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Toads (Spea bombifrons)

CrisTiNa C. LEDON-RETTIG!, STACIE J. SHELTON, AND SARAH R. LAGON
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ABSTRACT:  Across a breadth of animal taxa, early-life environmental variation has been demonstrated to have lasting effects on later-life traits,
including brain morphology. Here, we use Plains Spadefoot Toads (Spea bombifrons) to evaluate how larval diet 2]1-)9 and amount influence later-
stage, juvenile brain size and the relative sizes of brain regions. We specifically investigate whether developmental plasticity in brain morphology
mirrors previously documented interspecific variation with relation to nutritional restriction and camivory. Our findings demonstrate, contrary to
expectation, that exposure to dietary restriction during the larval stage causes an increase in relative juvenile brain size. However, consistent with
our predictions, consuming a prey-based shrimp diet during the larval stage results in relatively larger juvenile telencephalons, an intraspecific
response that parallels an interspecific pattern in frogs where more-camivorous species possess relatively larger telencephalons. Our results
demonstrate that early-life dietary restriction and early-life diet type can generate changes in juvenile brain size and morphology in ways that may
influence later-life behaviors and fitness. Further, our study suggests that intraspecific and environmentally induced changes in brain morphology

can mirror interspecific divergence in brain morphology, supporting a role for developmental plasticity in promoting evolutionary change.
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Tadpole

MAaNY sTuDIES have documented how external features of
the environment—from environmental complexity to social
structure—are associated with interspecific or interpopula-
tional variation in brain morphology (Canady et al. 1984;
Pravosudov et al. 2006; Pollen et al. 2007; Shumway 2008;
Gonzalez-Voyer et al. 2009a; Roth and Pravosudov 2009;
Snell-Rood et al. 2009; Park and Bell 2010; Snell-Rood and
Wick 2013). Additionally, variation in brain morphology
exists within species as the result of developmental responses
to the environment (reveiwed in Gonda et al. 2013), and
these changes can persist into later-life stages (e.g., Trokovic
et al. 2011; Kotrschal et al. 2012a; Woodley et al. 2015). How
environmentally induced, developmentally plastic changes in
brain morphology are related to evolutionary divergence in
brain morphology is less clear. That the evolutionary
divergence of brain morphologies follows initially plastic
responses, a process termed “genetic accommodation”
(West-Eberhard 2003), is a compelling scenario given that
brain morphology is both developmentally plastic (Triki et al.
2019) and can respond rapidly to selection (Fong et al. 2021;
Triki et al. 2022). An understudied yet crucial step in
understanding whether the evolution of brain size and
morphology can occur via genetic accommodation is
determining whether patterns that arise within species in
response to an environmental factor parallel variation among
lineages that have diverged, evolutionarily, in response to the
same environmental factor (Levis and Pfennig 2016).

A common environmental stressor that developing organ-
isms face is variation in resource availability and, conse-
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quently, nutritional restriction. Within a species, there are
multiple mechanisms by which either nutritional restriction,
or—if nutrition is subsequently obtained—the ensuing
compensatory growth (Metcalfe and Monaghan 2001) might
influence brain size. First, the Expensive Brain Framework
posits that the costs of building a brain must be balanced by
the costs of growth in other tissues, such that brain size is
directly constrained by an energy budget (Aiello and
Wheeler 1995; Isler and van Schaik 2009). Therefore,
nutritional restriction might directly result in relatively small
brain sizes through its diversion of energy toward overall
body size (Gumey et al. 2003; Kuzawa et al. 2014). Second,
compensatory growth might influence brain morphology
indirectly through increased oxidative stress (Burraco et al.
2017) that impedes neuron survival (Saito et al. 2005). Third,
nutritional restriction or compensatory growth might result
in higher glucocorticoid levels (Ledon-Rettig et al. 2009) or
lower insulin-like growth factors (Won and Borski 2013;
Regan et al. 2020), both of which influence neuron survival
and brain growth (Kim and Yoon 1998; D’Ercole and Ye
2008). Thus, a reasonable expectation would be that a
temporary nutritional restriction or compensatory growth
during early life results in relatively smaller brain sizes
during later life. If such developmental plasticity directs the
evolution of interspecific variation, we would also predict
that species that often experience nutritional restriction
possess smaller brains. In support of this scenario, compar-
ative studies of frogs, butterflies, and primates have found
that limited nutritional availability or quality is associated
with smaller brain sizes among species (Van Woerden et al.
2010; Luo et al. 2017; Snell-Rood et al. 2020). However, it is
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unclear whether there is a link between the effects of
nutritional restriction on brain size within species and
general patterns of brain size among species.

