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Gravitational-wave (GW) detectors that monitor fluctuations in the separation between inertial test
masses (TMs) are sensitive to new forces acting on those TMs. Ultralight dark-photon dark matter
(DPDM) coupled to Uð1ÞB orUð1ÞB−L charges supplies one such force that oscillates with a frequency set
by the DPDM mass. GW detectors operating in different frequency bands are thus sensitive to different
DPDM mass ranges. A recent GW detection proposal based on monitoring the separation of certain
asteroids in the inner Solar System would have sensitivity to μHz frequencies [M. A. Fedderke et al.,
Asteroids for μHz gravitational-wave detection, Phys. Rev. D 105, 103018 (2022)]. In this paper,
we show how that proposal would also enable access to new parameter space for DPDM coupled to B
[respectively, B − L] charges in the mass range 5½9� × 10−21 eV ≲mDM ≲ 2 × 10−19 eV, with peak
sensitivities about a factor of 500 [50] beyond current best limits on εB [εB−L] at mDM ∼ 2 × 10−19 eV.
Sensitivity could be extended up to mDM ∼ 2 × 10−18 eV only if noise issues associated with asteroid
rotational motion could be overcome.
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I. INTRODUCTION

Dark matter (DM) constitutes 26% of the energy budget
of the Universe [1]. Despite decades of increasingly
sensitive search efforts, its fundamental identity remains
a mystery. Ultralight bosons are one interesting class of DM
candidates. They admit a classical-field description that
oscillates in time at a frequency set by the DM mass. In
typical models, they are also very weakly coupled to the
Standard Model (SM). This permits sensitive experimental
approaches targeting narrowband time-varying phenomena
to shed light on the nature of the DM.
A compelling new-physics scenario involves gauging

either the Uð1ÞB or Uð1ÞB−L global symmetry of the SM,
with the new gauge boson—the “dark” or “hidden” photon
—coupling weakly to the associated current.1 The static,
weak equivalence principle (EP) violating, fifth-force
effects induced by such couplings have been stringently

constrained [5–13].2 Sufficiently feebly coupled dark
photons can however additionally serve as an ultralight
bosonic DM candidate. In this case, the oscillations of the
dark-photon dark-matter (DPDM) field exert a minute
oscillatory force on SM matter. In particular, such a force
will cause the test masses (TMs) utilized in certain classes
of gravitational-wave (GW) detectors to oscillate in a
detectable fashion, allowing them to do double duty as DM
detectors3; the theory of this effect has been thoroughly
developed [18–25].4 See also, e.g., Refs. [26–28] for
further discussion of the related case of scalar DM.
In this paper, we evaluate the DPDM detection prospects

for the future GW detector concept based on direct ranging
between certain inner Solar System asteroids that was
recently proposed in Ref. [29] and that would have μHz
frequency sensitivity (see also Ref. [30] for a related noise
study, and Refs. [31–35] for other recent work on μHz GW
detection).
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1A dark photon can also couple to the SM photon directly via
the “vector portal,” in which case it is referred to as the kinetically
mixed dark photon; see, e.g., Refs. [2–4].

2Yukawa modifications to the 1=r2 gravitational force law also
supply constraints, but these are typically weaker than the best
direct EP-violation constraints in the DM mass range of interest
in this work; see, e.g., Ref. [7] and references therein.

3Other DM candidates can also be searched for, in different
ways: e.g., via the transient acceleration signals induced by
supermassive DM states moving past the detector [14–17].

4Note in particular Sec. V. A. 4 in the published version of
Ref. [19].
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The rest of this paper is structured as follows: in Sec. II,
we discuss the DPDM signal and relate it to GW detector
sensitivity. We present results, discuss them, and conclude
in Sec. III. In Appendix A, we discuss some correction
factors that are applied to published GW detector sensi-
tivity curves in order to use them in this work. In
Appendix B we discuss how appropriate it is to consider
results averaged over DPDM polarization and momentum
orientations.

