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1. Introduction

Circulant matrices provide a nontrivial, elegant, and simple set of objects in matrix 
theory. They appear quite naturally in many problems in spectral graph theory (see [1], 
[2], [7], [8], [13], [18]) and non-linear dynamics (see [11], [12], [20]). The Circulant Diag-
onalization Theorem describes the eigenspectrum and eigenspaces of a circulant matrix 
explicitly via the discrete Fourier transform. Consequently, many problems involving 
circulant matrices have closed-form or analytical solutions.
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For example, in many applications, a natural model of a network is a ring graph, 
in which nodes are regularly placed along a circle and, for a fixed number m, each 
node is connected to its m closest neighbours on each side. Networks such as this can 
be represented by adjacency matrices which are circulant, which opens the possibility 
for exact solutions for problems involving the structure or dynamics of these networks. 
More generally, a graph which has a circulant adjacency matrix with respect to a suitable 
ordering of the vertices is called a circulant graph.

Many real-world networks, however, display structure beyond that of circulant net-
works. For example, networks may be composed of several smaller modules, joined 
together in some way (see the final section for a particular example). From both a the-
oretical and an applied perspective, it is interesting and important to study the spectra 
of graphs obtained by joining together smaller subgraphs.

The combination of these previous observations naturally led us to investigate the 
spectrum of networks composed of several circulant graphs. While in general it is impos-
sible to relate the spectrum of a graph with the spectra of its subgraphs, joins of circulant 
graphs provide an exception. Here we present a study of these spectra, and some ap-
plications. These results can provide analytical insight into the dynamics of composite 
networks (see e.g. [14]), which will be the subject of future work.

More precisely, we generalize the Circulant Diagonalization Theorem to the joins of 
several circulant matrices, by which we mean matrices of the shape

A =





C1 a1,21 · · · a1,d1
a2,11 C2 · · · a2,d1

...
... . . . ...

ad,11 ad,21 · · · Cd




, (∗)

where, for each 1 ≤ i, j ≤ d, Ci is a circulant matrix of size ki × ki (with complex 
entries), and ai,j1 is a ki × kj matrix with all entries equal to a constant ai,j ∈ C. We 
remark that, to simplify notation, 1 is used as the common symbol for all matrices with 
all entries equal to 1, independently of their sizes. However no confusion should occur as 
the submatrices ai,j1 are uniquely determined.

Our main theorem is

Theorem. The spectrum of a matrix A as in (∗) is the union of the following multisets

Spec
(
A
)
∪

d⋃

i=1

{
λCi
j |1 ≤ j ≤ ki − 1

}
,

where A is an explicit d × d matrix, whose entries are the row sums of the blocks of A, 
and the λCi

j ’s are the eigenvalues of each circulant block Ci, except for the eigenvalue 
given by the row sum. Furthermore, a generalized eigenbasis of A can be directly obtained 
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from eigenbases of the circulant blocks and a generalized eigenbasis of A. In particular, 
A is diagonalizable if and only if A is.

This theorem completely solves our main problem of characterization of spec-
trum of the join of d circulant matrices. We note that the methods in this article 
can be generalized to a wider class of matrices, namely normal matrices with con-
stant row sums. This extension will be discussed in a separate paper in prepara-
tion.

The structure of this article is as follows. In Section 2, we illustrate the join of two 
circulant matrices. This serves as a motivation for our study as well as to guide the 
readers to the more general case. In Section 3, we give the complete proof of the main 
theorem, which consists of several steps. First, we show how to extend eigenvectors of 
a circulant block to eigenvectors of the join. Secondly, we show that the generalized 
eigenspaces of A lift to the generalized eigenspaces of A. Finally, we prove that the 
collection of (generalized) eigenvectors for A, obtained from the previous two processes, 
form a generalized eigenbasis. In Section 4, we discuss some applications of our results to 
spectral graph theory. In the final section, we use the main theorem to study the dynamics 
of networks of coupled oscillators. Specifically, we construct a family of networks of 
Kuramoto oscillators with non-trivial equilibrium points.

2. Motivation: the join of two circulant matrices

A special instance of joining circulant matrices arises when we study the removal 
of one (directed) cycle from a complete graph. Recall that the complete graph of size 
n, denoted Kn, is the simple graph with an edge between any two distinct nodes. Its 
adjacency matrix A is given by

Aij =
{

0 if i = j

1 otherwise.

