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1. Introduction

Circulant matrices provide a nontrivial, elegant, and simple set of objects in matrix
theory. They appear quite naturally in many problems in spectral graph theory (see [1],
[2], [7], [8], [13], [18]) and non-linear dynamics (see [11], [12], [20]). The Circulant Diag-
onalization Theorem describes the eigenspectrum and eigenspaces of a circulant matrix
explicitly via the discrete Fourier transform. Consequently, many problems involving
circulant matrices have closed-form or analytical solutions.
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For example, in many applications, a natural model of a network is a ring graph,
in which nodes are regularly placed along a circle and, for a fixed number m, each
node is connected to its m closest neighbours on each side. Networks such as this can
be represented by adjacency matrices which are circulant, which opens the possibility
for exact solutions for problems involving the structure or dynamics of these networks.
More generally, a graph which has a circulant adjacency matrix with respect to a suitable
ordering of the vertices is called a circulant graph.

Many real-world networks, however, display structure beyond that of circulant net-
works. For example, networks may be composed of several smaller modules, joined
together in some way (see the final section for a particular example). From both a the-
oretical and an applied perspective, it is interesting and important to study the spectra
of graphs obtained by joining together smaller subgraphs.

The combination of these previous observations naturally led us to investigate the
spectrum of networks composed of several circulant graphs. While in general it is impos-
sible to relate the spectrum of a graph with the spectra of its subgraphs, joins of circulant
graphs provide an exception. Here we present a study of these spectra, and some ap-
plications. These results can provide analytical insight into the dynamics of composite
networks (see e.g. [14]), which will be the subject of future work.

More precisely, we generalize the Circulant Diagonalization Theorem to the joins of
several circulant matrices, by which we mean matrices of the shape

Ci |a121 |- | a4l
a2711 02 e ag,dl
= : (%)
ad711 ad,21 e Cd

where, for each 1 < 4,5 < d, C; is a circulant matrix of size k; x k; (with complex
entries), and a; ;1 is a k; x k; matrix with all entries equal to a constant a; ; € C. We
remark that, to simplify notation, 1 is used as the common symbol for all matrices with
all entries equal to 1, independently of their sizes. However no confusion should occur as
the submatrices a; ;1 are uniquely determined.

Our main theorem is

Theorem. The spectrum of a matriz A as in () is the union of the following multisets

d
Spec (A) U U {)\fﬂl <j<k— 1},
i=1

where A is an explicit d x d matriz, whose entries are the row sums of the blocks of A,
and the /\jci ’s are the eigenvalues of each circulant block C;, except for the eigenvalue
given by the row sum. Furthermore, a generalized eigenbasis of A can be directly obtained
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from eigenbases of the circulant blocks and a generalized eigenbasis of A. In particular,
A is diagonalizable if and only if A is.

This theorem completely solves our main problem of characterization of spec-
trum of the join of d circulant matrices. We note that the methods in this article
can be generalized to a wider class of matrices, namely normal matrices with con-
stant row sums. This extension will be discussed in a separate paper in prepara-
tion.

The structure of this article is as follows. In Section 2, we illustrate the join of two
circulant matrices. This serves as a motivation for our study as well as to guide the
readers to the more general case. In Section 3, we give the complete proof of the main
theorem, which consists of several steps. First, we show how to extend eigenvectors of
a circulant block to eigenvectors of the join. Secondly, we show that the generalized
eigenspaces of A lift to the generalized eigenspaces of A. Finally, we prove that the
collection of (generalized) eigenvectors for A, obtained from the previous two processes,
form a generalized eigenbasis. In Section 4, we discuss some applications of our results to
spectral graph theory. In the final section, we use the main theorem to study the dynamics
of networks of coupled oscillators. Specifically, we construct a family of networks of
Kuramoto oscillators with non-trivial equilibrium points.

2. Motivation: the join of two circulant matrices

A special instance of joining circulant matrices arises when we study the removal
of one (directed) cycle from a complete graph. Recall that the complete graph of size
n, denoted K, is the simple graph with an edge between any two distinct nodes. Its
adjacency matrix A is given by

Aij{o ifi=j

1 otherwise.