II. SIGNAL AND SENSITIVITY

Consider gauging the SM Uð1ÞS symmetry, where
S ∈ fB; B − Lg, with that symmetry broken so as to give
rise to a (Stückelberg) mass mV for the associated Uð1ÞS
gauge boson Vμ:

L ¼ LSM −
1

4
VμνVμν þ 1

2
m2

VVμVμ − εSeEMVμJ
μ
S; ð1Þ

where Vμν ≡ ∂μVν − ∂νVμ; J
μ
S is the relevant SM current;

eEM ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
4παEM

p
is the fundamental EM charge unit, with

αEM the electromagnetic (EM) fine-structure constant; and
εS parametrizes the Uð1ÞS coupling strength to the DM,
normalized to that of EM for εS ¼ 1. For mV ≠ 0, we
necessarily have ∂μVμ ¼ 0.
The coupling ϵS ≠ 0 gives rise to a force on a SM object

moving at speed v:

F ¼ εSeEMQS½−∇V0 − ∂tV þ v × ð∇ × VÞ�; ð2Þ

where QS is the Uð1ÞS charge of the SM object.
If the Vμ gauge boson comprises all of the local,

nonrelativistic DM (speed vDM ∼ 10−3), we write Vμ ≡
ðV0;VÞ exp½−iωDMtþ ikDM · xþ iα� within a single
coherence time/length,5 with α an arbitrary phase,
ωDM ≈mDM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2DM

p
≈mDM, and jkDMj ≈mDMvDM.

Note that we have identified mV ≡mDM. Now, ∂μVμ ¼ 0

implies that jV0j ∼ vDMjVj. Moreover, we have6 j∇ × Vj ∼
mDMvDMjVj and j∇V0j ∼mDMvDMjV0j ∼mDMv2DMjVj.
Additionally, j∂tVj ∼mDMjVj. Since, by assumption,
T00
V ¼ ρDM, it follows that

7 jVj ∼ ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
=mDM.

Considering objects gravitationally bound to the Solar
System, we also have jvj≲ vDM, owing to the motion of the

Solar System relative to the galactic rest frame. Therefore,
the force can be written as

F ≈ iεSeEMQSmDMVe−imDMðt−vDM·xÞþiα

þOðv2DM; vDMjvjÞ × εSeEMQSmDMjVj: ð3Þ
If the relevant SM object has mass M, and we drop the

subleading corrections,8 this force causes an oscillatory
acceleration of that object [19,21,24,25]:

a ≈ 2εS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2παEMρDM

p QS

M
e−imDMðt−vDM·xÞþiϕV̂; ð4Þ

where V̂ gives the polarization state of the DM (V̂ · V̂� ¼ 1),
and we have absorbed a phase into ϕ.
Consider now a GW detector that operates by measuring

fluctuations in the proper distance between two or more
inertial test masses that define the endpoints of one or more
detector baselines. The DM-induced acceleration Eq. (4)
causes the TMs to oscillate, leading to a modulation of the
proper length of the detector baseline(s) that manifests as an
oscillatory strain component. There are two contributions
to this strain: (1) a term arising from the finite light-travel
time for a null signal propagating between the TMs, present
even if the acceleration had no spatial dependence at all
(i.e., vDM ¼ 0) [18–20,22,24,25], and (2) a term arising
from the spatial gradient of the acceleration [19,21–25].

Averaged over time, DM field orientations with respect
to the baseline, and DM momentum directions, and ignor-
ing further corrections at Oðv2DMÞ, the mean square of the
strain signal hðtÞ≡ Δt=ð2LÞ, where Δt is the change to the
round-trip light-travel time between the TMs, can be
written as [24]9:

hh2i ¼ hh21i þ hh22i; ð5Þ

hh21i≡ 4cgeom1 H2 × sin4
�
1

2
mDML

�
; ð6Þ

5The coherence time is Tcoh ∼ 2π=ðmDMv2DMÞ and the
coherence length is λcoh ∼ 2π=ðmDMvDMÞ [i.e., the de Broglie
wavelength].

6We clarify that these are order of magnitude estimates for the
largest that the expressions on the lhs can be; additional
geometrical factors can suppress these even further.

7Technically this is only true as an average statement over
many coherence times of the DM field, as the field amplitude
executesOð1Þ stochastic fluctuations from one coherence time to
the next (see, e.g., Refs. [36–38]); nevertheless, it is a good figure
of merit.