Moreover, a (directed) cycle of length k, or k-cycle, denoted Ck, is the simple graph on 
k nodes, in which the nodes can be ordered in such a way that each node is connected 
only with the subsequent one, and the last one only with the first one. Its adjacency 
matrix A is given by

Aij =
{

1 if j = i + 1 or (i, j) = (k, 1)
0 otherwise.

Finally, the complement of a graph G is the graph Gc with the same vertices as G and 
which has the edge between two distinct vertices if and only if that edge is not in G. In 
other words, the adjacency matrix Ac of Gc is related to the adjacency matrix A of G by 
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Fig. 1. The complete graph K8 with a cycle of length 3 removed. (For interpretation of the colours in the 
figures, the reader is referred to the web version of this article.)

Ac = 1 −I−A, where 1 is a square matrix of ones and I is an identity matrix, of suitable 
size. In particular, the adjacency matrices of complete graphs, cycles, and complements 
of cycles are all circulant.

We illustrate the general phenomenon of cycle removal on a small concrete example. 
Let us remove a 3-cycle C3 from the complete graph K8 with 8 nodes, and call the 
resulting graph K = K8 − C3. We choose to remove the cycle

(1, 2), (2, 3), (3, 1)

which is highlighted in red in Fig. 1.
We note that removing any other cycle of length 3 would produce an isomorphic 

graph. Another representation of this graph is depicted in the figure below. We have two 
circulant graphs G and H (in green and grey respectively) and all nodes from each ring 
graph are adjacent to all nodes of the other ring graph. This is an instance of the join 
of two circulant graphs (Fig. 2), which we will define in Section 4.

In matrix terms, the adjacency matrix of K is a block matrix, with circulant diagonal 
blocks and 1 everywhere else.
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Fig. 2. The join of two circulant graphs G and H.





0 0 1 1 1 1 1 1
1 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0





The position of the eigenvalues of the adjacency matrix of K in the complex plane 
highlights a nontrivial interplay between the eigenvalues of the two circulant blocks, 
which motivates our investigations of the eigenspectra of joins of circulant matrices 
(Fig. 3).

It is worth noticing that the eigenvalues for the graph K have been obtained through 
the software Mathematica, but in the course of the paper we will derive analytical ex-
pressions for them.

To begin our investigation, we recall the Circulant Diagonalization Theorem (see [6]
for a more thorough discussion about circulant matrices). In the following, ωk denotes a 
fixed primitive k-th root of unity.

Theorem 1 (Circulant Diagonalization Theorem, [6]). Let
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Fig. 3. The eigenvalues of the resulting graph.

C =





c0 ck−1 · · · c2 c1
c1 c0 ck−1 c2
... c1 c0

. . . ...
ck−2

. . . . . . ck−1
ck−1 ck−2 · · · c1 c0




= Circ(c0, c1, . . . , ck−1)

be the circulant matrix formed by the vector (c0, c1, . . . , ck−1)T ∈ Ck. Let

vk,j =
(
1,ωj

k,ω
2j
k , . . . ,ω(k−1)j

k

)T
, j = 0, 1, . . . , k − 1.

Then vk,j is an eigenvector of C associated with the eigenvalue

λj = c0 + ck−1ω
j
k + ck−2ω

2j
k + · · · + c1ω

(k−1)j
k

Remark 2. For any choice of k ∈ N \{0}, the vectors vk,0, . . . , vk,k−1 are linearly in-
dependent. This can be seen by noticing that the matrix formed by the vectors is a 
Vandermonde matrix.

In the following, the operator ∗ denotes vector concatenation:

(x1, . . . , xm)T ∗(y1, . . . , yn)T = (x1, . . . , xm, y1, . . . , yn)T

Proposition 3. Let C be a k× k circulant matrix, D be any (n − k) × (n − k) matrix, let 
1k1,k2 denote the k1 × k2 matrix entirely made of ones, and let A be the n × n matrix

A =
(

C 1k,n−k
1n−k,k D

)
.

For 1 ≤ j ≤ k − 1 let
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wj = (1,ωj
k,ω

2j
k , . . . ,ω(k−1)j

k , 0, . . . , 0︸ ︷︷ ︸
n−k zeros

)T = vk,j ∗#0n−k.