In addition to nutritional restriction, a ubiquitous source
of early-life environmental variation is resource type. Many
developing organisms can adopt a diversity of diet types,
where the acquisition of different resources requires distinct
behaviors or morphologies (Futuyma and Moreno 1988).
North American Spadefoot Toads of the genus Spea offer an
ideal model to evaluate whether variation in early-life
nutrition influences brain size and morphology because
their larvae (i.e., tapdoles) can specialize on alternate and
distinct diets: in addition to their ancestral diet of decaying
plant and animal material (hereafter “detritus”; Bragg 1964),
they are also capable of pursuing and consuming live
macroscopic prey, including shrimp and other tadpoles
(Ledén-Rettig and Pfennig 2011). Specialization on a live
prey diet requires a behavioral shift, as these aquatic
predators must pursue prey in three dimensions. Indeed, a
recent study using S. bombifrons found that the brains of
shrimp-fed larvae uniquely expressed a suite of genes
enriched for those involved in spatial learning and memory
(Ledén-Rettig 2021). These specific behavioral processes,
and prey capture more generally, are mediated by the
telencephalon across vertebrates (Broglio et al. 2010;
O’Connell and Hofmann 2011; Oldfield et al. 2020).
Consistent with the role of the telencephalon in prey
capture, a phylogenetically controlled survey of several brain
regions across 43 species of frogs found that more-
carnivorous species had larger telencephalons than did
more-omnivorous species (Liao et al. 2015). The frogs
assessed in that survey are not closely related to Spadefoot
Toads; however, if juvenile Spea exhibited relatively enlarged
telencephalons in response to a carnivorous larval diet—
paralleling variation in telencephalon size among species—
this would suggest that some interspecific differences might
be initiated through developmental plasticity, i.e., through
genetic accommodation (Palmer 2012).

In this study, using the North American Plains Spadefoot
Toad, Spea bombifrons, we made two predictions regarding
plasticity in relative brain size and brain region size in
response to dietary variation. We first hypothesized that a
temporary or permanent larval dietary restriction would cause
a reduction in juvenile brain size relative to overall body size
because of energetic constraints or indirect effects related to
the restriction. Second, we hypothesized that an early-life diet
of shrimp would produce selective enlargement of the
telencephalon, a brain region involved with prey capture.
Contrary to our first hypothesis, we found that individuals
who experienced a temporary or permanent dietary restriction
during early life in fact have relatively larger overall brain
sizes. Consistent with our second hypothesis, we found that
individuals who consumed a prey-based diet in early life have
relatively larger telencephalons. We discuss our results in the
context of macroevolutionary patterns of brain morphology
previously revealed in frogs.

MATERIALS AND METHODS

Here we expanded on a previously conducted experiment
(Ledon-Rettig and Lagon 2021). Using animals from Ledon-
Rettig and Lagon 2021, we collected new data on brain
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morphometrics and final body size. Relevant aspects of the
experimental design and assays from the previous study are
provided below (see Breeding and Microcosm Set-up and
Larval Dietary Treatment sections). New data and analyses
(see Brain Collection and Morphometrics and Statistics
Sections) are provided in full.

