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ABSTRACT

Linux enables non-root users to perform certain privileged opera-
tions through the use of the setuid (“set user ID”) mechanism. This
represents a glaring violation of the principle of least privilege, as
setuid programs run with full superuser privileges—with disastrous
outcomes when vulnerabilities are found in them. Linux capabilities
aim to improve this situation by splitting superuser privileges into
distinct units that can be assigned individually. Despite the clear
benefits of capabilities in reducing the risk of privilege escalation,
their actual use is scarce, and setuid programs are still prevalent
in modern Linux distributions. The lack of a systematic way for
developers to identify the capabilities needed by a given program
is a contributing factor that hinders their applicability.

In this paper we present Decap, a binary code analysis tool that
automatically deprivileges programs by identifying the subset of
capabilities they require based on the system calls they may invoke.
This is made possible by our systematic effort in deriving a complete
mapping between all Linux system calls related to privileged oper-
ations and the corresponding capabilities on which they depend.
The results of our experimental evaluation with a set of 201 setuid
programs demonstrate the effectiveness of Decap in meaningfully
deprivileging them, with half of them requiring fewer than 16 ca-
pabilities, and 69% of them avoiding the use of the security-critical
CAP_SYS_ADMIN capability.
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1 INTRODUCTION

Unix systems split privileges into two categories, with processes
being either privileged or unprivileged. Privileged processes by-
pass all kernel permission checks, while unprivileged processes are
subject to full permission checks. This all-or-nothing approach is
in stark contrast with the principle of least privilege [45], which
states that users, processes, and programs should only have the bare
minimum privileges necessary to complete their task. Having only
root or non-root privileges complicates cases in which unprivileged
users must perform a specific privileged operation. For example,
unprivileged users who want to change their password must be able
to make modifications in two files owned by root, /etc/passwd
and /etc/shadow, but the permissions of these two files prevent
any unprivileged process from modifying them.

The “set user ID” mechanism [42] was introduced to address the
issues caused by this coarse-grained split of privileges, and allow
unprivileged processes to perform operations that otherwise are
accessible solely by privileged processes. Executable files contain a
setuid bit in their attributes, which denotes that when launched,
the process will be granted the privileges of the file’s owner, i.e.,
superuser privileges in case of setuid executables owned by root.
Although the setuid bit offers a pragmatic solution to the above
issues, allowing unprivileged users to execute programs with supe-
ruser privileges can lead to disastrous outcomes. Vulnerabilities in
setuid programs are prevalent [13, 26, 28, 48, 51], allowing attackers
to achieve arbitrary code execution with root privileges.

Providing superuser privileges to a process only to perform a
very narrow-scope privileged operation is an overkill, and has been
anecessity due to the existence of only two privilege levels. Starting
with kernel v2.2, Linux provides a more flexible solution by dividing
the privileges associated with the superuser account to more fine-
grained distinct units called capabilities. This allows a process to
acquire only the specific capabilities associated to the privileged
operations it needs to perform.

Initially, superuser privileges were divided into 27 capabilities.
While some capabilities remain overloaded (e.g., CAP_SYS_ADMIN,
which is essentially equivalent to superuser permissions), additional
capabilities are still being introduced—their number has increased
to 41 in the most recent Linux kernel (v5.17 at the time of writing).
Granting distinct capabilities allows programs to perform privileged
operations without the risk of running them with superuser privi-
leges. It would then be expected to observe a declining number of
programs using the setuid bit in more recent Linux distributions,
and an increasing transition to the use of capabilities.

Surprisingly, despite the important security benefits of choosing
just the necessary capabilities for a given task, the transition from
setuid-based to capability-based programs has been extremely slow.
As we discuss in Section 2.3, among 201 setuid programs in the
Ubuntu 18.04 distribution (released in April 2018), only seven have
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transitioned to the use of capabilities in the latest Ubuntu version
(21.10 at the time of writing, released in October 2021). This is a
striking observation that highlights the underutilization of capabil-
ities as a defense-in-depth mechanism in modern systems, and is
the main motivation behind our work.

We have identified two important factors that hinder the appli-
cability of capabilities in real-world programs. First, there is no
authoritative and systematized reference for developers to infer the
capabilities required for a given privileged operation. The relevant
information is currently scattered across various man pages, and for
several capabilities it is incomplete or missing. This makes it quite
challenging to identify the right set of capabilities for a given privi-
leged operation, or even inferring whether an operation requires
any capability in the first place. Second, given the large number of
existing setuid programs in Linux distributions, converting them to
become capability-aware would be a tedious and time-consuming
effort if performed manually.

In this work we present Decap, a generic and practical tool for
taking advantage of the full potential of Linux capabilities towards
deprivileging programs. Given the lack of ground truth for inferring
the capabilities required by a given privileged operation, in the
initial phase of our work we performed a thorough investigation
of all available Linux capabilities and the system calls they affect,
to derive a detailed and complete mapping between all system calls
related to privileged operations and their respective capabilities.
Using this pre-generated mapping, Decap performs static binary
code analysis of a given program and its libraries to identify the
set of all possible system calls it may invoke (in a conservative,
best-effort way), and then derives the set of capabilities required
by the program.

Among the available capabilities, CAP_SYS_ADMIN is quite over-
loaded and heavily used as a “catch all” capability—so much so that
it is known as the new root [22]. Removing this capability from
the minimal set extracted for a given program is thus crucial for
achieving meaningful attack surface reduction. During our initial
investigation, however, we observed that CAP_SYS_ADMIN is associ-
ated with the highest number of system calls among all capabilities,
including commonly used ones such as clone. This would lead to its
inclusion in all over-privileged programs in our data set, essentially
eliminating the security benefits of deprivileging them.

Fortunately, several system calls depend on CAP_SYS_ADMIN only
under certain (and often rare) circumstances, associated with spe-
cific argument values. For these system calls, we have extended
our mapping to also consider the particular argument values that
depend on CAP_SYS_ADMIN. Decap then performs argument value
analysis on the invocation sites of these system calls to determine
whether this security-critical capability is actually required.

We evaluated the effectiveness of Decap in deprivileging pro-
grams by collecting a set of 201 setuid programs extracted from
more than 75K Ubuntu packages. Our results show that Decap
achieves a significant reduction in the privileges required by ex-
isting setuid programs, with half of them requiring fewer than
16 capabilities for their correct operation. More importantly, De-
cap removes the security-critical CAP_SYS_ADMIN capability from
69% of the programs in our dataset. We also demonstrate how de-
privileging mitigates the effects of exploiting previously disclosed
vulnerabilities in these programs.
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The main contributions of our work include:

e We present the first systematic effort in deriving a com-
plete mapping between system calls related to privileged
operations (and in certain cases their arguments), and the
corresponding capabilities on which they depend.

e We implemented Decap, a tool that automatically depriv-
ileges programs by identifying all system calls they may
invoke using binary code analysis, and then deriving the set
of required capabilities using the above mapping.

e We experimentally evaluated Decap using a set of 201 setuid
programs, and demonstrate its effectiveness in meaningfully
deprivileging them, with half of them requiring fewer than
16 capabilities, and 69% of them avoiding the use of the
security-critical CAP_SYS_ADMIN capability.

Our Decap prototype is publicly available as an open-source project
from https://github.com/hasanmdme/decap.

2 BACKGROUND AND MOTIVATION

Privilege separation enhances security by restricting critical oper-
ations only to the users or processes that need to perform them.
Before the introduction of capabilities, Linux essentially provided
only two privilege levels, corresponding to the superuser (root) and
standard user accounts. Although standard users do not have the re-
quired privileges to perform critical operations, they often do need
to access critical resources that are otherwise accessible only by the
root account. Traditionally, this need has been addressed through
the use of the setuid attribute of executable files, which essentially
allows regular users to invoke certain programs with superuser
privileges—a powerful capability that often leads to misuse.