Then wj is an eigenvector of A associated with the eigenvalue

λC
j = c0 + ck−1ω

j
k + ck−2ω

2j
k + · · · + c1ω

(k−1)j
k

Proof. When we directly calculate Awj we see that the first k elements of this vector 
are Cvk,j and the remaining n − k elements are equal to the sum

tj =
k−1∑

i=0
ωij
k .

In other words, we have

Awj = Cvk,j ∗ (tj , tj , . . . , tj)T︸ ︷︷ ︸
n − k terms

. = λC
j vj ∗ (tj , tj , . . . , tj)T︸ ︷︷ ︸

n − k terms

Since, for 1 ≤ j ≤ k − 1,

tj =
k−1∑

i=0
ωij
k = (ωj

k)k − 1
ωj
k − 1

= 0,

it follows that Awj = λjωj . We conclude that wj , 1 ≤ j ≤ k − 1, are eigenvectors of A
with associated eigenvalue λC

j as asserted. !

If D is also circulant, D = Circ(d0, d1, . . . , dk2−1) with k2 = n − k, an analogous 
argument applies. In summary, recalling Remark 2 for the claim on linear independence, 
we have proved the following statement.

Proposition 4. Let A be a (k1 + k2) × (k1 + k2) matrix of the form

A =
(

C 1k1,k2
1k2,k1 D

)
,

with C = Circ(c0, . . . , ck1−1) and D = Circ(d0, . . . , dk2−1) circulant matrices of dimen-
sion k1 × k1 and k2 × k2 respectively. For 1 ≤ j ≤ k1 − 1 let

wj = (1,ωj
k1
,ω2j

k1
, . . . ,ω(k1−1)j

k1
, 0 . . . , 0︸ ︷︷ ︸
k2 zeros

)T = vk1,j ∗#0k2 .

Then wj is an eigenvector of A associated with the eigenvalue

λC
j = c0 + ck1−1ω

j
k1

+ ck1−2ω
2j
k1

+ · · · + c1ω
(k1−1)j
k1

.



J. Ðoàn et al. / Linear Algebra and its Applications 650 (2022) 190–209 197

For 1 ≤ j ≤ k2 − 1, let

zj = (0, . . . , 0︸ ︷︷ ︸
k1 zeros

, 1,ωj
k2
,ω2j

k2
, . . . ,ω(k2−1)j

k2
)T = #0k1 ∗ vk2,j .

Then zj is an eigenvector associated with the eigenvalue

λD
j = d0 + dk2−1ω

j
k2

+ dk2−2ω
2j
k2

+ · · · + d1ω
(k2−1)j
k2

Furthermore, the system of k1 + k2 − 2 eigenvectors {wj}k1−1
j=1 ∪ {zj}k2−1

j=1 is linearly 
independent.

In order to find the two remaining eigenvalues and corresponding eigenvectors of the 
matrix A, we introduce an auxiliary matrix.

Proposition 5. Keeping the notation of the previous proposition, let Cs =
∑ki−1

i=0 ci be the 
sum of each row in C, and similarly let Ds =

∑k2−1
i=0 di. Let us consider the 2 × 2 matrix

A =
(
Cs k2
k1 Ds

)
.

Let (x, y) ∈ C2 be an eigenvector for A with respect to an eigenvalue λ. Then

v = (x, x, . . . , x︸ ︷︷ ︸
k1 terms

, y, y, . . . , y︸ ︷︷ ︸
k2 terms

)T

is an eigenvector of A with respect to the eigenvalue λ.

Proof. We have

Av = (Csx + k2y, . . . , Csx + k2y︸ ︷︷ ︸
k1 terms

, k1x + Dsy, . . . , k1x + Dsy︸ ︷︷ ︸
k2 terms

)T .

By assumption, Csx + k2y = λx, and Dsx + k1y = λy.
Therefore, we see that

Av = λ(x, x, . . . , x︸ ︷︷ ︸
k1 terms

, y, y, . . . , y︸ ︷︷ ︸
k2 terms

)T = λv. !

Proposition 6. Keeping the notation of the previous proposition, suppose further that A
is diagonalizable with eigenvectors (x1, y1) and (x2, y2). Let

v1 = (x1, x1, . . . , x1︸ ︷︷ ︸
k1 terms

, y1, y1, . . . , y1︸ ︷︷ ︸
k2 terms

)T , v2 = (x2, x2, . . . , x2︸ ︷︷ ︸
k1 terms

, y2, y2, . . . , y2︸ ︷︷ ︸
k2 terms

)T .
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Then the system {wj}k1−1
j=1 ∪ {zj}k2−1

j=1 ∪ {v1, v2} of eigenvectors of A is linearly inde-
pendent. In other words, A is diagonalizable by these eigenvectors.