Moreover, a (directed) cycle of length k, or k-cycle, denoted CY, is the simple graph on
k nodes, in which the nodes can be ordered in such a way that each node is connected
only with the subsequent one, and the last one only with the first one. Its adjacency
matrix A is given by

A= 1 ifj=i+1or(i,5) = (k1)
Y 0 otherwise.

Finally, the complement of a graph G is the graph G¢ with the same vertices as G and
which has the edge between two distinct vertices if and only if that edge is not in G. In
other words, the adjacency matrix A¢ of G¢ is related to the adjacency matrix A of G by
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Fig. 1. The complete graph Kg with a cycle of length 3 removed. (For interpretation of the colours in the
figures, the reader is referred to the web version of this article.)

A¢=1—1— A, where 1 is a square matrix of ones and I is an identity matrix, of suitable
size. In particular, the adjacency matrices of complete graphs, cycles, and complements
of cycles are all circulant.

We illustrate the general phenomenon of cycle removal on a small concrete example.
Let us remove a 3-cycle C5 from the complete graph Kg with 8 nodes, and call the
resulting graph K = Kg — C'5. We choose to remove the cycle

(1,2),(2,3),(3,1)

which is highlighted in red in Fig. 1.

We note that removing any other cycle of length 3 would produce an isomorphic
graph. Another representation of this graph is depicted in the figure below. We have two
circulant graphs G and H (in green and grey respectively) and all nodes from each ring
graph are adjacent to all nodes of the other ring graph. This is an instance of the join
of two circulant graphs (Fig. 2), which we will define in Section 4.

In matrix terms, the adjacency matrix of K is a block matrix, with circulant diagonal
blocks and 1 everywhere else.
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Fig. 2. The join of two circulant graphs G and H.

00 111 1 1 11
10 0j1 1 1 1 1
01 01 1 1 11
11 1]j]0 1 1 1 1
11 11 0 1 1 1
11 1}j]1 1 0 11
11 11 1 1 01
11 11 11 10

The position of the eigenvalues of the adjacency matrix of I in the complex plane
highlights a nontrivial interplay between the eigenvalues of the two circulant blocks,
which motivates our investigations of the eigenspectra of joins of circulant matrices
(Fig. 3).

It is worth noticing that the eigenvalues for the graph I have been obtained through
the software Mathematica, but in the course of the paper we will derive analytical ex-
pressions for them.

To begin our investigation, we recall the Circulant Diagonalization Theorem (see [6]
for a more thorough discussion about circulant matrices). In the following, wy, denotes a
fixed primitive k-th root of unity.

Theorem 1 (Circulant Diagonalization Theorem, [6]). Let
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Fig. 3. The eigenvalues of the resulting graph.
Co Ck—1 - C2 C1
C1 €o Ck—1 C2
C = : c1 co - : = Clirce(co, €1, - -5 Ck—1)
C—2 C- e Ck—1
Ck—1 Cg—2 T C1 Co
be the circulant matriz formed by the vector (co,c1,. .. ,ck,l)T € C*k. Let
\T
_ J o, 25 (k—1)j -
Uk,j—(l,wk,wk7...,wk , 7=0,1,...,k—1.
Then vy ; is an eigenvector of C' associated with the eigenvalue
) 9 1)
Aj =€y + Cho1wi, + Ch_ow)” 4 -+ + cl(,u,(C )i
Remark 2. For any choice of k¥ € N \{0}, the vectors vy, ...,V r—1 are linearly in-

dependent. This can be seen by noticing that the matrix formed by the vectors is a
Vandermonde matrix.

In the following, the operator * denotes vector concatenation:

(:cl,...,:cm)T*(yl,...,yn)T: (:cl,...,xm,yl,...,yn)T

Proposition 3. Let C be a k x k circulant matriz, D be any (n — k) X (n — k) matriz, let
1y, 1, denote the ki x ko matriz entirely made of ones, and let A be the n x n matric

_ C 1y n—k
A= (1nk,k D > ’

For1<j<k-—1Ilet
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2j (k=15

. T .
wj = (Lwl,w,...,wy 2 0) =% 0p—p.