Although their code can perform only a few specific critical oper-
ations, setuid programs have full privileges to perform any critical
operation. Consequently, attackers can exploit vulnerabilities in
setuid programs to escalate their privileges and fully compromise
the system. To mitigate this issue, Linux divides superuser privi-
leges into distinct capabilities that can be independently assigned to
non-privileged programs. Instead of providing blanket access to any
critical operation through setuid, capabilities provide fine-grained
access to only the specific privileges a program requires.

2.1 Linux Privileges

When a new process is created, it inherits the real user ID and
group ID of its parent. A process whose effective user ID is 0 has
all the privileges of the superuser, and is called a privileged process.
When a setuid (“set user ID”) executable is invoked, the created
process automatically runs with the privileges of the file’s owner
(correspondingly, setgid allows users to run an executable with
the privileges of the executable’s group) [21]. Setting the setuid
bit on executables owned by root (user ID 0) allows users to invoke
programs with superuser privileges. For example, the passwd pro-
gram for changing a user’s password is owned by root and has the
setuid bit enabled, so that it can read and modify the /etc/passwd
and /etc/shadow files when invoked by non-privileged users.
When running a setuid program, the created process can perform
any critical operation supported by the kernel, because privileged
processes bypass all kernel permission checks. To mitigate this
security risk, the typical solution is to drop the effective privileges
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Figure 1: The 41 capabilities available in the current Linux kernel, and the kernel version in which they were introduced.

of the process once the required critical operation has completed,
and temporarily reacquire them only when needed. Attackers, how-
ever, can always elevate privileges that have been only temporarily
dropped. To provide meaningful security, a process should thus
drop its privileges permanently. This is a common design pattern
especially for server applications, which often need to perform
privileged operations only during their initialization phase (e.g.,
bind an IPv4 socket to a port number lower than 1024) [37].

2.2 Linux Capabilities

Linux capabilities aim to mitigate the risk posed by overprivileged
programs. When performing security checks in the kernel, instead
of making a binary decision based on whether superuser privileges
are wielded, the superuser privilege is divided into different capa-
bilities [27]. A process can carry out a privileged operation only
if it has the appropriate capability. Each capability is typically as-
sociated with a specific privileged operation (or group of related
operations), which allows it to bypass the corresponding access
control rules [3]. For example, the CAP_NET_BIND_SERVICE capabil-
ity allows a non-root process to bind a network socket to privileged
ports—a very specific need for which setuid is an overkill.

At the time of writing, the most recent Linux kernel (v5.17)
provides 41 capabilities, listed in Figure 1 along with the kernel
version in which they were introduced. A process may temporarily
raise its privileges by moving capabilities from its permitted to
its effective set, and lower its privileges by removing them from
the effective set. As a general practice, capability-aware programs
should initially have all their capabilities disabled in the effective
set, and wield them only when needed.

2.3 The Incapability of Using Capabilities

The benefits of capabilities compared to setuid programs in terms
of reducing the risk of privilege escalation are clear. A setuid pro-
gram containing an exploitable vulnerability can lead to privilege
escalation and full system compromise. Reducing process privileges
to those absolutely necessary through the use of capabilities limits
significantly the harmful operations an attacker may perform.
Surprisingly, although capabilities were introduced in Linux
more than two decades ago (with the v2.2 kernel release in 1999),
their actual use is scarce, and setuid programs are still prevalent
in modern Linux distributions. As we discuss in Section 7.1, we
identified 201 setuid programs as part of the Ubuntu 18.04 distri-
bution, which was released in 2018. Our intuition for choosing

Table 1: Out of 201 setuid programs in Ubuntu 18.04, only
seven have transitioned to the use of capabilities in the latest
Ubuntu release (X == setuid, v == capabilities).

Program Ubuntu 18.04 Ubuntu 20.04 Ubuntu 21.10
(April 2018) (April 2020) (October 2021)
ping X 4 v
ping6 X v v
noping X X v
traceroute6.iputils X v v
arping X v v
oping X X v
pinger X v v

a relatively older distribution was that it would contain many
more setuid programs—which we needed for our experimental
evaluation—compared to more recent distributions. When we ana-
lyzed the subsequent versions of these programs in later Ubuntu
distributions, however, we found that just seven of them have be-
come capability-aware in the latest (at the time of writing) Ubuntu
21.10 release, as shown in Table 1. Moreover, across more than 59K
software packages in the same Ubuntu 21.10 release, we found just
29 capability-aware programs (the details of which are provided in
Table 5 in the Appendix).

We can only speculate on the reasons for the scarce use of capabil-
ities, but the lack of a systematic way for developers to identify the
capabilities needed by a given program is certainly a contributing
factor. By automating the process of identifying the set of capabili-
ties needed by a given program, Decap aims to ease the transition
of existing setuid programs to become capability-aware, and to
facilitate the use of capabilities when developing new applications.

3 THREAT MODEL

Our attack model assumes adversaries who can exploit vulnera-
bilities in setuid programs. These include both remote attackers
who have achieved arbitrary remote code execution in a vulnerable
network-facing setuid program, and local (non-privileged) users
who can invoke any (vulnerable) setuid program available on the
system. The outcome in both cases is full system access with supe-
ruser privileges, assuming that the corresponding executable file is
owned by root (in which case the spawned process gains superuser
privileges). Decap generates a deprivileged, capability-aware ver-
sion of a given input program. Attackers can still use any capability
included in a process’ permitted capability set by moving it into
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Figure 2: The different sources of information used to map
system calls to capabilities.

the effective set (if not already included). As a defense-in-depth ap-
proach, Decap thus strives to limit the set of permitted capabilities
for a given program.

4 SYSTEM CALL TO CAPABILITY MAPPING

User-space programs perform privileged operations by invoking
certain system calls. Currently, however, there is no generic and
systematic way to derive the relationship between a given system
call and the capabilities it requires (if any). To that end, the ini-
tial phase of our work involved a thorough investigation of all
available capabilities and the system calls they affect. The result
of this investigation is a mapping between the system calls and
respective capabilities available in Linux, a summary of which is
provided in Table 2 (for space reasons in its reverse representation,
i.e., mapping capabilities to system calls). We plan to maintain a
publicly available on-line version of this mapping, and continue
maintaining it and refining it as part of our future work in this area.
Given this pre-generated mapping, Decap performs static binary
code analysis of a target program and its libraries to extract the set
of all possible system calls it may invoke, and then to derive and
enforce the corresponding set of required capabilities.

The ultimate ground truth about the capabilities required by
a given system call is reflected in the source code of the kernel.
Unfortunately, automatically mapping system calls to their capa-
bilities by performing static analysis on the Linux kernel source
code is a daunting task. Extracting the complete kernel control
flow graph and identifying all possible paths that are guarded by
capability checks, while not impossible, is extremely challenging
and results in severe overapproximation [24, 54]. Instead, we de-
rived the mapping between each system call and the capabilities it
requires through a combination of manual and automated analysis.

As summarized in Figure 2, we manually gathered information
about dependencies between system calls and capabilities by sys-
tematically examining the relevant Linux man pages, and by care-
fully analyzing the Linux kernel’s source code. Based on this infor-
mation, we generated an initial system call to capability mapping,
which we then further verified and refined through dynamic analy-
sis using custom capability-specific test programs.