Breeding and Microcosm Set-up

Adult S. bombifrons were collected from Willcox, Arizona
in the summer of 2018 and transported to Indiana
University. The colony and all experiments described here
were approved by the Bloomington Institutional Animal
Care and Use Committee (IACUC Protocol no. 18-011-7).
Adults were injected with Luteinizing Hormone Releasing
Hormone (LHRH; GenScript RP11937), with females and
males receiving 1 unit per gram and 0.5 unit per gram of
mass, respectively. Following injection, pairs were left
overnight to mate in a breeding container filled with aged
and dechlorinated water. One clutch of eggs was chosen for
the experiment. Using one family was not ideal, as the
degree of developmental change in brain size can vary at a
family level (Snell-Rood et al. 2009); caution should
therefore be taken in generalizing our results. Approximately
48 h after eggs were laid, larvae hatched and were
transferred to individual microcosms (18 X 11 X 14 cm)
filled with 800 mL dechlorinated and aged water.

Larval Dietary Treatment

We varied larval diets by two types and three amounts,
thereby generating six treatments: shrimp-fed normal;
shrimp-fed and temporarily diet-restricted; shrimp-fed and
]f)ermanently diet-restricted; detritus-fed normal; detritus-
ed and temporarily diet-restricted; and detritus-fed and
permanently diet-restricted. Two levels of diet restriction
were used to distinguish potential carry-over effects resulting
from compensatory growth from effects resulting from the
initial restriction itself. Detritus was provided as ground fish
food, which contains many elements found in S. bombifrons’
natal ponds (e.g., algae, yeast, and animal protein). Shrimp
were provided as live Artemia, which are similar to the
shrimp that co-occur in S. bombifrons’ natal ponds (Pomeroy
1981). The microcosms were randomized by treatment (with
33 replicates each) and distributed across racks.

Individuals in the normal treatment were fed an ad
libitum amount of food; those in the temporarily restricted
treatments received half the amount. The amount of food
provided in each treatment was adjusted as the larvae grew,
such that the individuals in the ad libitum group always had a
little food left over by the next feeding. At 15 d, individuals in
the temporarily restricted group were transitioned to an ad
libitum diet while those in the ad libitum and permanently
restricted groups were continued on their diets. Larvae
remained on these dietary regimes until they metamor-
phosed; during this time, the water in the microcosms was
changed twice a week to prevent fouling. As larvae
underwent metamorphosis, degned as forearm emergence,
they were placed in microcosms with sand on one side and a
thin layer of water on the other to facilitate their transition.
Once metamorphosis was complete, the entire bottom of the
microcosm was covered in moist sand and the juveniles were
provided a diet of crickets. At approximately 12 wk
postmetamorphosis, animals were euthanized and their
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brains were dissected and weighed. Final body sizes of
individuals were obtained by weighing their formalin-fixed
bodies (see below) and summing these values with the
corresponding brain mass.

Brain Collection and Morphometrics

Brains were collected approximately 12 wk postmetamor-
phosis to ensure all brain remodeling that occurs during
metamorphosis was complete (Denver et al. 1997). A 20%
benzocaine gel was applied topically and individuals were
euthanized by cervical dislocation. Gonado-mesonephros
complexes and brains were then dissected and placed in
separate tubes of RNAProtect (QIAGEN 1018087) for
storage. The remaining carcasses were preserved in 10%
buffered formalin until they were weighed at a later date.
Dissections, photography, and measurements were all con-
ducted in the order of the randomly assigned treatments; i.e.,
any potential drift in technique would occur across treat-
ments, equally. Each brain sample was weighed, transferred
to a dish filled with new RNAProtect, photographed using an
OMAX A35180U3 microscope digital camera, returned to its
tube, and held at —20°C for long-term storage. Dorsal, ventral,
and lateral images were taken for brains. To reduce any
measurement errors introduced by perspective bias, brains
were flatly positioned so that both hemispheres were equally
mirrored. Images of gonado-mesonephros were used to
determine an individual’s sex, and images of brains were
used for morphometric analyses. Individuals whose sex could
not be determined visually (approximately 10%) were assessed
using a (quantitative polymerase chain reaction) analysis of
gonado-mesonephros tissue (sensu Navarro-Martin et al.
2012; see Supplemental Materials, available online). Primers
are provided in Supplemental Table S1 in the Supplemental
Materials. Three individuals who remained ambiguous were
removed from the analyses. Sex, however, did not have a
significant effect on juvenile growth, whole brain size, or
relative brain region sizes (Supplemental Tables S2-S4,
available online), and will not be discussed further.