8The vectorial orientation of the force relative to a GW detector
baseline is the relevant quantity to consider for GW detector
effects. Because the subleading corrections can be oriented
differently than the leading term, it is possible that the leading
term gives no effect, but that the subleading terms do. However,
because the subleading corrections are suppressed by at least
∼v2DM, this can only occur in highly tuned orientations. Real GW
detector baselines evolve in orientation over time relative to
inertial space, which will always spoil the tuning required for
such cancellation to be maintained; see also Appendix B. The
subleading terms can thus always be dropped.

9For detectors that are constructed with Fabry-Pérot (FP)
cavities in the baseline arms, these expressions are referred to
the input in the sense that the FP transfer function has been
omitted. Published GW characteristic-strain curves for detectors
with FP cavities are similarly referred to the GW input. Since the
FP cavity transfer function is the same for a GW and the DPDM
case that we consider in this work, no correction is required for
this [24]; see also Ref. [39] for further discussion of FP cavities in
GW detectors.
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hh22i≡ 1

3
cgeom2 H2 × ðmDMLvDMÞ2; ð7Þ

H2 ≡ 8π

3
ε2SαEM

ρDM
m4

DML
2

�
QS

M

�
2

; ð8Þ

where cgeomj are Oð1Þ geometrical factors that depend on
the baseline orientation, and L is the unperturbed baseline
length. The baseline is assumed to be approximately fixed
at least on the ∼2L round-trip light travel time between the
TMs, but it can vary secularly both in length and orientation
on longer timescales. The expression for hh22i at Eq. (7) is
correct in the limit mDMLvDM ≪ 1; this is satisfied in all
cases that we consider. We discuss the appropriateness of
averaging over DPDM field orientations and momentum
directions at length in Appendix B, as well as a relevant
correction we apply when we find this to be incompletely
justified.
Note that hh22i=hh21i ∝ ðmDMLvDMÞ2cosec4ð12mDMLÞ.

Because mDMLvDM ≪ 1, the h2 signal is only dominant
when either (1) the baseline is much shorter than the DM
Compton wavelength mDML≲ vDM (never the case for
interesting mass ranges for the detectors we consider), or
(2) in certain narrow mass ranges where the round-trip light
travel time is such that the h1 signal is nearly zero:
jmDML − 2πnj ∼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mDMLvDM

p
for n ¼ 1; 2;…. The latter

occurs only at frequencies above the peak sensitivity for
every detector we consider.
The geometrical factors for a single-baseline detector are

given by

cgeom1 ¼ cgeom2 ¼ 1

2
; ½single baseline� ð9Þ

while for a two-baseline detector with an opening angle ψ
between the baselines, they are given by [24]

cgeom1 ¼ 1 − cosψ ; cgeom2 ¼ 1 − cos2ψ : ð10Þ

For LIGO, cosψ ¼ 0 (perpendicular arms), while for
LISA, cosψ ∼ 1=2 (equilateral triangle) [24].
It remains to relate the signal, Eqs. (5)–(8), to a search

sensitivity. We work in the quasicoherent, matched-filter
approach of Ref. [24] and, at a signal-to-noise ratio (SNR)
of 1, estimate sensitivity using10

hh2i ∼ kdetðfDMÞ × SnðfDMÞ
2 × min ½T; ffiffiffiffiffiffiffiffiffiffiffiffi

TTcoh
p � ; ð11Þ

where T is the mission duration, fDM ≡mDM=ð2πÞ is the
frequency of the strain signal, Tcoh ∼ 1=ðfDMv2DMÞ is
the signal coherence time, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSnðfÞ

p ≡ hcðfÞ relates
the one-sided strain-noise power spectral density SnðfÞ to
published characteristic-strain sensitivity curves hcðfÞ. The
factor kdetðfÞ in Eq. (11) is a further detector-specific,
frequency-dependent correction factor (see comments in
Ref. [24]) that accounts for (1) factors necessary to avoid
double-counting of geometrical averaging effects, and
(2) the fact that hcðfÞ [or SnðfÞ] curves are conventionally
specified with respect to a GW waveform input, while
Eqs. (5)–(8) are specified with respect to the detector strain
response. We give detailed explanations and expressions for
these factors in Appendix A. Substituting Eqs. (5)–(8) and
either Eq. (9) or Eq. (10) into Eq. (11) gives the εS sensitivity
for any detector of interest; we show these results in Sec. III.
Changes in baseline length and/or orientation induce

sidebands in the detector strain response that are relevant
for the details of how a signal search would be conducted.
However, for our purposes, these effects can be ignored:
the sensitivity curves that we employ do not vary much
over a range Δf ∼ Ω=ð2πÞ, where Ω is the orbital or
rotational angular frequency of the baseline modulation.
Moreover, orbital- or rotational-velocity corrections to the
time-averaged quantities hh2f1;2gi are smaller than those

displayed at Eqs. (6) and (7): they would be at worst
Oðv2orbitalÞ, and vorbital ∼ 0.1vDM for TMs located at dis-
tances ∼AU from the Sun (rotational effects for, e.g.,
detectors on Earth are even smaller).