Among the available capabilities, CAP_SYS_ADMIN is the most
powerful, essentially granting root privileges to the application.
Although one would expect such a powerful capability to be rarely
used, the current situation is actually the opposite. Due to the lack
of a central authority for determining how capabilities should be as-
signed to privileged operations, kernel developers tend to overuse
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Table 2: The resulting mapping of our effort to identify the
system calls that depend on each capability.

Capability

System Calls

CAP_AUDIT_CONTROL
CAP_AUDIT_READ
CAP_AUDIT_WRITE
CAP_BLOCK_SUSPEND
CAP_SYS_ADMIN

CAP_BPF
CAP_PERFMON
CAP_SYSLOG

CAP_CHECKPOINT_RESTORE

CAP_CHOWN
CAP_DAC_READ_SEARCH
CAP_DAC_OVERRIDE
CAP_FOWNER

CAP_LEASE
CAP_FSETID
CAP_IPC_LOCK
CAP_IPC_OWNER

CAP_KILL
CAP_LINUX_IMMUTABLE
CAP_MAC_ADMIN
CAP_MAC_OVERRIDE
CAP_MKNOD
CAP_NET_ADMIN
CAP_NET_BIND_SERVICE
CAP_NET_BROADCAST
CAP_NET_RAW
CAP_SETGID
CAP_SETFCAP
CAP_SETPCAP
CAP_SETUID
CAP_SYS_BOOT
CAP_SYS_CHROOT
CAP_SYS_MODULE
CAP_SYS_NICE

CAP_SYS_PACCT
CAP_SYS_PTRACE

CAP_SYS_RAWIO
CAP_SYS_RESOURCE

CAP_SYS_TIME
CAP_SYS_TTY_CONFIG
CAP_WAKE_ALARM

sendto, recv, recvfrom, recvmsg

bind

sendto

epoll_ctl

bpf, perf_event_open, syslog, mount, umount, pivot_root,
swapon, swapoff, setdomainname, vm86, setns
fanotify_init, unshare, lookup_dcookie, io_submit, prctl,
clone, quotactl, msgctl, setrlimit, shmctl, ioprio_set
keyctl, madvise, ioctl, seccomp, ptrace, sethostname
bpf

perf_event_open

syslog

clone

chown, fchown, lchown, fchownat

open, openat, openat2, open_by_handle_at, linkat

utime, utimensat, utimes, open, openat, openat2

chmod, fchmod, fchmodat, utime, utimes, utimensat
unlink, unlinkat, open, openat, openat2, fcntl, rename,
renameat, renameat2, rmdir, ioctl

fentl

chmod, fchmod, fchmodat

mlock, mlock2, mlockall, mmap, memfd_create

msgrcv, msgsnd, semop, semtimedop, shmat, shmdt, msgctl
msgget, shmctl

kill, ioctl

ioctl

setxattr, lsetxattr, fsetxattr

socket

mknod, mknodat, renameat2

setsockopt, ioctl

bind

socket

setgroups, setfsgid, setgid, setregid, setresgid

clone

capset, prctl

setuid, setreuid, setresuid, setfsuid, keyctl

reboot, kexec_file_load, kexec_load

chroot, setns

finit_module, init_module, create_module, delete_module
sched_setscheduler, sched_setparam, sched_setattr
migrate_pages, setpriority, sched_setaffinity, nice,
ioprio_set, move_pages, spu_create, mbind

acct

ptrace, userfaultfd, kcmp, set_robust_list,
process_vm_readv, process_vm_writev

iopl, ioperm

send, sendto, sendmsg, prctl, msgctl, setrlimit, fcntl,
prlimit, mq_open, ioctl

settimeofday, stime, adjtimex, clock_adjtime, ntp_adjtime
vhangup, ioctl

timer_create, timerfd_create

CAP_SYS_ADMIN as a “catch-all” capability for newly introduced
kernel features [22]. This was reflected in our preliminary results,
as our analysis indicated that all setuid programs in our data
set would have to retain CAP_SYS_ADMIN due to the large num-
ber of system calls mapped to this capability, essentially making
the whole effort pointless. Fortunately, we observed that for many
of these system calls, the dependency on CAP_SYS_ADMIN is actu-
ally needed only for exceptional cases, associated with specific
argument values (e.g., certain flags). We thus performed a second
round of manual and automated analysis for the set of 28 system
calls requiring CAP_SYS_ADMIN, this time to derive a more fine-
grained mapping between certain system call argument values and
the CAP_SYS_ADMIN capability.

4.1 System Calls

4.1.1 Man Pages. To build our initial mapping, we used informa-
tion extracted from both the man page of each system call and the
capabilities man page. The latter provides a description of each
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capability and a (partial) list of relevant system calls. For example,
the capabilities man page mentions that CAP_CHOWN, which al-
lows a process to arbitrarily modify the owner and group of a file,
is associated to the chown system call, which is used to perform
this privileged operation.

Nevertheless, the capabilities man page is not complete, and
the affected system calls of some capabilities are not explicitly
mentioned. Instead, for some capabilities, the page only briefly
mentions the privileged operations that a process can perform. For
example, the documentation of CAP_SETGID only mentions that
a process requires this capability to make arbitrary modifications
to the process GIDs, without explicitly specifying the system calls
that can be used to perform this operation. Since system calls (or
groups of related system calls) have their own separate man pages,
which (often, but not always) list their required capabilities, we used
the man pages of system calls to complement the initial mapping
derived by analyzing the capabilities man page. For example,
the man page of the setgroups system call explicitly mentions
CAP_SETGID as a requirement.

4.1.2  Source Code. Although the capabilities and system call
man pages contain extensive information regarding system call
capability requirements, relying solely on this information would
result in an incomplete mapping. Therefore, we examined the source
code of user-space programs and the kernel to identify additional
requirements. For example, the man page of the sendto system
call does not mention any capabilities, but points to additional man
pages of related utilities. One of them is auditctl, which is used
to control the kernel’s audit system. Its man page mentions that the
-m flag (used for sending user-space messages to the audit system)
requires the CAP_AUDIT_WRITE capability. By examining the part
of auditctl’s source code related to this feature, we observed that
it uses the sendto system call to perform this operation, and we
thus augmented our mapping accordingly.

Finally, we inspected the kernel’s source code to identify ad-
ditional capability requirements. For a given capability, we first
identify any conditional branches that depend on the result of the
corresponding capability check. We then find the callers of the
function containing the check, and continue iteratively until we
reach the code of a system call. We follow this approach mostly for
cases in which the capabilities man page provides only a generic
description of a given capability, without explicitly mentioning any
related system calls.

An indicative example is CAP_DAC_OVERRIDE, for which no sys-
tem calls are mentioned in its documentation. By searching through
the kernel code, we identified corresponding capability checks re-
lated to generic permission checks when a process attempts to open
a file by invoking the open, openat, or openat2 system calls. If a
process does not have permission to open a requested file (e.g.,
because the process is run by a different user than the file’s owner),
CAP_DAC_OVERRIDE can be used to override that permission.

