variety of extensions to the SM which might
reverse the tendency to restore the EW symmetry at high-
temperatures.1 Indeed, counterexamples to the conven-
tional picture presented above do exist. Such alternative

scenarios where the EW symmetry remains broken at
temperatures above the EW scale feature the phenomenon
commonly referred to as electroweak symmetry nonresto-
ration (EW SNR).
The possibility of the Higgs field acquiring a nonzero

vacuum expectation value (vev) in the early universe has
wide reaching consequences, some of which have been
explored in [9–22]. The electroweak phase transition may
not have occurred or instead took place at a much higher
temperature as compared to the SM prediction. Sphaleron
processes would remain suppressed at temperatures well
above the electroweak scale, thus making, e.g., high-
temperature electroweak baryogenesis viable. Early uni-
verse calculations that rely on the properties of the
primordial SM plasma would have to be appropriately
modified. The impacts of these modifications may be
imprinted in relics such as gravitational waves, dark matter,
and dark radiation that decoupled early. It is therefore
important to consider the less explored possibility that the
broken electroweak phase persists above the electro-
weak scale.
One way to modify the thermal evolution of the Higgs

vev is to couple the Higgs field to new scalar degrees
of freedom via Higgs-portal couplings. If these quartic
couplings are negative,2 the Higgs field would acquire a
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1The possibility of high-temperature symmetry nonrestoration,
not specific to the EW sector, was first studied in [1–8].

2These quartic couplings are defined as negative in the
potential and positive in the Lagrangian.
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negative thermal mass from the thermal fluctuations of the
new scalars. This fact was utilized to achieve EW SNR in
[12–14]. There it was shown that the presence of at least
Oð100Þ thermalized scalars with negative quartic couplings
to the Higgs field can keep the electroweak symmetry
broken at temperatures well above the electroweak scale.
Further studies revealed a variety of models that display
electroweak symmetry nonrestoration [18–23], and yet the
presence of a large number of new degrees of freedom
remains to be a common feature of existing models for this
phenomenon. In some of these models [20,22], EW SNR
can technically be realized with an Oð1Þ number of new
fields at the cost of limiting the highest temperature to
which EW SNR can be reliably sustained, which in both
studies did not go beyond ∼100 TeV.
While increasing the multiplicity of the fields coupled

to the Higgs field helps to alleviate various constraints
[12–14], in particular those related to the stability of the
scalar potential and perturbativity, this feature is not a
proximate cause of the high-temperature EW SNR phe-
nomenon. In this paper, we show that the addition of one
scalar field coupled to the Higgs is sufficient to achieve EW
SNR if the scalar develops a sufficiently large vev at high
temperatures in the early universe. Note that increasing the
scalar vev neither destabilizes the scalar potential nor
exacerbates the running of couplings. We demonstrate this
idea of realizing EW SNR via a vev in a simple model of a
complex scalar singlet coupled to the EW sector through
the Higgs portal with negative coupling. In the presence of
a sufficiently large chemical potential, the thermal equi-
librium state of the new scalar includes a Bose-Einstein
condensate (BEC) [24,25] and this condensate yields the
requisite large negative Higgs mass squared for EW SNR.
Chemical potentials in the universe naturally arise in the

presence of net background charges associated with some
global symmetries. In fact, current observations are con-
sistent with the universe possessing large background
charges of certain kinds. While the baryon asymmetry of
the universe has been observed to be tiny, nB=s ∼ 10−10

[26,27], up to Oð1Þ total lepton asymmetry [28] is still
allowed. Charge asymmetries may also reside in the dark
sector [29] at an unconstrained level. Global symmetries
are expected to be broken at high energies by higher
dimensional operators [30,31]. Thus, a field whose
Lagrangian respects a global symmetry at low energies
could carry a net charge as an after effect of its high-energy
dynamics. A concrete example of this is the Affleck-Dine
mechanism [32]. Furthermore, if some form of entropy
production [33–35] or charge washout [36–38] took place,
these charge asymmetries could be much greater in the
early universe and have stronger impacts then.
In this paper we show that EW SNR can be minimally

realized by coupling the Higgs to a scalar that develops a
vev in the early universe. We elaborate this point further in
Sec. II. In Sec. III, we present a simple example model

(with a new complex scalar that forms a BEC) that
demonstrates this idea, analyze the viable parameter space
for achieving EW SNR, and describe its cosmology.
Finally, we conclude in Sec. IV.

II. HIGH-TEMPERATURE ELECTROWEAK
SYMMETRY NONRESTORATION WITH A

SCALAR CONDENSATE

The Higgs doublet H can be expanded in the unitary
gauge as

HðxÞ ¼ 1ffiffiffi
2

p
�

0

H þ hðxÞ

�
: ð1Þ

where only the real part of the neutral component has a
constant background valueH and the physical Higgs boson
is denoted by h. At the minimum adopted by the universe
we have H ¼ vH, where vH is the Higgs vev. The EW
symmetry is broken in the early universe if the scalar
effective potential has no minimum in whichH vanishes. A
sufficient condition for EW SNR is the effective mass
squaredm2

HðTÞ of the Higgs field being negative at the field
space points where H ¼ 0, i.e.,

m2
HðTÞ ¼

∂
2VðT;HÞ
∂H2

����
H¼0

< 0: ð2Þ

Here VðT;HÞ denotes the finite-temperature effective
potential evaluated using the traditional background field
method [39], which could also be a function of additional
background fields. At finite temperatures, m2

HðTÞ acquires
large positive contributions from the SM fields coupled to
it, leading to the usual expectation of EW symmmetry
restoration within the SM. All these SM particles contribute
positively to m2