III. RESULTS AND DISCUSSION

In Fig. 1, we show εS sensitivity results (at SNR of 1)
separately for S ∈ fB;B − Lg, taking QB=M ∼ 1=μa and
QB−L=M ¼ ð1 − Z=AÞ=μa ∼ 1=ð2μaÞ with μa the atomic
mass unit, and assuming the parameters and sensitivities
exhibited in Table I. These results assume in each case that
the relevant dark photon constitutes all of the local DM and
we take ρDM ¼ 0.3 GeV=cm3 and vDM ∼ 220 km=s [40];
sensitivity would degrade as εS ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρDM=ρV

p
for subcom-

ponent DM with energy density ρV ≤ ρDM.
Our main results are the εS sensitivity curves for the

asteroid-ranging proposal of Ref. [29]. We show projected
sensitivities for f ≲ 1=ð5 hrÞ [mDM ≲ 2 × 10−19 eV] in
solid red, and results at higher frequencies in dashed
orange; the high-frequency projections are in the region
where asteroid rotational motion is expected to severely
inhibit that mission proposal [29]. Note that, as discussed
in detail in Appendix B, and in light of the fact that DPDM
coherence times exceed the assumed mission duration for
the interesting DPDM mass range for this detector, we
have conservatively degraded the asteroid-detector sensi-
tivity curves by a factor of 2 relative to those that would be
obtained with the fully angularly averaged results at

10Some numerical and correction factors here differ from
Eq. (20) of Ref. [24].
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Eqs. (5)–(8). This accounts for an incomplete effective
angular averaging over DPDM field orientations by the
time-evolving baseline orientations given typical asteroid
orbits, which would allow an unfortunate random but fixed
DPDM field orientation out of the plane of the ecliptic to
reduce the signal size.
The projected DPDM sensitivity for this mission

indicates a significant reach into new parameter space
at frequencies below the LISA [42] band for the B − L
case for DPDM in the mass range 9 × 10−21 eV ≲mDM ≲
2 × 10−19 eV and for the B case for the DPDM mass range
5 × 10−21 eV≲mDM ≲ 2 × 10−19 eV. Peak sensitivities,
at mDM ∼ 2 × 10−19 eV, exceed final MICROSCOPE

bounds [13] by a factor of ∼50 for εB−L, and by a factor
of ∼500 for εB. Sensitivity to additional new parameter
space not to be otherwise probed by LISA would be
possible at higher masses, up to mDM ∼ 2 × 10−18 eV,
only if noise issues arising from asteroid rotational motion
could be overcome.
Our results for LISA and aLIGO [41], shown for

comparative purposes, are in reasonable agreement with
results of previous works that have considered one or both
of those missions/facilities for this purpose [19,21,23–25];
see Ref. [24] for sensitivity projections for other future GW
detectors operating between the LISA and aLIGO bands,
and in the aLIGO band.