——

n—k zeros
Then w; is an eigenvector of A associated with the eigenvalue

, 0 1)
)\JC =¢o + Ch—1wj, + Ch—ow;” + - + cl(,u,(C )i

Proof. When we directly calculate Aw; we see that the first k£ elements of this vector
are Cv ; and the remaining n — k£ elements are equal to the sum

k—1
_ E ij
tj = wy -
i=0
In other words, we have

ij = O’Uk,j *(tj,tj,...,tj)T. = /\]C'Uj*(tj,tj,...,tj)T
— —

n — k terms n — k terms
Since, for 1 <j<k—1,
k-1 JVk
L ij (wk) -1 _
it follows that Aw; = Ajw;. We conclude that w;, 1 < j < k — 1, are eigenvectors of A

with associated eigenvalue /\jc as asserted. 0O

If D is also circulant, D = Circ(do,ds,...,dg,—1) with ks = n — k, an analogous
argument applies. In summary, recalling Remark 2 for the claim on linear independence,
we have proved the following statement.

Proposition 4. Let A be a (k1 + k2) x (k1 + ko) matriz of the form

C 1k, &
A= 1,k2
<1k27k‘1 D ) '

with C = Cire(cg, ...,k —1) and D = Circ(dy, . .. ,dg,—1) circulant matrices of dimen-
ston k1 X k1 and ko X ko respectively. For 1 < j <ky —1 let

—

_ J 25 (k1—1)j T _
wj = (Lwy, ,wil, oWy, ,0...,0)" = vg,y j * Oy

ko zeros
Then w; is an eigenvector of A associated with the eigenvalue

C _ J 2j (k1—1)j
)\j =co + 1wy, + 2wy oo Fawy .



J. Doan et al. / Linear Algebra and its Applications 650 (2022) 190-209 197

For1<j<ky—1,let
i 25 ko—1)j\T _ &
zj = (O,...,O,l,wiz,wkg,...,w,(wz ) )" = 0g, * Vg, ;.
k1 zeros
Then z; is an eigenvector associated with the eigenvalue

/\jD =dp+ dk2—1wi2 + dk2_2wiz + -+ d1w$2_1)j

Furthermore, the system of k1 + ko — 2 eigenvectors {w; }5”'1:;1 U {z, }52211 is linearly
independent.

In order to find the two remaining eigenvalues and corresponding eigenvectors of the

matrix A, we introduce an auxiliary matrix.

Proposition 5. Keeping the notation of the previous proposition, let Cs = Ef;gl ¢; be the

sum of each row in C, and similarly let Dy = Zfigl d;. Let us consider the 2 X 2 matrix

— (Cy ko
A<k1 D)

Let (z,y) € C? be an eigenvector for A with respect to an eigenvalue \. Then
/U:(x7‘r""7m7y7y)"'7y)T
—_——— ——

k1 terms ko terms

is an eigenvector of A with respect to the eigenvalue X.
Proof. We have

Av = (Csx + koy, ..., Csx + koy, kyx + Dgy, ... kix + Dyy)T.

k1 terms ko terms

By assumption, Csx + koy = Az, and Dy + k1y = \y.
Therefore, we see that

Av = Nz, 2,...,2,9,9,...,9) = . O
—_————

kq, terms ko terms

Proposition 6. Keeping the notation of the previous proposition, suppose further that A
is diagonalizable with eigenvectors (x1,y1) and (z2,y2). Let

_ T _ T
U1 = ($1,$1,...,xl,yl,yh...,yl) ) V2 = (x27x27‘"7x27y27y27"'ay2) .

k1 terms ko terms k1 terms ko terms
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Then the system {w; }?1:]1 U{z; }?2:_11 U{v1,v2} of eigenvectors of A is linearly inde-

pendent. In other words, A is diagonalizable by these eigenvectors.

Proof. For each k let

1 1 1 1

1w w,% - w’,zfl
Be=|1 @i wi Y

1 w’lj*l wi(kfl) . w,(ckfl)(kfl)

be the matrix that is used to diagonalize a k x k circulant matrix, and E\k be the
submatrix of Ej with the first column removed. Let e = det(EFy) # 0. The system
{w; ¥ U {23427 U {v1, 2} can be arranged to create the following matrix

j=1 j=1
T T2
Ey, : 0
E = X1 X9
Y1 Y2
: 0 : Ey,
hn Y2

Using the Laplace expansion of the determinant (see [15, Theorem 2.4.1]), we obtain the
term xiyoer, €k, as the product of the determinant of the left top corner block matrix
of size k1 X k1 with the determinant of the right down corner matrix of the size ko X ko.
The only other non-zero summand in the Laplace expansion is the product