One researcher who was blind to treatment type
performed measurements of height, length, and width for
the following five brain regions: telencephalon, diencephalon
(excluding the hypothalamus), optic tectum, cerebellum, and
hypothalamus. Measurements (Supplemental Fig. S1, avail-
able online) were taken with Image] (Schneider et al. 2012).
Although we specifically hypothesized that there would be
diet-dependent plasticity in telencephalon volumes, we
measured other regions to determine whether there were
any potential trade-offs arising from energetic constraints.
Height and length measurements for all brain regions were
taken from the lateral view, while width measurements for all
but the hypothalamus were taken from the dorsal view. Width
measurements for the hypothalamus were taken from the
ventral view. Brain regional measurements were then used to
calculate regional volumes, as reported in Kotrschal et al.
(2012a), albeit only one lateral view was used to measure one
side of the telencephalon and optic tectum. Regional volumes
were determined using the ellipsoid equation:

Vz%(LXWXH)

Three brains were damaged during dissection, resulting in
fractured regions (e.g., partial telencephalon or absent
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cerebellum). Brains with incomplete regions that could not
be measured for length, width, and height were removed
from analysis. The final sample size for harvested brains was
172, or 25-32 individuals per treatment. A survival analysis
performed in (Ledén-Rettig and Lagon 2021) found that
survival did not vary across treatments.

To determine the repeatability of our measurements,
brains from 14 individuals were selected (evenly from
shrimp and detritus diets), rephotographed with two images
per view, and remeasured. Repeatability for the volumes of
most structures was high (r = 0.81-0.90; all P < 0.001). The
repeatabilities of diencephalon and hypothalamus volumes
were less so (r = 0.60 and 0.71; P = 0.02 and 0.005,
respectively), however, they are not featured in our
interpretation of the results.

Statistics

All models here and below were executed using the base
stats package in R v4.2.2 (R Core Team 2022) and plots
were built with the package ggplot2 v3.4.0 (Wickham 2016).
We first determined how juveniles from different treat-
ments varied in size at the time that brains were dissected.
We used whole body mass at 12 wk as the response variable
in an ANOVA that had diet type, diet amount, sex, and all
their interactions as predictor variables. For this model and
those described below, we corrected for multiple hypoth-
esis testing within models (ie., for each predictor and
interaction between predictors), using a sequential Bon-
ferroni correction (i.e., Holm’s correction; Holm 1979) on
all the P-values, as suggested in Forstmeier and Schielzeth
(2011). For post hoc comparisons of predictor variables that
had multiple levels (i.e., diet amount), we used estimated
marginal means (R package emmeans; Lenth 2021) with
Benjamini-Hochberg corrections for multiple comparisons.
We calculated partial eta-squared values (n,”) as measures
of effect sizes.

To determine how relative brain sizes varied over
treatments, whole juvenile brain mass was used as the
response variable in an ANOVA that had diet type, diet
amount, juvenile mass at 12 wk, sex, and all their interactions
as predictor variables. The mass at the time of dissection was
included to control for the allometric relationship between
brain and body sizes (Packard and Boardman 1999; Striedter
2005; Nakagawa et al. 2017).