Proof. For each k let

Ek =





1 1 1 . . . 1
1 ωk ω2

k . . . ωk−1
k

1 ω2
k ω4

k . . . ω2(k−1)
k...

...
... . . . ...

1 ωk−1
k ω2(k−1)

k . . . ω(k−1)(k−1)
k





be the matrix that is used to diagonalize a k × k circulant matrix, and Êk be the 
submatrix of Ek with the first column removed. Let ek = det(Ek) '= 0. The system 
{wj}k1−1

j=1 ∪ {zj}k2−1
j=1 ∪ {v1, v2} can be arranged to create the following matrix

E =





x1
...
x1

Êk1

x2
...
x2

0

y1
...
y1

0
y2
...
y2

Êk2





Using the Laplace expansion of the determinant (see [15, Theorem 2.4.1]), we obtain the 
term x1y2ek1ek2 as the product of the determinant of the left top corner block matrix 
of size k1 × k1 with the determinant of the right down corner matrix of the size k2 × k2. 
The only other non-zero summand in the Laplace expansion is the product

det







 Êk1

x2
...
x2







 · det








y1
...
y1

Êk2







 = −x2y1ek1ek2 .

Consequently,

det(E) = ek1ek2(x1y2 − x2y1) = ek1ek2 det
(
x1 x2
y1 y2

)
'= 0. !

In addition, there is a relationship between the eigenvalues of A and A, to prove which 
we need a preliminary lemma.

Lemma 7. Let M = Circ(m0, . . . , mk−1) be a circulant matrix. Let Ms =
∑k−1

i=0 mi. 
Let {λM

j }k−1
j=0 be the set of eigenvalues of M described in the Circulant Diagonalization 

Theorem 1. Then
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(1)
∑k1−1

j=1 λM
j = Tr(M) −Ms.

(2)
∑k1−1

j=1 (λM
j )2 = Tr(M2) −M2

s .

Proof. Both equalities are direct consequences of the facts that, when j = 0, λM
j = Ms, 

and that for all k ≥ 0

Tr(Mk) =
k−1∑

j=0
(λM

j )k. !

Proposition 8. Keeping the notation of the previous proposition, let λ1, λ2 be the two 
remaining eigenvalues of A, that is, the eigenvalues not coming from the circulant blocks 
C and D. Then λ1 and λ2 are eigenvalues of A.

Proof. It is enough to show that

λ1 + λ2 = Cs + Ds, and λ1λ2 = CsDs − k1k2.

First, by Proposition 4 we have

λ1 + λ2 +
k1−1∑

j=1
λC
j +

k2−1∑

j=1
λD
j = Tr(A) = Tr(C) + Tr(D).

By Lemma 7, we have

k1−1∑

j=1
λC
j = Tr(C) − Cs, and

k2−1∑

j=1
λD
j = Tr(D) −Ds.

Combining these equalities, we conclude that

λ1 + λ2 = Cs + Ds.

To prove the equality λ1λ2 = CsDs − k1k2, we first compute λ2
1 + λ2

2, using A2. We 
have

A2 =
(
C2 + k21k1 ∗

∗ D2 + k11k2

)
,

where 1k denotes a k × k matrix with all entries equal to 1. This implies that

Tr(A2) = Tr(C2) + Tr(D2) + 2k1k2.

Additionally, we have
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Tr(A2) = λ2
1 + λ2

2 +
k1−1∑

j=1
(λC

j )2 +
k2−1∑

j=1
(λD

j )2,

Tr(C2) =
k1−1∑

j=1
(λC

j )2 + C2
s ,

Tr(D2) =
k2−1∑

j=1
(λD

j )2 + D2
s .

Combining these equalities, we get

λ2
1 + λ2

2 = C2
s + D2

s + 2k1k2.

Therefore, by Newton’s formula we have

λ1λ2 = 1
2
[
(λ1 + λ2)2 − λ2

1 − λ2
2
]

= 1
2
[
(Cs + Ds)2 − (C2

s + D2
s + 2k1k2)

]

= CsDs − k1k2.