) Y1

det E;; : - det : E;; = —XoY1€k, Ck,-

T2 Y1

Consequently,

X X
det(E) = eg, ex, (T1y2 — T2y1) = ex, ex, det <yi yj) #0. O

In addition, there is a relationship between the eigenvalues of A and A, to prove which
we need a preliminary lemma.
Lemma 7. Let M = Circ(mg,...,mi—1) be a circulant matriz. Let M, = Zf;ol m;.
Let {)\j-w};:é be the set of eigenvalues of M described in the Circulant Diagonalization
Theorem 1. Then
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(1) SMTTAM = Tr(M) — M.

Jj=1

(2) SRTHM)? = TH(M?) - M2

Proof. Both equalities are direct consequences of the facts that, when j = 0, )\;»VI = M,
and that for all £ > 0

k—1
Tr(M*) =Y (AR o

J=0

Proposition 8. Keeping the notation of the previous proposition, let A1, Ay be the two
remaining eigenvalues of A, that is, the eigenvalues not coming from the circulant blocks
C and D. Then M\ and Ay are eigenvalues of A.

Proof. It is enough to show that
A+ X =Cs + Dy, and M2 = CsD, — kiks.

First, by Proposition 4 we have

klfl kg*l
At A+ Y AT+ 3T AP = Ti(4) = Te(C) + Te(D).
j=1 j=1

By Lemma 7, we have

k1—1 ko—1
SN =Te(C)-C,,  and > AP =Tr(D) - D,.
j=1 j=1

Combining these equalities, we conclude that
A+ X =C5 + Dyq.

To prove the equality A Ay = CsD, — kiko, we first compute A2 + A3, using A%. We
have

A2 — C? + kglkl *
= . D2 4 kily, )

where 15 denotes a k X k matrix with all entries equal to 1. This implies that
Tr(A?) = Tr(C?) + Tr(D?) + 2k1 ka.

Additionally, we have



200 J. Doan et al. / Linear Algebra and its Applications 650 (2022) 190-209

klfl kgfl
Tr(A%) = AT+ 25+ Y (A7 + D ()%
j=1 j=1
k?lfl
™(C%) = Y (\)*+ 2,
Jj=1
kz*l
Tr(D?) = ) (AP)* + D?.
j=1

Combining these equalities, we get
A+ A2 =C2% 4+ D? 4 2k ks.

Therefore, by Newton’s formula we have

1
Mg = 3 [(A1+X2)? = A7 — A3
1
= 5 [(Ca+ Do)? = (C2 + D3 + 2kaks)]
- Cst - kle-

This completes the proof. 0O

We discuss a significant case in which A is diagonalizable.
Proposition 9. Keeping the notation of the previous proposition, suppose that Cs and Dy
are real numbers (or complex numbers with the same real part, or with the same imagi-
nary part). Then A is diagonalizable. Consequently, A is diagonalizable by the system of
eigenvectors discussed in Proposition 6.
Proof. The characteristic polynomial of A is

X% —(Cy+ D)X + (CyDy — kyks).
The discriminant of this polynomial is
A(A) = (Cs + Dy)? — 4(Cs Dy — kika) = (Cs — Dy)? + 4k ka.

Since Cy — Dy is either real or purely imaginary, (Cs — Ds)? € R, hence A(A) > 0.

Therefore, A has two distinct eigenvalues and hence is diagonalizable. For the sake of
completion, the two eigenvalues are

_ Cs+ Dy +/(Cs — Dy)? + 4k ks

Ai
2
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3. The general case

In the previous section we considered joins of 2 circulant matrices of a special im-
portant shape. In this section, we extend our results to general finite joins of circulant
matrices. In our main theorem, we completely characterize the spectrum of these matri-
ces. First, let us introduce some notations and conventions.