To determine whether early-life dietary variation influ-
enced the relative sizes of specific brain regions (telenceph-
alon, diencephalon, optic tectum, hypothalamus, and
cerebellum), brain region volumes were used as response
variables in ANOVAs that had diet type, diet amount, whole
brain mass at 12 wk, sex, and all their interactions as predictor
variables. The telencephalon and diencephalon volumes met
the conditions of normality as determined by a Shapiro-Wilk
test, but the hypothalamus, cerebellum, and optic tectum
volumes were natural log-transformed to improve normality.
Corrections for multiple hypothesis testing and post hoc
comparisons were conducted as outlined above. Relationships
among brain region sizes were performed and visualized using
the corrplot (Wei et al. 2017) and Hmisc (Frank and Harrell
2021) packages. Data are available on Dryad (https:/dx.doi.
org/10.5061/dryad.pShgbzksz).
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Fic. l.—Early-life dietary restriction and diet type affect juvenile brain
sizes. After correcting for body size, both temporary and permanent early-
life dietary restriction (both P = 0.008 following post hoc correction for
multiple tests) and a shrimp diet (P, = 0.03) increased relative brain sizes.
Diet amounts are normal (N), temporarily restricted (R), and permanently
restricted (Rp).

REsuLTs

With respect to juvenile mass at 12 wk postmetamorpho-
sis, those who had consumed shrimp as larvae were
significantly larger (n,™: 0.07, F1160 = 11.20, P,4; = 0.006).
Larval diet amount aﬁso had a significant effect on juvenile
mass (N,% 0.11, Faig0 = 9.97, P,y = 0.001), such that
individuals who had experienced a temporary nutritional
restriction as larvae were larger than those who experienced
a Eermanent nutritional restriction (P,4; = 0.004) and those
who experienced an ample diet (P, < 0.001); the latter two
groups did not significantly differ r[i{-om each other. Growth
curves are presented in Supplemental Figure S2 and the full
model is presented in Supplemental Table S2. Data on time
to metamorphosis and growth rates are as reported in
Ledén-Rettig and Lagon 2021; in brief, juveniles that had
experienced diet restriction as larvae but were then
transitioned to a normal diet were significantly larger than
juveniles that had been fed a consistently normal or
restricted diet. The enhanced size at metamorphosis of
individuals that had experienced a temporary nutritional
restriction was due to both a longer larval growth period and
an enhanced growth rate.

Even after correcting for body size, larval diet amount
(N2 0.06, Fy 145 = 10.81, P,y = 0.001) and type (n,2: 0.13,
Fi148 = 964, P,y = 0.03) mﬂuenced the sizes ]E whole
juvenile brams, with those that consumed shrimp as larvae
having larger brains (Fig. 1; Supplemental Table S3). A post
hoc analysis revealed that individuals that experienced a
temporarily or permanently restricted diet as larvae had
larger brains as juveniles than those that experienced a
normal diet (P, = 0.008); these two restricted groups did
not, however, 51grnﬁcantly differ from each other in brain
size.

When considering the relative sizes of specific brain
regions, a shrimp larval dlet resulted in 51grnﬁcant1y larger
juvenile telencephalons ('I'|p 0.10, Fy147 = 16.28, Py =
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Fic. 2—Juveniles that consumed shrimp as larvae have larger
telencephalons. After correcting for brain size, juveniles that had been fed
shrimp as larvae had larger telencephalons than those that had been fed
detritus (P = 0.001). Shaded areas around lines reflect 0.95 confidence
intervals, Larval diet types are detritus-fed (DF) and shrimp-fed (SF).

0.001; Fig. 2; Supplemental Table S4). Additionally, a shrim
larval diet tended to produce larger juvenile optic tecta (1, :
0.05, Fy 145 = 8.02, P,4; = 0.07; Supplemental Table S5), but
this effect was not significant. None of the other juvenile
brain regions were significantly influenced by larval diet type
or amount. A comparison of correlations among brain
regions did not reveal a negative correlation between the
telencephalon and any other brain region (Supplemental
Fig. S3), suggesting that diet-induced changes in telenceph-
alon volume can occur independently of other brain regions
(Barton and Harvey 2000; Gonzalez-Voyer et al. 2009b).