HðTÞ because the fermion and gauge-boson
contributions are quadratic in their Yukawa and gauge
couplings to the Higgs, respectively. For the same reason,
the EW symmetry remains to be restored in many early
universe models with extended EW sectors. On the other
hand, new scalar fields can couple with negative couplings
to the Higgs field and yield large negative contributions
to m2

HðTÞ.
Consider, for instance, the simplest case where a real

scalar field S is coupled to theHiggs doublet fieldH through
a negative Higgs-portal coupling−λHSjHj2S2=2, which also
couplesS to the SM thermal bath. Through this coupling, the
thermal fluctuations of S contribute ∼ − λHST2 to m2

HðTÞ,
which tend to push theHiggs field away from the origin (i.e.,
the field space points where the Higgs background field
vanish H ¼ 0). In order for one such scalar contribution to
overcome the SM contributions while keeping the tree-level
scalar potential VðH; SÞ bounded from below, the quartic
self-coupling λS of the S field would need to be non-
perturbatively large [12–14]. This led to the introduction of
Oð100Þ scalars in Refs. [12–14] in order to realize EW SNR
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in the early universe, while allowing for a perturbative
treatment of the theory and keeping the tree-level potential
bounded from below.
The preceding discussion assumes that the new scalar

fields have no appreciable chemical potential, in which case
the Bose-Einstein distribution corresponds to modes with
energy Ek ≲ T having Oð1Þ occupation numbers. In the
following we will consider more general momentum dis-
tributions. Schematically, the contribution to m2

HðTÞ from a
scalar with arbitrary occupation numbers fk is proportional
to
R
d3kfk=Ek. This contribution is maximized for a given

energy density ρ ∼
R
d3kfkEk when the occupation number

fk is concentrated in the infrared momentum modes, where
the particle energy Ek is minimized. Given its low entropy,
it appears that a strongly-coupled field with an IR-
concentrated momentum distribution would not last for a
long time. However, such a configuration can be the favored
thermal-equilibrium state if there exists a nonzero chemical
potential associated with some conservation law. In fact,
when the chemical potential is close to a critical value, the
configuration favored by thermal equilibrium involves a
large occupation of the ground state, i.e., a BEC. In that
case, the contribution to m2

HðTÞ is maximized and, as we
will show, this allows for a minimal realization of EW SNR
with a single new scalar field.
In light of the above observation, we return to the real

scalar singlet S with a negative Higgs-portal coupling
example, now allowing it to develop a vev vS. The effective
mass squared of the Higgs field at the origin is then
given by

m2
HðTÞ
T2

≈ κSM − κS ð3Þ

where κSM and κS ¼ λHSv2S=ð2T2Þ are, respectively, the
contributions from the SM thermal bath and the vev of S. At
temperatures above the electroweak scale, the dominant
contributions to κSM are [12]

κSM ¼ y2t
4
þ 3g2 þ g02

16
þ λH

2
≈ 0.4 ð4Þ

where yt, g, g0, and λH are the top-Yukawa, SUð2ÞL,Uð1ÞY ,
and Higgs self-quartic coupling, respectively. A sufficient
condition for EW SNR is

vS
T

≳ 0.9λ−1=2HS : ð5Þ

Thus, a single new scalar field that has a negative Higgs-
portal coupling and acquires a vev satisfying the above
can reverse the EW symmetry restoring effect of the SM
thermal bath. In the next section, we discuss a simple
mechanism for sustaining such a large vev at high
temperatures.

III. MINIMAL SCALAR CONDENSATE MODEL

We extend the SM with a complex scalar singlet ϕ,
playing the role of the S field in the previous section. We
assume that the tree-level scalar potential is invariant under
a global Uð1Þϕ symmetry and include all allowed renor-
malizable terms

V treeðH;ϕÞ ¼ −μ2HjHj2 þ λHjHj4 − λHϕjHj2jϕj2
þ μ2ϕjϕj2 þ λϕjϕj4; ð6Þ

where λHϕ, λϕ, and μ2ϕ are all positive. This model has been
studied extensively in connection to dark matter, baryo-
genesis, and gravitational wave production through a strong
first order phase transition (for a review, see e.g., [40]).
Unlike these previous studies, we assume that the universe
has a preestablished large net conserved charge density nQ
associated to the global Uð1Þϕ symmetry under which ϕ
transforms. Such a charge density implies that there is an
asymmetry nϕ − nϕ† ¼ nQ in the number density of ϕ
particle and antiparticle, denoted as nϕ and nϕ† respectively.
We do not specify the origin of such a large charge
asymmetry, but concrete mechanisms have been proposed
[32,41,42]. Since both nQ and entropy density s scale with
scale factor a as a−3, it is convenient to take their
expansion-invariant ratio as a free parameter

ηQ ¼ nQ
s

ð7Þ

A. Thermal Bose-Einstein condensate

We begin by specifying the conditions under which a
BEC develops as a thermal-equilibrium state. Any net
charge density that is carried by the nonzero momentum
excitations of the ϕ field, nk≠0Q , manifests itself as an
asymmetry in the Bose-Einstein distributions for the
particles and antiparticles due to the existence of a non-
vanishing chemical potential μ

nk≠0Q ¼
Z

d3k
ð2πÞ3

�
1

eðEk−μÞ=T − 1
−

1

eðEkþμÞ=T − 1

�
: ð8Þ

For definiteness, we take μ and hence the charge density to
be positive. A larger chemical potential μ corresponds to
larger nk≠0Q at a given temperature T. In order to keep the ϕ
particle occupation number ½eðEk−μÞ=T − 1�−1 positive, the
chemical potential μ must not exceed the effective mass of
ϕ, meff