Fig. 1. Projected jεBj [left panel] and jεB−Lj [right panel] sensitivity of various GW facilities/missions as labeled in the legends,
assuming that the relevant dark photon is all of the local DM, ρDM ¼ 0.3 GeV=cm3. Mission parameters and sensitivities are given in
Table I. Our main result is the sensitivity of the asteroid-ranging proposal [29], shown (for SNR of 1) as a combination of solid red and
dashed orange lines. The solid red part of the curves is for f ≲ 1=ð5 hrÞ, where asteroid rotational motion should not be inhibiting; the
dashed orange part of the curves is for frequencies where asteroid rotational motion likely severely inhibits that proposal (see
discussion in Ref. [29]). The red shaded region of parameter space could thus be accessed with the asteroid-ranging proposal (at SNR
of 1), while the orange shaded region could only be accessed if noise issues associated with asteroid rotational motion could be
overcome. We also show by the cognate thinner lines the sensitivity projections for a shorter, 4-year mission duration. The sensitivities
we show for the LISA mission and the aLIGO facility (for comparative purposes and both also at SNR of 1) are in reasonable
agreement with previous analyses [19,21,23–25], up to differences in assumed sensitivities and other mission/facility parameters. Also
shown by solid medium-gray and violet lines and shaded regions, respectively, are the 95%-confidence static EP-test constraints
(which do not depend on assuming the dark photon is all, or any, of the local dark matter) from the Eöt-Wash experiments [6–8] and
from the final results of the MICROSCOPE mission [13] (recast using the method detailed in Ref. [12]; see discussion in text). The
dotted purple line is the cognate limit obtained from the initial MICROSCOPE results [10]; see also Refs. [11,24]. Recent Eöt-Wash
results [labeled ‘Eöt-Wash (2022)’] from Ref. [9] (“field along Z” limits) are shown as light-gray lines, with the thick line representing
the approximate exclusion limit averaged over nearby masses, and the limit at any specific mass fluctuating sharply within
approximately the envelope denoted by the thin lines.

TABLE I. Parameters assumed for the sensitivity curves shown in Fig. 1. L is the baseline length and T is the
assumed total mission or observation duration. The “sensitivity from” column gives the reference and location from
which the relevant strain-sensitivity curve (or cognate) is taken.

Detector L [m] T [yr] Sensitivity from

aLIGO 4 × 103 4 Ref. [41]
LISA 2.5 × 109 4 Ref. [42]; Eq. (114)
Asteroids 1.5 × 1011 (≈1 AU) 10 Ref. [29]; ‘smoothed envelope 2’ curve from Fig. 9
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We also show in Fig. 1 existing 95%-confidence con-
straints from static EP tests. These bounds rely only on the
existence of a massive Uð1Þ gauge boson weakly coupled
to the relevant SM current; they do not need to assume that
this dark photon is all (or indeed, any fraction) of the local
DM. Constraints from the Eöt-Wash torsion-balance
experiments [6] on ϵB are taken from graphical results in
Ref. [7], and on ϵB−L from graphical results in Ref. [8]
(which are slightly stronger and updated as compared to
those in Ref. [7]). Also shown are recent Eöt-Wash results
from Ref. [9] (we show their “field along Z” limits). The
constraints from the MICROSCOPE mission in Fig. 1 are
obtained as follows: we utilize the constraints on the Ti-Pt
Eötvös parameter ηðTi; PtÞ that are given in either Ref. [10]
(“initial”) or Ref. [13] (“final”), and follow the procedures
in Ref. [12] to recast these limits as constraints on εS. We
opt to add statistical and systematic errors on η≡ ηðTi; PtÞ
in quadrature, and we report exclusions at 2σ significance,
accounting for the (signed) nonzero reported central values
η̂ given in Refs. [10,13]; that is, we report a value of εS to be
excluded if it results11 in jηðεÞ − η̂j > 2ση. To cross-check
our recasting of the initial results, we also separately looked
at the corresponding constraints on the parameter jαSj≡
ε2SαEM=ðGNμ

2
aÞ defined in Ref. [12].12 We find here results

that disagree mildly by overall factors with the graphical
results shown in Ref. [12] itself: our limits are a factor of∼3
weaker for jαBj and a factor of ∼2 weaker for jαB−Lj; in
both cases, however, the functional form of the limits as
λ≡ 1=mDM changes is however reproduced exactly. The
origin of these overall-factor discrepancies is not readily
apparent to us (a small difference13 in the treatment of the
addition of statistical and systematic uncertainties cannot
account for it). Moreover, our recasting agrees well with an
independent recasting that was performed by Ref. [11] and
also reported in Ref. [24]. We merely make the reader
aware of this issue and point out that the limits on εS that
we report for the initial MICROSCOPE results are more
conservative by factors of ∼1–2 than those that can be
inferred from the graphical results of Ref. [12]. Per
our recasting, the recently released final MICROSCOPE
results [13] imply limits on εS a factor of ∼2 stronger than
the initial results [10].
In this paper we have the evaluated the sensitivity of the

asteroid-ranging GW-detection proposal recently advanced

in Ref. [29] to dark-photon dark matter that is coupled to
the B or B − L charges of the SM. Our results show that this
GW detector could also probe significant new regions of
parameter space for these DM candidates. This extends the
science case for the development of this class of μHz GW
detectors.
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APPENDIX A: DETECTOR CORRECTION
FACTORS kdetðf Þ