4.1.3  Dynamic Analysis. As a final verification step, we used dy-
namic analysis to validate the mappings derived from the previ-
ous steps, and refine them as needed. To that end, we used the
capable [12] tool from the BPF Compiler Collection (BCC) toolkit [35]
to trace the capability checks performed by the kernel during a pro-
gram’s execution. We implemented many small test programs, each
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Table 3: System calls that conditionally depend on
CAP_SYS_ADMIN according to certain values of the high-
lighted arguments.

int clone(int (xfn)(void *), void *child_stack, int flags, void *arg,
. /* pid_t *ptid, struct user_desc *tls, pid_t *ctid */);
int prctl(int option, unsigned long arg2, unsigned long
arg3, unsigned long arg4, unsigned long arg5);
int quotactl(int cmd, const char *special, int id, caddr_t addr);
int msgctl(int msqid, int emd, struct msqid_ds *buf);
int setrlimit(int resource, const struct rlimit xrlim);
int shmctl(int shmid, int cmd, struct shmid_ds *buf);
int syscall(SYS_ioprio_set, int which, int who, int ioprio);
long syscall(SYS_keyctl, int operation, unsigned long arg2,
unsigned long arg3, unsigned long arg4, unsigned long arg5);
int madvise(void *addr, size_t length, int advice);
int ioctl(int fd, unsigned long request, ...);
int syscall(SYS_seccomp, unsigned int operation, unsigned
int flags, void *args);
long ptrace(enum __ptrace_request request, pid_t pid,
void *addr, void *data);

tailored to performing a certain privileged operation, and launched
them using capable to identify the corresponding capability checks
that get triggered.

For example, to test the mapping of the bind system call to the
CAP_NET_BIND_SERVICE capability, we implemented a program
that binds a socket to a privileged port. Running this program as a
regular (non-root) user on top of capable raises an error when at-
tempting to bind to a privileged port, and CAP_NET_BIND_SERVICE
is returned as the missing capability. We followed a similar ap-
proach to validate several other undocumented mappings, includ-
ing open to CAP_DAC_OVERRIDE, socket to CAP_NET_RAW, clone to
CAP_SYS_ADMIN, and chmod to CAP_FOWNER.

4.2 System Call Arguments

Among the capabilities available in Linux, CAP_SYS_ADMIN is the
single most security-sensitive one, as it provides a superset of mul-
tiple privileges to a process. Therefore, removing this capability
from a given binary is more important than removing any other
capability. Our initial mapping identified 28 system calls requir-
ing CAP_SYS_ADMIN, including some very commonly used ones
such as clone, ioctl, keyctl, prctl, and madvise. Upon closer
inspection, however, we discovered that 12 of them, listed in Ta-
ble 3, require it only under special circumstances, related to spe-
cific system call arguments. For example, the clone system call
requires CAP_SYS_ADMIN only if its third argument (flags) is set
to CLONE_NEWIPC.

Based on this observation, we extended our system call to capa-
bility mapping for these 12 system calls by capturing the particular
argument values that require the CAP_SYS_ADMIN capability. We
followed a similar approach as discussed in Section 4.1, which
involved manual analysis of man pages and source code to iden-
tify the specific argument values that necessitate the inclusion of
CAP_SYS_ADMIN. In some cases, the argument values are explicitly
mentioned in the man pages. For example, the man page of the
msgctl system call mentions that if the value of the second argu-
ment (cmd) is IPC_SET or IPC_RMID, it requires CAP_SYS_ADMIN.
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Figure 3: Overview of Decap’s operation for identifying the
capabilities required by a given program.

When inspecting the kernel source code, we first identified all
functions that perform checks for CAP_SYS_ADMIN, and then recur-
sively identified the callers of these functions. While traversing the
callers, we looked for call sites that are guarded by a system call
argument check. If the capability check can only be reached under
certain circumstances when the system call argument has a specific
value, we consider the value as sensitive and map the capability to
both the system call and the particular argument value. For example,
ioctl requires CAP_SYS_ADMIN if the value passed as its second ar-
gument (request) is EXT4_IOC_CHECKPOINT. This is because there
is a CAP_SYS_ADMIN check in the ext4_ioctl_checkpoint func-
tion, the call site of which is only reachable if the request argument
has been set to EXT4_IOC_CHECKPOINT.

5 DECAP DESIGN

Our main goal is to deprivilege programs by providing them only
with the essential capabilities necessary for their correct operation.
This requires the precise identification of the privileged operations
a program may perform during its entire lifetime. Dynamic analysis
by tracing the capability checks performed by the kernel [12] is a
useful way to derive this information during the development of
new applications, or while testing existing applications. Dynamic
analysis, however, is not adequate for developing a generic approach
to perform this task automatically for arbitrary programs, as exercis-
ing all possible program paths (especially for complex applications)
is infeasible.

Aiming to provide a practical solution to this problem, readily
applicable to existing over-privileged Linux programs, Decap relies
solely on static code analysis to identify the set of capabilities
required by a given program. Relying on static analysis means that
Decap operates in a best-effort way by ensuring soundness but not
completeness. Given the set of all available Linux capabilities, our
primary aim is to ensure that the subset of removed capabilities
is sound, i.e., that the deprivileged version of the program will
continue to operate correctly. On the other hand, due to the inherent
overapproximation of static code analysis (and for some system
calls, of our own pre-generated mapping as well, as discussed in
Section 8), the set of removed capabilities may not be complete, i.e.,
some retained capabilities may not be actually needed and could
be also removed.

Figure 3 presents an overview of Decap’s operation. Given a
target application, Decap relies on existing tools to identify the
set of system calls required by the main executable and all its
libraries. For the set of 12 system calls that conditionally require
CAP_SYS_ADMIN, Decap then analyzes all their previously identified
call sites to extract the values passed to the specific arguments that
require this capability. Finally, based on the pre-generated mapping
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of system calls to capabilities, Decap identifies and enforces the set
of capabilities required by the application. Decap runs its analysis
on the program binary and does not require its source code. We
only require the source code of the libc library to build its callgraph.

5.1 System Call Identification

The first step in deprivileging a setuid program is to identify its
required system calls. The problem of identifying the required
system calls of a given application has been extensively explored
by prior works, several of which provide open-source tools for
extracting the system call requirements of a given application by
performing static analysis [8, 10].

Confine [10] is a container hardening framework that performs
static analysis on the applications running in a container to ex-
tract their required system calls. For a given application, Confine
considers both system calls invoked directly and those invoked
through libc functions. Direct system call invocations are identified
through binary code analysis, while the required libc functions
are inferred from the import table of each binary. Libc functions
are mapped to their respective system call(s) by analyzing the libc
source code to build a precise callgraph. This leads to a more precise
libc callgraph compared to other binary-only approaches. However,
Confine suffers from overapproximation because it does not use
library specialization [1, 40] as part of its analysis, and instead
includes all system calls used across all linked libraries. Conse-
quently, any system calls exclusively required by library functions
that are not imported by the target application are still considered
as required. For example if an application depends on the Openssl
library, Confine considers all the libc functions imported by Openssl
regardless of their reachability.

Sysfilter [8], on the other hand, relies on a purely binary-level
approach for identifying the system calls required by a given appli-
cation. It uses Nibbler [1] to perform library specialization, and as a
result, it excludes more system calls from loaded libraries compared
to Confine. However, its binary-only analysis of libc results in a
less accurate callgraph, leading again to overapproximation.

Although both Confine and Sysfilter suffer from overapproxima-
tion that results in the inclusion of more system calls than actually
needed, the underlying reasons are different. Based on our experi-
ence with both tools, any system calls that are only identified by
one of them and not the other are indeed unneeded by the appli-
cation, and are included solely as a result of overapproximation in
their analysis. Given that 126 out of the 334 system calls available
in Linux v.5.4 may impose capability requirements (as discussed
in Section 7.3), any additional system call that Decap mistakenly
considers as required can significantly hinder its effectiveness, es-
pecially in case this leads to the inclusion of a critical capability
such as CAP_SYS_ADMIN.