ϕ . The upper limit of the chemical potential, namely
meff

ϕ , corresponds to the maximum charge asymmetry that
can be accommodated in particle and antiparticle excita-
tions at a given temperature T [25,43]
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ηcritQ ¼ nk≠0Q

s

����
μ→meff

ϕ

∼

8>>><
>>>:

15
2π2g�

�
meff

ϕ

T

�
; T ≳meff

ϕ

45ζð3=2Þ
π2g�

�
meff

ϕ

2πT

�
3=2

; T ≲meff
ϕ

ð9Þ

where g� is the effective number of relativistic degrees of
freedom.
When the charge asymmetry ηQ is larger than ηcritQ the

excess charge must be stored in the ground state, which
leads to the development of a high occupation number
ground state, i.e., a BEC. In the presence of a BEC, the total
change density nQ can be decomposed into two parts: the
charge density stored in the condensate of k ¼ 0 quanta,
nBECQ , and the charge density carried by the k ≠ 0 particle
excitations, nk≠0Q .
The large occupation of the ground-state quanta in the

condensate makes it possible to treat ϕ as a homogeneous
classical field hϕi, which can be written in terms of its
radial component r and phase θ as hϕi ¼ reiθ=

ffiffiffi
2

p
. In this

viewpoint, the charged BEC corresponds to ϕ having a
nonzero radial component r coherently rotating in the field
space with an angular velocity _θ [44]. The conserved
charge density nQ of the spinning ϕ is given by its
field-space angular momentum, nQ ¼ _θr2. The equations
of motion for r read

 rþ ð3H þ ΓÞ_r − _θ2rþ ∂rV ¼ 0: ð10Þ

Here, H is the Hubble rate and Γ accounts for dissipative
effects from the interaction of ϕ with the near-thermal SM
plasma.
The ϕ and SM sector can thermalize if the Higgs-

mediated ϕ − ϕ† pair annihilation, i.e., the slowest reaction,
is in equilibrium. Assuming that the kinetic-equilibration of
the ϕ field occurs much more quickly, this process is
efficient if

Γth

H
∼
λ2Hϕn

k≠0
ϕ† =T2

T2=MP
∼
λ2HϕMP

T
≫ 1 ð11Þ

with MP ≡ 2.4 × 1018 GeV being the reduced Planck
mass, which is always satisfied at temperatures above
the electroweak scale in the parameter space of our
interest.3 We have assumed in this estimate that all the
particles involved are relativistic, in which case nk≠0

ϕ† ∼ T3.

Once thermal equilibrium is established, the ϕ field moves
in the field space in a circular orbit determined by the
balance between the centrifugal force and potential gra-
dient, _θ2r ¼ ∂rV. This configuration is nothing but the
previously discussed thermal-equilibrium BEC.

B. Electroweak asymmetric early universe

We now describe the cosmology of our model at
temperatures above the electroweak scale. In this high-
temperature regime, we assume both the Higgs field and the
complex singlet ϕ acquire vevs. We write the fluctuations
around the constant background values as

H ¼ 1ffiffiffi
2

p
�

0

H þ hðxÞ

�
;

ϕ ¼ 1ffiffiffi
2

p ðrþ φðxÞÞeiθðxÞ; ð12Þ

where we reserve the notation H ¼ vHðTÞ and r ¼ vrðTÞ
for the physical vevs adopted by the universe in our model
at a temperature T.
To get a sense of the general evolution of the universe,

we start by discussing some estimates where we include
only tree-level effects and thermal masses. In this approxi-
mation, the equilibrium radial expectation value vr=

ffiffiffi
2

p
of

the complex scalar ϕ is determined by the balance between
the “centrifugal force” _θ2vr and the potential gradient of the
tree-level ϕ potential ∂rV treejr¼vr , which for sufficiently
large ηQ is dominated by the contribution from the quartic
term V tree ⊃ λϕr4=4. Setting _r ¼ 0 and  r ¼ 0 in Eq. (10),
and using V tree≈λϕr4=4 and nQ¼ _θv2r ¼ð2π2=45ÞηQg�T3,
we find

vr
T
≈ 0.76η1=3Q g1=3� λ−1=6ϕ ð13Þ

Comparing Eq. (13) with Eq. (5), we find a rough require-
ment for EW SNR

ηQ ≳ 1.6g−1� λ−3=2Hϕ λ1=2ϕ : ð14Þ

It can be easily checked that in the regime where EW SNR
occurs, as defined by Eq. (14), the quartic self-interaction
indeed dominates the potential of ϕ,4 the BEC formation
condition Eq. (9) is temperature-independent and easily
satisfied, and we can consider all the charge to be stored in
the BEC, i.e., nQ ≈ nBECQ ≫ nk≠0Q . Furthermore, the Higgs
vev is nonzero at high temperatures

3It is also possible that the early stages of the relaxation toward
thermal equilibrium involve processes whose timescales are
different from and possibly longer than the one considered here.
For example, the early dissipation of the scalar ϕ may proceed
through nonperturbative effects [45–48] if its initial radial
oscillation amplitude is sufficiently large. However, this is highly
dependent on the reheating scenario and we do not consider it
here.