Discussion

Our study has found that an early-life nutritional
restriction increases relative juvenile brain size. The increase
in relative brain size was common to individuals who
experienced a temporary or permanent restriction, suggest-
ing that the increase is associated with the early-life
restriction itself and not subsequent compensatory growth.
These results are inconsistent with our initial proposal that
an early-life nutritional restriction might divert energy from
brain development into overall growth. Possibly, during this
window of restriction, resources that could be allocated to
body growth were preferentially diverted to brain develop-
ment, i.e., brain-sparing (Ravelli et al. 1998; Barker 2004;
Lanet and Maurange 2014). Yet, the brain-sparing hypoth-
esis predicts that individuals that experience an early-life
nutritional restriction will demonstrate an improved brain-
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to-body ratio rather than larger overall brains when
compared to individuals that have access to ample resources
(Rock et al. 2021), as observed in our study. Thus, our results
may indicate that during this developmental window, a
slower overall growth rate—imposed by a nutritional
restriction—in fact promoted brain development, perma-
nently recalibrating relative brain sizes.

Examples where delayed body growth enhances brain
growth have been observed in other taxa. In fish, a study of
Coho Salmon (Oncorhynchus kisutch) that were transgeni-
cally modified to overexpress growth hormone (GH)
revealed that these faster-growing salmon had smaller brains
than their control counterparts; this effect was obviated by
restricting the diets of the transgenic salmon, suggesting that
growth rate per se was responsible for the smaller brain sizes
(Devlin et al. 2012; Kotrschal et al. 2012b). Another study
comparing runt (i.e., smaller) pigs and their littermates
revealed similar brain sizes, and relatively larger brains in
runts once body size was accounted for (Ritacco et al. 1997).
How nutritional restricion might promote brain growth is
unclear. Possibly, the brains of individuals in this study who
experienced nutritional restriction are built with a lower
neuronal cell density, as these types of cells are most costly
(Herculano-Houzel 2011, 2012). For instance, despite
having brains that are proportional to their body sizes,
Brown Bears (Ursus arctos) have substantially fewer neurons
in its cerebral cortex, possibly due to the metabolic costs of
maintaining a large body size (Jardim-Messeder et al. 2017).
However, modifying the density of neuronal cells within
brains would not entirely explain how animals that
experienced nutritional restriction possessed overall larger
brains. Thus, the connection between attenuated body
growth and enhanced brain growth warrants further
investigation.

A previous study using Leopard Frogs (Lithobates
pipiens) also manipulated larval food amount in outdoor
mesocosms and measured brain sizes at metamorphosis, but
found no effect of a restricted diet on brain size (Woodley et
al. 2015). The discrepancy between our findings and the
results of the Leopard Frogs study might be due to variation
in developmental responses to nutrition among species.
Alternatively, we propose that the overall growth rate in our
study was much greater than in the Leopard Frogs study,
revealinivariation in the effects of growth rate on brain size
that might not otherwise be seen. Specifically, Woodley and
colleagues reported that the density of larvae in each of their
mesocosms was high and that growth rates were low; indeed,
the masses and developmental speeds of individuals in their
control and food-restricted treatments were statistically
similar. In contrast, we raised our larvae singly, such that
growth rates were unabated by competition. Growth under
high densities is likely typical for S. bombifrons in nature;
however, variation in growth rate is likely also substantial, as
individuals experience consistently low and high growth rates
as well as growth rates that are initially low (due to
competition) and later, high (after competition is reduced
by predation; Wilbur 1987).