Until a more accurate system call identification approach be-
comes available, and given that the results of both Confine and
Sysfilter are still sound, Decap analyzes the target application with
both tools, and considers the intersection of the two reported sets
of required system calls for deriving the corresponding capabilities.
This is an optimal solution compared to using solely one of the two
tools, as it takes advantage of the benefits of both tools to increase
the precision of system call extraction.
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5.2 System Call Argument Identification

As we mentioned in Section 4.2, the CAP_SYS_ADMIN capability is
required by multiple system calls but only when invoked with a
limited set of specific argument values. Therefore, once the set of
required system calls has been extracted, Decap performs argument-
level analysis for the 12 system calls that conditionally require
CAP_SYS_ADMIN, and attempts to extract the concrete values passed
to the arguments that determine whether CAP_SYS_ADMIN is re-
quired (listed in Table 3), across all their call sites.

The first step in this process is to identify the invocation sites of
these system calls. Decap performs binary analysis on the target
application and its libraries to identify both direct invocations and
invocations through libc functions. Once all call sites are identified,
Decap performs a single-level backwards inter-procedural data flow
analysis, starting from each call site, to extract the concrete value
passed to each argument related to CAP_SYS_ADMIN.

Besides wrapper functions (which provide an interface for in-
voking system calls), libc also provides complex functions that
internally invoke multiple system calls (e.g., printf). For these
complex libc functions in which a system call is invoked by another
libc (wrapper) function, we perform a one-time analysis to identify
whether any sensitive arguments are used at the system call invoca-
tion site. For example, fork() internally invokes the clone system
call with concrete argument values, hardcoded in its function body.
In this case, our analysis concludes that no sensitive argument is
used at this invocation site, and therefore importing fork() does
not lead to the inclusion of CAP_SYS_ADMIN.

For a given system call and sensitive argument combination, if
at least one of the concrete values passed across at least one call
site matches one of the sensitive values defined in our mapping
for that particular argument, Decap assumes that CAP_SYS_ADMIN
is required. Similarly, if the concrete value of a given argument
cannot be identified by our static analysis at one or more call sites,
this again leads to the inclusion of CAP_SYS_ADMIN.

5.3 Capability Enforcement

Setuid programs are launched as privileged processes, and as a result
have complete access to all capabilities provided by the kernel.
Decap reduces these privileges by first deprivileging the target
application entirely by removing its setuid bit, and then granting
only the capabilities that the program actually requires.

After identifying the required capabilities, Decap generates a ca-
pability profile tailored to the program. This profile is then applied
to the program by using the setcap tool to modify the extended
attributes of its binary file, and adding the capabilities in the “per-
mitted” and “effective” sets of the binary. From that point and on,
whenever the deprivileged version of the program is launched, the
created process will only acquire the privileges specified in the
permitted set.

6 IMPLEMENTATION

We implemented Decap as a Python script that uses a slightly mod-
ified version of the open-source Confine [10] and Sysfilter [8] tools
to extract the system calls required by a given application. Our
modifications are mostly related to interfacing and integrating the
two tools into Decap’s workflow. As Confine and Sysfilter do not
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perform any system call argument analysis, we implemented our
own limited data flow analysis for extracting the values passed as ar-
guments to the 12 system calls responsible for the CAP_SYS_ADMIN
capability. After identifying the required system calls (and their
arguments, when needed), Decap uses our pre-generated system
call to capability mapping to build and enforce a restrictive capa-
bility profile to the target application. The input to Decap is the
main application executable and all its library dependencies, and
its output is the deprivileged version of the executable.

6.1 System Call Identification

Decap relies on both Confine [10] and Sysfilter [8] to identify the
system calls required by a given application. Confine is tailored to
containers, and thus Decap integrates only its static binary analysis
component, and does not use its dynamic analysis phase, which is
used to identify the programs launched in the container.

Similarly to Confine, Decap uses objdump to recursively find all
dynamic libraries loaded by a given executable, and then extracts
the libc functions imported by the main executable and its libraries.
This step generates a list of all libc functions used by the application
as a whole. Decap then uses the libc callgraph provided by Confine
to map these libc functions to their respective system calls. Note
that Confine extracts this callgraph by analyzing the source code
of glibc. This is a one-time operation that should be performed on
the exact libc version used on the system where the deprivileged
applications will run, and is the only analysis that is performed at
the source code level—all other libraries and the main executable
are analyzed in their binary form.

System calls can also be invoked directly. To handle these cases,
Decap uses objdump to analyze the main executable and its libraries
and find any direct system call invocation sites. Note that disas-
sembly accuracy is not a concern for this step, as direct system
call invocations can be accurately identified by pinpointing the
syscall assembly instruction, or calls to the libc syscall() func-
tion. In both cases, the value passed as the first argument at the
call site holds the system call number. According to the x86-64
calling convention, the first argument is passed through the RDI
register for the syscall() function, and through the RAX register
for the syscall instruction. In both cases, extracting the actual
value passed as the first argument (i.e., the system call number) can
be identified in a straightforward way using backwards data flow
analysis, because the corresponding register is typically initialized
within the few instructions preceding the call site.

Unlike Confine, Sysfilter generates a callgraph for all the libraries
an application depends upon (including glibc) by solely analyzing
their binaries. Sysfilter then uses these callgraphs to extract the
system calls required by the application, and as a result, has more
potential for removing unnecessary system calls in comparison with
Confine. This is because applications that link with these libraries
do not always fully use all functions available in them, and in most
cases, just a portion of the libraries’ functionalities are used [1, 40].
As a result, Sysfilter can reduce some of the overapproximation
of Confine. However, we find that Sysfilter itself suffers from a
different kind overapproximations, mainly because it builds the
glibc callgraph at the binary level.
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As discussed in Section 5.1, Decap mitigates the effects of both
tools’ overapproximation by considering the intersection of the
system call sets extracted by each to infer the capabilities required
by the program. Given that both tools produce sound results, the
intersection of the two sets of system calls is also sound. Still, to
ensure that Decap does not break application functionality, we
manually validated the soundness of the intersected system call list
by selecting a set of applications from our dataset (including, chfn,
chsh, passwd, gpasswd, newgrp, su, newgidmap, and newuidmap)
and manually analyzing their source code to ensure that the system
calls removed by Decap are not actually required.

To illustrate the importance of combining both tools, we briefly
discuss chfn as an example. For this utility, the sets of system
calls responsible for CAP_SYS_ADMIN identified by Confine and Sys-
filter include [ioctl, madvise, clone, prctl, mount] and [ioctl,
madvise, clone, prctl, shmctl, msgctl, setns], respectively. The
mount, shmctl, msgctl, and setns system calls are not in the
common set, and thus can be removed. To ensure that removing
these system calls is sound, we checked the reachability of each
of these system calls. The mount system call is invoked by the
selinux_init_load_policy function in libselinux.so, which
is loaded by chfn. However, this function is not reachable from
the source code, and mount is not invoked (neither directly nor
through its wrapper function) from any other part of the code. Con-
fine considers this system call as needed because it does not apply
library specialization, and thus includes all system calls required
by any linked library. The shmctl, msgctl, and setns system calls
are also not reachable from the source code, and are included by
Sysfilter due to its less precise libc callgraph. Based on Decap’s
argument analysis on the system calls of the intersection, it turns
out that chfn does not require CAP_SYS_ADMIN. If the intersection
was not taken, or even if just one of the system calls left out by the
intersection was considered as needed, Decap would not have been
able to reach this favorable outcome, and CAP_SYS_ADMIN would
have to be retained.