In this appendix, we specify the detector-specific
correction factors kdetðfÞ that we apply in Eq. (11).
For the asteroid-ranging proposal of Ref. [29], the detector

strain response hGWðtÞ to a plane GW with frequency
fGW ¼ ωGW=ð2πÞ and amplitude h0 was in principle
assumed to be that of an optimally oriented L ∼ 1 AU
single baseline:

hGWðtÞ ¼
h0
2
sincðωGWLÞ cos ½ωGWtþ β�; ðA1Þ

where β is a phase. No averaging over baseline orientation,
GW propagation direction, or GW polarization (hereinafter,
‘geometrical averaging’) was accounted for in Ref. [29]. The
time average of the square of the optimally oriented hGWðtÞ
is hh2GWi ¼ ð1=8Þh20sinc2ðωGWLÞ, and the characteristic-
strain sensitivity hcðfÞ in Ref. [29] was expressed14 such that
a GWof amplitude h0 ∼ hc=

ffiffiffiffiffiffiffiffiffiffiffiffi
fGWT

p
is detectable at SNR of

1 given an observation time T. Therefore, the detectable
amplitude of the mean-square detector-strain response (at
SNR of 1) is

hh2i ¼ SnðfÞ
2T

×
1

4
sinc2ðωGWLÞ; ðA2Þ

where we used that fSnðfÞ≡ ½hcðfÞ�2. By comparison with
Eq. (11) [and noting that we have assumed Tcoh → ∞ in this
discussion], we see that kastdet ¼ sinc2ðωGWLÞ=4. However,
the sinc factor was treated only approximately in Ref. [29],
with the hc curve simply degraded by a factor f=f⋆ on
f ≳ f⋆ ≡ 1=ðπLÞ; for consistency, we must adopt the same

11Recall that Uð1Þ exchange creates a repulsive potential for
like-sign charges, leading to α < 0 in Eqs. (5) and (6) of Ref. [12].

12For the initial MICROSCOPE results, η̂=ðσηÞ ≪ 1, so limits
are nearly symmetric about αS ¼ 0; this is not true for the final
results, and we use the correctly signed value of αS (here,
negative) to extract limits on εS.

13Ref. [10] gives σηstat ≈ σηsyst ≈ 9 × 10−15 with the statistical
error given at 1σ. Ref. [12] quotes a combined 2σ uncertainty of
2σηtot ≈ 27 × 10−15. We use a combined 2σ uncertainty of
2σηtot ≈ 25 × 10−15, consistent with Ref. [11].

14In Ref. [29], see, e.g., Eq. (5), footnote 9, and Eqs. (87) and
(88) as well as the discussion that follows the latter.
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approximation here. The correction factor to be applied to
the results of Ref. [29] is thus

kastdet ¼
1

4
×

�
1 f ≤ 1=ðπLÞ
ðπfLÞ−2 f > 1=ðπLÞ : ðA3Þ

Note that a high-frequency signal-response suppression
factor cognate to the sinc factor in Eq. (A1) operates to
parametrically suppress the hh21i signal for the DPDM case
[Eq. (6)], but does not operate to parametrically suppress
hh22i [Eq. (7)]; see also Ref. [24].
It was pointed out in Ref. [24], and we agree, that were a

geometrical-averaging factor included in a GW detector
sensitivity curve, a correction must be applied to remove
that geometrical factor before employing that sensitivity
curve in Eq. (11); otherwise, a double counting of geo-
metrical factors would be involved when comparing to the
DPDM signal at Eqs. (5)–(8), which itself has been
geometrically averaged over DPDM polarization states
and propagation directions. As noted above, no geometrical
averaging was performed for the asteroids detector, so no
such correction is needed in that case.
Let us now discuss the aLIGO case. Conventionally,