Let d, k1, ko, ..., kg € N\{0}. Set also n = k1 + k2 + ...+ kq. Thus n is a partition of
n into d non-zero summands. We shall consider n x n matrices of the following form

01 CLLQ]. e al,dl
(12711 CQ R ag,dl
= )
ad711 ad,21 s Cd
where for each 1 <14,j < d C; = Circ(cip,- .., ¢ik,_,) is a circulant matrix of size k; X k;,

and a; ;1 is a k; x k; matrix with all entries equal to a constant a; ;.
We have a direct generalization of Proposition 4:

Proposition 10. For each 1 <i1<dand1<j <k; —1 let

—

Wi, 5 :0k1*...*0ki71*vkhj*okm*...*okd

-0 0 J 20 (ki—1)INT |, & A
= 0py * .. % 0p,y x (Liwy ,wp), . wy )% Opyyy %o % Oy
i-th block

Then w; ; is an eigenvector of A associated with the eigenvalue

Ci _ J 27 (ki=1)j
AT =Cio F Gk —1Wy, T Gk —owy o cwy

Furthermore, the system of Zle k; — d eigenvectors {w; ;} is linearly independent.
We introduce the following terminology.

Definition 11. Keeping the previous notation, we will refer to the w; ;’s and to the asso-
ciated eigenvalues as the circulant eigenvectors and eigenvalues of A.

Let A1, A2,...Aq be the (not necessarily distinct) remaining eigenvalues of A. The
reduced characteristic polynomial of A is

d

_ _ - pa(X)
s il;[l(X Y H1<1§<i%d;1(X =

Motivated by the findings of Section 2, we look for the missing eigenvectors of A in a
special form, namely
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V= (21)ky *. k(X)) kg, %o (T hys (3.1)
where
(xi)p, = (2. 25)T .
—_——
k; terms

For 1 < i < d, we denote the row sum of the matrix C; by

ki—1

Cis = E Cig-
J=0

A direct calculation shows that
Av = <Clsx1 + ajokoxs + ...+ aldkdmd)kl *... *(adlklazl + agokoxs + ...+ Cdsmd)kd-
Therefore, the equation Av = Av can be equivalently written as

Az, 20,...,10) = Nay, ..., 297,

where A is the d x d matrix

Cis  azka -+ ainka
_ aonky  Chs -+ aznka
A= . .
agikr agks -+ Cys

In other words, an eigenvector of A of the form (3.1) can be “condensed” to an
eigenvector (z1,...,24)T of A with respect to the same eigenvalue. A strong converse
statement also holds: to prove it, we need a preliminary lemma.

Lemma 12. Let X = (x;;) be a d x d matriz. Let M be the (ki +...4+kq) % (k1 +...+kq)
matriz formed by the following column vectors (in this order)

(@11 kg * - *(@d1 gy, win (1< J < kp —1),
(@12)ky * - *(Xa2) kg, wi2 (1 <5 <ky—1),
(a:ln)kl * ... *(xdd)kdu Wj.d (1 <j<kg— 1).
Then
det(M) = det(Ey,) ... det(Ey,) det(X),

where Ey, is the nonsingular matriz
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1 1 1 1

1 wg WZ - wlzfl
Ej = 1 Wi wi e wi(kfl)

1 w’g_l wi(kfl) . w,(ckfl)(kfl)

In particular, M is non-singular iff X is non-singular.

Proof. By induction and the Laplace expansion formula, analogously to the proof of
Proposition 6. O

Definition 13. For v = (x1,...,24)T € C% ky,....,kg €N \{0} and n = ki +-- -+ kg, we
refer to the vector

® _ T n
v = (1,...,21,...,Tgy...,2q) €C
N———’ —_————
k1 terms kq terms

as the tensor expansion of v.

Proposition 14. The tensor expansions of the generalized eigenspaces of A are generalized
eigenspaces of A. More precisely, if (A — X)™v =0 for some v € C?, X\ € Spec(A) and
m € N, then (A — XI)™v® = 0.

Proof. Note preliminarily that, by the construction of the matrix A, for any v € C?% and
any A € C

(A= AI)0]® = (A= AT)®. (3.2)

We proceed by induction on m. The case m = 1, that is, of ordinary eigenvectors, is
a direct consequence of Equation (3.2). Now suppose by inductive hypothesis that for
w e C%and A € Spec(A)