6.2 System Call Argument Analysis

Decap uses objdump to perform argument-level analysis for the 12
system calls that conditionally require CAP_SYS_ADMIN. First, Decap
performs a one-time analysis of the glibc binary to identify system
call invocations, and any potential use of sensitive arguments, by
complex functions (e.g., fork(), printf()). Decap then relies on
the results of this analysis to decide whether CAP_SYS_ADMIN is
required by a given application whenever one of these complex
libc functions is imported. To perform this analysis, Decap uses
objdump to disassemble the glibc binary, and then it identifies all
the internal direct invocation sites for those 12 system calls. By
performing a single-level backwards inter-procedural data flow
analysis for the value passed as the critical argument (e.g., the third
argument for clone) at those invocation sites, Decap attempts to
extract the concrete values passed to them, and compares them with
the sensitive values identified in our mapping (Section 4.2). Then
by using the glibc callgraph provided by Confine [10], Decap tracks
from which complex function each invocation site is reachable, and
determines whether CAP_SYS_ADMIN should be included for that
specific complex function. Due to the value is not hardcoded in
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glibc, Decap was not able to derive concrete values for two of the
system calls when invoked from two different complex functions.
In these cases, if the respective complex function is imported by the
target application or its libraries, we assume that CAP_SYS_ADMIN
is required.

System calls can also be called through their wrapper functions
or invoked directly by the application or its libraries through the libc
syscall() interface or the syscall assembly instruction. Decap
uses objdump to disassemble the target program and its libraries
and extracts the values passed as critical arguments for those 12
system calls by performing single-level backwards inter-procedural
data flow analysis at their call sites. After extracting concrete values
for these arguments, Decap compares them with the pre-generated
list of sensitive argument values and includes the CAP_SYS_ADMIN
capability if a match is found.

7 EXPERIMENTAL EVALUATION

We experimentally evaluated our prototype implementation of De-
cap with a set of 201 setuid programs. Each setuid program origi-
nally has access to all the capabilities supported by a given Linux
kernel version. Our evaluation thus mainly focuses on assessing
Decap’s effectiveness in deprivileging programs by measuring the
number of capabilities removed for each program. Given the im-
portance of the CAP_SYS_ADMIN capability, we also measured the
effectiveness of Decap’s argument-level analysis in removing this
critical capability. Finally, we evaluated the security benefits of
Decap by analyzing past vulnerabilities reported for some of the
programs in our data set, and showing how their deprivileged ver-
sions mitigate the outcomes of exploitation by limiting the harmful
operations an attacker may perform. All our experiments are based
on Ubuntu 18.04 with kernel v5.4, which provides 38 capabilities.

7.1 Dataset Collection

The Ubuntu 18.04 distribution provides 75,229 packages in its de-
fault repositories. To perform an extensive analysis and evaluate an
as large number of setuid programs as possible, we downloaded and
attempted to install all these packages in search for setuid programs
(each separately in a different container, to prevent any failures
due to conflicts). Among all available packages, we were able to
successfully install 72,576 of them (96.5%), from which we extracted
201 setuid binary executables. Our automated installation process
in some cases failed due to missing dependencies and other con-
flicts that were not possible to resolve automatically. The extracted
programs include popular utilities such as passwd and mount, and
also less known programs such as at and amgtar.

7.2 System Call to Capability Mapping

We begin with a more in-depth analysis of the system call to capa-
bility mapping that we generated using the approach discussed in
Section 4. For Linux kernel v5.4, our mapping includes 126 system
calls (out of 334 available), which depend on at least one of the 38
available capabilities to perform some form of privileged operation,
i.e., capabilities are related to only 38% of the system calls. Figure 4
shows the number of system calls that depend on at least one ca-
pability, as a percentage of all capabilities. Just 20 system calls are
responsible for half of the available capabilities.



Decap: Deprivileging Programs by Reducing Their Capabilities

100%

80%

60%

...of...capabilities

%

40%

20%

Cumulative..

0%

0 20 40 60 80 100 120
Number...of...capability-depndent...system...calls

Figure 4: CDF of the 126 capability-dependent system calls
out of the 334 provided by Linux kernel v5.4, as a percentage
of the 38 capabilities supported by the same kernel. Half of
the available capabilities are required by only 20 or fewer
system calls.
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Figure 5: CDF of the number of capabilities required by a
given program after deprivileging it with Decap, as a per-
centage of the 201 setuid programs in our dataset.

As shown in Table 2, the critical CAP_SYS_ADMIN capability is
required 28 system calls, the highest number among all capabilities.
On the other hand, there are 14 capabilities that are required only
by a single system call, (e.g., CAP_SYS_PACCT is required solely by
the acct system call). The ioctl system call requires the high-
est number of capabilities (seven) to operate correctly, which is
expected given the wide range of operations it can perform. Over-
all, except CAP_SYS_ADMIN and perhaps CAP_FOWNER, there is an
almost one-to-one conceptual mapping between capabilities and
system calls or group of related system calls associated with the
same broad type of privileged functionality.

7.3 Deprivileging Programs
We used the 201 setuid programs we collected to evaluate the ef-
fectiveness of Decap in removing unnecessary capabilities. Decap
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Figure 6: Number of programs requiring a given capability.

first identifies the required system calls of a given program, and
then uses our pre-generated mapping to derive the set of required
capabilities. As shown in Figure 5, half of the programs require
fewer than 16 capabilities to operate correctly. Although capabili-
ties are not completely mutually exclusive, their overlap is small,
and thus this result represents a significant deprivileging degree
compared to launching these programs as privileged (which would
grant them all the 38 available capabilities). Across all setuid pro-
grams in our dataset, the number of required capabilities per pro-
gram varies between seven and 27. More specifically, in the best
case, Decap reduces the capabilities required by hashquery by 82%,
and in the worst case it still removes 29% of all capabilities from
polkit-agent-helper-1.

We further analyzed the specific capabilities required by each
program. Our results indicate that some of the capabilities are more
frequently required, while others are not used at all. Figure 6 shows
the number of setuid programs which require a given capability. We
observe that seven capabilities (leftmost bars) are always required
by all programs. On the other hand, seven capabilities (not shown
in the figure) are not needed by any of the programs in our dataset.

Although some of the seven capabilities that are always included
are indeed needed for carrying out certain privileged operations,
for some programs they are included as a result of the overap-
proximation in Decap’s analysis. For example, the open system call
requires CAP_DAC_OVERRIDE only when a process attempts to open
a file for which it does not have access to. Our analysis currently
does not resolve the arguments of the open system call, and thus
conservatively assumes that open always requires this capability.
Extracting and analyzing the passed values to the pathname argu-
ment across all open call sites, which would determine whether
CAP_DAC_OVERRIDE is actually needed, is quite challenging from a
static analysis perspective. First, pathname is a pointer, the target
of which may not be statically identifiable through pointer analysis,
and second, even if the actual target value can be identified across
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Figure 7: CDF of the number of system calls responsible
for CAP_SYS_ADMIN before and after argument analysis, as a
percentage of the 201 setuid programs in our dataset. With-
out argument analysis, CAP_SYS_ADMIN would have been re-
quired by all programs.

all invocation sites, further type analysis must be performed to iden-
tify what a given path refers to (e.g., file, directory, symbolic link,
terminal device, block device, automount point). We will explore
the implementation of more sophisticated system call argument
analysis as part of our future work.

As shown in the same figure, Decap successfully removes the
security-critical CAP_SYS_ADMIN capability from 69% of the setuid
programs (it is retained only for 63 out of 201). Considering that
this capability is basically equivalent to superuser permissions, this
result demonstrates the effectiveness of Decap in meaningfully
deprivileging existing programs. We discuss in more detail how De-
cap’s argument-level analysis contributes to this privilege reduction
in the next section.