4We found that in the parameter space where EW SNR occurs,
the ϕ condensate can dominate the energy density of the universe
by a factor of ∼λϕv4r=g�T4 ∼ η4=3Q λ1=3ϕ g1=3� . Since the energy
density of ϕ is dominated by its quartic potential, which scales
with the scale factor like a−4, the universe would still be
effectively radiation-dominated.
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vHðTÞ2 ≈ vHð0Þ2 þ
�
κϕ − κSM

λH

�
T2 ð15Þ

where vHð0Þ ¼ 246 GeV, λH ¼ 0.13, κϕ ≈ λHϕðvr=TÞ2=2
with vr=T shown in Eq. (13), κSM ≈ 0.4 as found in Eq. (4),
and here κϕ > κSM. In the parameter space of our interest,
from Eq. (15) we observe that vH=T is at most Oð1Þ and
mildly temperature dependent. The latter implies that the
Higgs vev scales linearly with temperature, meaning that
the SM particles coupled to the Higgs can be considerable
heavier in the early universe, though this change is at most
Oð1Þ of their thermal masses.
To account for a more complete description of the

phenomenon of EW SNR, the resummation of a certain
set of higher order diagrams, the so-called daisy diagrams,
should be included [49–51].5 Furthermore, below the
electroweak scale, the change in g�, the zero-temperature
masses of the SM particles and of the scalar field ϕmust be
taken into account, and moreover the ϕ scalar potential is
no longer dominated by the quartic self-interaction. Finally,
the Coleman-Weinberg potential [54], which accounts for
the one-loop radiative corrections at zero-temperature
should also be considered. In the next section, we explain
how we include all these effects in our numerical analysis
and in our plots, and show that they do not affect our
conclusions qualitatively.

C. Viable parameter space and numerical analysis

The finite-temperature effective potential for the back-
ground fieldsH and r, as defined in Eq. (12), at one-loop, is
given by

VðH; r; TÞ ¼ V tree þ VQ þ VCW

þ VCT þ VT þ Vdaisy; ð16Þ

where the tree-level scalar potential V tree reads

V tree ¼ −
1

2
μ2HH

2 þ λH
4
H4 −

λHϕ

4
H2r2

þ 1

2
μ2ϕr

2 þ λϕ
4
r4 ð17Þ

VQ is the angular part of the kinetic energy of ϕ, _θ2r2=2,
which owing to the conservation of charge nQ ¼ _θr2, acts
like an effective potential for r

VQ ¼ n2Q
2r2

: ð18Þ

Note that VQ ensures that r > 0. VCW represents the one-
loop zero-temperature radiative corrections to the scalar
potential in the form of the Coleman-Weinberg potential,
VCT contains UV-finite counterterm contributions, VT
includes the one-loop temperature-dependent corrections
to the scalar potential, and finally Vdaisy accounts for the
resummation of the daisy diagrams. The expressions for
VCW, VCT, VT , and Vdaisy can be found in Appendix A.
In our numerical analysis, we choose a set of input

parameters which include the Higgs portal coupling −λHϕ,
the singlet self-coupling λϕ, the singlet charge asymmetry
per unit entropy ηQ, and the present-epoch physical mass of
the extra scalar mϕ,

λHϕ; λϕ; mϕ; ηQ: ð19Þ

To ensure perturbativity and the boundedness of V tree, we
require [55]

λH < 4π; λϕ < 4π; λHϕ < 8π;

Λ� ≡ 6λH þ 4λϕ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4λϕÞ2 þ ð6λH þ 4λϕÞ2

q
< 16π;

4λHλϕ > λ2Hϕ; λH; λϕ > 0: ð20Þ

We look for the extrema of the effective potential where
H ¼ 0. In order to asses whether a field-space extremum
is a minimum, we calculated the principal minors of the
Hessian matrix of the scalar potential shown in Eq. (16).
The EW symmetry could be restored if both minors are
positive, otherwise the phenomenon of EW SNR would
take place.
Our results are summarized in Fig. 1, which shows the

parameter space where EW SNR is achieved at T ¼ 1 TeV.
To illustrate the viable parameter space, we assume
representative values of the charge asymmetry ηQ and
the scalar singlet massmϕ, and scan over the couplings λHϕ

and λϕ. Charge asymmetries as large as ηQ ∼ 1 are a natural
outcome of the Affleck-Dine mechanism [32,56].
Therefore, we fixed ηQ ¼ 0.1, 1, and 10 in our parameter
scan. As per Eq. (9), the ϕ condensate automatically
disappears at low temperatures T ≪ mϕ where ηcritQ ≫ 1
and so we assume hϕi ¼ 0 when considering collider
constraints. We set the singlet mass at mϕ ¼ 100 GeV,
given that a singlet mass mϕ larger than mh=2 ensures
agreement with the measured properties of the detected
SM-like Higgs boson at 125 GeV [57,58], since the decay
of the Higgs boson into a pair of additional scalars is
forbidden. The blue regions in Fig. 1 demonstrate the zones
where the EW symmetry is not restored at T ¼ 1 TeV for
the three different values of ηQ, the yellow region indicates
where the EW symmetry could be restored at that temper-
ature, and the gray region features a tree-level potential not