This completes the proof. !

We discuss a significant case in which A is diagonalizable.

Proposition 9. Keeping the notation of the previous proposition, suppose that Cs and Ds

are real numbers (or complex numbers with the same real part, or with the same imagi-
nary part). Then A is diagonalizable. Consequently, A is diagonalizable by the system of 
eigenvectors discussed in Proposition 6.

Proof. The characteristic polynomial of A is

X2 − (Cs + Ds)X + (CsDs − k1k2).

The discriminant of this polynomial is

∆(A) = (Cs + Ds)2 − 4(CsDs − k1k2) = (Cs −Ds)2 + 4k1k2.

Since Cs − Ds is either real or purely imaginary, (Cs − Ds)2 ∈ R, hence ∆(A) > 0. 
Therefore, A has two distinct eigenvalues and hence is diagonalizable. For the sake of 
completion, the two eigenvalues are

λi = Cs + Ds ±
√

(Cs −Ds)2 + 4k1k2
2 . !
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3. The general case

In the previous section we considered joins of 2 circulant matrices of a special im-
portant shape. In this section, we extend our results to general finite joins of circulant 
matrices. In our main theorem, we completely characterize the spectrum of these matri-
ces. First, let us introduce some notations and conventions.

Let d, k1, k2, . . . , kd ∈ N \{0}. Set also n = k1 + k2 + . . .+ kd. Thus n is a partition of 
n into d non-zero summands. We shall consider n × n matrices of the following form

A =





C1 a1,21 · · · a1,d1
a2,11 C2 · · · a2,d1

...
... . . . ...

ad,11 ad,21 · · · Cd




,

where for each 1 ≤ i, j ≤ d Ci = Circ(ci,0, . . . , ci,ki−1) is a circulant matrix of size ki×ki, 
and ai,j1 is a ki × kj matrix with all entries equal to a constant ai,j .

We have a direct generalization of Proposition 4:

Proposition 10. For each 1 ≤ i ≤ d and 1 ≤ j ≤ ki − 1 let

wi,j = #0k1 ∗ . . . ∗#0ki−1 ∗ vki,j ∗#0ki+1 ∗ . . . ∗#0kd

= #0k1 ∗ . . . ∗#0ki−1 ∗ (1,ωj
ki
,ω2j

ki
, . . . ,ω(ki−1)j

ki
)T

︸ ︷︷ ︸
i-th block

∗ #0ki+1 ∗ . . . ∗#0kd .

Then wi,j is an eigenvector of A associated with the eigenvalue

λCi
j = ci,0 + ci,ki−1ω

j
ki

+ ci,ki−2ω
2j
ki

+ · · · + ci,1ω
(ki−1)j
ki

Furthermore, the system of 
∑d

i=1 ki − d eigenvectors {wi,j} is linearly independent.

We introduce the following terminology.

Definition 11. Keeping the previous notation, we will refer to the wi,j’s and to the asso-
ciated eigenvalues as the circulant eigenvectors and eigenvalues of A.

Let λ1, λ2, . . .λd be the (not necessarily distinct) remaining eigenvalues of A. The 
reduced characteristic polynomial of A is

pA(X) =
d∏

i=1
(X − λi) = pA(X)

∏
1≤i≤d,

1≤j≤ki−1
(X − λCi

j )
.

Motivated by the findings of Section 2, we look for the missing eigenvectors of A in a 
special form, namely
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v = (x1)k1 ∗ . . . ∗(xi)ki ∗ . . . ∗(xd)kd , (3.1)

where

(xi)ki = (xi, . . . , xi)T︸ ︷︷ ︸
ki terms

.

For 1 ≤ i ≤ d, we denote the row sum of the matrix Ci by

Cis =
ki−1∑

j=0
ci,j .

A direct calculation shows that

Av = (C1sx1 + a12k2x2 + . . . + a1dkdxd)k1 ∗ . . . ∗(ad1k1x1 + ad2k2x2 + . . . + Cdsxd)kd .

Therefore, the equation Av = λv can be equivalently written as

A(x1, x2, . . . , xd)T = λ(x1, . . . , xd)T ,

where A is the d × d matrix

A =





C1s a12k2 · · · a1nkd
a21k1 C2s · · · a2nkd

...
... . . . ...

ad1k1 ad2k2 · · · Cds



 .