7.4 System Call Argument Analysis

In many cases, the need for CAP_SYS_ADMIN depends on the value of
certain system call arguments. As discussed in Section 5.2, we have
identified 12 system calls that conditionally require CAP_SYS_ADMIN
(in addition to 16 more that always require it), for which Decap
extracts the values of their respective arguments. Given the impor-
tance of this capability, we explored further the characteristics of
Decap’s argument-level analysis, not only to show it effectiveness,
but to also gain additional insight on the minority of programs for
which CAP_SYS_ADMIN cannot be removed.

Figure 7 shows the number of system calls that lead to the
inclusion of CAP_SYS_ADMIN, before and after applying Decap’s
argument analysis. Without argument analysis, CAP_SYS_ADMIN
would not have been removed from any of the programs across our
dataset. After applying Decap’s argument-level analysis, however,
CAP_SYS_ADMIN can be removed from 69% of the programs. This
significant increase shows the importance of analyzing the argu-
ments of those 12 system calls, and reflects the “catch all” nature of
CAP_SYS_ADMIN.
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Table 4: Top-20 most popular programs [50] for which
CAP_SYS_ADMIN is removed, along with the number of capa-
bilities they require, and the number of CVEs that can lead
to privilege escalation (given that our search was not exhaus-
tive, entries without any CVEs do not mean that vulnerabil-
ities were never disclosed for those programs).

Program Capabilities CVEs
1) passwd 23 53
2) ping 16 151
3) traceroute6.iputils 14 -
4) arping 18 -
5) at 16 -
6) apt-update 12 -
7) pmount 20 2
8) VirtualBox 15 221
9) v4l-conf 20 1
10) procmail 17 3
11) mailqg 10 1
12) pppoe 18 2
13) uml_net 16 1
14) beep 10 1
15) blinklight-fixperm 8 -
16) sensible-mda 14 -
17) schroot 21 -
18) lighttpd 23 1
19) uncompress.so 14 -
20) enlightenment_sys 20 -

Table 4 shows top-20 most installed programs [50] for which
Decap successfully removes CAP_SYS_ADMIN, along with the num-
ber of capabilities required. These include widely used utilities
and server applications, for which the removal of CAP_SYS_ADMIN
significantly reduces their attack surface. It is important to note
that some applications (e.g., Nginx) do not use the setuid bit, but
depend on being run as root due to their requirements (e.g., binding
to a privileged port). Although they can be configured to launch
their “worker” processes (which handle the client requests) as a
non-privileged processes, an attacker could still attempt to exploit
the main process which remains executing as root [32, 44] after
successfully gaining access to a worker process.

Figure 8 lists all 63 programs for which CAP_SYS_ADMIN cannot
be removed, along with the number of system calls responsible
for its inclusion for each program. After argument analysis, the
majority of the programs require CAP_SYS_ADMIN due to only one or
two system calls. Among them are programs such as mount, umount,
and start-suid, which invoke system calls that unconditionally
require CAP_SYS_ADMIN (e.g., mount).

In a few cases, our single-level inter-procedural backwards anal-
ysis cannot extract the values for a critical system call argument,
and recursive inter-procedural analysis is required. For example,
ldap_child invokes the keyctl system call, and its second argu-
ment specifies whether CAP_SYS_ADMIN is needed or not. However,
Decap was not able to extract a concrete value for this argument
by performing its single-level analysis. We leave extending our
analysis to handle these cases as part of our future work.
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Figure 8: Number of system calls responsible for
CAP_SYS_ADMIN before and after argument analysis,
for the 63 (out of 201) setuid programs for which Decap
does not remove CAP_SYS_ADMIN.

7.5 Security Evaluation

To evaluate the security benefit of deprivileging setuid programs,
we analyzed previously disclosed vulnerabilities affecting the pro-
grams in our dataset. Although Decap does not neutralize these
vulnerabilities, it significantly reduces the risks associated with
their successful exploitation. Exploiting a vulnerability in a deprivi-
leged program will not provide code execution capability as root
(unless CAP_SYS_ADMIN has been granted), but instead will con-
strain the harmful operations an attacker can perform to only those
allowed by the program’s capabilities.

To collect previously disclosed vulnerabilities, we performed a
semi-automated text parsing analysis on more than 230K vulner-
ability entries from MITRE’s CVE list [7]. Through this analysis,
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we identified 5,018 CVEs affecting at least one of the programs in
our dataset. We further refined this set of vulnerabilities by only
considering those that can be used to perform privilege escalation
(i.e., we excluded CVEs related to denial of service and other low-
severity attacks). This further reduced the total number of in-scope
vulnerabilities to 869.

We assume that Decap has a meaningful effect against these
vulnerabilities only if it can remove CAP_SYS_ADMIN for a given
program. This is the case for 612 CVEs affecting 39 setuid programs
in our dataset. Some of these 39 programs are included in Table 4,
along with the number of mitigated vulnerabilities we identified
for them. Due to the limitations of our vulnerability gathering
approach, we were not able to find CVEs for many of the programs
in our dataset. However, this does not necessarily mean that those
programs do not have any previously disclosed vulnerabilities, as
our search was non-exhaustive.

We discuss a few representative examples to show how Decap
can reduce the outcomes of exploitation. CVE-2022-0563 [33] is a
privilege escalation vulnerability that affects the chfn and chsh
setuid programs. A local unprivileged user can exploit this vulnera-
bility to gain superuser privileges. Decap removes 15 capabilities
from chfn and chsh, including CAP_SYS_ADMIN. Attackers who
successfully exploit this vulnerability and gain arbitrary code exe-
cution in a deprivileged version of these programs, will be able to
perform a much more limited set of privileged operations compared
to their setuid versions. CVE-2006-3378 [31] is a vulnerability in
the ubiquitous passwd program that allows local attackers to gain
root privileges. Decap removes CAP_SYS_ADMIN for this program
as well, constraining the attacker to a more limited set of privileged
operations. The 1prm utility is used to remove jobs from the printer
spooling queue, and was affected by a vulnerability [6] that allows
local users to gain root privileges. Decap deprivileges this program
and revokes its access to 21 capabilities, including CAP_SYS_ADMIN.

8 LIMITATIONS AND FUTURE WORK

We generated our system call to capability mapping by thoroughly
investigating different sources and performing extensive experi-
ments. Although we did not observe any failures after applying
Decap to the 201 programs in our data set, our current mapping
may still be incomplete. We plan to maintain a publicly available
version of the mapping and welcome community contributions as
part of our future effort to continuously improving and refining it.

A complete mapping could be obtained from the kernel’s call-
graph, but such a mapping would suffer from overapproximation
due to the inherent imprecision of callgraph extraction. More im-
portantly, although this mapping would be complete, it would not
necessarily be correct. Such a mapping would represent all permis-
sion checks as currently implemented in the kernel, and given that
checks are often added in an ad-hoc manner, this would result in
inconsistencies. Zhang et al. [54] have shown that there are missing,
inconsistent, and redundant permission checks in the Linux kernel.
Therefore, a complete and sound mapping will be possible only
after these permission check issues are resolved in the Linux kernel.
We leave the investigation of automatically deriving the mapping
using the kernel’s callgraph as part of our future work.
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Given the importance of CAP_SYS_ADMIN, we have currently ap-
plied our argument-level analysis only to system calls that may
lead to its inclusion. The same analysis could be applied to other
capabilities and system call arguments to increase the precision
of our mapping, and consequently the number of removed capa-
bilities. For example, the mapping of the sendto system call to
CAP_AUDIT_WRITE is only valid for certain types of file descrip-
tors, and most applications that use sendto do not actually re-
quire this capability. Another example is bind, which only requires
CAP_NET_BIND_SERVICE when binding a socket to a privileged port.
Currently, our mapping does not consider the addr argument and al-
ways includes this capability when bind is used. More importantly,
besides CAP_SYS_ADMIN, a few other capabilities can be considered
“root-equivalent” [49] and should be removed whenever possible.
We plan to continue analyzing such security-critical capabilities
and refining our mapping with more argument dependencies for
more system calls as part of our future work. As discussed in Sec-
tion 7.3, more sophisticated static code analysis will be required for
strings and other complex types of arguments.