5Recent computations of the characteristics of first-order phase
transitions that go beyond the usual daisy-resummed approach
have been performed, for instance, in Refs. [52,53], where it was
shown that two-loop contributions to the effective potential can
be sizeable. We leave a discussion including such improvements
for future work.
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bounded below. The dashed lines depict the cutoff energy
scales μcutoff above which one of the conditions in Eq. (20)
is not satisfied when the running couplings are inserted
therein. The running couplings were obtained by solving
the one-loop renormalization group equations (RGE) in the
MS renormalization scheme shown in Appendix B. On one
hand, the dashed lines parallel to the boundary between the
gray and the blue regions indicate the cutoff energy scales
above which tree-level boundedness from below with
inserted one-loop running couplings is not fulfilled any-
more. On the other hand, the dashed horizontal lines show
the values of μcutoff for which perturbativity breaks down.
The running of the quartic couplings for two benchmark

scenarios is shown in Fig. 2, whose parameter points are
marked in Fig. 1 with stars. The upper plot in Fig. 2
corresponds to a representative case where μcutoff is set by
the tree-level boundedness from below requirements, while
the lower plot exemplifies a situation where μcutoff is given by
the breakdown of perturbativity. In most cases, the absolute
value of λHϕ increases with the energy scale due to the
contribution from the top quark to its beta function.
Furthermore, λH decreases with the renormalization energy
scale. According to Eq. (15), these facts make it easier to

achieve EW SNR for temperatures much higher than 1 TeV
when one considers the RG improved effective potential,
which is needed to minimize the renormalization scale
dependence. In this paper, we demonstrated the realization
of EW SNR at T ¼ 1 TeV, where the condition to achieve
this phenomenon is expected to be stronger. At T ¼ 1 TeV,
the effective potential is expected to be only mildly renorm-
alization-scale dependent.6 Therefore, we did not consider
the RGE improved effective potential in our analysis.

D. Late-time charge washout

The low-temperature (T ≲ 100 GeV) part of the cosmo-
logical history can be told in any number of ways without

FIG. 1. ðλHϕ; λϕÞ parameter space for ηQ ¼ 0.1, 1, and 10. The
blue regions are the parameter space zones in which the EW
symmetry is not restored at T ¼ 1 TeV for different values of ηQ,
the yellow region features the possible restoration of the EW
symmetry at the same temperature, and the gray region is where
the tree-level potential is not bounded from below. The dark blue
lines show the analytic approximation from Eq. (14) for the
corresponding values of ηQ. The dashed lines are the cutoff
energy scales derived from either perturbativity or boundedness
constraints Eq. (20). The RGE running of couplings for the
parameter points marked with stars are shown in Fig. 2.

103 104 105 106
10–5

10–4

10–3

10–2

0.1

1

10

103 104 105 106
10–3

10–2

0.1

1

10

FIG. 2. The RG flow of couplings for ðλHϕ; λϕÞ at the reference
scale μ0 ¼ 246 GeV equal to ð10−2; 10−3Þ and ð0.1; 10−0.1Þ,
which are marked in Fig. 1 with stars. The cutoff scale μcutoff
is given by the lowest energy scale at which any of the curves
exceeds 1. μcutoff is given by the breakdown of tree-level
boundedness (perturbativity) for the upper (lower) plot.

6We numerically checked that at T ¼ 1 TeV, vr is of order
Oð1 TeVÞ at most.
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affecting the previous, high-temperature (T ≳ 100 GeV)
discussion. Since we are mainly concerned with achieving
EW SNR at high temperatures, we keep the discussion here
mostly qualitative. In order not to affect big bang nucleo-
synthesis (BBN), the universe must be dominated by SM
radiation by T ∼ 10 MeV [26]. This requires a process that
depletes the energy density of the ϕ field taking place in the
temperature range 10 MeV≲ T ≲ 100 GeV. Here, we give
one concrete example of such a process that is consistent
with current experimental and observational data without
introducing new constraints to the high-temperature cos-
mological evolution.
For illustration purposes, we set

ηQ ∼ 0.1; λHϕ ∼ λϕ ∼ 1; mϕ ¼ 100 GeV ð21Þ

From Eq. (9), we see that the BEC evaporates away at
T ∼ 10 GeV. Below that temperature it suffices to describe
ϕ as a particle-antiparticle gas. By that point, ϕ is non-
relativistic, the universe is ϕ dominated (i.e., matter
dominated), and the antiparticles ϕ† have mostly annihi-
lated away due to Boltzmann suppression. Note that ηQ and
g� always appear in conjunction in our calculations in this
section and ηQg� ∼ 1 at T ≲ 10 GeV. For simplicity, we
will thus omit them, together with λHϕ ∼ λϕ ∼ 1, in the
estimates below.
In order to deplete the charge asymmetry, and hence the

energy density of the ϕ field, we introduce the following
Uð1Þϕ breaking terms

V ¼ 1

2
Δ2ðϕ2 þ ϕ†2Þ ð22Þ

where Δ can be made real without loss of generality. For a
sufficiently small Δ, these terms become important only at
late times, and then they cause oscillations between the þ1
and −1 charge eigenstates, namely ϕ and ϕ†, respectively.
Such oscillations repopulate the otherwise Boltzmann-
suppressed number density of ϕ† particles, thus enabling
the depletion of ϕ energy density through ϕ − ϕ† annihi-
lations [36–38].
Before we describe the depletion process and derive the

relic ϕ abundance, let us first outline the key processes
involved. A freely propagating ϕ particle would oscillate
into ϕ† with a probability Pϕ→ϕ† ≈ sin2ðΔ2t=mϕÞ over a
time t. However, such oscillations are interrupted because
the abundant ϕ particles are constantly colliding off one
another, ϕϕ → ϕϕ, with the rate Γscat ∼ nϕT=m3

ϕ. Since
each of these collisions projects the participating particles
into one of the charge eigenstates, the oscillations occur
effectively only in the mean free time Γ−1

scat between two
collisions. Hence, whenever two quanta collide, there is a
probability Pϕ→ϕ† ∼ ðΔ2=mϕΓscatÞ2 that one of them is
projected into ϕ†. The rate at which nϕ is converted to nϕ†

through oscillations is thus given by

_nosc ∼ nϕΓscatPϕ→ϕ† ∼ Δ4
mϕ

T
ð23Þ

which incidentally depends on neither nϕ nor nϕ†.
Furthermore, a ϕ-ϕ† pair can annihilate into SM states
via Higgs-mediated processes with the rate per unit volume
∼hσviannnϕnϕ† . Finally, both the particle and antiparticle
number density are diluted by the expansion of the
universe. These effects are summed up by the following
schematic Boltzmann equations