In other words, an eigenvector of A of the form (3.1) can be “condensed” to an 
eigenvector (x1, . . . , xd)T of A with respect to the same eigenvalue. A strong converse 
statement also holds: to prove it, we need a preliminary lemma.

Lemma 12. Let X = (xij) be a d ×d matrix. Let M be the (k1 + . . .+kd) × (k1 + . . .+kd)
matrix formed by the following column vectors (in this order)

(x11)k1 ∗ . . . ∗(xd1)kd , wj,1 (1 ≤ j ≤ k1 − 1),
(x12)k1 ∗ . . . ∗(xd2)kd , wj,2 (1 ≤ j ≤ k2 − 1),
(x1n)k1 ∗ . . . ∗(xdd)kd , wj,d (1 ≤ j ≤ kd − 1).

Then

det(M) = det(Ek1) . . .det(Ekd) det(X),

where Ek is the nonsingular matrix
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Ek =





1 1 1 . . . 1
1 ωk ω2

k . . . ωk−1
k

1 ω2
k ω4

k . . . ω2(k−1)
k...

...
... . . . ...

1 ωk−1
k ω2(k−1)

k . . . ω(k−1)(k−1)
k





In particular, M is non-singular iff X is non-singular.

Proof. By induction and the Laplace expansion formula, analogously to the proof of 
Proposition 6. !

Definition 13. For v = (x1, . . . , xd)T ∈ Cd, k1, . . . , kd ∈ N \{0} and n = k1 + · · ·+ kd, we 
refer to the vector

v⊗ = (x1, . . . , x1︸ ︷︷ ︸
k1 terms

, . . . , xd, . . . , xd︸ ︷︷ ︸
kd terms

)T ∈ Cn

as the tensor expansion of v.

Proposition 14. The tensor expansions of the generalized eigenspaces of A are generalized 
eigenspaces of A. More precisely, if (A− λI)mv = 0 for some v ∈ Cd, λ ∈ Spec(A) and 
m ∈ N, then (A − λI)mv⊗ = 0.

Proof. Note preliminarily that, by the construction of the matrix A, for any v ∈ Cd and 
any λ ∈ C

[
(A− λI)v

]⊗ = (A− λI)v⊗. (3.2)

We proceed by induction on m. The case m = 1, that is, of ordinary eigenvectors, is 
a direct consequence of Equation (3.2). Now suppose by inductive hypothesis that for 
w ∈ Cd and λ ∈ Spec(A)

(A− λI)m−1w = 0 ⇒ (A− λI)m−1w⊗ = 0, (3.3)

and let v ∈ Cd satisfy (A − λI)mv = 0. Then w = (A − λI)v satisfies the premise of 
(3.3). Consequently,

(A− λI)mv⊗ = (A− λI)m−1 ((A− λI)v⊗
) (3.2)= (A− λI)m−1w⊗ (3.3)= 0. !

Proposition 15. Let {u1, . . . , ud} be a basis of generalized eigenvectors of A. Then the set 
made of the circulant eigenvectors wi,j of A introduced in Proposition 10, together with 
u⊗

1 , . . . , u
⊗
d , is linearly independent.
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Proof. We claim that span{wi,j | i = 1, . . . , d, j = 1, . . . , ki} ∩ span{u⊗
1 , . . . , u

⊗
d } = {0}. 

In fact, the latter span is included in the subspace U = {v = (y1, . . . , yn) ∈ Cn |
y1 = · · · = yk1 , yk1+1 = · · · = yk1+k2 , . . . , yk1+···+kd−1+1 = · · · = yk1+···+kd}. If by 
contradiction we assume a nontrivial linear combination 

∑d
i=1

∑ki

j=1 αi,jwi,j to lie in U , 
then by direct inspection each partial linear combination 

∑ki

j=1 αi,jwi,j (with fixed i) 
has to lie in U . Suppose, without loss of generality, that the partial linear combination ∑k1

j=1 α1jw1,j is nontrivial. Then, for some c ∈ C,

k1∑

j=1
α1,jw1,j = (c, c, . . . , c︸ ︷︷ ︸

k1

, 0, . . . , 0)T ,

which implies a nontrivial linear relation between vk1,0, vk1,1, vk1,k1−1, in contradiction 
with Remark 2. !

Now a counting argument on dimensions shows that there is no room for any (gener-
alized) eigenvector of A other than the circulant eigenvectors and the tensor expansions 
of the (generalized) eigenvectors of A. We collect several direct consequences of this fact.