(A= A"t =0= (A- )" w® =0, (3.3)

and let v € C? satisfy (A — AI)™v = 0. Then w = (A — M)v satisfies the premise of
(3.3). Consequently,
m,® _ m—1 @\ (3-2) m—1_@ (33)
(A= AD)"v® = (A - X\) ((A—)\I)v) =" (A= X)) w® ="0. O
Proposition 15. Let {uy,...,uq} be a basis of generalized eigenvectors of A. Then the set

made of the circulant eigenvectors w; ; of A introduced in Proposition 10, together with

ul, ... ,uff, is linearly independent.
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Proof. We claim that span{w;; | i =1,...,d,j =1,...,k} Nspan{u?,...,u3} = {0}.
In fact, the latter span is included in the subspace U = {v = (y1,...,yn) € C" |
Yi = = Yk Ukl = 0 = Ykitkas oo Ykidedkasa+l = 00 = Ykitetk o 1 DY
contradiction we assume a nontrivial linear combination Zle Zle o jw; ; to lie in U,
then by direct inspection each partial linear combination Zf;l a; jw;; (with fixed 7)
has to lie in U. Suppose, without loss of generality, that the partial linear combination

k . o
> j=; a1jwi j is nontrivial. Then, for some ¢ € C,

k1

_ T
E oy jwi; = (¢c,...,c0,...,0),
; ———
J=1 k1

which implies a nontrivial linear relation between v, o, Vi, ,1,Vk, k-1, in contradiction
with Remark 2. O

Now a counting argument on dimensions shows that there is no room for any (gener-
alized) eigenvector of A other than the circulant eigenvectors and the tensor expansions
of the (generalized) eigenvectors of A. We collect several direct consequences of this fact.

Corollary 16. A is diagonalizable if and only if A is. In particular, if A is diagonalizable
with eigenvalue-eigenvector pairs (A1,v1), ..., (Ad,vd), then A is diagonalizable with the
following system of eigenvalue-eigenvector pairs:
()\j,v?) for1<j<d,
(A" wy ) for 1< j <ky —1,
(A?,wgd) for1<j<ky—1,
(A?d,wd,j) for1 <j<kqs—1.

Corollary 17. The reduced characteristic polynomial of A coincides with the characteristic
polynomial of A, namely

4. Some applications to network theory

In this section, we apply the main results to study the spectrum of several (directed)
graphs by the join and edge-removal procedures. In particular, we provide a conceptual
explanation for the spectrum of the graph described in the second section.

First, we recall a graph construction, namely the join construction (see [10, Chapter
2] and [23]).

Definition 18. Let G = (V(G), E(G)),H = (V(H), E(H)) be two graphs. The join of G
and H, denoted by G + H, is the graph with vertex set V = V(G) UV (H), and in which
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two vertices u and v are adjacent if and only if

o u,v € V(G) and wv € E(G).
e u,v € V(H) and uwv € E(H).
e ueV(G)and v e V(H).
o ueV(H) and v € V(G).

Here is a pictorial illustration:

Let A(G) and A(H) be the adjacency matrices of G and H respectively. Then the
adjacency matrix of G + H is given by

AG) 1k,
aerm= (19 ).

with k1 = |V(G)| and ko = |V (H)|. Therefore, in any case in which A(G) and A(H) are
circulant, the spectrum of A(G + H) is completely determined by Propositions 4, 8, 9.
Here are some interesting instances.

Example 19 (Ring graphs). For two positive integers k, m, the ring graph RG(k,m) is the
undirected graph whose k vertices can be arranged in a circle in such a way that each
vertex is connected to its m closest neighbours on each side (with the understanding
that, for k& < 2m + 1, RG(k,m) is the complete graph Kj). In particular, ring graphs
are regular. We choose a total order of the vertices which goes along the aforementioned
circle. This produces a circulant adjacency matrix, whose eigenvalue corresponding to
the eigenvector (1,1,...,1)7 is the graph valency 2m.

Consequently, if k1 > 2my + 1 or ko > 2mso + 1, the spectrum of RG(ky,m1) +
RG(kz, m2) is the union of three multisets

(Spec(RG(k1,m1) \ {2m1}) U (Spec(RG(ka, m2) \ {2ma}) U {A1, A2},

with
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(2m1 + 2m2) + \/(2m1 — 2m2)2 + 4k ko
2

=mi +mo % \/(ml — m2)2 + k1ko.

AL, Ag =

For the sake of completion, if k; > 2m1+1 and ks > 2mo+1, then clearly RG(k1, m1)+
RG(k2,m2) is the complete graph on ki + ko vertices, so its spectrum is well known.