_nϕ ∼ − _nosc − hσviannnϕnϕ† − 3Hnϕ ð24Þ

_nϕ† ∼þ _nosc − hσviannnϕnϕ† − 3Hnϕ† ð25Þ

where H is the Hubble rate, and we assumed nϕ ≳ nϕ†

and correspondingly neglected the ϕ† → ϕ oscillation. For
our choice of parameters the annihilation cross section is
hσviann ≈ 2.0 × 10−9 GeV−2.7

Our choice of parameters is such that initially oscilla-
tions and annihilations dictate the evolution of nϕ† , while
nϕ is barely affected by the oscillations and simply dilutes
as the universe expands. In a timescale ∼ðhσviannnϕÞ−1
much less than a Hubble time, during which nϕ is
approximately constant, nϕ† settles into a quasiequilibrium
where the oscillation and annihilation rates per unit volume
balance, _nosc ∼ hσviannnϕnϕ† . In several Hubble times that
follow, this balance is maintained while _nosc ∝ T−1

increases and 3Hnϕ decreases. Eventually, the two meet
_nosc ∼ 3Hnϕ when the Hubble rate is

Hosc ∼
�Δ12m7

ϕ

M8
P

�1=11

ð26Þ

where we have assumed that the universe is ϕ-dominated
when this happens, H2 ∼ T3mϕ=M2

P. At that point, nϕ ∼
nϕ† and the ϕ field is approximately symmetrized.
Henceforth, the annihilation rate per unit volume is given

by the usual symmetric thermal freeze-out formula, and the
density of ϕ at freeze-out is given by nFOϕ ∼HFO=hσviann,
where HFO is the Hubble rate when ϕ freezes out.8 The
abundance of ϕ today is given by

ΩFO
ϕ ∼

1

ρcrit;0
mϕnFOϕ

T3
0

T3
FO

ð27Þ

7This annihilation cross section hσviann ≈ 2.0 × 10−9 GeV−2

was computed with the analytical formula hσannvi ¼½λ2Hϕv
2
H=2mϕðm2

h − 4m2
ϕÞ2�Γhjmh→2mϕ

from [59] using the Higgs
decay width Γh from [60].

8While the universe is initially dominated by ϕ (i.e., matter
dominated), its energy density is quickly transferred to the SM
sector as it annihilates away. Hence, the later part of the depletion
process that determines the relic abundance of ϕ takes place
during SM radiation domination, similar to the standard thermal
freeze-out.
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where TFO ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HFOMP

p
is the Standard Model temperature

at ϕ freeze-out and ρcrit;0 and T0 are the (fixed) critical
density and temperature of the Standard Model today. In
the standard symmetric freeze-out scenario, the freeze-out
happens when TFO ∼mϕ=25 at which HFO ∼ 10−3m2

ϕ=MP.
To keep the standard freeze-out prediction unaltered, we
assume that theHosc found in Eq. (26) is aboveHFO, which
amounts to requiring Δ≳ 10 keV for the current choice of
parameters. We also require Δ≲ 10 MeV such that Hosc ≲
HðT ∼ 100 GeVÞ to avoid complicating the EW SNR
discussion in the previous sections.9

The low-temperature phenomenology of our ϕ field has
some resemblance with that of the minimal singlet scalar
dark matter (complex or real) coupled to the SM via the
Higgs portal [40,59,62]. It is known that such models are
essentially ruled out if the scalars are populated via
symmetric thermal freeze-out, even when they are allowed
to be a small part of the dark matter. The combined
constraints from collider experiments, agreement with
the measured dark matter relic abundance [27], bounds
from direct detection of dark matter, and perturbativity of
λHϕ leave no viable parameter space apart from a narrow
mass regime around half of the Higgs boson mass where
the annihilation rate is resonantly enhanced [40,63,64].
Since the lowest ϕ abundance predicted by the “initially
asymmetric” freeze-out mechanism described above
matches that of the standard symmetric freeze-out for a
given mass mϕ, our scenario requires a process that further
dilutes the abundance ofϕ. A new field ψ with massmψ that
comes to dominate the universe and decays into the
Standard Model after the freeze-out of ϕ can increase the
Standard Model entropy by a factor of ζ ∼mψ=TRH ≲ 103,
where TRH is the Standard Model reheating temperature
right after the ψ decay, leading to a suppression inΩϕ by the
same factor ζ [33–35,65]. The strongest dilution ζ ∼ 103

corresponds to mψ ∼mϕ=10 ∼ 10 GeV (ψ domination
occurring after the earliest ϕ freeze-out) and TRH ∼
10 MeV (lowest reheating temperature compatible with
BBN). The lower-than-expected relic abundance
Ωϕ ≲ ΩFO

ϕ , where ΩFO
ϕ is the relic abundance of ϕ in the

standard freeze-out scenario found in Eq. (27), simulta-
neously avoids dark matter overproduction and relaxes the
constraints from direct detection, whose rate scales as
RDD ∝ Ωϕ=ΩFO

ϕ [66]. Furthermore, since the singlet vev
vanishes (vrð0Þ ¼ 0) when the BEC evaporates below the
electroweak scale, as far as collider searches are concerned
there is no mixing between the Higgs field h and the scalar
ϕ, leaving the couplings of the Higgs boson to SM particles
unchanged with respect to the SM. Thus, collider bounds on
our model are currently essentially nonexistent [67].