Corollary 16. A is diagonalizable if and only if A is. In particular, if A is diagonalizable 
with eigenvalue-eigenvector pairs (λ1, v1), . . . , (λd, vd), then A is diagonalizable with the 
following system of eigenvalue-eigenvector pairs:

(λj , v
⊗
j ) for 1 ≤ j ≤ d,

(λC1
j , w1,j) for 1 ≤ j ≤ k1 − 1,

(λC2
j , w2,j) for 1 ≤ j ≤ k2 − 1,

. . .

(λCd
j , wd,j) for 1 ≤ j ≤ kd − 1.

Corollary 17. The reduced characteristic polynomial of A coincides with the characteristic 
polynomial of A, namely

pA(X) = pA(X).

4. Some applications to network theory

In this section, we apply the main results to study the spectrum of several (directed) 
graphs by the join and edge-removal procedures. In particular, we provide a conceptual 
explanation for the spectrum of the graph described in the second section.

First, we recall a graph construction, namely the join construction (see [10, Chapter 
2] and [23]).

Definition 18. Let G = (V (G), E(G)), H = (V (H), E(H)) be two graphs. The join of G
and H, denoted by G +H, is the graph with vertex set V = V (G) ∪V (H), and in which 



J. Ðoàn et al. / Linear Algebra and its Applications 650 (2022) 190–209 205

two vertices u and v are adjacent if and only if

• u, v ∈ V (G) and uv ∈ E(G).
• u, v ∈ V (H) and uv ∈ E(H).
• u ∈ V (G) and v ∈ V (H).
• u ∈ V (H) and v ∈ V (G).

Here is a pictorial illustration:

Let A(G) and A(H) be the adjacency matrices of G and H respectively. Then the 
adjacency matrix of G + H is given by

A(G + H) =
(
A(G) 1k1,k2
1k2,k1 A(H)

)
,

with k1 = |V (G)| and k2 = |V (H)|. Therefore, in any case in which A(G) and A(H) are 
circulant, the spectrum of A(G + H) is completely determined by Propositions 4, 8, 9. 
Here are some interesting instances.

Example 19 (Ring graphs). For two positive integers k, m, the ring graph RG(k, m) is the 
undirected graph whose k vertices can be arranged in a circle in such a way that each 
vertex is connected to its m closest neighbours on each side (with the understanding 
that, for k ≤ 2m + 1, RG(k, m) is the complete graph Kk). In particular, ring graphs 
are regular. We choose a total order of the vertices which goes along the aforementioned 
circle. This produces a circulant adjacency matrix, whose eigenvalue corresponding to 
the eigenvector (1, 1, . . . , 1)T is the graph valency 2m.

Consequently, if k1 > 2m1 + 1 or k2 > 2m2 + 1, the spectrum of RG(k1, m1) +
RG(k2, m2) is the union of three multisets

(Spec(RG(k1,m1) \ {2m1}) ∪ (Spec(RG(k2,m2) \ {2m2}) ∪ {λ1,λ2},

with
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λ1,λ2 = (2m1 + 2m2) ±
√

(2m1 − 2m2)2 + 4k1k2
2

= m1 + m2 ±
√

(m1 −m2)2 + k1k2.

For the sake of completion, if k1 ≥ 2m1+1 and k2 ≥ 2m2+1, then clearly RG(k1, m1) +
RG(k2, m2) is the complete graph on k1 + k2 vertices, so its spectrum is well known.

Example 20 (Cycle removal 1). Let us consider the graph obtained by removing an 
undirected cycle of length k from the complete graph Kn with n > k. Up to a reordering 
of the vertices, the resulting graph is the join of a circulant graph G, with k vertices and 
k− 3 edges and with adjacency matrix A(G) = Circ(0, 0, 1, 1 . . . , 1, 0), and the complete 
graph H = Kn−k. Since

Spec(G) =
{[

k−2∑

r=2
ωrj
k

]

1

∣∣∣∣∣ j = 0, . . . , k
}

and

Spec(H) = {[−1]n−k−2, [n− k − 1]1},

with lower indices after square brackets denoting algebraic multiplicity, the spectrum of 
G + H is the multiset

{[
k−2∑

r=2
ωrj
k

]

1

∣∣∣∣∣ j = 1, . . . , k
}

∪ {[−1]n−k−2} ∪ {λ1,λ2}

with

λ1,λ2 = (n− 4) +
√

(n + 2)2 − 8k
2 .