Although Decap’s argument-level analysis reduces the over-
approximation related to CAP_SYS_ADMIN, our single-level inter-
procedural analysis cannot always resolve all sensitive argument
values across all call sites, as discussed in Section 7.4. We plan to
extend our argument extraction process to rely on complete inter-
procedural analysis to improve the coverage of sensitive argument
value identification.

Decap operates at the binary level, except Confine’s dependncy
on the source code of libc. This is an acceptable requirement, as it
is a one-time operation, and the source code of a given libc version
is easy to obtain (in contrast to application source code).

Running both Confine and Sysfilter results in significant dupli-
cate work. Ideally, an optimized implementation would combine
Confine’s more precise libc callgraph extraction with Sysfilter’s li-
brary specialization approach, and run only those two components.
We leave this integration optimization as part of our future work.

9 RELATED WORK
9.1 Attack Surface Reduction

Attack surface reduction through software debloating and special-
ization removes code and features from applications with the aim
to neutralize undiscovered vulnerabilities, and complicate the ex-
ploitation of any remaining vulnerabilities. Several works perform
software debloating by identifying unnecessary code and features
through static analysis [1, 8, 10, 11, 25, 29, 30, 40], dynamic analy-
sis [9, 15, 38], or a combination of both [10, 39]. Although the goal
of these works is mainly to remove unnecessary parts of an applica-
tion, some also filter unnecessary system calls [8, 10, 11], which in
essence deprivileges the application by preventing it from invoking
potentially dangerous system calls. Decap is complementary to
system call filtering approaches (it actually relies on Confine [10]
and Sysfilter [8]), as it further restricts the privileged operations
that the remaining system calls may perform.

9.2 Privilege Reduction

Most previous works on privilege reduction focus on the imple-
mentation of new techniques in the kernel or applications to either
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remove the need for setuid programs, or reduce a program’s privi-
leges during its execution. Given that Linux access controls have
been applied to the kernel in an ad-hoc manner, PeX [54] performs
static analysis on the kernel to identify missing, inconsistent, or
redundant permission checks.

9.2.1 Privilege Separation. Decomposing programs into privileged
and non-privileged components has been an extensively explored
approach [2, 23, 34, 43, 46, 52]. Similarly to Decap, the goal of these
works is to restrict process privileges so that an attacker does not
gain superuser access after successfully exploiting a vulnerability
in the program. Shinagawa and Kono [47] and Provos et al. [37] pro-
pose to (manually) refactor setuid programs into two cooperating
privileged and non-privileged processes. Privtrans [4] is a frame-
work for automatically applying privilege separation. It requires
annotations by the programmer and uses static data flow analysis to
propagate the privileged operations across the entire program. Cap-
sicum [53] implements fine-grained privilege tokens in the Linux
kernel, which provides programs with a means to decompose their
privilege requirements into different sections. Capweave [14] in-
struments programs to use the Capsicum primitives for enforcing a
declarative policy that specifies when and which tokens a program
should hold during its execution.

9.2.2  System Call Policies. An alternative to using setuid programs
is to define and enforce system call policies that specify whether
access to a resource should be permitted. Systrace [36] deprivileges
setuid programs and relies on modifications in the kernel to permit
privileged operations based on predefined system call policies. The
kernel and a user-space daemon use these policies to determine
whether a process should be permitted to perform a privileged
operation. Protego [17] claims that the main reason for requiring
setuid programs is related to the privileged operations performed by
eight system calls, for which an equivalent policy can be enforced in
the kernel. However, to apply these policies, multiple modifications
need to be applied to the kernel, which limits the applicability
of the approach. PoLPer [18] also uses policies to restrict system
call invocations. However, the policies are built by executing the
program and profiling the system calls based on their normal usage.
Through this profile, PoLPer can identify anomalous behavior in a
process’ system call invocations. Rajagopalan et al. [41] propose a
technique for enforcing policies by adding message authentication
codes to the respective system calls.

9.2.3 Removing Unnecessary Capabilities. AutoPriv [16] provides
a compiler-level analysis that helps programmers use capabilities
more efficiently. Given a program that has been refactored to raise
and lower privileges before and after system calls that use privi-
leges, it analyzes whether a privilege is required at each basic block,
and removes it when no longer required. Although this work re-
moves capabilities after their usage, it is challenging to refactor a
program and specify which capabilities are required by each sys-
tem call. PrivAnalyzer [5] leverages AutoPriv to find the required
capabilities at each program point, and provides a new compiler
pass (ChronoPriv) that records the number of instructions executed
with a given privilege. It also includes ROSA, a bounded model
checker to determine the damage at each program point after an at-
tacker exploits the program and abuses its privileges. MiniCon [19]
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represents an eBPF-based capability enforcement system using Sec-
comp filters [20]. It uses dynamic analysis to identify a program’s
required capabilities by iteratively running the program, extracting
arequired capability (due to a permission check failure), and adding
it to the permitted set, until the program runs successfully. As a
purely dynamic analysis approach, it suffers from code coverage
issues, as any capability required solely by code paths not exercised
during training will be missed.

Most of these previous works require some form of policy gen-
eration (usually provided by the user) or programmer annotations,
which limits their applicability. Decap, on the other hand, performs
static analysis and extracts a superset of the required capabilities
through a streamlined process, without any manual intervention.
Manual analysis is only required for building the initial system call
to capability mapping, which is one-time effort.

10 CONCLUSION

Despite the clear benefits of Linux capabilities for reducing the
privileges of setuid and other over-privileged programs, their use
remains scarce. By providing a clear mapping between system calls
related to privileged operations and the corresponding capabilities
they require, our work aims to facilitate the use of capabilities when
developing new applications, and reduce the risk of existing setuid
programs. Decap automatically deprivileges programs using static
analysis to extract the system calls they may use (and for some of
them, the values of certain arguments passed at their invocation
sites), and then to enforce a minimal set of capabilities that are nec-
essary for their correct operation. The results of our experimental
evaluation demonstrate that despite the limited nature of our static
analysis and the resulting over-approximation, Decap is quite effec-
tive in meaningfully deprivileging existing setuid programs. As part
of our future work, we plan to improve Decap’s accuracy by imple-
menting complete inter-procedural argument analysis for system
calls that conditionally depend on CAP_SYS_ADMIN, and introduce
runtime instrumentation to extract sensitive argument values for
additional system calls and capabilities.
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A APPENDIX

We analyzed the privilege characteristics (use of capabilities, use of
setuid) of Linux programs included in different Ubuntu distribution
versions since 2012. Among more than 59K software packages in
the latest (at the time of writing) Ubuntu 21.10 release, we found
just 29 capability-aware programs, listed in Table 5.
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Table 5: Out of 59,021 packages in Ubuntu 21.10, there were only 29 capability-aware programs, while earlier versions have
even fewer. ( X : setuid, v/ : capability-aware, o : neither setuid nor capability-aware, — : program not available)
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