IV. DISCUSSION AND CONCLUSION

Current observations do not preclude the possibility that
the electroweak symmetry remains broken at temperatures
above the electroweak scale in the early universe. In such
electroweak symmetry nonrestoration (EW SNR) scenar-
ios, the Higgs vev remains nonzero and typically grows
with temperature in the early universe. This can lead to
early universe cosmological histories radically different
from what is commonly assumed. Given its wide-ranging
phenomenological consequences [12], the possibility of
EW SNR is an interesting scenario.
EW SNR requires negative Higgs mass squared con-

tributions at high temperatures to give the Higgs field a vev.
In most versions of EW SNR proposed so far, these arise
from the thermal fluctuations of new fields coupled to the
Higgs field. The difficulties associated with ensuring the
boundedness of the scalar potential and the perturbativity of
quartic couplings in such scenarios are usually overcome
by increasing the number of new fields. In this paper, we
argue that EW SNR can be minimally realized if the Higgs
field is repelled from the origin by the large vev of a single
field, instead of the thermal fluctuations of many fields.
To demonstrate this, we extend the Higgs sector with

a complex scalar singlet with a quartic self-interaction
λϕjϕj4 and introduce a negative Higgs-portal coupling
−λHϕjHj2jϕj2 to yield EW SNR. If the singlet is in thermal
equilibrium with a pre-established charge asymmetry ηQ
above a critical value, it acquires a large vev which then
drives the Higgs field away from the origin through the
Higgs-portal coupling, thus realizing EW SNR. Important
constraints on ηQ, λHϕ, and λϕ to achieve a viable scenario
where EW SNR is realized come from tree-level perturba-
tive unitarity and boundedness of the scalar potential from
below. The renormalization-group running of quartic cou-
plings triggers the breakdown of these two requirements
at higher temperatures, but in general EW SNR can be
realized up to a upper cutoff-temperature many orders of
magnitude above the electroweak scale.
The high-temperature EW SNR scenario we are propos-

ing is independent of any specific scenario below the
electroweak scale. While constraints arising from low-
temperature observables such as those from BBN, dark
matter abundance, direct and indirect detection experi-
ments, and colliders measurements may impose further
constraints on the main model parameters ηQ, λHϕ, and λϕ
that are relevant at high temperatures, these constraints
depend on the cosmological evolution at temperatures
below the EW scale. We found a simple low-temperature
scenario where no new constraint is added to the main
model parameters. In this scenario, we add a small term in
the scalar potential, controlled by a mass scale Δ, which
softly breaks the Uð1Þϕ symmetry, leading to the depletion
of the energy density of the singlet at some point below
the electroweak scale and before BBN. The symmetry-
breaking parameter Δ and the bare mass mϕ of the singlet

9Since theΔ2 Lagrangian terms are the only ones that break the
global Uð1Þϕ symmetry at low energies, loop corrections to Δ2

are proportional to itself, thus making its small value technically
natural [61].
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can be appropriately tuned to meet various constraints
without affecting the high-temperature realization of
EW SNR.
The most promising way to probe the model under

consideration at present colliders would be through the
searches for invisible decays of the Higgs boson, for a set-
up in which the singlet field is lighter than half of the Higgs
boson mass. The case in which the singlet state is heavier
than half of the Higgs boson mass could only be accessible
to future colliders, such as a 100 TeV hadron collider or a
1 TeV electron-positron collider, by means of precision
measurements of the triple Higgs boson self-coupling and
the Zh production cross section, and only for the largest
values of λHϕ explored in our analysis [67]. The specific
depletion scenario we considered predict WIMP-like relics
which can be tuned to make up the entirety of the dark
matter or a subcomponent of it. If the relic abundance of the
ϕ field makes up a significant part of the dark matter relic
abundance, we could probe this scenario in present and
future direct and indirect detection experiments. The novel
freeze-out mechanism proposed here could deserve special
attention from the viewpoint of dark matter model building.
We leave the detailed study of this scenario for future work.
It would be interesting to see if EW SNR could be

realized in other models involving scalar condensates. The
Uð1Þ-symmetric scalar condensate model considered here
can be generalized to fields that respect wider global
symmetries [68,69]. The required chemical potential to
support a Bose-Einstein condensate may also arise from the
departure from thermal equilibrium, in which case the IR-
dominated distribution function may be achieved as an
initial condition through the decay a nonrelativistic field,
e.g., the inflaton, and kept from cascading toward the UV
by suppressing the thermalization rates with the Standard
Model plasma [70]. Other ways to generate a nonzero
scalar expectation value in the early universe include
coupling the scalar field to fermions [71] and introducing
a nonminimal coupling to gravity [72].
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APPENDIX A: SCALAR EFFECTIVE POTENTIAL
AT ONE-LOOP

In the following we present the different pieces that
constitute the finite-temperature effective potential V [see
Eq. (16)]. VCW is given in the MS renormalization scheme
and in the Landau gauge by10

VCW ¼
X
j

nj
64π2

ð−1Þ2sjm4
jðH; rÞ

�
ln

�jmjðH; rÞ2j
μ20

�
− cj

�
;

ðA1Þ

where mjðH; rÞ are the field-dependent tree-level masses
of all the particle species, sj the particle spins, nj the
corresponding numbers of degrees of freedom, and μ0 is
the reference renormalization scale. The constants cj arise
from the MS renormalization prescription, with cj ¼ 5=6
for gauge bosons and cj ¼ 3=2 for scalars and fermions.
The sum in Eq. (A1) runs over the two scalar mass
eigenstates, the three Goldstone bosonsGi, the longitudinal
and transversal gauge bosons, VL ¼ fZL;W

þ
L ;W

−
Lg and

VT ¼ fZT;W
þ
T ;W

−
Tg and the SM quarks q, and leptons l.