Example 21 (Cycle removal 2). Similarly, the graph obtained by removing a directed cycle 
of length k from the complete graph Kn with n > k is the join of a circulant graph G, 
with k vertices and k− 2 edges and with adjacency matrix A(G) = Circ(0, 1, 1 . . . , 1, 0), 
and the complete graph H = Kn−k. Its spectrum is the multiset

{[
k−1∑

r=2
ωrj
k

]

1

| j = 1, . . . , k
}

∪ {[−1]n−k−2} ∪ {λ1,λ2}

with

λ1,λ2 = (n− 3) +
√

(n + 1)2 − 4k
2 .
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5. Applications to non-linear dynamics on oscillator networks

To illustrate potential applications of this approach, we can now consider a dynamical 
system on the join of several circulant graphs. Specifically, we consider oscillators coupled 
on a graph on a matrix A, defined by joining d identical circulant graphs. We consider 
the Kuramoto model:

dθi
dt

= ωi + ε
N∑

j=1
Aij sin (θj − θi), (5.1)

which is a central tool in the description of synchronization in nature, from the behaviour
of insects (see [4], [9]), patterns of social behaviour (see [16], [17]), neural systems (see [3], 
[5]), and physical systems (see [21], [22]). Here, θi is the state of oscillator i ∈ [1, N ] at 
time t, ωi is the intrinsic angular frequency, κ scales the coupling strength, and element 
aij represents the weighted connection between oscillators i and j. We focus on the case 
where all oscillators have the same natural frequency, that is, ωi = ω for all i ∈ [1, N ]. 
Under this condition, we can assume further that ω = 0.

An important question in this area is the study of equilibrium points on a network of 
Kuramoto oscillators (see [19], [20]). Furthermore, it is known that the stability of these 
equilibrium points depends strongly on the specific pattern of connections, highlighting 
the importance of the network’s structure on the Kuramoto dynamics (see [20]). In [14], 
we utilize an algebraic approach to study equilibrium points of this dynamical system. 
By studying a related complex-valued model introduced in [12], we prove the following 
theorem.

Theorem 22. (See [14, Proposition 2].) Suppose x0 = eiθ0 is an eigenvector of A = (aij)
associated with a real eigenvalue λ. Then θ0 = (θ1, θ2, . . . , θN ) is an equilibrium point of 
the following Kuramoto model.

dθi
dt

= ε
N∑

j=1
aij sin(θj − θi).

We will now use this result and the main theorem of this article to construct networks 
with interesting equilibrium points. More precisely, let C be a real symmetric circulant 
matrix of size k × k. Let A be a join of d-identical copies of C, namely A is a network 
with the following weighted adjacency matrix

A =





C a1,21 · · · a1,d1
a2,11 C · · · a2,d1

...
... . . . ...

ad,11 ad,21 · · · C




.
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Let (ϕ1, ϕ2, . . . , ϕd) ∈ [−π, π]d. For each 1 ≤ j ≤ k − 1 and 1 ≤ i ≤ d let us define

ω(ϕi)
i,j = eiϕiωi,j ,

where ωi,j is an eigenvector of A associated with the eigenvalue λC
j as described in 

Proposition 10. Because these eigenvectors for a fixed j are associated with a single 
eigenvalue, their sum 

∑d
i=1 ω

(ϕi)
i,j is also an eigenvector associated with the eigenvalue 

λC
j . Note further that by the definition of ωi,j, we have

d∑

i=1
ω(ϕi)
i,j = eiθ(ϕ1,...,ϕd)

0,j ,

where

θ(ϕ1,...,ϕd)
0,j

=
(
ϕ1,

2πj
k

+ ϕ1, . . . ,
2π(k − 1)j

k
+ ϕ1, . . . ,ϕd,

2πj
k

+ ϕd, . . . ,
2π(k − 1)j

k
+ ϕd

)T

.

By Theorem 22, we conclude that

Proposition 23. For all 1 ≤ j ≤ k − 1 and (ϕ1, ϕ2, . . . , ϕd) ∈ [−π, π]d, θ(ϕ1,...,ϕd)
0,j is an 

equilibrium point of the KM associated with the adjacency matrix A.
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