aLIGO reports strain-sensitivity curves with geometrical-
averaging factors already removed (they are assigned instead
to the source); see, e.g., discussions in Refs. [42,43]. As
such, no correction for geometrical averaging is required for
aLIGO curves. Moreover, the cognate of the explicit
factor of 1=2 in Eq. (A1) is absent for aLIGO since, at
optimum orientation, the strains in the two perpendicular
baselines are of opposite sign and equal magnitude, and thus
add in the difference signal. In principle, we should still
make a correction for a high-frequency suppression factor
∼sinc2ðωGWLÞ [note: the transfer functions for the aLIGO
FP cavities are present in both GW and DPDM cases, and
require no additional correction [24]; see footnote 9].
However, aLIGO only accesses frequencies f ≲ 5 kHz,
where sinc2ðωGWLÞ≳ 0.94; already at f ∼ kHz, the cor-
rection is sub-percent. To the level of accuracy we work, and
for the frequencies we consider, we therefore ignore any
correction for this effect. As such, the aLIGO correction
factor is taken to be

kaLIGOdet ¼ 1: ðA4Þ

On the other hand, LISA sensitivity curves are conven-
tionally degraded by a geometrical-averaging factor [42,43].
Removing this degradation as required [24], while also
accounting for anOð1Þ numerical factor related to LISA arm
configurations, inserts a factor of 3=20 in kLISAdet (see, e.g., the
discussion below Eq. (84) in Ref. [42]). Finally, we use the
LISA “SciRD” sensitivity defined at Eq. (114) in Ref. [42]
(see Table I), in which the high-frequency detector-response
suppression is captured entirely by the factor defined there

as RðfÞ≡ 1þ ½f=ð25 mHzÞ�2; to correct for this, we
include a factor of ½RðfÞ�−1 in kLISAdet . Overall, the LISA
correction factor is taken to be

kLISAdet ¼ 3

20ð1þ ½f=ð25 mHzÞ�2Þ : ðA5Þ

APPENDIX B: COMMENTS ON DPDM
POLARIZATION AND MOMENTUM-DIRECTION

AVERAGING

Some comments are in order on our averaging
over DPDM polarization and momentum directions at
Eqs. (5)–(8).

One can consider two possible extreme cases for the
DPDM polarization state, depending on the DPDM for-
mation mechanism and subsequent structure-formation
processing [4,44]: either the DPDM polarization direction
randomizes over a coherence time/length, or the DPDM
polarization state is instead fixed on patches much larger
than a coherence length (in the extreme limit, the DPDM
polarization state could be fixed in our entire Hubble
patch [4,44]). In either case, the DPDM momentum
direction (i.e., local spatial gradient) will still randomize
on the coherence time.
In practice, the coherence time for mDM ≲ ðfewÞ ×

10−17 eV is longer than the assumed ∼4–10 yr mission
durations we consider in this work (see Sec. III and Table I)
so both of these two fundamental alternatives in the DPDM
polarization treatment would in practice result in the DPDM
polarization vector being fixed on the duration of observa-
tion we consider for such masses; for higher masses, these
alternatives are of course different in practice.
It is clear that if the DPDM polarization state does

randomize, and the coherence time is shorter than the
mission or observation duration, then polarization averaging
at Eqs. (5)–(8) is motivated to derive a single mission-
averaged figure-of-merit sensitivity. Likewise, if the coher-
ence time is shorter than the mission or observation duration,
an averaging over momentum directions is justified.
In the case that the polarization state is however fixed or

varies only very slowly compared to assumed mission
durations (long coherence time), the argument in favor of
DPDM polarization and/or momentum-direction averaging
would need to rely on the fact that real GW detector
baselines vary over time in their orientations with respect to
the DPDM polarization state and momentum direction
(which are both fixed in inertial space) by large enough
amounts that an effective averaging over a large range of
orientation angles occurs naturally over the course of a
mission/experiment.
For aLIGO, the orientation of the detector arms at the two

sites in Hanford and Livingston relative to inertial space,
along with the rotation of the Earth over time, prohibits the
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possibility that the DPDM polarization and momentum
vectors can be so poorly oriented with respect to all of the
baselines at all times that a significant signal suppression
below the polarization- and momentum-direction-averaged
result could occur. The fully angularly averaged results at
Eqs. (5)–(8) thus give, up to possible Oð1Þ factors, a good
experiment-averaged sensitivity projection, regardless of the
DPDM polarization treatment or the coherence time.
The proposed Earth-trailing heliocentric LISA satellite