With respect to diet type, juveniles derived from larvae
that had consumed shrimp also had larger overall brain size,
which is easier to reconcile with the Expensive Brain
Framework (Aiello and Wheeler 1995; Isler and van Schaik
2009): the shrimp diet is higher in protein and fat, which
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would allow for the expansion of the energetically expensive
brain without requiring reallocation from other tissues.
Indeed, the relationship between higher-quality diets and
relative brain size has been demonstrated among taxa
(Gittleman 1986; Dunbar and Shultz 2007; Swanson et al.
2012; DeCasien et al. 2017; Snell-Rood et al. 2020; but see
Gonzalez-Voyer et al. 2009b, and Allen and Kay 2012),
although there was no association between a more-camiv-
orous diet and brain size in the survey of frogs (Liao et al.
2015). One important consideration of our study is that,
although larvae were fed different quality diets, all juveniles
were fed the same diet postmetamorphosis. Thus, regardless
of how permissive the high-quality shrimp resource is for
larval brain growth, juveniles derived from shrimp-fed larvae
have to pay a proportionally higher cost for brain mainte-
nance in their terrestrial life. Whether large postmetamor-
phic brains come at a cost to fitness because they are
energetically expensive, or whether they produce any fitness
variation through their effects on cognition and behaviors,
should be empirically addressed in future studies.

Additionally, we found that—within whole brains—a
larval diet of shrimp promoted relatively larger juvenile
telencephalons. Given that frog species that are more
carnivorous possess larger telencephalons (Liao et al.
2015), our findings are consistent with a scenario of genetic
accommodation, whereby a developmentally plastic response
to a particular environmental variable mimics an evolution-
ary response to the same variable. However, some questions
still need to be addressed to provide resounding evidence
that developmental plasticity plays a role in brain evolution
in Spadefoot Toads or other frogs. First, only one family was
used in this study, so it is not clear whether these results are
characteristic of all S. bombifrons or whether families vary in
the degree of their brain plasticity in response to larval diet
type. Indeed, genetic variation for brain plasticity during
development has been observed in other taxa (Snell-Rood et
al. 2009). Further, it is not clear whether larger telenceph-
alon sizes, modified as the result of an environmental
pressure experienced by larvae, would still be adaptive in the
juvenile stage. Many animals vary in their resource use and
ecology throughout ontogeny, such that trait modifications
wrought through developmental plasticity may have stage-
specific effects on fitness. If the developmental response of a
trait to the environment improves fitness across life stages,
selection may favor alleles that make the trait more
responsive to the environment (Moore and Martin 2019).
In contrast, if the developmental response of a trait to the
environment has contrasting effects on fitness across life
stages, also called ontogenetic conflict (Calsbeek and
Goedert 2017; Moore and Martin 2018), selection may
dampen the environmental sensitivity of the trait. Future
studies might pursue whether the observed plastic differ-
ences in brain sizes and relative brain region are, in fact,
associated with ecologically relevant variation in behaviors,
whether these behaviors influence juvenile fitmess, and
whether the fitness effects promote or constrain the process
of genetic accommodation.

Conclusions

Despite the assumption that behavioral plasticity plays a
critical role in genetic accommodation (Baldwin 1896; Mayr
1963; Price et al. 2003), there is still a deficit of studies
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addressing the evolution of behaviors, themselves, via
genetic accommodation (Levis and Pfennig 2020). Demon-
strating that brain morphology can evolve via genetic
accommodation would suggest that ancestral plasticity in
behavioral states, like any other morphological or physiolog-
ical trait, can evolve through this process (Renn and
Schumer 2013). Indeed, although brain morphology masks
other predictors of behavior such the connectedness of
neurons and expression of neurotransmitters or receptors
(Goodson et al. 2012; van den Heuvel et al. 2016; Jardim-
Messeder et al. 2017), relative brain size and the relative
sizes of brain regions can still predict cognitive abilities and
behavioral traits (Timmermans et al. 2000; Reader and
Laland 2002; Sol et al. 2005a,b, 2008; Ratcliffe et al. 2006;
Mehlhorn et al. 2010; Triki et al. 2022). Our results
corroborate earlier studies demonstrating that brain and
brain region sizes are developmentally plastic and even
mirror interspecific variation in morphologies, suggestin:
that plasticity may play a role in lErain and be avioraﬁ
evolution.
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