The degrees of freedom nj for the species of each type are
nh ¼ 1, nϕ ¼ 2, nVT

¼ 2, nGi
¼ 1, nVL

¼ 1, nq ¼ 12, and
nl ¼ 4. The mass matrix for the scalar degrees of freedom
fhðxÞ;φðxÞg obtained from V tree þ VQ is

M2 ¼
 
−μ2H þ 3λHH2 − λHϕ

2
r2 −λHϕHr

−λHϕHr μ2ϕ þ 6λϕr2 −
λHϕ

2
H2

!
:

ðA2Þ

Moreover, the three Goldstone bosons Gi (i ¼ 1, 2, 3) tree-
level field-dependent masses read

m2
Gi

¼ −μ2H þ λHH2 −
1

2
λHϕr2: ðA3Þ

Due to the singlet nature of the additional scalar ϕ, the
field-dependent masses of the gauge bosons and fermions
depend only on H, and they are given by m2

WðHÞ ¼
ðg2=4ÞH2, m2

ZðHÞ ¼ ðg2 þ g02ÞH2=4 and m2
fðHÞ ¼

ðy2f=2ÞH2, where yf is the Higgs Yukawa coupling to
the fermion f.
Additionally, we require the zero-temperature loop-

corrected vacuum expectation values and scalar masses
to be equal to their tree-level values, and we refer to this

10The Coleman-Weinberg potential introduces gauge depend-
encies, however it appears only in subleading terms [73,74].
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11We also included in the sum an overall factor e−mkðφ;rÞ=T to
avoid spurious contributions to the effective potential coming
from Vdaisy.

prescription as the “on-shell” (OS) renormalization. To
achieve this, we add a set of UV-finite counterterms VCT to
the effective potential, whose computation was done by
following the methods described in [20,75] and with the
help of the public code BSMPT [76,77]. At finite temper-
ature T, the one-loop effective potential receives thermal
corrections VT , given by [78,79]

VT ¼
X
j

njT4

2π2
J�

�
m2

jðH; rÞ
T2

�
; ðA4Þ

where the thermal integrals J− for bosons and Jþ for
fermions are defined by

J�ðy2Þ ¼∓
Z

∞

0

dxx2 log

�
1� exp ð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
Þ
�
: ðA5Þ

Beside the degrees of freedom considered in Eq. (A1),
the sum in Eq. (A4) includes the photon. We used
the implementation of VT of the public code
COSMOTRANSITIONS [80]. Furthermore, we resummed the
daisy diagrams through the Arnold-Espinosa method
[50,51] (see also [52]), which amounts to adding the
following additional contribution to the one-loop effective
potential at finite temperature11

Vdaisy ¼ −
X
k

T
12π

f½m2
kðH; r; TÞ�32 − ½m2

kðH; r; 0Þ�32g ðA6Þ

where the sum in k runs over the bosonic degrees of
freedom, and m2

kðH; r; TÞ and m2
kðH; r; 0Þ denote, respec-

tively, their physical masses at finite temperature T and at
zero temperature [81]. The gauge boson thermal masses
can be found in [67]. The physical masses at finite
temperature m2

kðH; r; TÞ for the scalar degrees of freedom

are obtained through the diagonalization of M2þ
diagðκSM; cϕÞT2, where κSM is defined in Eq. (4) and

cϕ ¼ 3n2Q
T2

1

r4
−
λHϕ

6
þ λϕ

4
: ðA7Þ

APPENDIX B: BETA FUNCTIONS

We computed the RGEs by using the public code SARAH

[82,83] to be

16π2βλH ¼ 24λ2H þ λ2Hϕ − 6y4t þ
27

200
g41 þ

9

20
g21g

2
2

þ 9

8
g42 þ λH

�
−
9

5
g21 − 9g22 þ 12y2t

�
ðB1Þ

16π2βλHϕ
¼ −

9

10
g21λHϕ −

9

2
g22λHϕ þ 12λHλHϕ

− 4λ2Hϕ þ 8λHϕλϕ þ 6λHϕy2t ðB2Þ

16π2βλϕ ¼ 2λ2Hϕ þ 20λ2ϕ ðB3Þ

16π2βμ2H ¼ −
9

10
g21μ

2
H −

9

2
g22μ

2
H þ 12λHμ

2
H

þ 2λHϕm2
ϕ þ 6μ2Hy

2
t ðB4Þ

16π2βm2
ϕ
¼ 4λHϕμ

2
H þ 8λϕm2

ϕ ðB5Þ

with ytðμ0Þ ¼ 0.99, gðμ0Þ ¼ 0.65 ¼ g2ðμ0Þ, g0 ¼ 0.35 ¼ffiffiffiffiffiffiffiffi
3=5

p
g1ðμ0Þ, g3ðμ0Þ ¼ 1.4, λHðμ0Þ ¼ 0.13, and μ2h ¼ð88.4 GeVÞ2, where μ0 ¼ 246 GeV [84–86]. We found

agreement with the RGEs in [55]. For solving these
equations, the values of the parameters at the reference
renormalization scale in the MS renormalization scheme
were needed. These values were obtained by performing
a shift of the parameters defined at the reference renorm-
alization scale in the OS renormalization scheme
following [20].
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