orbits will result in a rotating triangular configuration for
the constellation, lying in a plane offset by 60° relative to
the plane of the ecliptic [45]. This will result in an Oð1Þ
fraction of relative orientations of the baselines with respect
to any possible fixed DPDM polarization state and/or
momentum direction being explored. The angularly aver-
aged results at Eqs. (5)–(8) thus again give, up to possible
Oð1Þ factors, a good mission-averaged sensitivity projec-
tion, regardless of the DPDM polarization treatment, or
coherence time.
The case of the asteroid-based detector is the more

nuanced and requires a correction. The types of asteroids
that one could utilize as test masses in the proposal of
Ref. [29] typically have mildly elliptical orbits with
different semi-major axes, and are typically inclined to
the plane of the ecliptic byOð10°Þ, although some are more
inclined, and some less; see Table I of Ref. [29]. (Note that
we ignore baseline length variations completely in this
work.) For a typical choice of asteroids then, the baselines
defined by their motion will naturally explore all orienta-
tions in the plane of the ecliptic, but only a limited set of
orientations out of the plane of the ecliptic, varying
perhaps by �10° over orbital/mission timescales. For
interesting DPDM mass ranges, coherence times are such
that the asteroid detector is always to be considered in the
regime where the DPDM polarization state and momentum
direction are fixed to some random direction over the
whole mission duration we consider, regardless of the
fundamental underlying DPDM polarization treatment. As
such, it is in principle possible that the DPDM polarization
state and/or momentum direction can be unluckily oriented
mostly perpendicular to the plane of the ecliptic, resulting
in a suppression of the signal size below the angular
average.
Recalling from the discussion in the paragraph between

Eqs. (8) and (9) that the h1 signal is dominant in the
interesting mass range for the asteroid-based detector,
the ε sensitivity for the un-averaged case is degraded

(or enhanced) by a factor of ζ ≡ ð3 cos2 θÞ−1=2 compared to
the averaged case, where θ is the angle between the
baseline and DPDM polarization state. For favorably
aligned orientations, 1=

ffiffiffi
3

p
≤ ζ ≤ 1, and the unaveraged

sensitivity is enhanced; for near-orthogonal orientations,
the unaveraged sensitivity is degraded (ζ ≥ 1).
In the worst case for the asteroid-based detector, given

that typical baselines would explore varying orientations
within an angle on the order of �10° from the plane of the
ecliptic throughout the two asteroid orbits, one can estimate
the signal degradation by taking θ ∼ 80°, resulting in a
degradation by a factor of ζ ∼ 3; for a�5∘ offset, a factor of
ζ ∼ 7 degradation is to be expected.
However, these are overly pessimistic assumptions:

following discussions in Refs. [4,44], a better assumption
is to set the orientation angle to the worst case one would
expect at the same level of confidence one is making
projections. Because our sensitivity projections are all at
SNR of 1, corresponding to 68% confidence, the corre-
sponding worst-case value is cos2 θ ∼ ð0.32Þ2, assuming a
flat prior on cos θ, in line with the Jacobian for spherical
coordinates. This would lead to a degradation in sensitivity
by only a factor of ζ ∼ 2 as compared the sensitivity
projections based on the fully-averaged result. As a result,
we have degraded the sensitivity curves shown in Fig. 1 for
the asteroid-based detector proposal by a factor of 2 from
the result that would be obtained from the fully angularly
averaged expressions at Eqs. (5)–(8), as we mention in
Sec. III. Note that we apply no correction for LISA or
aLIGO sensitivity curves.
While it is plausible that one could possibly select one of

the asteroids for the mission proposed in Ref. [29] with a
much larger inclination angle, perhaps up to ∼40° (in which
case only a small, Oð1Þ degradation would be expected in
DPDM sensitivity), this may not be possible for other
reasons having to do with asteroid selection criteria, so it is
not guaranteed one could avoid the factor-of-2 suppression
in this way.
We also note finally that modulations of the signal will

occur in all of the above cases by virtue of relative
orientation considerations if the DPDM polarization state
is fixed on long timescales, and those would be important to
consider for an actual signal search in data. However, the
angularly averaged result (appropriately corrected, where
necessary, as discussed in this appendix) gives an appro-
priate figure of merit for sensitivity projections.
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