Example 20 (Cycle removal 1). Let us consider the graph obtained by removing an
undirected cycle of length k from the complete graph K,, with n > k. Up to a reordering
of the vertices, the resulting graph is the join of a circulant graph G, with k vertices and
k — 3 edges and with adjacency matrix A(G) = Circ(0,0,1,1...,1,0), and the complete
graph H = K,,_j. Since

ji=0,..., k}

Spec(H) = {[~1]p—k—2,[n — k —1]1},

f—2
Spec(G) = { [Z wzj]

1

and

with lower indices after square brackets denoting algebraic multiplicity, the spectrum of
G + H is the multiset

7],

)\I)AQ =

7=1,.. ,k‘} U {[_1]n7k72} U {)\1,)\2}

with

(n—4)+/(n +2)2 — 8k
: .

Example 21 (Cycle removal 2). Similarly, the graph obtained by removing a directed cycle
of length k£ from the complete graph K,, with n > k is the join of a circulant graph G,
with k vertices and k — 2 edges and with adjacency matrix A(G) = Circ(0,1,1...,1,0),
and the complete graph H = K,,_. Its spectrum is the multiset

k—1
{lzwzj] |j17---,k}U{[Un—k—z}U{)\l,)\z}
r=2 1

with

(n—3)+/(n+1)2— 4k

)\1;)\2: 2
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5. Applications to non-linear dynamics on oscillator networks

To illustrate potential applications of this approach, we can now consider a dynamical
system on the join of several circulant graphs. Specifically, we consider oscillators coupled
on a graph on a matrix A, defined by joining d identical circulant graphs. We consider
the Kuramoto model:

do; ST
o :wiJreZAij sin (6; — 6,), (5.1)
j=1

which is a central tool in the description of synchronization in nature, from the behaviour
of insects (see [4], [9]), patterns of social behaviour (see [16], [17]), neural systems (see [3],
[5]), and physical systems (see [21], [22]). Here, 6; is the state of oscillator ¢ € [1, N] at
time ¢, w; is the intrinsic angular frequency, x scales the coupling strength, and element
a;; represents the weighted connection between oscillators ¢ and j. We focus on the case
where all oscillators have the same natural frequency, that is, w; = w for all i € [1, N].
Under this condition, we can assume further that w = 0.

An important question in this area is the study of equilibrium points on a network of
Kuramoto oscillators (see [19], [20]). Furthermore, it is known that the stability of these
equilibrium points depends strongly on the specific pattern of connections, highlighting
the importance of the network’s structure on the Kuramoto dynamics (see [20]). In [14],
we utilize an algebraic approach to study equilibrium points of this dynamical system.
By studying a related complex-valued model introduced in [12], we prove the following
theorem.

Theorem 22. (See [1/, Proposition 2].) Suppose o = €9 is an eigenvector of A = (a;;)
associated with a real eigenvalue . Then 0y = (61,02, ...,0N) is an equilibrium point of
the following Kuramoto model.

by o~
i eZaij sin(0; — 6;).
j=1

We will now use this result and the main theorem of this article to construct networks
with interesting equilibrium points. More precisely, let C' be a real symmetric circulant
matrix of size k x k. Let A be a join of d-identical copies of C, namely A is a network
with the following weighted adjacency matrix

C a1,21 R al)dl
a2711 C s (127d1

ad,11 ad’gl C
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Let (p1,92,...,04) € [-m, 7% Foreach 1 <j <k —1and 1 <i < d let us define

(SDZ) = eiwi

wl,]

Wi,j,

where w; ; is an eigenvector of A associated with the eigenvalue /\J-C as described in
Proposition 10. Because these eigenvectors for a fixed j are associated with a single
eigenvalue, their sum Z?zl w%") is also an eigenvector associated with the eigenvalue
)\JC. Note further that by the definition of w; ;, we have

where
9&? yeesPd)
27 2m(k — 1)j 2mj om(k —1)j T
:<90177.7+@17'~'7%+8017"'7s0d77]+¢dﬂ"'7%+wd> .

By Theorem 22, we conclude that

Proposition 23. For all 1 < j < k —1 and (p1,92,.-.,¢aq) € [, 7%, 0(()‘3-1""’%) is an

equilibrium point of the KM associated with the adjacency matriz A.
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